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Summary 1 

Lactic acid bacteria (LAB) have long been used in industrial applications mainly as starters 2 

for food fermentation or as biocontrol agents or as probiotics. However, LAB possess several 3 

characteristics that render them among the most promising candidates for use in future biorefineries 4 

in converting plant-derived biomass – either from dedicated crops or from municipal/industrial solid 5 

wastes – into biofuels and high value-added products. Lactic acid, their main fermentation product, 6 

is an attractive building block extensively used by the chemical industry, owing to the potential for 7 

production of polylactides as biodegradable and biocompatible plastic alternative to polymers derived 8 

from petrochemicals. LA is but one of many high-value compounds which can be produced by LAB 9 

fermentation, which also include biofuels such as ethanol and butanol, biodegradable plastic 10 

polymers, exopolysaccharides, antimicrobial agents, health-promoting substances and nutraceuticals. 11 

Furthermore, several LAB strains have ascertained probiotic properties, and their biomass can be 12 

considered a high-value product. The present contribution aims to provide an extensive overview of 13 

the main industrial applications of LAB and future perspectives concerning their utilization in 14 

biorefineries. Strategies will be described in detail for developing LAB strains with broader substrate 15 

metabolic capacity for fermentation of cheaper biomass. 16 

 17 
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1. Introduction 1 

Lactic acid bacteria (LAB) include a wide group of Gram-positive fermenting bacteria which 2 

are generally non-sporulating and non-motile. They comprise both cocci and bacilli belonging to 3 

Carnobacterium, Enterococcus (Ent), Lactobacillus (Lb), Lactococcus (Lc), Leuconostoc (Leu), 4 

Oenococcus, Pediococcus (Ped), Streptococcus (Str), Tetragenococcus, Vagococcus and Weissella 5 

genera (Hofvendahl and Hahn-Hägerdal, 2000).  6 

LAB are among the most promising microorganisms for biorefineries converting waste 7 

biomasses into industrially important products (Berlec and Strukelj, 2009). Currently, the main 8 

application of LAB in industrial processes is as food starters (e.g., for dairy products, pickles, meat 9 

and wine) (Papagianni, 2012). However, several physiological characteristics of the LAB render these 10 

bacteria highly suitable for much wider industrial application: 11 

i) Except for some pathogenic streptococci strains, LAB are considered GRAS 12 

(generally regarded as safe);  13 

ii)  LAB are robust organisms already adapted to stress conditions in industrial processes, 14 

since they generally show high acid tolerance (they can survive at pH 5 and lower) and 15 

broad optimal growth temperatures (ranging from 20 to 45°C, depending on the genus 16 

and strain) (Hofvendahl and Hahn-Hägerdal, 2000); 17 

iii)  LAB are able to metabolize numerous mono- (both hexose and pentose) and di-18 

saccharides (Kandler, 1983); 19 

iv) LAB naturally produce many metabolites with confirmed applications in both the food 20 

and non-food industries (Fig. 1), such as: antimicrobial molecules (e.g., bacteriocins) 21 

(Settanni and Corsetti, 2008); food aromas and flavors (e.g., diacetyl and 22 

acetaldehyde) (Papagianni, 2012); food complements (e.g., vitamins) (Sybesma et al., 23 

2004); food texturing agents (e.g., exopolysaccharides) (Chapot-Chartier et al., 2011); 24 

sweeteners (e.g., mannitol) (Hugenholtz et al., 2011); nutraceutical molecules, e.g., γ-25 

aminobutyric acid (GABA) opioid peptides and seleno-metabolites (Lamberti et al., 26 

2011; Mazzoli et al., 2010; Mazzoli, 2014); bulk chemicals (e.g., lactic acid and 27 

ethanol) with applications for plastic polymeric manufacturing, e.g., polylactic acid 28 

(PLA) or polyethylene terephthalate (PET), respectively (Madhavan Nampoothiri et 29 

al., 2010; Singh and Ray, 2007) or as solvents or biofuels (e.g., ethyl lactate, ethanol) 30 

(Ohara, 2003); as well as biodegradable plastics (i.e., polyhydroxyalkanoates, PHA) 31 

(Aslim et al., 1998). 32 
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Although it is not within the scope of this review, it is worth mentioning LAB properties as 1 

extensively used probiotics (Settanni and Moschetti, 2010; Lamberti et al., 2011).  2 

 3 

*Fig. 1 4 

 5 

Depending on which metabolic pathway(s) is (are) used by a LAB strain to catabolize sugars, 6 

a given strain can show either homo-, hetero- or mixed acid fermentation phenotype. 7 

Homofermentation virtually produces lactic acid (LA) as the sole end product. Sugars are catabolized 8 

through the Embden-Meyerhof pathway, and its end product, i.e., pyruvic acid, is enzymatically 9 

reduced either by D-lactate or L-lactate dehydrogenase (D-LDH and L-LDH, respectively) giving 10 

rise to the two LA enantiomers. The stereospecificity of the LA produced depends on the specific 11 

LAB strain, that is on the presence of the genes encoding L-LDH and/or D-LDH and their relative 12 

level of expression. Furthermore, the D-LA/L-LA balance can be affected by the presence of lactate 13 

racemase (E.C. 5.1.2.1) that catalyzes their interconversion (Goffin et al., 2005). In 14 

heterofermentative metabolism, equimolar amounts of LA, carbon dioxide and ethanol or acetate are 15 

formed from glucose via the phosphoketolase pathway. This pathway is used by facultative 16 

heterofermenters, such as Lb. casei, to metabolize pentoses and for the fermentation of hexoses and 17 

pentoses by obligate heterofermenter organisms such as Leuconostoc. Almost all LAB, except some 18 

lactobacilli, are able to ferment pentoses, i.e., they are facultative heterofermenters (Kandler, 1983). 19 

Mixed acids are formed by homofermenters such as lactococci during glucose limitation and during 20 

growth on other sugars, e.g., Lc. lactis growing on maltose, lactose and galactose, or at increased pH 21 

and temperature (Papagianni, 2012). Ethanol, acetate and formate are formed in addition to LA. Here, 22 

monosaccharides are catabolized through the Embden-Meyerhof pathway as in homofermentative 23 

metabolism, but pyruvate is partly reduced to LA by LDH and partly converted to formate and acetyl-24 

CoA by pyruvate formate lyase (PFL). In the presence of oxygen, PFL is inactivated and an alternative 25 

pathway of pyruvate metabolism becomes active via pyruvate dehydrogenase (PDH), resulting in the 26 

production of carbon dioxide, acetyl-CoA and NADH (Hofvendahl and Hahn-Hägerdal, 2000). 27 

Although the ability of LAB to synthesize a large panel of highly valuable compounds renders 28 

them good candidates for biorefinery application, economic feasibility of such LAB-based industrial 29 

fermentations (especially for the production of bulk chemicals) remains problematic. Since LAB have 30 

limited potential to biosynthesize amino acids, nucleotides, and/or vitamins, supplementation of these 31 

nutrients is necessary for optimal growth. These complex nutritional requirements increase the costs 32 
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of both growth medium preparation and product separation and purification (John et al., 2007; Okano 1 

et al., 2010a). Furthermore, LAB are generally unable to directly ferment (i.e., without previous 2 

saccharification by physico-chemical and/or enzymatic treatments) complex carbohydrates, e.g., 3 

starch and cellulose, which comprise the most abundant and least expensive feedstocks for 4 

biorefineries (John et al., 2007; Okano et al., 2010a). 5 

Metabolic engineering helps solve defined problems, e.g., broadening the range of carbon 6 

sources used by a microorganism or improving its product yield and productivity. The small genomes 7 

(about 2-3 Mb) and the relatively simple physiology of LAB make them suitable organisms for 8 

metabolic engineering (De Vos and Hugenholtz, 2004). Many genetic tools, including gene 9 

expression vectors, are available for LAB (de Vos, 1999; Sorvig et al., 2005). Advantageously, a 10 

number of chromosomal integration systems for LAB have been developed since the 1980s and are 11 

continuously optimized (for an extensive review please refer to Gaspar et al., 2013). Tools for 12 

unlabelled (i.e., without insertion of antibiotic resistance markers) gene integration into the 13 

chromosome by either homologous recombination (e.g., pORI, pSEUDO and Cre-lox systems) or 14 

single-stranded DNA recombineering currently allow manipulation of lactobacilli and Lc. lactis 15 

(Douglas et al., 2011; Lambert et al., 2007; Pinto et al., 2011; van Pijkeren and Britton, 2012). Such 16 

strategies are essential for engineering microorganisms suitable for application in industrial 17 

fermentations, since they circumvent genetic instability of plasmid-bearing strains and avoid the need 18 

for antibiotic pressure, which is too costly at the industrial scale and not applicable in food-oriented 19 

processes.  20 

To date, Lc. lactis is still by far the most extensively studied species among LAB, and many 21 

examples of successful metabolic engineering of this species are available (Hugenholtz et al., 2011; 22 

Kleerebezem and Hugenholtz, 2003). So far, the main efforts in genetic modification of LAB have 23 

been concentrated in the development of LAB with enhanced qualities for food grade applications, 24 

e.g., with improved production of flavors or nutritional (health-promoting) components, or increased 25 

resistance to bacteriophages (Hugenholtz et al., 2011; Papagianni, 2012; Singh et al., 2006). Only a 26 

few attempts have been made to improve LA production by metabolic engineering in LAB. Most 27 

were attempts to obtain optically pure LA isomer by cloning or deletion of genes encoding either D- 28 

or L-LDH or by deletion of racemase genetic determinant(s) (Singh et al., 2006; Okano et al., 2009b; 29 

2010b). In the meantime, an increasing number of LAB has been the object of extensive fundamental 30 

research. Whole genome sequences of about 40 LAB strains have been determined. Moreover, 31 

sequencing of more than 100 LAB genomes is currently underway as reported by a number of publicly 32 

available databases (http://www.genome.jp/kegg/; http://www.jgi.doe.gov/; 33 
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http://www.ncbi.nlm.nih.gov/genome) (Gaspar et al., 2013). The metabolism of several LAB has 1 

been investigated by a great number of studies through trancriptomic, proteomic and/or metabolomic 2 

approaches (Bron et al., 2012; Carvalho et al., 2013; Gaspar et al., 2013; Pessione et al., 2014). Such 3 

information will contribute to expand the potential of systems metabolic engineering of LAB. 4 

The present paper intends to provide an extensive overview of the main current industrial 5 

applications of LAB and future perspectives concerning their utilization in biorefineries for 6 

converting waste biomass by fermentation. Strategies for improving production of high-value 7 

compounds by LAB or expanding their substrate metabolic capacity for cheaper forms of biomass, 8 

such as starch or lignocellulose, will be described in detail with examples of both fermentation 9 

process optimization and strain engineering through genetic manipulation techniques. 10 

 11 

 12 

2. Agro-industrial biomass for LAB-catalyzed bioconversion processes: past, present and 13 

future 14 

Today, LA production is the most significant application of LAB for large-scale industrial 15 

fermentation. In 2002, of the 150,000 tons of LA that were produced worldwide, about 90% was 16 

generated via LAB fermentation using glucose as the carbon source (Sauer et al., 2008). The higher 17 

the purity of the sugar(s) used as substrate, the higher the purity of the fermentation product(s) (e.g., 18 

LA) obtained. This greatly reduces the costs for down-stream product purification. However, this 19 

approach is economically unfavourable, since pure sugars are expensive. Therefore, different types 20 

of biomass, such as energy crops, forestry residues, or by-products from agro-industrial activities 21 

(e.g., milk whey, molasses, starch, wheat bran and flour, and lignocellulose), featuring both low 22 

purchase cost and renewability, have either been proposed or have already been tested as fermentative 23 

substrates for LAB (Hofvendahl and Hahn-Hägerdal, 2000; Okano et al., 2010a). It is worth noting 24 

that several parameters affect product yield and productivity from renewable resources, including the 25 

carbon source, the nitrogen source, the fermentation mode, the pH and temperature (Hofvendahl and 26 

Hahn-Hägerdal, 2000). Notably, the heterogeneous chemical and physical nature of the different 27 

available feedstocks limits the possibility to develop generally applicable bioconversion processes. 28 

In particular, the bioconversion of the most abundant and promising biomass types, i.e., starch and 29 

lignocellulose, by LAB is currently the most problematic, as described in the section 2.2. 30 

 31 
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2.1. Suitable biomasses for LAB biorefinery processes 1 

2.1.1 Milk whey. Milk whey represents a cheap raw material that is available in large amounts 2 

(13.500.000 tons/year in the EU) as a by-product of the caseification process (Koller et al., 2007). 3 

Furthermore, this surplus product causes a huge and expensive disposal problem for the dairy industry 4 

(Koller et al., 2007). Although several possibilities of cheese whey utilization have been explored, a 5 

major portion of the world cheese whey production is currently discarded as effluent. The major 6 

constituents of whey are lactose (45-50 g/L), proteins (6-8 g/L) and salts. The main components of 7 

the whey protein fraction are β-lactoglobulin (2.7 g/L), α-lactalbumin (1.2 g/L), immunoglobulins 8 

(0.65 g/L), bovine serum albumin (0.4 g/L), lactoferrin (0.1 g/L) and lactoperoxidase (0.02 g/L) 9 

(Wong et al., 1996). The high content of lactose in whey permeate (about 80% of the original lactose 10 

in milk) and the presence of other essential nutrients (e.g., vitamins) for the growth of microorganisms 11 

would potentially enable milk whey to be used directly as a medium for LAB fermentation, e.g., for 12 

LA production.  13 

2.1.2 Molasses. Molasses is a by-product of the sugar manufacturing process and contains 14 

sucrose as the most abundant sugar. Its high carbohydrate concentration makes molasses a highly 15 

viscous liquid which needs dilution before using it in microbial growth media, so as to avoid osmotic 16 

problems for the cells. Molasses has been traditionally used as animal feed and for ethanol and yeast 17 

production, but applications for LA production by LAB have also been reported (Hofvendahl and 18 

Hahn-Hägerdal, 2000).  19 

2.1.3 Starch. Starch consists of a mixture of glucans, i.e., amylose and amylopectin. Both 20 

amylose and amylopectin possess a linear backbone of glucose residues linked by α(1-4) linkages. In 21 

addition, in amylopectin branching takes place through α(1-6) bonds occurring every 24 to 30 glucose 22 

units of the backbone chain. Starch can be obtained from various plants and is an interesting raw 23 

material on the basis of cost and availability (Okano et al., 2010a). However, relatively few LAB 24 

strains (mainly lactobacilli) isolated so far have starch-degrading properties (see also section 2.2.) 25 

(Okano et al., 2010a). Furthermore, most of the naturally amylolytic LAB show either low LA yields 26 

or poor enantioselectivity as described in section 3.1.1. (Okano et al., 2010a). Many groups have 27 

explored acid/enzyme hydrolysis of starchy substrates (wheat, corn, cassava, potato, rice, rye, 28 

sorghum and barley) followed by LAB fermentation or simultaneous saccharification and 29 

fermentation by co-culture/mixed culture in LA production processes (Xiaodong et al., 1997; Datta 30 

and Henry, 2006; Hofvendahl and Hahn-Hägerdal, 2000).  31 
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2.1.4. Wheat bran. Wheat bran is rich in proteins, oil, nutrients, and calories and is among the 1 

major by-products of wheat production. Wheat flour or wheat bran has been used to produce LA, as 2 

they contain a large percentage of starch and proteins, which can be utilized as the sole sources of 3 

carbon and nitrogen, respectively (John et al., 2006; Li et al., 2010b; Naveena et al., 2005a; b; Oh et 4 

al., 2005).  5 

2.1.5. Lignocellulose. Lignocellulose is the main component of the plant cell wall and the 6 

most abundant renewable source of biomass on Earth. It also includes waste biomass produced by 7 

human activities, such as waste paper, by-products from agricultural crops (e.g., wheat straw, corn 8 

stalks) and industrial waste streams (e.g., paper mill sludge, wood industry waste). Despite great 9 

differences in composition and in anatomical structure of cell walls across plant taxa, lignocellulose 10 

typically consists of cellulose (35-50% of the plant dry weight), hemicellulose (e.g., xylans, mannans 11 

and β-glucans, 20-35 % of the plant dry weight) and lignin (5-30% of the plant dry weight) as the 12 

major components (Lynd et al., 2002). While cellulose is a linear homopolymer of β-glucose units 13 

linked by (1-4) glycosidic bonds, hemicellulose is a heterogenous class of polysaccharides which are 14 

often branched and consist of both hexose (e.g., glucose and galactose) and pentose (e.g., xylose, 15 

which is the most abundant hemicellulose component, and arabinose) sugars (Jordan et al., 2012). 16 

Some LAB strains can ferment short cello-oligosaccharides and/or xylooligosaccharides (Adsul et 17 

al., 2007a; De Vos, 1997; Ohara et al., 2006; Kowalczyk et al., 2008). However, no natural 18 

cellulolytic or hemicellulolytic LAB has been isolated so far as described in section 2.2.  19 

 20 

2.2. Expanding LAB substrate metabolization performance: construction of recombinant 21 

amylolytic and (hemi-)cellulolytic LAB 22 

The bioconversion of starchy and lignocellulosic biomasses by LAB is currently hampered by 23 

major limitations. Relatively few natural LAB strains having starch-degrading properties, e.g., 24 

amylolytic strains belonging to Lactobacillus species (Lb. amylophilus, Lb. amylovorus, Lb. 25 

amylolyticus and certain strains of Lb. plantarum), have been isolated so far (Giraud et al., 1994; 26 

Guyot et al., 2000; Narita et al., 2004). Most of them have been used for one-step LA production and 27 

have exhibited either low yield or low enantioselectivity (John et al., 2007; Okano et al., 2010a). 28 

However, screening for useful amylolytic LAB is both time-consuming and difficult.  29 

 Currently, pre-treatment of starchy and ligno-cellulosic feedstocks, including polysaccharide 30 

hydrolysis into oligo-/mono-saccharides, is in most cases necessary prior to sugar fermentation by 31 

LAB (Hofvendahl and Hahn-Hägerdal, 2000, Okano et al., 2010a). Hydrolysis of polysaccharides 32 
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can be achieved by either physico-chemical strategies (e.g., steam, diluted acids or alkali) or 1 

enzymatic treatment (addition of commercial amylase or cellulase cocktails). Both physico-chemical 2 

and enzymatic hydrolysis can be very efficient, but most physico-chemical processes are known to 3 

produce toxic compounds, e.g., furfural and hydroxymethylfurfural, which inhibit microbial growth. 4 

Moreover, both physico-chemical and enzymatic treatments significantly increase the cost of the 5 

bioconversion processes (Okano et al., 2010a). Notably, dedicated production of hydrolytic enzymes 6 

is still a major economic constraint for cost-effective bioprocessing of plant-derived lignocellulosic 7 

biomasses (Olson et al., 2012). In this context, the cost of cellulases is currently comparable to the 8 

purchase cost of the feedstock, i.e., 50 cents per gallon ethanol (Olson et al., 2012). Extensive research 9 

has been dedicated to developing consolidated biomass bioconversion processes (CBP), featuring 10 

biomass hydrolysis and bioconversion to high-value product(s) in a single fermenter. As far as LAB 11 

are concerned, many efforts have been aimed at the construction of recombinant amylolytic or 12 

cellulolytic strains by metabolic engineering over the past 25 years. 13 

To date, owing to the less recalcitrant nature of starch with respect to lignocellulose, the most 14 

successful studies have been those aimed at the construction of recombinant amylolytic LAB, i.e., 15 

secreting heterologous α-amylase (Okano et al., 2007; Van Assendolk et al., 1993) (see Table 1). 16 

Increased amounts of α-amylase from Str. bovis 148 could be biosynthesized in Lb. casei by fusing 17 

the 5'-untranslated leader sequence (UTLS) and the ribosome binding site (RBS) of the slpA gene 18 

from Lb. acidophilus with the promoter of the gene encoding LDH of Lb. casei (Narita et al., 2006). 19 

Maximum α-amylase activities measured in such engineered LAB are 3-6 fold higher than those 20 

shown by the native amylolytic Str. bovis 148 (Narita et al., 2004). The most impressive performance 21 

was reported for a Lb. plantarum strain secreting α-amylase from Str. bovis 148, which was able to 22 

ferment 86 g of raw corn starch to D-LA in 48 h with a similar yield of 0.85 g/g total sugar consumed 23 

but a higher maximum volumetric productivity of 3.86 g/L/h, compared to Str. bovis 148 (Narita et 24 

al., 2004; Okano et al., 2009c) (Table 1). 25 

 26 

*Table 1 27 

 28 

Enzymatic systems for lignocellulose hydrolysis are much more complicated than those 29 

required for starch hydrolysis. Multiple enzymes, having different substrate specificities (e.g., 30 

cellulases, xylanases and other hemicellulases) and catalytic mechanisms (i.e., exoglucanases, 31 
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endoglucanases, processive endoglucanases, and β-glucosidases), are required to co-operate 1 

synergistically for efficient lignocellulose hydrolysis (Bayer et al., 2013; Lynd et al., 2002; Wilson, 2 

2011). Although recent studies have highlighted that strategies for cellulose hydrolysis can be highly 3 

diverse in phylogenetically distant cellulolytic microorganisms (Himmel et al., 2010; Wilson 2011), 4 

two main cellulase paradigms have been the most extensively studied so far: i) the “free”-cellulase 5 

systems (i.e., secreted cellulases that do not form stable complexes) of aerobic microorganisms, such 6 

as filamentous fungi (e.g., Trichoderma reesei) and actinomycetes (Chandel et al., 2012; Lynd et al., 7 

2002); and ii) the “complexed” cellulase systems, i.e., the cellulosomes of anaerobic bacteria, such 8 

as Clostridium spp. and Ruminococcus spp., and fungi (i.e., Chytridomycetes) which are generally 9 

bound to the cell surface (Bayer et al., 1998; Bayer et al., 2008; Fontes and Gilbert, 2010; Himmel et 10 

al., 2010; Lynd et al., 2002). Aerobic microorganisms generally secrete amounts ranging from 1 to 11 

10 g/l up to 100 g/l (in some fungi) of “free” cellulases, while cellulosome-biosynthesizing anaerobic 12 

bacteria, such as Clostridium thermocellum, produce much lower amounts of cellulases (around 0.1 13 

g/L) because of the lower energy levels in anaerobic versus aerobic bacteria and the higher specific 14 

activity of such complexes with respect to “free-enzyme” systems (You et al., 2012). 15 

Examples of recombinant cellulolytic strategies have been applied so as to bestow the ability 16 

to grow on lignocellulose biomasses on LAB strains by heterologous cellulase expression (Mazzoli 17 

et al., 2012; Yamada et al., 2013) (Table 1). Early examples in LAB, have been mainly aimed at 18 

obtaining LAB strains able to improve silage fermentation and storage and/or silage digestibility by 19 

cattle (Bates et al., 1989; Ozkose et al., 2009; Rossi et al., 2001; Scheirlinck et al., 1989). Lb. 20 

plantarum is commonly used for silage fermentation so as to diminish silage pH by means of LA 21 

fermentation and improve long-term silage storage (Scheirlinck et al., 1989). However, the soluble 22 

carbohydrate concentration in silage is often very low, and since natural Lb. plantarum is not able to 23 

ferment glucans (either starch or cellulose), the amount of LA produced is too low to inhibit further 24 

silage fermentation by spoilage microorganisms. Heterologous endocellulase expression in Lb. 25 

plantarum (by gene cloning into plasmids or through integration into the genomic DNA), designed 26 

to obtain recombinant cellulolytic strains with improved silage fermentation properties, has been 27 

received with great interest (Bates et al., 1989; Rossi et al., 2001; Scheirlinck et al., 1989). The C. 28 

thermocellum endoglucanase Cel8A was successfully expressed in two probiotic lactobacilli (Cho et 29 

al., 2000). Later, construction of cellulolytic LAB for industrial production of LA has been 30 

considered. C. thermocellum Cel8A was introduced into Lb. plantarum ∆ldhL1, thus obtaining a 31 

recombinant strain that was able to grow on cellooligosaccharides up to 5-6 glucose residues (Okano 32 

et al., 2009c; 2010a). Very recently, Morais and co-workers (2013) demonstrated that the construction 33 
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of simple consortia of recombinant Lb. plantarum strains expressing and secreting cellulase-xylanase 1 

mixtures could potentially be used for biomass (e.g., wheat straw) bioconversion.  2 

Current cutting-edge strategies aimed at the development of recombinant cellulolytic 3 

microbial strains are mainly based on heterologous expression of so-called mini- or designer-4 

cellulosomes, i.e., artificial cellulosomes, which are composed of the minimum number of 5 

components enabling them to be active on lignocellulosic substrates (Bayer et al., 1994; Bayer et al., 6 

2007). Because of lower protein secretion ability of bacteria with respect to eukaryotic cells, 7 

complexed-cellulases, showing higher specific activity than free cellulases, seem the most promising 8 

enzymatic systems for conferring cellulolytic ability to LAB. Moreover, LAB are relatively close to 9 

cellulolytic clostridia from a phylogenetical standpoint, and their G+C content is low and similar to 10 

those of strains such as C. cellulovorans, C. thermocellum and C. cellulolyticum. This is essential for 11 

efficient biosynthesis of heterologous proteins, with particular emphasis on efficient translation, 12 

which is often biased by different codon usage in very distant organisms (Mazzoli et al., 2012). 13 

Modulation of mRNA stability can be an alternative tool to optimize heterologous cellulase 14 

expression in LAB (Daguer et al., 2005; Komarova et al., 2005; Narita et al., 2006; Okano et al., 15 

2010b). Recent studies suggest that mechanisms of protein secretion in Clostridia and LAB could be 16 

similar (Okano et al., 2010b; Mingardon et al., 2011; Wieczoreck and Martin, 2010). In fact, the 17 

products of genes encoding cellulosomal components of cellulolytic clostridia, including their 18 

original signal peptide, could be efficiently secreted by Lb. plantarum (Okano et al., 2010b; 19 

Mingardon et al., 2011; Morais et al., 2013). This significantly reduces problems connected with 20 

heterologous cellulase expression. In fact, as for secretion of other proteins in heterologous hosts, 21 

heterologous cellulase expression may be hampered by saturation of transmembrane transport 22 

mechanisms of the host, which causes reduction/loss of cell viability (Mazzoli et al., 2012). Such 23 

limitations are still a major bottleneck of recombinant cellulolytic strategies (Mazzoli et al., 2012). 24 

Nevertheless, genomic screening for homologous signal peptides could hold the key for fine tuning 25 

and balance between high secretion and reduction in cell viability as was nicely demonstrated by 26 

Mathiesen and co-workers (2008).  27 

In other cases, the simple replacement of the original signal peptide with that of Usp45, the 28 

main secreted protein of Lc. lactis, has been used for promoting heterologous protein secretion in Lc. 29 

Lactis (Morello et al., 2008), e.g., components of the C. thermocellum scaffolding protein CipA 30 

(Wieczoreck and Martin, 2010). In addition, Lc. lactis HtrA mutants, which are defective in the 31 

unique exported housekeeping protease HtrA (i.e., the main protein component responsible for quality 32 

control of secreted proteins in this species), have been employed for the efficient secretion of 33 
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heterologous cellulases (Wieczoreck and Martin, 2010). The construction of LAB strains that display 1 

cell-surface-anchored designer cellulosomes or cellulosomal components has also been recently 2 

achieved. Fragments of the CipA scaffolding protein of C. thermocellum have been functionally 3 

displayed on the cell surface of Lc. lactis by fusing them with the C-terminal anchor motif of the 4 

streptococcal M6 protein, a sortase substrate (Wieczoreck and Martin, 2010; 2012). Surface-anchored 5 

complexes were thus displayed with efficiencies that could approach 104 complexes/cell (Wieczoreck 6 

and Martin, 2010) (Table 1). A non-covalent surface display system for LAB has also been developed 7 

by fusing a target heterologous protein, i.e., the α-amylase, with the C-terminal cA peptidoglycan-8 

binding domain, which shows high homology with LysM repeats of the major autolysin AcmA from 9 

Lc. lactis (Okano et al., 2008). 10 

 Cellulolytic activities, measured in recombinant LAB constructed so far, differ widely 11 

(Table 1). It can be estimated that hydrolytic activity of native cellulosome-producing strains, such 12 

as C. thermocellum, on cellulosic substrates, which are commonly used for in vitro enzymatic tests 13 

such as β-glucan, carboxy methyl cellulose (CMC) or phosphoric acid swollen cellulose (PASC), 14 

ranges between 100 and 1000 U/L (Kraus et al., 2012; You et al., 2012). Some recombinant LAB 15 

show cellulolytic activities lower than C. thermocellum by 10/100 fold (Table 1). However, for other 16 

engineered strains reported values are similar to or higher than those of natural cellulosome-producing 17 

bacteria (Table 1). It is worth noting that efficient hydrolysis of more recalcitrant polysaccharides, 18 

such as crystalline cellulose, do not depend merely on the amount of cellulases but requires mixtures 19 

of different enzymatic activities showing high synergism. Cellulase expression levels shown by some 20 

recombinant LAB obtained thus far are encouraging for future development of strains ready for 21 

industrial application in biomass biorefinery. It will therefore be interesting if future engineering of 22 

LAB strains expressing viable designer cellulosomes with similar catalytic activities on recalcitrant 23 

substrates will be possible.  24 

Efficient conversion of plant biomass, should take into account that hemicellulose, consisting 25 

of both hexose and pentose polymers, can constitute up to 35% of the plant dry biomass (Jordan et 26 

al., 2012; Lynd et al., 2002). Microbial strains which can ferment pentose sugars generally suffer 27 

from lower yield and productivity with respect to glucose, because of inefficient uptake, redox 28 

imbalance, or carbon catabolite repression (Jojima et al., 2010). A number of LAB such as Lb. 29 

pentosus, Lb. brevis, Lb. plantarum and Leu. lactis are able to metabolize both arabinose and xylose 30 

through the phosphoketolase pathway, leading to equimolar amounts of LA and acetic acid or ethanol 31 

(Tanaka et al., 2002; Okano et al., 2009a). An additional xylose fermentation pathway with higher 32 

LA production yields was discovered in Lc. lactis IO-1 (Tanaka et al., 2002). However, even xylose-33 

metabolizing LAB strains such as Lc. lactis IO-1, Leu. lactis SHO-47 and Leu. lactis SHO-54 cannot 34 
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ferment xylan or xylooligosaccharides with degrees of polymerization higher than seven (Ohara et 1 

al., 2006). Isolation of bacteria from different sources is a promising approach to discover new LAB 2 

strains with pentose/hemicellulose metabolization properties. Alternatively, metabolic pathway 3 

engineering (e.g., expression of heterologous xylanases) is an effective tool to improve hemicellulose 4 

bioconversion by LAB as well as for cellulose degradation (Morais et al., 2013; Raha et al., 2006) 5 

(Table 1). Morais et al. (2013) demonstrated that xylanase-expressing Lb. plantarum improved 6 

cellulose accessibility. A Lb. plantarum strain was engineered so as to obtain a recombinant strain 7 

with higher conversion yields of both arabinose and xylose into D-LA (Okano et al 2009 a; b) (Table 8 

1). The final modified Lb. plantarum ∆ldhL1-xpk1::tkt/pUC-PXylAB strain could convert both 9 

arabinose and xylose into LA with yields of 0.82 and 0.89 g of produced LA per gram of pentose, 10 

respectively. 11 

 12 

 13 

3. Increasing high-value metabolite production of LAB: fermentation and metabolic (genetic) 14 

engineering strategies 15 

 16 

3.1. Products for environmental-friendly bulk chemicals and polymers 17 

3.1.1. LA and LA-derived chemicals 18 

LA, the main LAB fermentation product, is currently among the most sought-after chemicals. 19 

Apart from its traditional use as a preservative (acidifier) and flavor-enhancing agent by the food 20 

industry, LA has also been used as an emulsifying and moisturizing agent by the cosmetics industry, 21 

in the synthesis of optically pure pharmaceuticals and as an intermediate in pharmaceutical processes, 22 

and by the tanning industry (Papagianni, 2012). Another interesting application of LA is in the 23 

synthesis of ethyl lactate that is used as a biodegradable solvent (Singh and Ray, 2007; Madhavan 24 

Nampoothiri et al., 2010). Recently, worldwide demand for LA has considerably increased because 25 

of the use of LA as a building block for the synthesis of plastic polymers, i.e., polylactides (PLA) 26 

(John et al., 2007). Worldwide annual PLA production capacity is expected to be as high as 216,000 27 

metric tons in 2015 (www.Iea-bioenergies.task42-biorefineries.com). PLA are linear aliphatic 28 

polyesters showing many interesting features, i.e., biodegradability and biocompatibility, 29 

thermoplasticity and high tensile strength, which make them highly versatile and attractive for various 30 

commodities and for medical applications (Madhavan Nampoothiri et al., 2010). For these reasons, 31 
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PLA is considered a general purpose plastic material, which is expected to replace various polymers 1 

traditionally derived by oil refinery in applications comprising: i) food and goods packaging and 2 

cutlery; ii) biomedical devices such as matrices for tissue regeneration and drug delivery systems, 3 

surgical suture thread, orthopaedic fixation (e.g., pins rods, ligaments), cardiovascular applications 4 

(e.g., stents, grafts) and devices; and iii) agriculture plastic sheetings (John et al., 2007; Okano et al., 5 

2010a; Singh and Ray, 2007). PLA are obtained by chemical condensation of LA (Cheng et al., 2009). 6 

Since LA is a chiral molecule existing as two optical isomers (D-LA and L-LA) and the physical 7 

properties of PLA generally depend on the enantiomeric composition of LA, the availability of 8 

optically pure LA is essential for the polymerization process. In this respect, biotechnological 9 

production of LA is advantageous. Whereas chemical synthesis always results in a racemic mixture 10 

of L- and D-LA, selected, natural or engineered microbial strains can produce optically pure products 11 

(John et al., 2007). Although other LA-producing microorganisms, such as filamentous fungi, are 12 

known and other microbial models have been proposed for this purpose (Okano et al., 2010a), of the 13 

150,000 tons of LA that are produced worldwide every year, about 90% is produced by LAB 14 

fermentation (Sauer et al., 2008). 15 

At present, the main portion of LA for PLA synthesis is obtained by bioconversion of 16 

dedicated crops (mainly corn) by industries such as Nature works LLC (USA) and Purac (The 17 

Netherlands) (Abdel-Rahman et al., 2013). However, optimization of LA production from cheaper 18 

and more environmentally sustainable feedstocks using LAB fermentation has been extensively 19 

investigated by several research groups worldwide. This is essential so as to reduce the costs 20 

associated with the fermentative production of LA, which should be at or below $ 0.8 per kilogram 21 

of LA, in order to ensure that PLA will be competitive with fossil-fuel-based plastics (Okano et al., 22 

2010a). 23 

It has been pointed out that the carbon substrate is not the only nutrient that significantly 24 

affects LAB growth. In this context, yeast extract is frequently added as a source of nitrogen for LA 25 

production with a significant increase of production costs (Hofvendahl and Hahn-Hägerdal, 2000). 26 

Corn steep liquor, a by-product from the corn steeping process, represents a cheaper and successful 27 

alternative in LA production processes (Wee et al., 2006). 28 

Among the different possible carbon substrates for LAB growth several low-cost sources of 29 

biomass have been considered, which include milk whey, molasses, starchy materials, lignocellulose 30 

hydrolysates, and wheat bran, as described in Table 2. 31 

 32 
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*Table 2 1 

 2 

Different lactobacilli species (e.g., Lb. helveticus, Lb. delbrueckii subsp. bulgaricus, Lb. 3 

acidophilus, Lb. casei) have been employed in LA production from whey (Table 2). Among them, 4 

Lb. helveticus is the generally preferred organism. This microorganism is a homolactic LAB that 5 

produces a D-/L-LA racemic mixture (Roy et al., 1986). Temperature and pH are the key 6 

environmental parameters that affect the LA production process. Lb. helveticus showed enhanced 7 

lactose utilization and LA production at 42°C and pH 5.8 (Tango and Ghaly, 1999). The highest LA 8 

production rate was obtained with Lb. helveticus grown in whey permeate, with corn steep liquor as 9 

the nitrogen source (Amrane and Prigent, 1998). LA productivity of 9.7 g/L/h using Lb. helveticus 10 

strain milano has been obtained in continuous fermentation of whey-yeast extract permeate medium 11 

(Roy et al., 1986; 1987). Because LAB do not have sufficient proteolytic activities to utilize milk 12 

proteins in whey, they frequently require supplementation of yeast extract to the medium (Abdel-13 

Rahman et al., 2013). In the work of Vasala et al. (2005) on Lb. salivarum, yeast extract 14 

supplementation was replaced by in situ treatment of the fermentation medium with proteolytic 15 

microorganisms. LAB have been immobilized by several methods on different supports (e.g., calcium 16 

alginate, κ-carrageenan, agar and polyacrylamide gels) (Panesar et al., 2007a; b), and the immobilized 17 

systems have been investigated for LA production from whey. A two-stage process was used for 18 

continuous fermentation of whey permeate medium with Lb. helveticus immobilized in κ-19 

carrageenan/locust bean gum, which resulted in high LA productivity (i.e., 19–22 g/L/h) (Schepers 20 

et al., 2006). In a study by Panesar et al. (2007b) Lb. casei was immobilized in Ca pectate gel. A 21 

higher level of lactose conversion to LA (32.95 g/L) was achieved (94.37%), and the cell system was 22 

found highly stable: no decrease in lactose conversion to LA was observed up to 16 batches. 23 

Lb. delbrueckii and Ent. faecalis have been used for LA production from molasses 24 

(Monteagudo et al., 1997; Göksungur and Güvenç, 1999; Kotzanmanidis et al., 2002; Wee et al., 25 

2004) (Table 2). Monteagudo et al. (1997) studied the kinetics of LA fermentation by Lb. delbrueckii 26 

grown on beet molasses, whereas production yield of LA from beet molasses by free and immobilized 27 

Lb. delbrueckii cells has been described in a comparative study by Göksungur and Guvenc (1999). 28 

Optimization of LA production on a modified formulation of carbon and nitrogen substrates (using 29 

different sugar, yeast extract and calcium carbonate concentrations) from beet molasses by Lb. 30 

delbrueckii was carried out by Kotzanmanidis et al. (2002). Most of the investigations concerning LA 31 

fermentation from molasses were performed using the genus Lactobacillus; however, Wee and co-32 
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worker (2004) reported a high yield and productivity of LA from molasses without pretreatment using 1 

a strain of Ent. faecalis. Continuous production of LA from molasses by perfusion culture of Lc. lactis 2 

was described by Ohashi et al. (1999). 3 

Many researchers have attempted direct LA production from starchy materials and wild 4 

amylolytic LAB have been isolated in different environments (Giraud et al., 1994; Guyot et al., 2000; 5 

Narita et al., 2004). Amylolytic LAB utilize starchy biomass and convert it into LA in a single step 6 

fermentation (Reddy et al., 2008). Str. bovis 148, a common rumen bacterium (Mizrahi, 2013), was 7 

found to produce L-LA from raw corn starch with a high yield of 0.88 g/g and a relatively high optical 8 

purity of 95.6% (Narita et al., 2004). Lb. amylophilus GV6 was found to actively ferment various 9 

pure and crude starchy substrates with more than 90% LA yield (Altaf et al., 2005; Vishnu et al., 10 

2000; 2002). Lb. plantarum A6 showed both a good degree of starch utilization and good yields of 11 

LA production in a complex medium composed of free sugars (brown juice) and starch (Thomsen et 12 

al., 2007). 13 

An isolated strain of Lb. brevis (S3F4) showed LA production capability from lignocellulosic 14 

hydrolysates. S3F4 was able to simultaneously utilize xylose and glucose without catabolic repression 15 

(Guo et al., 2010). Lactobacillus sp. RKY2 was employed in continuous LA fermentations with cell 16 

recycling, using lignocellulosic hydrolyzates and corn steep liquor as inexpensive raw materials. The 17 

results of this study have indicated that the cell-recycling cultivation method can improve volumetric 18 

productivity (Wee and Ryu, 2009). However, a few LAB, such as Lb. pentosus (Bustos et al., 2005), 19 

Lb. brevis (Chaillou et al., 1998), and Leu. lactis (Ohara et al., 2006), are known to ferment xylose, 20 

producing both LA and acetic acid. Lc. lactis utilizes heterofermentative metabolism when 21 

metabolizing pentoses, with production of an equimolar mixture of LA and acetate (Doran-Peterson 22 

et al., 2008). In the work of Laopaiboon et al. (2010) xylose was obtained as the main fermentable 23 

sugar (89%) from hydrolyzate of sugarcane bagasses. The detoxified hydrolysate, supplemented with 24 

yeast extract, was found to be a potential substrate for LA production by Lc. lactis IO-1. The 25 

bioconversion of hemicellulosic sugars (xylose, glucose, and arabinose) from different agro-industrial 26 

wastes into LA by Lb. pentosus was reported in the work of Moldes et al. (2006). Pure L-LA was 27 

produced from sugarcane bagasse cellulose by simultaneous saccharification and fermentation (SSF) 28 

in the presence of a cellobiose-utilizing Lb. delbrueckii mutant Uc-3 that utilizes both cellobiose and 29 

cellotriose efficiently (Adsul et al., 2007a; b). The performance of recycled paper sludge as feedstock 30 

for LA production with Lb. rhamnosus ATCC 7469 was evaluated by Marques et al (2008): maximum 31 

production of LA from this feedstock was obtained by performing the enzymatic hydrolysis and 32 

fermentation steps simultaneously. 33 
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Plackett–Burman design was employed for screening 15 parameters for production of L(+)-1 

LA from wheat bran by Lb. amylophilus GV6 in solid state fermentation (Naveena et al., 2005b). 2 

Wheat bran was utilized as both support and substrate in a single-step conversion of raw starch to 3 

L(+)-LA (Naveena et al., 2005b). Barley, wheat, and corn were hydrolyzed by commercial amylolytic 4 

enzymes and fermented to LA by Ent. faecalis RKY1 without additional nutrients. LA productivities 5 

of 0.8 g/L/h were obtained from barley and wheat (Oh et al., 2005). In the work of John et al. (2006) 6 

protease-treated wheat bran was used for the production of L(+)-LA using a mixed culture of Lb. 7 

casei and Lb. delbrueckii. In L-LA production by Lb. rhamnosus LA-04-1, wheat bran hydrolysate 8 

combined with corn steep liquor showed a better performance than that without treatment, especially 9 

for L-LA yield (0.99 g/g) (Li et al., 2010b). 10 

Regarding the optical purity of the LA product, several examples designed to optimize 11 

enantioselective biosynthesis can be cited. L-LA is the most used isomer in both food and 12 

pharmaceutical industries, and hence its production by fermentation is a well-established process (Yu 13 

and Hang, 1989). Efficient D-LA production with high optical purity (97.2 - 98.3%) from sugarcane 14 

molasses by Lb. delbrueckii JCM 1148 was reported in the work of Calabia and Tokiwa (2007). A 15 

strain of Lb. lactis obtained by UV mutagenesis was also employed for the production of D-LA from 16 

molasses and hydrolyzed cane sugar (Joshi et al., 2010). Plackett–Burman design and response 17 

surface methods were applied for optimization of D(−)-LA production by Leu. mesenteroides B512 18 

(Coelho et al., 2011). The production of homo-D-LA from xylose was achieved by using a 19 

recombinant strain of Lb. plantarum NCIMB 8826 deficient for its L-LDH and whose 20 

phosphoketolase gene was replaced by a heterologous transketolase gene (Okano et al., 2009b). Using 21 

the same recombinant Lactobacillus strain, production of optically pure D-LA from arabinose was 22 

achieved (Okano et al., 2009a). 23 

 24 

3.1.2. Polyhydroxyalkanoates  25 

Polyhydrohyalkanoates (PHAs) are natural, biodegradable, linear polyesters which are 26 

produced as intracellular carbon and energy storage molecules by a great number of bacteria (both 27 

Gram-positive – including LAB – and Gram-negative species), but also by some yeasts and plants 28 

(Lu et al., 2013). PHAs are particularly versatile biopolymers, since they can consist of different 29 

monomeric units (e.g., 3-hydroxybutyrate, 3-hydroxyvalerate, 4-hydroxybutyrate), with properties 30 

similar to conventional plastics. PHA applications range from the production of films and containers 31 

to biomedical applications, such as in wound management or as cardiovascular devices (e.g., 32 
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pericardial and atrial septal repair patches, scaffolds for regeneration of arterial tissues, vascular 1 

grafts, cardiovascular stents and heart valves) and orthopaedic devices (cartilage tissue engineering, 2 

bone graft substitutes, etc.), and for drug delivery (e.g., tablets, implants, micro-carriers) (Lu et al., 3 

2013).  4 

Poly-β-hydroxybutyrate (PHB) production was described in LAB belonging to Lactococcus, 5 

Lactobacillus, Pediococcus and Streptococcus genera. Higher yields of PHB were obtained in 6 

Lactobacillus species reaching 35.8% of cell dry weight. The values for Lactococcus, Pediococcus 7 

and Streptococcus species were 20.9%, 8.0% and 17.2%, respectively. The PHB yields obtained with 8 

LAB in deMan, Rogosa and Sharpe (MRS) broth were generally lower than the values reported in 9 

soil bacteria, e.g., Alcaligenes and Azotobacter species, in which values higher than 55% have been 10 

reported (Aslim et al., 1998). 11 

LA-producing bacteria such as Lb. lactis (Tanaka et al., 1995), Propionibacterium (Tohyama 12 

et al., 2002), Lb. delbrueckii (Tohyama et al., 1999; 2000, Patnaik, 2005) and Cupriavidus necator 13 

have also been used in a co-culture fermentation system. LAB converted sugars into LA which was 14 

later taken up by C. necator to produce PHAs. In a two-stage system, xylose was converted to LA 15 

using Lc. lactis, the LA was further converted to 3-hydroxybutyrate by C. necator (Tanaka et al., 16 

1995). In another investigation, Lb. delbrueckii was used to convert glucose to LA which was later 17 

converted to 3-hydroxybutyrate by C. necator (Tohyama et al., 1999; 2000). By application of neural 18 

optimization, the PHB yield of a co-culture of Ralstonia eutropha and Lb. delbrueckii could be 19 

increased by 19.4% compared with the single cultivation of R. eutropha (Patnaik, 2009). 20 

Generally, it has been demonstrated that co-culture fermentations resulted in increased yield 21 

with improved control of product qualities. A further advantage in the application of co-cultures is 22 

the possibility of utilizing secondary products (e.g., whey, molasses), which are cheaper than glucose 23 

as substrates for production of PHAs (Bader et al., 2010). Bacteria that have GRAS status for PHA-24 

production, such as LAB and bacilli belonging to probiotic species (Aslim et al., 1998; Yilmaz et al., 25 

2005), might constitute an added value to these biotechnological processes (Defoirdt et al., 2009). 26 

 27 

3.1.3. Biofuels: ethanol, butanol and hydrogen 28 

The demand for renewable energy technologies has initially focused on ethanol – a 29 

fermentation product produced by a wide variety of microorganisms – to serve as a potential 30 

renewable biofuel. There are many ongoing efforts devoted towards the use of engineered and native 31 

microorganisms for use as industrial producers of ethanol (Balusu et al., 2004; Chen et al., 2009; 32 
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Jarboe et al., 2007; Ng et al., 1981; Olofsson et al., 2008). LAB have emerged as promising candidates 1 

for alcohol (i.e., ethanol and butanol) production by industrial fermentation, which can be competitive 2 

alternatives to other types of engineered microbial systems (e.g., C. thermocellum, Saccharomyces 3 

cerevisiae, Zymomonas mobilis or Escherichia coli) (Morais et al., 2013).  4 

One of the major problems in using bacteria for such endeavors is their low ethanol tolerance. 5 

In this context, some LAB species are particularly attractive candidates to serve as ethanol-producing 6 

bacteria for the biofuel industry, since they are relatively tolerant to high ethanol concentrations 7 

required for commercial alcohol production processes, used in the food industry and for biofuel 8 

production (Lucena et al., 2010; Passoth et al., 2007). Notably, Lactobacilli include some of the most 9 

ethanol-, butanol- and generally alcohol-tolerant organisms known (Alegria et al., 2004; Knoshaug 10 

and Zhang, 2009; Nicolaou et al., 2010). Alegria et al. (2004) demonstrated that Lb. plantarum can 11 

grow at pH 3.2 with up to 13% ethanol. Interestingly, Lactobacillus species are predominant in 12 

contaminated ethanol fermentations (Limayem et al., 2011; Roach et al., 2013). Such is the case for 13 

Lb. vini and Lb. fermentum, which were found in a recent study (Lucena et al., 2010) to grow in 14 

distilleries used in bioethanol processes in Brazil. In the latter study, the authors reported that a variety 15 

of Lactobacillus species appeared during the process of bioethanol production, thus competing with 16 

the yeast. Towards the end of the harvest season, however, the most frequently found bacterial species 17 

were Lb. fermentum and Lb. vini. Representative isolates of both species had the ability to grow in 18 

medium containing up to 10% ethanol. These characteristics, which allow such species to contaminate 19 

the yeast cultures in the bioreactors, may thus be used to advantage as an infrastructure for 20 

engineering ethanol-producing bacteria. 21 

High tolerance of Oenococcus oeni strains was also reported, where these strains retained 22 

viability in media of up to 13% ethanol (Alegria et al., 2004).  23 

As mentioned above, ethanol is produced as a product of LAB heterofermentation. Some 24 

obligate and facultative LAB heterofermenters, such as Oenococcus oeni and Lb. pentosus, are 25 

capable of fermenting both hexose and pentose sugars to ethanol. In facultative LAB 26 

heterofermentors the switch between homofermentation, in which only LA is produced, and 27 

heterofermentation, in which a variety of products can be produced, is attributed to the catabolic state 28 

of the bacterium, where limiting catabolism such as low glycolytic flux leads to heterofermentation 29 

and non-limiting catabolism with high glycolytic flux leads to homofermentative fermentation 30 

(Zaunmüller et al., 2006). This phenomenon is ascribed to the regulation of the enzymatic activities 31 

of LDH and pyruvate formate lyase, which are subject to control by the catabolic and anabolic flux 32 

rates and changes in the NADH/NAD+ ratios (Melchiorsen et al., 2002). Ethanol production is mainly 33 

thought to occur when hexose sugars are fermented, due to the reduction of acetyl-CoA to ethanol by 34 
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two extra NADPH molecules that are produced. When pentose sugars are fermented, these two 1 

NADPH molecules are not produced, thereby resulting in accumulation of LA and acetate. 2 

Nevertheless, ethanol production was observed when Lb. plantarum – a facultative heterofermenter 3 

– was grown solely on pentose sugars (Domagk and Horecker, 1958). The ethanol-producing 4 

enzymes of the phosphoketolase pathway exhibit slower kinetics than the hexose-fermenting 5 

enzymes; therefore when hexoses are the only carbon source this becomes the rate-limiting step of 6 

fermentation and bacterial growth in general (Richter et al., 2001). 7 

The low tendency of LAB towards ethanol fermentation can be addressed by metabolic 8 

engineering. This approach has been used successfully in other bacteria, such as 9 

Thermoanaerobacterium saccharolyticum, an anaerobic bacterium that is able to ferment xylan and 10 

biomass-derived sugars. High yields of ethanol production as the only detectable organic product was 11 

achieved in this bacterium by knockout of genes involved in organic acid formation (Shaw et al., 12 

2008). 13 

Several studies have attempted to improve ethanol production in LAB by over-expression of 14 

heterologous genes encoding pyruvate decarboxylase (pdc) and/or alcohol dehydrogenase (adh). 15 

Gold et al. (1996) reported the expression of the pdc and adh genes from Zymomonas mobilis in Lb. 16 

casei 686. In the latter study, the recombinant strain produced more than twice the ethanol produced 17 

by the parental strain (Gold et al., 1996). In a later study, in which the same operon was expressed in 18 

several Lactobacillus strains such as Lb. casei as well as in other species, it was reported that LA was 19 

the primary fermentation product formed by all of the strains, indicating that activities of ADH and 20 

PDC were insufficient to divert significant carbon flow towards ethanol. Interestingly, the Lb. casei 21 

transformant in this study did not exhibit increased ethanol production activity (Nichols et al., 2003). 22 

A slightly different approach was attempted by Liu et al. (2006). In the latter study, the authors 23 

attempted to increase the production of ethanol by introducing the PDC gene from the Gram-positive 24 

bacterium Sarcina ventriculi into an LDH-deficient strain, Lb. plantarum TF103. The authors 25 

speculated that by substituting LDH with PDC activity, pyruvate may be re-directed toward ethanol 26 

production instead of LA fermentation. Nevertheless, although slightly more ethanol was observed, 27 

carbon flow was not significantly improved toward ethanol, suggesting that additional understanding 28 

of this organism’s metabolism is necessary for effective strain improvement (Liu et al., 2006). 29 

Recently Solem and co-workers (2013) were able to redirect Lc. lactis carbon flow toward ethanol 30 

production, obtaining a strain with ethanol as the sole fermentation product. This was achieved by a 31 

knockout strategy of all LDH genes in this bacterium consisting of ldhX, ldhB, and ldh together with 32 

those coding for phosphotransacetylase (pta) and the native ADH (adhE). In parallel, the authors 33 

introduced codon-optimized Z. mobilis adh and pdc genes. 34 
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Another approach for increasing ethanol production could be the selection of and enrichment 1 

for more ethanologenic LAB as was reported in a recent study in which a Lb. pentosus strain was 2 

isolated through a series of selection and enrichment procedures (Kim et al., 2010). This strain, 3 

designated Lb. pentosus JH5XP5, was able to produce ethanol without acetate. The production yields 4 

of ethanol vs LA in this strain were 2.0- to 2.5-fold higher when either glucose, galactose or maltose 5 

was used either as a single carbon source or simultaneously with glucose (Kim et al., 2010).  6 

Advantages of LAB over the yeast S. cerevisiae in ethanol production from lignocellulosic 7 

biomass include the ability of several LAB strains, e.g., Lb. plantarum, to metabolize both hexose 8 

and pentose sugars (Kleerebezem et al., 2003; Gänzle et al., 2007; Okano et al., 2009a; b). 9 

Furthermore, the production of acid together with LAB acid tolerance reduces the risk of 10 

contamination by other bacteria and fungi and may enable degradation of substrates directly after acid 11 

pretreatments that are commonly used for lignin deconstruction in plant biomass (Morais et al., 2013). 12 

Nevertheless, ethanologenic LAB strains, which would be sufficient for the bioethanol industry, are 13 

as yet nonexistent. In the future, the combination of the above approaches may eventually be an 14 

effective solution for designing an efficient ethanologenic LAB strain.  15 

As far as butanol production is concerned, it is noteworthy that all natural butanol producers 16 

belong to the genus Clostridium (Mazzoli, 2012). The highest amounts of butanol are synthesized by 17 

C. acetobutylicum, C. beijerinckii, C. saccharobutylicum, and C. saccharoperbutylacetonicum 18 

(Mazzoli, 2012). Nonetheless, the expression of the clostridial butanol biosynthetic pathway in 19 

heterologous hosts, such as in E. coli, S. cerevisiae, and Lb. brevis, has been extensively explored as 20 

a means to engineer recombinant butanol-producing strains (Mazzoli, 2012). Transformation of crt, 21 

bcd, etfB, etfA, and bcd from C. acetobutylicum into Lb. brevis, in concert with autologous thiolase, 22 

aldehyde and alcohol dehydrogenase enabled the recombinant strain to produce butanol (Berezina et 23 

al., 2010). The final butanol titer by this recombinant Lb. brevis was very low (i.e., 300 mg/L), 24 

compared to natural or engineered clostridia (i.e., titers up to 19 g/L were reported for strains 25 

optimized by random mutagenesis or rational metabolic engineering) (Nicolaou et al., 2010; Tomas 26 

et al., 2003). However, recent studies have demonstrated that highly efficient butanol production can 27 

be obtained in engineered heterologous hosts (e.g., 15 g/L in recombinant E. coli) by the construction 28 

of chimeric biosynthetic pathways (Shen et al., 2011). Metabolic engineering has also served towards 29 

the development of a Clostridium cellulolyticum strain for isobutanol synthesis directly from cellulose 30 

(Higashide et al., 2011). 31 

Formate is another LAB metabolite with high potential as a precursor of biofuel, i.e., 32 

molecular hydrogen (H2) (Oh et al., 2011). LAB produce formate during mixed-acid fermentation in 33 

anaerobic conditions through pyruvate conversion by pyruvate formate lyase (Fig. 1). Industrial 34 
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production of H2 could be envisaged by coupling such LAB fermentation with a second anaerobic 1 

fermentation employing either enteric bacteria such as E. coli which are equipped with formate-2 

hydrogen lyase (Oh et al., 2011) or photofermenting bacteria (e.g., purple non-sulfur bacteria such as 3 

Rhodobacter sphaeroides) (Keskin et al., 2011) which are able to oxidize formate with concomitant 4 

H2 evolution. 5 

 6 

 7 

3.2. Products for food application and human health promotion 8 

 9 

3.2.1. Food aromas and flavors 10 

Production of food aromas such as diacetyl and acetaldehyde by LAB has been extensively 11 

reviewed in 2012 by Papagianni and will be only briefly summarized here.  12 

Diacetyl is naturally produced by LAB and is responsible for the typical butter aroma of 13 

several dairy products such as butter, buttermilk and a number of cheeses (Papagianni, 2012). Lc. 14 

lactis biovar. diacetylactis has been extensively employed to produce diacetyl from citrate in co-15 

fermentation with lactose (Papagianni, 2012). Diacetyl is generated by oxidative decarboxylation of 16 

the intermediate product of the fermentation α-acetolactate. Because of its value as an aroma 17 

compound, efficient production of diacetyl from lactose rather than citrate has been the aim of several 18 

metabolic engineering strategies (Fig. 2) (Papagianni, 2012). Under aerobic conditions pyruvate 19 

metabolism in LAB strains such as Lc. lactis is strongly shifted towards acetate and α-acetolactate 20 

biosynthesis (Guo et al., 2012). Pyruvate conversion to α-acetolactate can be catalyzed by either α-21 

acetolactate synthase (ALS) or acetohydroxy acid synthase (ILVBN) (Fig. 2). ILVBN is an anabolic 22 

synthase involved in branched chain amino acid synthesis. α-Acetolactate can then be decarboxylated 23 

to acetoin or decarboxylated and oxidized to diacetyl (Guo et al., 2012). Furthermore, aerobic 24 

conditions also strongly increase NADH-oxidase activity (NOX) which is thought to replace the role 25 

of LDH in the re-oxidation of NADH which is generated by glycolysis (Guo et al., 2012). Several 26 

attemps to increase diacetyl production through metabolic engineering by genetic manipulation 27 

techniques have been performed so far in which i) LDH was inactivated and/or; ii) either ALS or 28 

ILVBN has been overexpressed and used, and/or; iii)  α-acetolactate decarboxylase (ALDB), i.e., the 29 

enzyme which catalyzes the conversion of α-acetolactate to acetoin, was inactivated (Guo et al., 2012; 30 

Papagianni, 2012). However, these approaches have been relatively unsuccessful in significantly 31 

increasing diacetyl production. In fact, Hoefnagel and co-workers (2002) demonstrated that the 32 

enzymes with the greatest effect on the flux to diacetyl reside outside the ALS branch itself, i.e., LDH 33 
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and NOX. Recently, Guo and co-workers (2012) have been able to increase NOX activity by 58-fold 1 

in Lc. lactis by using selected strong promoters for the constitutive expression of the NADH oxidase 2 

gene. Such engineered strains showed an altered NADH/NAD+ ratio which led to re-routing of 3 

pyruvate flux from LA to diacetyl whose final titer increased from approximately 1.07 mM to 4.16 4 

mM. 5 

 6 

*Fig. 2 7 

 8 

 Acetaldehyde, an important aroma compound in dairy products, can be produced by LAB 9 

through at least two pathways: i) pyruvate decarboxylation by PDC; ii) threonine conversion (i.e., 10 

giving rise to acetaldehyde and glycine) catalyzed by threonine aldolase (Papagianni, 2012). Actually, 11 

the latter reaction seems to play the main role in acetaldehyde biosynthesis in LAB (Papagianni, 12 

2012). Successful paradigms of an engineered strain with increased acetaldehyde production have 13 

been performed by improvement of either threonine aldolase or PDC activity (Papagianni, 2012). 14 

 15 

3.2.2. Polyols and other sweeteners 16 

 Several successes were obtained in the field of production of low-calory sweeteners, such 17 

as polyols (i.e., mannitol and sorbitol) and alanine, by LAB fermentation (Fig. 3).  18 

 Both mannitol and sorbitol are six-carbon sugar alcohols which are traditionally produced 19 

by catalytic hydrogenation from glucose or glucose/fructose mixtures and are used in the food and 20 

pharmaceutical industries, as well as in medicine (Papagianni, 2012). Using this process, mixtures of 21 

mannitol and sorbitol are often produced, which are then relatively difficult to separate, thus adding 22 

supplemental cost to this mode of production (Papagianni, 2012).  23 

 Mannitol production without co-formation of sorbitol by heterofermentative LAB is well 24 

known (Hugenholtz et al., 2011). These LAB divert a part of fructose-6-phosphate (fructose-6P) from 25 

the glycolytic flux to mannitol by using mannitol-1-phosphate dehydrogenase (Wisselink et al., 2002) 26 

(Fig. 3). Mannitol production is increased in this reaction if fructose is co-fermented with glucose 27 

(Wisselink et al., 2002). Increased mannitol yields have been achieved by optimizing the mannitol 28 

fermentation of heterofermentative LAB (Racine and Saha, 2007). Although fructose to mannitol 29 

conversion yields of up to 66% were obtained by natural heterofermentative LAB, nonetheless co-30 

production of other metabolites (e.g., LA and acetic acid) occurs in these strains. Rational metabolic 31 

engineering (Aarnikunnas et al., 2003) or random mutagenesis (Helando et al., 2005) approaches have 32 

been used to reduce the amounts of such co-products and improve mannitol production yield. 33 

Homofermentative LAB usually produce but very low amounts of mannitol (Papagianni, 2012). 34 
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However, several strategies have been reported for enhancing mannitol production in 1 

homofermentative strains such as Lc. lactis and Lb. plantarum (Wisselink et al., 2002; 2005). 2 

Construction of L-LDH-deficient Lc. lactis strains, together with the inactivation of mtlA and/or mtlF 3 

mannitol transport systems and overexpression of the mannitol-1-phosphate dehydrogenase gene 4 

(mtlD) of Lb. plantarum and the mannitol-1-phosphate phosphatase (Mtl1Pase) gene of the protozoan 5 

parasite Eimeria tenella, led to improved glucose conversion to mannitol with yields (50%) close to 6 

the theoretical maximum (67%) (Wisselink et al., 2002). By a similar strategy Lb. plantarum strains 7 

showing up to 50% carbon flux re-routing toward mannitol were obtained (Wisselink et al., 2005). 8 

Only a few organisms have been described as able to naturally produce sorbitol, e.g., the 9 

Gram-negative bacterium Zymomonas mobilis (Silveira and Jonas, 2002). In LAB, high sorbitol 10 

production through metabolic engineering has been reported with Lb. plantarum. A strategy including 11 

inactivation of both LDH and mannitol-1-phosphate dehydrogenase in a Lb. plantarum strain 12 

overproducing a sorbitol-6-phosphate dehydrogenase led to efficient re-routing of fructose-6P 13 

towards sorbitol with a near-to-theoretical yield of 0.65 mol/mol (Ladero et al., 2007) (Fig. 3). 14 

 LAB are not reported to produce xylitol naturally although strains of Str. avium and Lb. 15 

casei are able to metabolize it (London, 1990). Nyyssölä et al. (2005) constructed a recombinant Lc. 16 

lactis strain in which the xylose reductase (XR) gene from Pichia stipites and a xylose transporter 17 

from Lb. brevis were expressed. This co-expression however did not improve xylitol production. 18 

Nevertheless, an increased productivity level, comparable to that of the more efficient yeast 19 

producers, was achieved in fed-batch fermentation by using non-growing Lc. lactis cells (Papagianni, 20 

2012). 21 

 L-Alanine is used as a food sweetener and in pharmaceutical applications (Papagianni, 22 

2012). Conversion of pyruvate into alanine occurs in various anaerobic bacteria and involves a single 23 

enzymatic reaction catalyzed by alanine dehydrogenase. Homo-L-alanine from sugar fermentation 24 

was obtained with an engineered Lc. lactis (Hols et al., 1999). Metabolism shift from homolactic to 25 

homo-alanine in this strain was obtained by functional replacement of autologous L-LDH with 26 

alanine dehydrogenase from Bacillus sphaericus and growth in the presence of excess of ammonium 27 

(which is required for the conversion of pyruvate to alanine by alanine dehydrogenase) (Fig. 3). Under 28 

these conditions, pyruvate obtained through glycolysis was completely converted to alanine, with 29 

NADH consumption, thus maintaining the glycolytic redox balance. Furthermore, the inactivation of 30 

the alanine racemase gene led to complete conversion of glucose into L-alanine. 31 

 32 

*Fig. 3 33 

 34 
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3.2.3. Exopolysaccharides  1 

LAB are able to synthesize a large spectrum of structural polysaccharides that are either 2 

integral constituents of their cell wall, e.g., peptidoglycan and lipoteichoic acids, or linked to the cell 3 

wall via covalent, as in the case of capsular polysaccharides, or non-covalent bonds, or released into 4 

the extracellular environment (i.e., exopolysaccharides, EPS) (Chapot-Chartier et al., 2011). Certain 5 

EPS can be loosely associated with the cell wall (Chapot-Chartier et al., 2011). The exact role of EPS 6 

in LAB physiology is not clear and is probably multiple and complex for different EPS and strains 7 

and likely includes: i) protection against dessication and osmotic stress, phage attack, toxic 8 

compounds (e.g., ethanol, sulphur dioxide and toxic metal ions), antibiotics and host immune system 9 

(especially phagocytosis); ii) adhesion to solid surfaces (e.g., adhesion to eukaryotic cells) and 10 

biofilm formation (Chapot-Chartier et al., 2011). 11 

LAB EPS have been subjected to continuous investigation because of their enormous potential 12 

application. This includes i) for improving the rheological properties, smoothness, creaminess, mouth 13 

feel, texture, stability (thus replacing other food stabilizers such as pectin, starch, alginate, or gelatin) 14 

and water retention capacity of dairy products (e.g., yogurt, cheese, sour cream, ice cream) and 15 

notably in the case of low-fat versions and other food (e.g., bakery) products; ii) for clinical (e.g., in 16 

microsurgery), pharmaceutical, and other biotechnological use (e.g., for the manufacture of 17 

chromatographic media); iii) for their properties as prebiotics; iv) for other health-promoting effects 18 

such as possible anti-tumor, anti-ulcer, immunomodulating, or cholesterol-lowering activities 19 

(Chapot-Chartier et al., 2011).  20 

Nonetheless, natural production of EPS by LAB is very low compared to that of other food-21 

grade EPS (e.g., xanthan, gurdlan) produced by non-dairy bacteria. Metabolic engineering has 22 

therefore been used for improving EPS production by LAB and/or for structural engineering of EPS 23 

produced by LAB (Papagianni, 2012). 24 

EPS are classified in homopolysaccharides (homo-EPS) and heteropolysaccharides (hetero-25 

EPS). Homo- and hetero-EPS differ in their composition, biosynthesis, yields, molecular 26 

organization, rheological properties, and applications (Fig. 4). 27 

 28 

*Fig. 4 29 

 30 
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Homo-EPS are composed of either D-glucose (glucans) or D-fructose (fructans) units, and 1 

differ regarding the type of glycosidic linkages, type and degree of branching, length of the 2 

polysaccharide chains, and conformation. Homo-EPS are biosynthesized extracellularly by only one 3 

transglycosylase or glycansucrase by using sucrose as the substrate (Fig. 4A). These enzymes 4 

hydrolyze the glycolytic bond in sucrose and use either the glycosyl or the fructosyl moiety for the 5 

polymerization of α-D-glucans or β-D-fructans, respectively (Chapot-Chartier et al., 2011). These 6 

features render homo-EPS biosynthesis independent of central carbohydrate catabolism. Apart from 7 

glucans (e.g., alternan, dextran, mutan, reuteran) and fructans (e.g., inulin and levans), glycansucrases 8 

can also biosynthesize low-molecular mass oligosaccharides such as fructooligosaccharides (FOS) 9 

and glucooligosaccharides (GOS). FOS and GOS have prominent commercial importance as 10 

prebiotics, i.e., compounds supporting growth of probiotic organisms. 11 

Hetero-EPS are biosynthesized by the polymerization of oligosaccharidic, ranging from di- to 12 

octasaccharide, repeating units. Hetero-EPS repeating units are biosynthesized intracellularly and 13 

then exported and polymerized in the extracelullar environment (Fig. 4B). Glucose, galactose, xylose, 14 

mannose, arabinose and rhamnose are the most represented constituent monosaccharides, but amino-15 

sugars and polyols can also be occasionally present as well as glucuronic acid. A huge diversity of 16 

hetero-EPS is produced by LAB with respect to monosaccharide composition and ratio, branching 17 

type and degree, molecular structure and mass, conformation and rigidity. The biosynthesis of hetero-18 

EPS is a process that demands high-energy consumption and consists of four reactions: 1) sugar 19 

uptake; 2) synthesis of high-energy sugar-nucleotide precursors (e.g., UDP-glucose, UDP-galactose); 20 

3) glycosyltransferase-catalyzed biosynthesis of the oligosaccharide repeating unit; 4) 21 

oligosaccharide export and extracellular polymerization of the EPS (Fig. 4B). The biosynthesis of 22 

UDP-glucose and dTDP-glucose generally uses glucose-6-phosphate as the substrate, which is then 23 

diverted from glycolysis. As an alternative, the conversion of galactose to UDP-Gal and UDP-Glu 24 

can be obtained through the Leloir pathway (Welman and Maddox, 2003) (Figs 1, 4B). 25 

Because of their very different biosynthetic pathways, homo- and hetero-EPS biosynthetic 26 

yields generally differ greatly, with homo-EPS being produced in much higher amounts than hetero-27 

EPS (Chapot-Chartier et al., 2011). As more information about EPS biosynthetic enzyme-encoding 28 

genes and their regulation becomes available, the possibility of recombinant production of either 29 

natural or “designer” hetero-EPS at high yields becomes possible (Welman and Maddox, 2003). 30 

Different strategies for enhanced EPS production in LAB have been employed or suggested, 31 

including reduction of LDH activity, and overexpression of genes encoding the enzymes that catalyze 32 

conversion of glucose-6-phosphate to sugar nucleotide precursors or specific glycosyl transferases 33 
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(Welman and Maddox, 2003). Overexpression of GalU, catalyzing the synthesis of the EPS precursor 1 

UDP-glucose from glucose-1-phosphate, under the control of a nisin-inducible promoter, increased 2 

the specific activity of the enzyme by 20-fold in Lc. Lactis, which in turn increased both UDP-glucose 3 

and UDP-galactose synthesis by 8-fold, although EPS synthesis was not significantly enhanced 4 

(Boels et al., 2001a). However, overexpression of both GalU and phosphoglucomutase, which 5 

catalyzes glucose-6-phosphate isomerization to glucose-1-phosphate in Str. thermophilus, led to a 2-6 

fold increase in EPS synthesis (Levander et al., 2002). Yet, to date, all these metabolic engineering 7 

strategies resulted only in modest increase in EPS production (Hugenholtz et al., 2011). In fact, an 8 

inherent limitation in high-yield hetero-EPS biosynthesis is that it involves high energy-demanding 9 

pathways (Welman and Maddox, 2003). It has been calculated that at least two glucose molecules 10 

should be catabolized through glycolysis to obtain enough energy for the incorporation of one glucose 11 

molecule in EPS and that EPS yield cannot be higher than 33% of a given substrate (Welman and 12 

Maddox, 2003). Therefore, strategies for improving hetero-EPS production should also comprise 13 

energy-saving re-arrangements of LAB metabolism. 14 

A different approach aims at structural engineering of EPS produced by LAB. This can be 15 

achieved either by controlling the culture conditions (e.g., the type of sugar source) or by genetic 16 

engineering strategies (e.g., by introducing new heterologous, or engineered glycosyltransferases into 17 

LAB) (Boels et al., 2001b; Welman and Maddox, 2003). 18 

 19 

3.2.4. Nutraceuticals: bio-active amines, conjugated linoleic acids, seleno-metabolites and 20 

vitamins 21 

LAB biosynthesize a large spectrum of molecules with recognized health-promoting 22 

properties such as γ-aminobutyrric acid (GABA), β-phenylethylamine, bioactive peptides, short chain 23 

fatty acids, conjugated linoleic acids, selenometabolites, and vitamins (Pessione 2012; 2014). The in 24 

situ and ex-situ production of these molecules by LAB is currently used or has been proposed for the 25 

manufacturing of “functional foods” or “nutraceuticals”, i.e., foods that provide the consumer with 26 

an “added benefit” over and above the nutrient content, and possibly reduce the risk of specific 27 

chronic diseases (Mazzoli, 2014). Although at present the use of probiotic LAB is preferable to 28 

supplying the purified molecules as nutraceutical food supplements, the question remains with respect 29 

to vitamins and amino acid derivatives. 30 

Bioactive amines, such as GABA, β-phenylethylamine, and tryptamine, are produced by LAB 31 

as well as by eukaryotes (including humans) by decarboxylation of their precursor amino acid (i.e., 32 
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glutamate, phenylanaline, tryptophan, respectively). Amino acid decarboxylation is a general strategy 1 

used by LAB and other bacteria to supply cells with additional metabolic energy, through functional 2 

coupling with an electrogenic amino acid/amine antiport system which generates a proton gradient 3 

across the cytoplasm membrane (Konings, 2006; Mazzoli et al., 2010). Furthermore, it is a defense 4 

mechanism against environmental acidity, since amino acid decarboxylation produces a compound 5 

which is less acidic than the substrate (Mazzoli et al., 2010). 6 

While some amino acid decarboxylation products, e.g., histamine, tyramine, putrescine and 7 

cadaverine, are considered spoilage molecules that can be found in fermented food and have negative 8 

effects on human health (e.g., headaches, smooth muscle contraction, hypertension, brain hemorrage, 9 

allergies, and enteric histaminosis) (Pessione et al., 2005; 2009), GABA and β-phenylethylamine 10 

have desirable properties (Mazzoli et al., 2010). Several studies have reported that β-11 

phenylethylamine is a mood elevator (Mazzoli, 2014).  12 

GABA, together with its antagonist, i.e., glutamate, is the major neurotransmitter of the central 13 

nervous system of vertebrates. It also acts as a blood pressure modulator in mild hypertensive patients 14 

having diuretic and tranquillizer effects (Li and Cao, 2010; Mazzoli et al., 2010). Furthermore, GABA 15 

plays a regulatory and trophic role on the pancreas and in immunological processes, such as the down-16 

regulation of pro-inflammatory cytokine release (Mazzoli, 2014).  17 

A number of studies have investigated factors that promote glutamate decarboxylase 18 

biosynthesis or catalysis, leading to GABA accumulation in the fermentation medium. In Lc. lactis 19 

NCDO 2128, GABA is biosynthesized only by cultures in stationary phase and in acidic media (pH 20 

lower than 5.7), while the presence or absence of a high glutamate concentration did not have a 21 

significant effect (Mazzoli et al., 2010). Actually, in this strain, catalytic activation of glutamate 22 

decarboxylase by glutamate seems more important than its biosynthetic regulation. 23 

Recently, simple and effective fermentation methods have been developed for several LAB 24 

strains, including Lb. brevis NCL912, Lb. brevis GABA100, Lb. buchneri, and Ent. avium G-15, in 25 

order to produce high amounts of GABA (Cho et al., 2007; Kim et al., 2009; Li et al., 2010a; Park 26 

and Oh, 2007; Siragusa et al., 2007; Tamura et al., 2010). All these strategies rely on exogenous 27 

addition of high amounts of glutamate, which is not economically viable at the industrial scale. The 28 

future in this research area is therefore either i) the development of co-cultures of GABA-producing 29 

strains and glutamate-producing microbes (e.g., Corynebacterium glutamicum) or ii) the engineering 30 

of strains which can achieve high-level GABA production directly from glucose (Adkins et al., 2012). 31 

Possible health benefits can be ascribed to some isomeric forms of linoleic acid, currently 32 

called conjugated linoleic acids (CLA). These molecules, used as dietary supplements, are generally 33 

produced by isomerization of linoleic acid by chemical processes (Ogawa et al., 2005). Nevertheless, 34 
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this process often results in the by-production of undesired isomers having poor biological activity. 1 

Conversely, biological CLA production is more isomer-selective and it is possible to control the 2 

isomer ratio by acting on the culture condition (Ogawa et al., 2005). Both bifidobacteria and several 3 

LAB genera like Streptococcus and Lactobacillus are able to synthesize CLA when they are grown 4 

in presence of linoleic acid (i.e., cis,cis-9,12-octadienoic acid) (0.5 g/L) (Coakley et al., 2003). The 5 

highest biological activities are currently ascribed to either the cis,trans-9,11 or, alternatively, the 6 

trans,cis-10,12 isomer, and LAB produce them generally by biohydrogenation and oxidation 7 

processes (Wahle et al., 2004) but also by hydration and dehydration reactions (Ogawa et al., 2005). 8 

Several positive effects exerted by CLA on human health have been described in the literature. 9 

Among these, it is worth mentioning a modulation of sugar metabolism, resulting in attenuation of 10 

insulin resistance and improvement of metabolic syndrome and diabetes (Wahle et al., 2004), body 11 

weight loss with an increase of lean body mass (Terpstra, 2004), and induction of apoptosis in cancer 12 

cells (Ewaschuk et al., 2006). Nevertheless, some experimental evidence obtained in mice, like body 13 

fat reduction, has never been confirmed in humans, and either tumor-promoting activity or deleterious 14 

effects on lipid balance (i.e., increase in oxidative lipid products, HDL-cholesterol lowering effect) 15 

has been described using several animal models (Ewaschuk et al., 2006; Terpstra, 2004; Wahle et al., 16 

2004). As for many other pharmaceutical treatments, it has been hypothesized that CLA concentration 17 

is a key factor in defining limits between beneficial or negative effects: an anti-carcinogenic action 18 

has been demonstrated using CLA concentrations of 0.5%-1% (w:w) of the total diet (Ewaschuk et 19 

al., 2006). Considering that high linoleic acid dietary intake can be detrimental (Ewaschuk et al., 20 

2006), the CLA dosage has to be maintained at the minimal active concentration to avoid undesired 21 

consequences. On the other hand, some experimental evidence suggests that somewhat opposite 22 

effects likely correlate with different CLA isomers, due to the fact that they can act through different 23 

cell signalling pathways. For instance, the trans,cis-10,12 isomer has been considered dangerous for 24 

human health, causing decreased plasma leptin concentrations and insulin resistance (Terpstra, 2004; 25 

Wahle et al., 2004). For all these reasons, it is very important, on the one hand, to screen the 26 

appropriate strains producing the beneficial isomers, but on the other, to check the optimal dosage of 27 

the purified molecules to be administered as supplements. In view of nutraceutical applications in 28 

humans, Ogawa and co-workers (2005) set up a safe isomer-selective process for the production of 29 

CLA by Lb. plantarum strain AKU 1009a. These authors suggested that the substrate (i.e., linoleic 30 

acid) has to be dispersed with albumin or with a surfactant so as to be more bio-available for the 31 

bacterial cells: a final concentration of 40 g/L of CLA was obtained from linoleic acid by using this 32 

fermentation strategy. Furthermore, the use of anaerobic conditions allowed the authors to avoid 33 

interfering oxidative metabolism of linoleic acid, thus improving CLA yields. Finally, since it was 34 
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previously observed that free unsaturated fatty acids inhibit bacterial growth and trigger defense 1 

mechanisms involving “undesired” saturation reaction, these authors used for CLA production resting 2 

washed cells instead of actively growing bacteria. With this approach it was possible to enhance 3 

productivity by 100-fold. The most interesting finding of this study was the development of a method 4 

to control the ratio of isomer production between cis,trans-9,11 (i.e., biologically active) and 5 

trans,trans-9,11 (i.e., reduced biological activity) octadecadienoic acid. The addition of L-serine, 6 

glucose, NaCl or AgNO3 to the growth medium strongly improved the cis,trans-9,11 production 7 

(about 75% selectivity) (Kishino et al., 2003). The possibility of producing CLA by Lb. plantarum 8 

fermentation of less expensive substrate, i.e., castor oil which is currently used in cosmetics, has also 9 

been investigated by Ogawa et al. (2005). These authors reported that production of cis,trans-9,11 10 

CLA could be obtained with a selectivity yield of about 50%. However, the final titer of total CLA 11 

produced was much lower (i.e., 7.5 g/L only) as compared with amounts (i.e., 40 g/L) produced by 12 

using linoleic acid as the substrate. Moreover, pre-treatment with lipases was necessary in order to 13 

hydrolize ricinoleic acid from its esters in castor oil (Ogawa et al., 2005). Further application of LAB 14 

as biocatalysts has also been proposed, e.g., in production of regioselective partially hydrogenated 15 

oils (Ogawa et al., 2005).  16 

The ability to produce metal-fixing enzymes is a further metabolic feature of LAB which can 17 

be exploited for nutraceutical applications (Pessione, 2012). Since several Lactobacillus species can 18 

fix intracellularly sodium selenite into selenocysteines they are potential sources of selenium-19 

containing molecules which are more bio-available (and therefore more easily adsorbed by human 20 

gut cells) than inorganic Se (Calomme et al., 1995). Nowadays, selenocysteine is considered as the 21 

21st standard amino acid. Selenocysteine is encoded by the UGA codon, which usually corresponds 22 

to a STOP codon, but can be recognized by specific Se-cysteine-tRNA in suitable genetic 23 

environment and physiological conditions (Pessione, 2012). Selenomethionine is incorporated into 24 

proteins non-specifically in place of methionine. In both bacteria and eukaryotic cells, including 25 

human cells, several enzymes containining selenocysteines in their active site have been identified so 26 

far, almost all of which belong to the oxidoreductase class. Glutathione peroxidase, a key enzyme for 27 

control of oxidative stress and related diseases in both bacteria and eukarya, is but one of many studied 28 

proteins in which seleno amino acids are incorporated into the active site. Lamberti and co-workers 29 

(2011) have recently identified a selenocysteine lyase in Lb. reuteri. Selenocysteine lyase is a PLP-30 

dependent enzyme which is essential for the biosynthesis of new seleno-proteins from selenide 31 

(Lacourciere and Stadtman, 1998). Very recently, it has been shown that by growing a Se-fixing LAB 32 

strain in sodium selenite-supplemented medium some of the selenium-containing proteins (i.e., 33 

containing selenocysteine) were released extracellularly, thus rendering selenium more bioavailable 34 
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(Galano et al., 2013). This finding has opened new perspectives in both probiotic-nutraceutical 1 

applications and in industrial production of selenoproteins to be used as food supplements. 2 

Production of B-vitamins, especially folate and riboflavin (B2), by LAB has been another very 3 

active research area as described extensively in a recent review (Papagianni, 2012). These vitamins 4 

are produced by several LAB species (e.g., Lc. lactis, Lb. gasseri and Lb. reuteri), often in large 5 

quantities, and are therefore found in fermented foods (Papagianni, 2012). Moreover, increased 6 

vitamin biosynthesis has been obtained by metabolic engineering (Burgess et al., 2004; Hugenholtz 7 

et al., 2002). Folate biosynthetic genes and riboflavin biosynthetic operon have been overexpressed 8 

in Lc. lactis leading to strains with significantly increased folate (Hugenholtz et al., 2002) or 9 

riboflavin (Burgess et al., 2004) production, respectively. By directed mutagenesis followed by 10 

selection and metabolic engineering, Sybesma and co-workers (2004) modified the biosynthetic 11 

pathways of folate and riboflavin in Lc. lactis, resulting in the simultaneous overproduction of both 12 

vitamins.  13 

 14 

3.2.5. Antimicrobial molecules: LAB bacteriocins 15 

A promising feature of LAB is the production of interference molecules, i.e., bacteriocins. 16 

Bacteriocins are proteinaceous compounds (peptides or small proteins), synthesized at the ribosomal 17 

level (and not as secondary metabolites) specifically interfering with the growth of other bacteria. 18 

They have bactericidal action and are selective for prokaryotes. These compounds have found 19 

application both in the food industry, i.e., to counteract both spoilage and pathogenic bacteria, and as 20 

antibiotic substitutes to treat bacterial infections in humans and animals (Cotter et al., 2005; 2013; 21 

Papadimitriou et al., 2014). 22 

LAB are particularly prolific in bacteriocin production and can biosynthesize different types 23 

of antagonistic molecules. Due to the urgent necessity of new antimicrobial compounds, research is 24 

proceeding rapidly, and natural and food environments have been screened thus leading to isolation 25 

and characterization of new molecules every year. However, the continuous discovery of new 26 

bacteriocins makes it necessary to frequently revise previous classification based on bacteriocin 27 

structure, mode and spectrum of action. A very recent and detailed classification has been reported 28 

by Papadimitriou and co-workers (2014). Traditionally, bacteriocins were divided into three classes. 29 

Class I consists of the lantibiotics, because they contain post-translationally modified amino acids 30 

such as lanthionine (i.e., two alanines linked by a sulphur), β-methyl-lanthionine, dehydroalanine and 31 

dehydrobutyrine. Lantibiotics are thermo-resistant small peptides (19-38 amino acids in length) active 32 

mainly against Gram-positive bacteria. They can damage cell-envelope structure and function 33 
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through different mechanisms, e.g., pore formation and inhibition of peptidoglycan synthesis. The 1 

class II bacteriocins are very small (<10 kDa) heat-stable peptides, without extensive post-2 

translational modifications, although they may contain D-amino acids. The best-known class II 3 

“pediocin-like” bacteriocin has a narrow but very specific activity against the food pathogen Listeria 4 

monocytogenes. Finally, bacteriolysins are large, heat-labile antimicrobial enzymatic proteins causing 5 

the lysis of sensitive cells by catalyzing cell-wall hydrolysis. 6 

Although pore formation seems to be a shared property by divergent bacteriocins, we now 7 

know that the precise mechanism of bacteriocin action is more complicated than initially suspected. 8 

For example, the existence of docking molecules (receptors) that may be necessary for the initial 9 

binding of the bacteriocin to the cell surface is now recognized (Hassan et al., 2012), although some 10 

bacteriocins like enterocin AS-48, gassericin A, subtilosin A and carnocyclin A can exert their 11 

activity without binding to any receptor (Nishie et al., 2012). 12 

Bacteriocins have been applied to the control of spoilage and pathogenic bacteria in food. 13 

Since bacteriocins are sensitive to proteases and peptidases, which are often present in the food matrix 14 

(notably in cheese), it is preferable to purify them and to immobilize them into the food packaging 15 

instead of directly adding them into the food itself (Jin et al., 2010). By this approach it is possible to 16 

extend the shelf-life of food products by inhibiting the growth of spoilage microorganisms such as 17 

Bochotrix sp. or Clostridium tyrobutyricum, but also to prevent food-born infections by pathogenic 18 

bacteria such as Listeria monocytogenes and Staphylococcus aureus, which are currently responsible 19 

for 9000 cases of death per year (Lamberti et al., 2014). Furthermore, the use of bacteriocins allows 20 

to reduce the use of: i) sugar and salt in food with positive effects on diabetic and hypertensive 21 

patients; ii) other food preservatives and the need of a constant and stringent cold-chain. Application 22 

of bacteriocins in the food domain brings potential benefits for the whole population, from both health 23 

and energy-saving aspects. 24 

A cutting-edge area of research is the use of bacteriocins as antibiotic substitutes. The list of 25 

multidrug resistant (MDR) bacterial strains, causing death chiefly in the hospital environment and 26 

more recently triggering severe illnesses in previously non-vulnerable patients in the community, is 27 

expanding fast. Nowadays, the number of options to counteract infectious deseases by “traditional” 28 

antibiotic molecules is progressively lower (Alanis, 2005). The necessity to find new molecules for 29 

the treatment of severe infections is crucial (Siegel, 2008). Recent evidence suggests that LAB 30 

bacteriocins could provide this function, as supported by findings from animal and human trials (Sang 31 

and Blecha, 2008). The spectrum of bacteriocin action can vary depending on the species producing 32 

them (Montalbán-Lopez et al., 2011). Appreciated features of LAB bacteriocins include their activity 33 
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at very low concentrations (nanomolar range) and for extended time periods. In spite of the fact that 1 

some of them, like nisin, have been used for several decades in food, no resistant mutants have been 2 

described so far (Nishie et al., 2012). Actually, the rise of naturally appearing bacteriocin-resistant 3 

mutants appears to take place at a very low frequency. For example, in L. monocytogenes, nisin-4 

resistant mutants appeared at a frequency of 10-6 to 10-8 (Harris et al., 1991). 5 

Today, the main challenge for bacteriocin use in the treatment of bacterial infections is their 6 

proteinaceous nature which renders them active in vitro but sometimes problematic in vivo. When 7 

lacticin 3147 from Lc. lactis was exposed to the conditions of the GI tract of pigs it was rapidly 8 

deactivated indicating that such lantibiotics may undergo proteolytic degradation like nisin F 9 

(Gardiner et al., 2007). Attempts have been made to protect bacteriocins from the action of digestive 10 

and tissue enzymes (i.e., proteases and peptidases). Recenlty, van Staden and co-workers (2012) have 11 

reported that brushite cement-incorporated nisin F (at concentrations ranging from 1 to 5%) 12 

maintained its antimicrobial activity both in vitro and in vivo when implanted in sub-cutaneous 13 

pockets on the back of mice previously inoculated with S. aureus. No infection could be established 14 

and no viable cells of this pathogen could be recovered within a time period of seven days (van Staden 15 

et al., 2012) 16 

Some bacteriocins have proved to be effective against Staphylococcus (e.g. enterocin 96), 17 

while others are known to target Str. pneumoniae (e.g. salivaricin D), which is the major cause of 18 

pneumonia (Hammami et al., 2013). The purified bacteriocin E 50-52 produced by Enterococcus was 19 

unable to provide any protection to mice infected with Mycobacterium turbeculosis indicating that it 20 

could not reach the mycobacteria intra-cellularly. Conversely, when the bacteriocin was used in 21 

complex with phosphatidylcholine–cardiolipin liposomes it was able to inhibit mycobacterium within 22 

the cells and to prolong the life of infected mice (Sosunov et al., 2007). An in vivo study concerning 23 

women affected by staphylococcal mastitis demonstrated that the use of a nisin-containing solution 24 

on the infected area for two weeks significantly decreased staphylococcal counts and mastitis 25 

symptoms (Fernandez et al., 2008). Mutacin B-Ny266 from the Str. mutans is active against both 26 

methicillin resistant Staphylococcus aureus (MRSA) and vancomycin-resistant enterococci (VRE) 27 

(Mota-Meira et al., 2005). A number of variants of nisin (i.e., nisin F, Q and Z) which differ by up to 28 

10 amino acids from nisin A were tested against MRSA and vancomycin-intermediate-resistant 29 

(VISA) Staphylococcus aureus, and nisin F proved to be the most effective (Piper et al., 2011).  30 

From a biotechnological standpoint important aspects to be considered in view of large-scale 31 

application of LAB bacteriocins are yield optimization and genetic modifications to improve both 32 

spectrum of activity and protease resistance. 33 



36 

 

Regarding the yield optimization of bacteriocin, two aspects should be considered: i) time of 1 

growth providing maximum harvesting and ii) modulation of biosynthesis by 2 

environmental/endogenous factors. In most LAB species the highest bacteriocin accumulation occurs 3 

at the end of the exponential growth phase, because their production is under quorum-sensing control, 4 

i.e., connected to the time in which biomass has reached a threshold number of cells (Park et al., 5 

2003). Nevertheless, it has been reported that early bacteriocin production can occur in both Lb. sakei 6 

(Aasen et al., 2000), Lc. lactis subsp cremoris (Lamberti et al., 2014), and Ent. faecium (Leroy and 7 

DeVuyst, 2002). The hypothesis concerning these results is that the low growth rate typical of the 8 

early logarithmic phase led to a gain of energy and nutrients, higher than that required for biomass 9 

generation. This condition can support higher bacteriocin biosynthesis due to better utilization of 10 

carbon/energy sources and enhanced ATP availability. However, this is a transitional event, since 11 

growth must proceed and hence energy and nutrients are soon directed towards biomass formation, 12 

and bacteriocin production is then swithched off. 13 

Environmental factors modulating bacteriocin synthesis are generally connected with 14 

bacterial stress: a fine tuning of bacteriocin production allows reducing the energy costs and 15 

optimizing yields limiting the synthesis to times of stress (Gillor et al., 2008). Oxygen stress-enhanced 16 

bacteriocin biosynthesis in Lb. amylovorus DCE 417 has been reported by Neysens and co-workers 17 

(2005). Regarding endogenous factors, it has to be considered that growth rate and biomass yield of 18 

the producer strains are not affected during bacteriocin production, since they are immune to their 19 

own bacteriocins. LAB possess genes that encode immunity mechanisms: among which, it is worth 20 

mentioning that most bacteriocins are biosynthesized as biologically inactive precursors containing a 21 

leader sequence preventing the bacteriocin from being active while located inside the producing cell. 22 

This sequence has to be removed to generate the fully active peptide which is then secreted (Willey 23 

and van der Donk, 2007). Protection can also be provided either by specific immunity proteins 24 

(Fimland et al., 2005) or by means of a specialized ABC-transport system pumping the lethal 25 

molecule outside of the cell (Draper et al., 2009).  26 

The strategy of modifying the natural bacteriocins by biotechnological approaches is a 27 

promising field of research to obtain more effective molecules. The potential to create salivaricin 28 

variants with enhanced resistance to the intestinal protease trypsin has been explored by O’Shea and 29 

colleagues (2010; 2013). Eleven variants of the salivaricin P components (a two-component 30 

bacteriocin, highly active against Listeria monocytogenes), with conservative modifications at the 31 

trypsin-specific cleavage sites were created. Eight of such salivaricin P variants were resistant to 32 

trypsin digestion while retaining antimicrobial activity. Similarly, in the same research group, Field 33 
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and co-workers (2012) obtained nisin variants with increased antibacterial activity towards both 1 

Gram-positive and Gram-negative bacteria. An additional bacteriocin feature that has been improved 2 

by genetic engineering is the enhanced capability to diffuse through complex polymers, with useful 3 

applications in the food industry (Rouse et al., 2012). 4 

 5 

 6 

4. Concluding remarks and future perspectives 7 

As early as 2003, Ohara preconized LAB-based biorefineries as among the most promising 8 

biotechnological strategies for obtaining high-value molecules and commodity chemicals (Ohara, 9 

2003). Some of the LAB showing the highest potential for biorefinery application are summarized in 10 

Table 3, where their main growth characteristics (carbon sources, optimal temperature and pH ranges) 11 

are compared with those of other attractive candidates for future industrial fermentation processes.  12 

 13 

*Table 3 14 

 15 

Since then, significant advances have been achieved in the development of molecular tools for 16 

engineering the metabolic pathways of LAB, optimization of fermentation processes, as well as more 17 

in depth understanding of enzymes and other biochemical systems and metabolic pathways relevant 18 

for industrial application. Nonetheless, at least two major problems need to be solved prior to concrete 19 

application of LAB in cost-sustainable biorefineries. Complex growth media are currently necessary 20 

to complement the limited biosynthetic capacities of LAB for production of amino acids and vitamins, 21 

which increase both fermentation and product-purification costs. Search for less expensive nutritional 22 

supplements with reduced content of impurities than yeast extract is an active field of study (John et 23 

al., 2007; Okano et al. 2010a). Alternative fermentation strategies (e.g., co-cultivation with microbial 24 

strains supplying essential nutrients) and metabolic engineering are additional tools to resolve or 25 

reduce such nutrient requirements. Recombinant strategies can address another major issue, namely 26 

to expand substrate-metabolization abilities of LAB, thus enabling them to directly ferment (i.e., 27 

without the need for exogenous addition of enzymes and/or physico-chemical saccharification pre-28 

treatments) cheap and abundant biomass, such as starch and lignocellulose. Recombinant amylolytic 29 

LAB showing high yield and productivity have recently been constructed (Okano et al., 2009c). 30 
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However, development of recombinant cellulolytic microorganisms is at a much earlier stage, mainly 1 

because of the more recalcitrant nature of lignocellulose which requires heterologous expression of 2 

multiple proteins. To date, relatively few LAB strains have been engineered with single 3 

cellulases/hemicellulases that are able to hydrolyze amorphous substrates or grow on short cello-4 

oligosaccharides (Table 1). Intensive research is still necessary to fully understand the molecular 5 

mechanisms to enable native cellulase systems to hydrolyze crystalline cellulose for rational design 6 

of efficient minimal enzyme mixtures. Furthermore, genetic engineering strategies need to be 7 

improved to promote secretion of sufficient amounts and optimal relative ratios of required multiple 8 

enzymatic activities in LAB.  9 

In the near future research progress will likely lead to the application of natural or engineered 10 

LAB strains in biorefineries (Fig. 5). Appropriate LAB strains will be grown in industrial plants on 11 

inexpensive biomass (e.g., plant-derived biomass) under fermentation conditions promoting the 12 

biosynthesis of bulk commodities and/or high-value products, such as LA, ethanol, butanol, PHAs, 13 

polyols, EPS, bacteriocins, molecules with nutraceutical properties (e.g., GABA, CLA, 14 

selenoproteins and vitamins). Most of these products will be purified from the cell-free fermentation 15 

medium by simple and low-cost procedures, while in the case of PHA-related processes, polymers of 16 

interest will be extracted and purified from bacterial biomass by a variety of methods as described in 17 

detail elsewhere (Dias et al., 2006; Keshavarz and Roy, 2010). Moreover, LAB biomass can be 18 

recycled for other fermentation processes or used for probiotic manufacturing or as a protein 19 

supplement for food and feed applications (Fig. 5). Purified high-value molecules will be used, either 20 

directly or after further chemical-physical processing, for a number of applications, some of which 21 

are illustrated in Fig. 5. Both PHA and polymers of LA (i.e., PLA) can be used for the manufacturing 22 

of biodegradable plastics with broad application spectrum, as described above. Furthermore, LAB-23 

produced bacteriocins can be used for functionalizing plastic films designed for food packaging, thus 24 

obtaining foods with improved safety (i.e., more “recalcitrant” to colonization by pathogenic strains) 25 

and longer shelf life (e.g., more “recalcitrant” to colonization by spoilage microorganisms). Among 26 

other compounds with food application, EPS, polyols and bioactive compounds (e.g., GABA) can be 27 

added to food so as to obtain products with improved properties, such as: i) healthier features (i.e., 28 

containing polyols instead of sugars) and therefore suitable for some pathological conditions (e.g., 29 

diabetes); ii) increased organoleptic characteristics, e.g., smoother or creamier by EPS addition; iii) 30 

nutraceutical properties, i.e., containing molecules such as GABA and other bioactive amines, CLA 31 

or vitamins which will provide additional health benefits to consumers. It is not unrealistic to 32 

hypothesize that in the future the same food factory will be able to produce dairy product(s) and 33 

bioplastic films for packaging of such food products, possibly functionalized with bacteriocins, by 34 
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using the same LAB strain(s). Apart from polymerization to PLA, LA can be esterified with ethanol 1 

thus producing a highly sought-after biodegradable solvent, i.e., ethyl lactate. Last but not least, LAB 2 

are currently considered good candidates for production of biofuels such as ethanol and butanol, as 3 

well as for synthesis of formate (as a biofuel precursor) which is a suitable substrate for hydrogen-4 

producing fermentation processes. Hopefully, what is currently an optimistic vision could be realized 5 

in the near future, so that such LAB-based biorefineries will become a relevant option for an 6 

environmentally friendly and cost-sustainable economy. 7 

 8 

*Fig. 5. 9 
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Figure captions 1 

 2 

Fig. 1. Schematic overview of the metabolic pathways enabling LAB to produce some of the most 3 

industrially desired molecules by sugar fermentation. Thin arrows stand for single enzymatic 4 

reactions, while thick arrows stands for multiple reaction pathways. AlaDH, alanine dehydrogenase; 5 

ALS, α-acetolactate synthase; EPS, exopolysaccharides; GAP, glyceraldehyde-3-phosphate; LDH, 6 

lactate dehydrogenase; PDH, pyruvate dehydrogenase; PFL, pyruvate-formiate lyase; PHB, 7 

polyhydroxybutyrate. 8 

 9 

Fig. 2. Diacetyl biosynthetic pathway in Lc. lactis. ALDB, α-acetolactate decarboxylase; ALS, α-10 

acetolactate synthase; ILVNB, acetohydroxy acid synthase. 11 

 12 

Fig. 3. Examples of effective strategies for improving the production of sweeteners: 1) sorbitol, 2) 13 

mannitol, and 3) L-alanine, from sugars by means of LAB (adapted from Hugenholtz et al., 2011). 14 

Inactivation of LDH (∆LDH) is a common feature to improve intracellular NADH concentration. 15 

AlaDH, alanine dehydrogenase; Mth1PDH, mannitol-1-phosphate dehydrogenase; Mtl1Pase, 16 

mannitol-1-phosphate phosphatase; Stl6PDH, sorbitol-6-phosphate dehydrogenase; Stl6Pase, 17 

sorbitol-6-phosphate phosphatase. 18 

 19 

Fig. 4. Scheme representing: A) general routes for homo-EPS (i.e., glucans and fructans) biosynthesis 20 

from sucrose; B) model of hetero-EPS biosynthesis in Lc. lactis NIZO (adapted from Welman and 21 

Maddox, 2003). GlysucA, glycansucraseA; GlysucB, glycansucrase B, EpsA, B, D, E, F, G, H, I, J, 22 

and K, gene products involved in EPS biosynthesis; Frt, fructose; Glc, glucose; Gal, galactose; Rha, 23 

rhamnose. 24 

 25 

Fig. 5. Prospects and broad applications of a future LAB-based biorefinery. EPS, exopolysaccharides; 26 

GABA, γ-amino butyric acid; PHA, polyhydroxyalkanoates; PLA, polylactide.  27 
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