
29 April 2024

AperTO - Archivio Istituzionale Open Access dell'Università di Torino

Original Citation:

On the Preciseness of Subtyping in Session Types

Publisher:

Terms of use:

Open Access

(Article begins on next page)

Anyone can freely access the full text of works made available as "Open Access". Works made available
under a Creative Commons license can be used according to the terms and conditions of said license. Use
of all other works requires consent of the right holder (author or publisher) if not exempted from copyright
protection by the applicable law.

Availability:

ACM Press

This is the author's manuscript

This version is available http://hdl.handle.net/2318/149876 since

This is an author version of the contribution published on:

T. Chen,M. Dezani,N. Yoshida
On the Preciseness of Subtyping in Session Types

Editor: ACM Press
2014

in

PPDP'14
135 - 146
PPDP'14

Canterbury
2014

The definitive version is available at:
http://www.di.unito.it/~dezani/papers/cdy14.pdf

http://www.di.unito.it/~dezani/papers/cdy14.pdf

On the Preciseness of Subtyping in Session Types

Tzu-Chun Chen
Università di Torino
chen@di.unito.it

Mariangiola Dezani-Ciancaglini
Università di Torino
dezani@di.unito.it

Nobuko Yoshida
Imperial College London
yoshida@doc.ic.ac.uk

Abstract
Subtyping in concurrency has been extensively studied since early
1990s as one of the most interesting issues in type theory. The
correctness of subtyping relations has been usually provided as
the soundness for type safety. The converse direction, the com-
pleteness, has been largely ignored in spite of its usefulness to
define the greatest subtyping relation ensuring type safety. This
paper formalises preciseness (i.e. both soundness and complete-
ness) of subtyping for mobile processes and studies it for the syn-
chronous and the asynchronous session calculi. We first prove that
the well-known session subtyping, the branching-selection subtyp-
ing, is sound and complete for the synchronous calculus. Next we
show that in the asynchronous calculus, this subtyping is incom-
plete for type-safety: that is, there exist session types T and S such
that T can safely be considered as a subtype of S, but T 6 S is not
derivable by the subtyping. We then propose an asynchronous sub-
typing system which is sound and complete for the asynchronous
calculus. The method gives a general guidance to design rigorous
channel-based subtypings respecting desired safety properties.

Categories and Subject Descriptors D.3.3 [Programming Lan-
guages]: Language Constructs and Features

Keywords Session types, π-calculus, Subtyping, Completeness
and Soundness.

1. Introduction
Subtyping in concurrency Since Milner first introduced the idea
of assigning types to channels in the π-calculus [25], the subtyp-
ings which define an ordering over usages of channels have been
recognised as one of the most useful concepts in the studies of the
π-calculus.

The earliest work is a simple subtyping between input and
output capabilities (called IO-subtyping) [33], which has been
extended to and implemented in different areas of concurrency
(e.g. [17, 34]) and has been continuously studied as one of the core
subjects in concurrency (e.g. [19]). Later, a generic type system
with subtyping is introduced in [23], where the subtyping plays a
fundamental rôle to generate a variety of interesting type systems
as its instances.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
PPDP ’14, September 08–10 2014, Canterbury, UK.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2947-7/14/09. . . $15.00.
http://dx.doi.org/10.1145/2643135.2643138

More recently, another subtyping based on session types [12]
has been applied to many aspects of software design and imple-
mentations such as web services, programming languages and dis-
tributed computing [4, 8, 14, 22, 35, 37]. The standpoint of ses-
sion types is that communication-centred applications exhibit a
highly structured sequence of interactions involving, for example,
sequencing, branching, selection and recursion, and such a series
of interactions can be abstracted as a session type through a simple
syntax. The session subtyping specified along session structures is
then used for validating a large set of programs, giving flexibility
to programmers.

As an example of session subtyping [4, 8], consider a simple
protocol between a Buyer and a Seller from Buyer’s viewpoint:
Buyer sends a book’s title (a string), Seller sends a quote (an
integer). If Buyer is satisfied by the quote, he then sends his address
(a string) and Seller sends back the delivery date (a date); otherwise
he quits the conversation. This can be described by the session type:

!〈string〉.?(int).{!ok〈string〉.?(date).end ⊕ !quit.end} (1)

The prefix !〈string〉 denotes an output of a value of type
string, whereas ?(int) denotes an input of a value of type int.
Instead ok and quit are labels distinguishing different branches.The
operator ⊕ is an internal choice, meaning the process may choose
to either send the label ok with a string and receive a date, or
send the label quit. The type end represents the termination of the
session. From Seller’s viewpoint the same session is described by
the dual type

?(string).!〈int〉.{?ok(string).!〈date〉.end & ?quit.end} (2)

in which & means that the process offers two behaviours, one
where it receives ok with a string and sends a date, and one where
it receives quit.

As nat 6 real in the standard subtyping, a type representing
a more defined behaviour is smaller. A selection subtype is a type
which selects among fewer options (as outputs). The following is
an example of a subtype of (1):

!〈string〉.?(int).!ok〈string〉.?(date).end (3)

Conversely, a branching subtype is a type which offers more op-
tions (as inputs). The following is an example of a subtype of (2):

?(string).!〈int〉.
{?ok(string).!〈date〉.end & ?quit.end & ?later.end}

Intuitively, a type T is a subtype of a type S if T is ready to
receive no fewer labels than S, and T potentially sends no more
labels than S (in other words, T represents a more permissive
behaviour than S) [4, 8]. If we run two processes typed by (3)
and (4), they are type safe, i.e. there is no mismatch of labels or
types during communication. Hence the subtyping is sound with
respect to the type safety. An important question, however, is still
remaining: is this subtyping complete? I.e. is this session subtyping
the greatest relation which does not violate type safety? The proof

of soundness is usually immediate as a corollary of the subject
reduction theorem. But how can we state and prove completeness?

Preciseness This paper first gives a general formulation of sound-
ness and completeness for type safety in concurrency, which does
not depend on specific subtypings. We say that a subtyping relation
is precise if it is both sound and complete. The preciseness in this
paper is a simple operational property that specifies a relationship
between static and dynamic semantics. To formally define precise-
ness, we assume a multi-step reduction between processes P→∗ P′
(where P′ is possibly the error process) as well as typing judge-
ments of the form P.{a : T}, assuring that the process P has a sin-
gle free channel a whose type is T . We also use reduction contexts
C in the standard way. The judgement C[a : T]. /0 means that filling
the hole of C with any process P typed by a : T produces a well-
typed closed process (formally C[a : T]. /0 ⇐⇒ X : T `C[X〈a〉]. /0,
where X is a process variable which does not appear in C, see § 2).

Our preciseness definition is an adaptation of the preciseness
definition for the call-by-value λ -calculus with sums and product
types given in [3].

Definition 1.1 (Preciseness). A subtyping 6 is precise when, for
all session types T and S:

T 6 S ⇐⇒
(

there do not exist C and P such that:
C[a : S]. /0 and P.{a : T} and C[P]→∗ error

)
When the only-if direction (⇒) of this formula holds, we say that

the subtyping is sound; when the if direction (⇐) holds, we say
that the subtyping is complete.

The property of preciseness tells that an arbitrary context which
is safe when filled with any process using a channel following S,
is also safe when filled with a process using the same channel
following T , if and only if T 6 S. Note that the (⇒) direction
is useful to check that the subtyping preserves the desired safety
property, while the (⇐) direction is essential to assure that the
subtyping does cover all processes which satisfy the desired safety
property.

Here we are interested in syntactically defined subtyping and an
operational notion of preciseness. Our approach is opposed to se-
mantic subtyping [11], which is given denotationally: in addition,
the calculus of [11] has a type case constructor from which com-
pleteness follows for free. See § 7 for a detailed discussion.

Preciseness and impreciseness for the π-calculus Then IO-
subtyping [33] is not precise. This is because no error can be de-
tected when a read only channel is used to write, or vice versa, by a
context without type annotations. For a similar reason, the branch-
ing and selection subtyping [8] is also imprecise for the π-calculus.
The branching and selection subtyping is instead precise for the
π-calculus with only linear channels [24], whose expressivity is
limited.

In [23] only necessary conditions are stated for subtyping, the
aim being that of having the maximum generality. The subtyping
relations in the instances of the generic type system depend on the
properties (arity-mismatch check, race detection, static garbage-
channel collection, deadlock detection) one wants to guarantee.

These results led us to consider preciseness for two representa-
tive session calculi, the synchronous [21, 36] and the asynchronous
[27–29] session calculi.

Two preciseness results Session types have sufficiently rich
structure to assure completeness, hence if T 66 S, then T and S
can be distinguished by suitable contexts and processes.

The first result of this paper is preciseness of the branching-
selection subtyping (dubbed also synchronous subtyping) described
above for the synchronous session calculus. Our motivation to

study the first result is to gently introduce a proof method for pre-
ciseness and justify the correctness of the synchronous subtyping,
which is widely used in session-based calculi, programming lan-
guages and implementations [4, 8, 22, 35].

The case of the asynchronous session calculus is more challeng-
ing. The original session typed calculi are based on synchronous
communication primitives, assumed to be compiled into asyn-
chronous interactions using queues. Later researchers found that,
assuming ordered asynchronous communications for binary in-
teractions, one could directly express asynchronous non-blocking
interactions. One can then assure not only the original synchronous
safety, but also the asynchronous safety, i.e. deadlock-freedom
(every input process will always receive a message) and orphan
message-freedom (every message in a queue will always be re-
ceived by an input process).

Our first observation is that the branching-selection subtyping
is not large enough for the asynchronous calculus, i.e. there exist
session types T and S such that T can safely be considered as a
subtype of S, but T 6 S is not derivable by the subtyping. The
reason is natural: in the presence of queues, the processes typed
by the following two non-dual types can run in parallel without
compromising type safety:

Ta = !〈int〉.!〈char〉.?(string).?(nat).end
Tb = !〈string〉.!〈nat〉.?(int).?(char).end

since the process typed by Ta can put two messages typed by int
and char in one queue and the process typed by Tb can put two
messages typed by string and nat in another queue, and they can
receive the two messages from each queue, without getting stuck.

The asynchronous subtyping of [27–29] permutes the order of
messages, for example:

Ta 6 ?(string).?(nat).!〈int〉.!〈char〉.end
so that the process typed by Ta can have a type which is dual of Tb
by the subsumption rule. This asynchronous permutation is often
used as a means of messaging optimisation, e.g., as “messaging
overlapping” in the parallel programming community [30, §6]. Our
result demonstrates the preciseness of this subtyping, which was
introduced for practical motivations.

We have found that the subtyping of [27] is unsound if we re-
quire the absence of orphan messages. If we allow orphan mes-
sages and we only have deadlock errors, then the subtyping of [27]
is sound but not complete. All this is discussed in § 7.

The subtypings of [28, 29], whose targets are the higher-order
π-calculus and the multiparty session types, respectively, are sound
for deadlock and orphan message errors. Hence we simplify the
subtypings of [28, 29] and we adapt them to the binary session π-
calculus.

Contributions and outline As far as we are aware, this is the first
time that completeness of subtypings, which is solely based on (un-
typed) operational semantics, is formalised and proved in the con-
text of mobile processes. We also demonstrate its applicability to
two session type disciplines, the synchronous and the asynchronous
one. The most technical challenge is the proof of completeness for
the asynchronous subtyping, which requires some ingenuity in the
definition of its negation relation. Key in the proofs is the construc-
tion of processes which characterise types. These processes allow
us to show also the denotational preciseness of both synchronous
and asynchronous subtypings.

§ 2 defines the synchronous session calculus and its typing
system, and proves soundness of the branching-selection subtyp-
ing. § 3 proposes a general scheme for showing completeness and
proves completeness of subtyping for the synchronous session cal-
culus. § 4 defines the asynchronous session calculus and introduces
a new asynchronous subtyping relation which is shown to be sound.

§ 5 proves completeness of subtyping for the asynchronous calcu-
lus. The last completeness proof is non-trivial since the permuta-
tions introduced by the asynchronous subtyping rules make ses-
sion types unstructured. The proof of operational preciseness gives
us denotational preciseness of both synchronous and asynchronous
subtypings, as shown in § 6. Related work and conclusion are the
contents of § 7 and § 8, respectively.

2. Synchronous Session Calculus
This section starts by introducing syntax and semantics of a sim-
plification of the most widely studied synchronous session calcu-
lus [21]. Since our main focus is on subtypings between session
channels, we eliminate the session initiations (shared channels) and
the expressions. The obtained calculus is similar to that presented
in [36]. We then define the typing system and prove soundness of
subtyping as defined in Definition 1.1.

The extension of preciseness to the full calculus with expres-
sions and shared channels is mechanical, see § 8.

2.1 Syntax
A session is a series of interactions between two parties, possibly
with branching and recursion, and serves as a unit of abstraction
for describing communication protocols. The syntax is given in
Table 1. We use the following base sets: variables, ranged over
by x,y,z . . . ; names (often called channels), ranged over by a,b;
identifiers (names and variables), ranged over by u,u′ . . . ; labels,
ranged over by l, l′, . . . ; process variables, ranged over by X ,Y, . . . ;
and processes, ranged over by P,Q

Session communications are performed between an output pro-
cess u!l〈u′〉.P and an input process ∑i∈I u?li(xi).Pi (the li are pair-
wise distinct), where the former sends a channel choosing one of
the branches offered by the latter. In ∑i∈I u?li(xi).Pi and u!l〈u′〉.P
the identifier u is the subject of input and output, respectively. The
choice P⊕Q internally chooses either P or Q. In many session
calculi [4, 21, 29] the conditional plays the rôle of the choice.
The process def D in P is a recursive agent and X〈ũ〉 is a re-
cursive variable. The process (νab)P is a restriction which binds
two channels, a and b in P, making them co-channels, i.e. allow-
ing them to communicate (see rule [R-COM-SYNC] in Table 2). This
double-restriction is commonly used in the recent literature of ses-
sion types, e.g. [12, 36]. We often omit 0 from the tail of processes.

The bindings for variables are in inputs and declarations; those
for channels are in restrictions; and those for process variables are
in declarations. The derived notions of bound and free identifiers,
alpha equivalence, and substitution are standard.

By fpv(P)/fn(P) we denote the set of free process variables/free
names in P. By sn(P) we denote the set of free subject names in P,
defined by sn(u!l〈u′〉.P) = fn(u)∪sn(P) and sn(∑i∈I u?li(xi).Pi) =
fn(u)∪

⋃
i∈I sn(Pi) and as expected in the other cases.

P ::= Process
0 (nil)

| X〈ũ〉 (variable)
| ∑i∈I u?li(xi).Pi (input)
| u!l〈u′〉.P (output)
| P⊕P (choice)
| P |P (parallel)
| def D in P (definition)
| (νab)P (restriction)
| error (error)

D ::= Declaration
X(x̃) = P

u ::= Identifiers
a (name)

| x (variable)

Table 1. Syntax of synchronous processes.

[R-COM-SYNC]
k ∈ I

(νab)(a!lk〈c〉.P |∑
i∈I

b?li(xi).Qi)→ (νab)(P |Qk{c/xk})

[R-DEF]
def X(x̃) = P in (X〈ã〉 |Q)→ def X(x̃) = P in (P{ã/x̃} |Q)

[R-CHOICE]
P⊕Q→ P

[R-CONTEXT]
P→ P′

C[P]→C[P′]

[R-STRUCT]
P≡ P′ P′→ Q′ Q′ ≡ Q

P→ Q

Table 2. Reduction of synchronous processes.

[S-PAR 1]
0 |P≡ P

[S-PAR 2]
P |Q≡ Q |P

[S-PAR 3]
P | (Q |R)≡ (P |Q) |R

[S-CH 1]
P⊕Q≡ Q⊕P

[S-CH 2]
(P⊕Q)⊕R≡ Q⊕ (P⊕R)

[S-RES 1]
a,b 6∈ fn(Q)

(νab)P |Q≡ (νab)(P |Q)

[S-RES 2]
{a,b}∩{c,d}= /0

(νab)(νcd)P≡ (νcd)(νab)P

[S-DEF 1]
def D in 0≡ 0

[S-DEF 2]
a,b 6∈ fn(D)

def D in (νab)P≡ (νab)(def D in P)

[S-DEF 3]
dpv(D)∩ fpv(Q) = /0

(def D in P) | Q≡ def D in (P | Q)

[S-DEF 4]
dpv(D)∩dpv(D′) = /0

def D in def D′ in P≡ def D′ in def D in P

Table 3. Structural congruence for synchronous processes.

2.2 Operational semantics
Table 2 gives the reduction relation between the synchronous pro-
cesses which do not contain free channel variables. It uses the fol-
lowing reduction context:

C ::= []
C |P

 (νab)C
 def D in C

and the structural rules of Table 3. By dpv(P) we denote the set of
process variables introduced in declarations, whose definition by
induction on processes has only one interesting case:

dpv(X(x̃) = P) = {X}∪dpv(P).

In Table 2, [R-COM-SYNC] is the main communication rule be-
tween input and output at two co-channels a and b, where the label
lk is selected and channel c is instantiated into the k-th input branch.
Other rules are standard.

We also define error reduction (Table 4), which is crucial for
stating the preciseness theorem. We do not consider errors due to
non linear use of channels, since they cannot arise reducing pro-
cesses typed with an unsound subtyping. Rule [ERR-MISM-SYNC] is
a mismatch between the output and input labels. Rule [ERR-NEW-SYNC]
represents an error situation where one of two co-channels (b) is
missing. Rule [ERR-OUT-OUT-SYNC] gives an error when two co-
channels are both subjects of outputs, destroying the duality of
sessions. Similarly rule [ERR-IN-IN-SYNC] gives an error when two

[ERR-MISM-SYNC]
∀i ∈ I : l 6= li

(νab)(a!l〈c〉.P |∑
i∈I

b?li(xi).Qi)→ error

[ERR-NEW-SYNC]
a ∈ sn(P) b 6∈ fn(P)
(νab)P→ error

[ERR-CONTEXT]
C[error]→ error

[ERR-OUT-OUT-SYNC]
(νab)(a!l〈c〉.P |b!l′〈c′〉.Q)→ error

[ERR-IN-IN-SYNC]
(νab)(∑

i∈I
a?li(xi).Pi |∑

j∈J
b?l′j(x

′
j).Q j)→ error

Table 4. Error reduction for synchronous processes.

[SUB-END]
end6 end

[SUB-BRA]
∀i ∈ I : Si 6 S′i Ti 6 T ′i

&i∈I∪J?li(Si).Ti 6 &i∈I?li(S′i).T
′

i

=============================

[SUB-SEL]
∀i ∈ I : S′i 6 Si Ti 6 T ′i⊕

i∈I
!li〈Si〉.Ti 6

⊕
i∈I∪J

!li〈S′i〉.T ′i
==========================

Table 5. Subtyping rules for synchronous types.

co-channels are both subjects of inputs. We denote by →s the re-
duction relation for the synchronous processes, generated by the
rules in Tables 2 and 4, and by →∗s the reflexive and transitive
closure of→s.

2.3 Typing synchronous processes
The syntax of synchronous session types, ranged over by T and S,
is:

T,S ::= &i∈I?li(Si).Ti |
⊕

i∈I !li〈Si〉.Ti | t | µt.T | end
The branching type &i∈I?li(Si).Ti describes a channel willing to
branch on an incoming label li, receive a channel of type Si, and
then continue its interaction as prescribed by Ti. The selection type⊕

i∈I !li〈Si〉.Ti is its dual: it describes a channel willing to send a
label li with a channel of type Si, and then continue its interaction
as prescribed by Ti. In branching and in selection types:
• the labels are pairwise distinct
• the types of the exchanged channels are closed.
We omit & and ⊕ and labels when there is only one branch.
We use t to range over type variables. The type µt.T is a recursive
type. We take an equi-recursive view of types, not distinguishing
between a type µt.T and its unfolding T{µt.T/t}. We assume that
the recursive types are guarded, i.e. µt.t is not a type. The type
end represents the termination of a session and it is often omitted.
In the examples we use infix notation for & and ⊕ and ground
types (int,bool, . . .) for messages. The extension to ground types
is easy, as discussed in § 8.

As usual session duality [21] plays an important rôle for session
types. The function T , defined below, yields the dual of the session
type T .

&i∈I?li(Si).Ti =
⊕

i∈I !li〈Si〉.Ti
⊕

i∈I !li〈Si〉.Ti = &i∈I?li(Si).Ti

t = t µt.T = µt.T end= end

We write T1 ./ T2 if T2 = T1.

Table 5 defines the subtyping. Note that the double line in rules
indicates that the rules should be interpreted coinductively [32,
Chapter 21, §2.1]). We follow the ordering of the branching-

[T-IDLE]
Γ ` 0. /0

[T-VAR]
Γ ,X : 〈T̃ 〉 ` X〈ũ〉.{ũ : T̃}

[T-INPUT]
∀i ∈ I : Γ ` Pi .∆,u : Ti,xi : Si

Γ ` ∑
i∈I

u?li(xi).Pi .∆,u : &i∈I?li(Si).Ti

[T-OUTPUT]
Γ ` P.∆,u : T

Γ ` u!l〈u′〉.P.∆,u : !l〈S〉.T,u′ : S
[T-PAR]
Γ ` P1 .∆1 Γ ` P2 .∆2

Γ ` P1 |P2 .∆1,∆2

[T-CHOICE]
Γ ` P1 .∆ Γ ` P2 .∆

Γ ` P1⊕P2 .∆

[T-NEW-SYNC]
Γ ` P.∆,a : T1,b : T2 T1 ./ T2

Γ ` (νab)P.∆

[T-SUB]
Γ ` P.∆ ∆6s ∆

′

Γ ` P.∆′

[T-DEF]
Γ ,X : 〈T̃ 〉 ` P.{x̃ : T̃} Γ ,X : 〈T̃ 〉 ` Q.∆

Γ ` def X(x̃) = P in Q.∆

Table 6. Typing rules for synchronous processes.

selection subtyping from [4, 8, 27–29]. Rule [SUB-BRA] states that
the branching which offers fewer branches is a supertype of the one
with more branches; and rule [SUB-SEL] is its dual (see the expla-
nations in § 1). We write T 6s S if T 6 S is derived by the rules in
Table 5. Reflexivity of 6s is immediate and transitivity of 6s can
be shown in the standard way.

The typing judgements for synchronous processes take the fol-
lowing form: Γ `s P.∆, where Γ is the shared environment which
associates process variables to sequences of session types and ∆
is the session environment which associates identifiers to session
types. They are defined by:

Γ ::= /0 | Γ ,X : 〈T̃ 〉 ∆ ::= /0 | ∆,u : T

We write ∆1,∆2 for ∆1 ∪∆2 when dom(∆1)∩dom(∆2) = /0. We
say that ∆ is end-only if u : T ∈ ∆ implies T = end.

We define a pre-order between the session environments which
reflects subtyping. More precisely, ∆1 6s ∆2 if:

u ∈ dom(∆1)∩dom(∆2) implies ∆1(u)6s ∆2(u)
u ∈ dom(∆1) and u 6∈ dom(∆2) imply ∆1(u) = end
u 6∈ dom(∆1) and u ∈ dom(∆2) imply ∆2(u) = end

We write ∆1 ≈s ∆2 if ∆1 6s ∆2 and ∆2 6s ∆1. It is easy to verify
that ∆ is end-only iff ∆≈s /0.

Table 6 gives the typing rules. They are standard in session
calculi, see e.g. [12]. Rule [T-IDLE] is the introduction rule for the nil
process. To type an input process, rule [T-INPUT] requires the type Si
of variable xi and the type Ti of channel u for the continuation Pi. In
the resulting session environment, the type u has the branching type
in which u receives Si and then continues with Ti for each label li.
The rule for typing output processes is similar and simpler. In rule
[T-PAR], the session environment of P1 |P2 is the disjoint union of
the environments ∆1 and ∆2 for the two processes, reflecting the
linear nature of channels. Contrarily, in rule [T-CHOICE], the two
processes share the same session environment, since at most one
of them will be executed. Rule [T-NEW-SYNC] is a standard rule for
name binding, where we ensure the co-channels have dual types.
Rules [T-VAR] and [T-DEF] deal with process calls and definitions,
requiring the channel parameters have the types which are assumed
in the shared environment. Rule [T-VAR] gives these types to the
arguments of the process variable. In [T-DEF], the parameters of the
process associated with the process variable must be typed with

these types. The assumption on parameter types is also used to type
the body of the definition. We write Γ `s P .∆ if P is typed using
the rules in Table 6.

2.4 Soundness of synchronous subtyping
Our type system enjoys the standard property of subject reduction.
Notice that session environments are unchanged since only bound
channels can be reduced.

Theorem 2.1 (Subject reduction for synchronous processes). If
Γ `s P.∆ and P→∗s Q, then Γ `s Q.∆.

From subject reduction we can easily derive that well-typed
processes cannot produce error.

Corollary 2.2. If Γ `s P.∆, then P 6→∗s error.

The proof of soundness theorem follows easily.

Theorem 2.3. The synchronous subtyping relation 6s is sound for
the synchronous calculus.

3. Completeness for Synchronous Subtyping
This section proves the first main result, completeness of syn-
chronous subtyping, which together with soundness shows the pre-
ciseness theorem. We shall take the following three steps.

• [Step 1] For each type T and identifier u, we define a charac-
teristic process P(u,T) typed by u : T , which offers the series
of interactions described by T on u.

• [Step 2] We characterise the negation of the subtyping relation
by inductive rules (notation 6s).

• [Step 3] We prove that if T 6s S, then the parallel composition
of P(a,T) and P(b,S) in the scope of (νab) reduces to error.
Hence choosing P = P(a,T) and C = (νab)([] | P(b,S)) in the
definition of preciseness (Definition 1.1), we achieve complete-
ness.

The same three steps will be used for the completeness proof in the
asynchronous case.

Characteristic synchronous processes The characteristic syn-
chronous processes are defined following the structure of types.

Definition 3.1 (Characteristic synchronous processes). The char-
acteristic process offering communication T on identifier u for the
synchronous calculus, denoted by P(u,T), is defined by:

P(u,T) def
=

∑i∈I P?(u, li,Si,Ti) if T = &i∈I?li(Si).Ti⊕
i∈I P!(u, li,Si,Ti) if T =

⊕
i∈I !li〈Si〉.Ti

def Xt(x) = P(x,S) in Xt〈u〉 if T = µt.S
Xt〈u〉 if T = t
0 if T = end

P?(u, l,S,T)
def
= u?l(x).(P(u,T) |P(x,S))

P!(u, l,S,T)
def
= (νab)(u!l〈a〉.P(u,T) |P(b,S))

A branching type is mapped to the inputs P?(u, li,Si,Ti) (i ∈ I),
which uses the input channel x in P(x,Si). A selection type is
mapped to the choice between the outputs P!(u, li,Si,Ti) (i ∈ I),
where the fresh channel a carried by u will be received by the dual
input, which will interact with the process P(b,Si). A recursive
type is mapped in a definition associated to the characteristic pro-
cess of the type body. The process body of this definition is just a
call to the process variable associated to the recursion type variable.
Type end is mapped to 0.

[N-END R]
T 6= end

end6 T

[N-END L]
T 6= end

T 6 end

[N-BRASEL]
&i∈I?li(Si).Ti 6

⊕
j∈J !l′j〈S′j〉.T ′j

[N-SELBRA-SYNC]⊕
j∈J !l′j〈S′j〉.T ′j 6 &i∈I?li(Si).Ti

[N-LABEL BRA]
∃ j ∈ J ∀i ∈ I : li 6= l′j

&i∈I?li(Si).Ti 6 & j∈J?l′j(S
′
j).T

′
j

[N-LABEL SEL]
∃i ∈ I ∀ j ∈ J : li 6= l′j⊕

i∈I !li〈Si〉.Ti 6
⊕

j∈J !l′j〈S′j〉.T ′j

[N-EXCH BRA]
∃i ∈ I ∃ j ∈ J : li = l′j Si 6 S′j

&i∈I?li(Si).Ti 6 & j∈J?l′j(S
′
j).T

′
j

[N-EXCH SEL]
∃i ∈ I ∃ j ∈ J : li = l′j S′j 6 Si⊕

i∈I !li〈Si〉.Ti 6
⊕

j∈J !l′j〈S′j〉.T ′j

[N-CONT BRA]
∃i ∈ I ∃ j ∈ J : li = l′j Ti 6 T ′j

&i∈I?li(Si).Ti 6 & j∈J?l′j(S
′
j).T

′
j

[N-CONT SEL]
∃i ∈ I ∃ j ∈ J : li = l′j Ti 6 T ′j⊕

i∈I !li〈Si〉.Ti 6
⊕

j∈J !l′j〈S′j〉.T ′j

Table 7. Negation of synchronous subtyping rules.

For example if T = !l1〈end〉.end⊕ !l2〈!l3〈end〉.end〉.end, then

P(a,T) = P!(a, l1,end,end)⊕P!(a, l2, !l3〈end〉.end,end)
= (νbb′)(a!l1〈b〉.P(a,end) |P(b′,end))⊕

(νcc′)(a!l2〈c〉.P(a,end) |P(c′,?l3(end).end))
= (νbb′)(a!l1〈b〉.0 |0)⊕

(νcc′)(a!l2〈c〉.0 | c′?l3(x).(P(c′,end) |P(x,end)))
= (νbb′)(a!l1〈b〉.0 |0)⊕

(νcc′)(a!l2〈c〉.0 | c′?l3(x).(0 |0))
≡ (νbb′)a!l1〈b〉⊕ (νcc′)(a!l2〈c〉 | c′?l3(x))

We can easily check that characteristic processes are well typed as
expected.

Lemma 3.2. `s P(u,T).{u : T}.

Rules for negation of synchronous subtyping Table 7 defines
the rules which characterise when a type is not subtype of an-
other type. Rules [N-END R] and [N-END L] say that end cannot be a
super or subtype of a type different from end. Rule [N-BRASEL]
says that a branching type cannot be subtype of a selection
type. Rule [N-SELBRA-SYNC] is its dual. Rules [N-LABEL BRA] and
[N-LABEL SEL] represent the cases that the labels do not conform
the subtyping rules. Rules [N-EXCH BRA] and [N-EXCH SEL] rep-
resent the cases that carried types do not match the subtyping
rules. Lastly rules [N-CONT BRA] and [N-CONT SEL] represent the
cases that continuations do not match the subtyping rules. No-
tice that the rules [N-? BRA] are the negations of rule [SUB-BRA],
and the rules [N-? SEL] are the negations of rule [SUB-SEL], where
? ∈ {LABEL, EXCH, SEL}. We write T 6s S if T 6 S is generated by
the rules in Table 7.

It is easy to verify by induction on types that 6s is the negation
of the synchronous subtyping.

Proposition 3.3. S 6s T is not derivable if and only if S 6s T is
derivable.

The main theorem for synchronous subtyping can now be stated.
As we described in Step 3, by Proposition 3.3, we only have to
prove that if T 6s S, then

(νab)(P(a,T) |P(b,S))→∗s error

where P(a,T), P(b,S) are characteristic synchronous processes.
The proof is by induction on T and S and by cases on the definition
of 6s.

Theorem 3.4 (Completeness for synchronous subtyping). The syn-
chronous subtyping relation 6s is complete for the synchronous
calculus.

4. Asynchronous Session Calculus
“Asynchrony” in communication means that messages are non-
blocking but their order is preserved. We use FIFO queues at both
co-channels to model actions performed from the underlying net-
work such as TCP. This double-queue formulation is the most com-
mon for the asynchronous sessions and follows the recent formal-
ism in [13, 27, 28].

4.1 Syntax and operational semantics
Table 8 shows the asynchronous session calculus obtained by ex-
tending the synchronous calculus of Table 1 with queues. A queue
abIh is used by channel a to enqueue messages in h and by chan-
nel b to dequeue messages from h. We extend the definition of
the set of free names in queues by fn(abIh) = {a,b} ∪ fn(h),
fn(∅) = /0, fn(l〈a〉) = {a}, and fn(h1 ·h1) = fn(h1)∪ fn(h2).

We use the structural congruence defined by adding the rules in
Table 9 to the rules of Table 3. Rule [S-NULL] represents garbage
collection of empty queues.

The reduction rules for asynchronous processes in Table 10 are
obtained from the reduction rules of synchronous processes given
in Table 2 by replacing rule [R-COM-SYNC] with rules [R-SEND-ASYNC]
and [R-RECEIVE-ASYNC]. Rule [R-SEND-ASYNC] enqueues messages
and rule [R-RECEIVE-ASYNC] dequeues messages. We write P→a Q
if P→ Q is derived by the rules of Table 2 but rule [R-COM-SYNC]
and by the rules of Table 10.

4.2 Errors in asynchronous processes
Unlike the synchronous case, defining the error reductions for asyn-
chronous communication is not trivial essentially for the presence
of queues. We need to identify the following classical error situa-
tions (the terminology is from [16]):

(1) deadlocks: there are inputs waiting to dequeue messages
from queues which will be forever empty.

(2) orphan message errors: there are messages in queues
which will be never received by corresponding inputs, i.e. orphan
messages will remain forever in queues.

Both errors are important, since we want to ensure every input
can receive a message and every message in a queue can be read.
These errors correspond to the following processes:

(1) deadlocks: both bounded channels are waiting for inputs
and their queues are both empty or one channel is waiting for an
input with an empty queue and the corresponding channel only
occurs as name of queues. In the first case the process has the shape
(we can omit the binding (νab) since both channels a, b appear in
processes and the queues prescribe them to communicate)

∑
i∈I

a?li(xi).Pi |∑
j∈J

b?l′j(x
′
j).Q j |baI∅ |abI∅

P ::= Process
... from Table 1

| abIh (queue)

h ::= Queue
∅ (empty)

| l〈a〉 (message)
| h ·h (composition)

Table 8. Syntax of asynchronous processes.

[S-NULL]
(νab)(abI∅ |baI∅)≡ 0

[S-QUEUE-EQUIV]
h≡ h′

abIh≡ abIh′

[S-QUEUE 1]
∅ ·h≡ h

[S-QUEUE 2]
h ·∅≡ h

[S-QUEUE 3]
h1 · (h2 ·h3)≡ (h1 ·h2) ·h3

Table 9. Structural congruence for asynchronous processes.

[R-SEND-ASYNC]
abIh |a!l〈c〉.P→ abIh · l〈c〉 |P

[R-RECEIVE-ASYNC]
k ∈ I

abI lk〈c〉 ·h |∑i∈I b?li(xi).Pi→ abIh |Pk{c/xk}

Table 10. Reduction of asynchronous processes.

and in the second case the process has the shape

(νab)(∑
i∈I

a?li(xi).Pi |baI∅ |abIh),

where b does not occur free in Pi for all i ∈ I.
(2) orphan message errors: a queue is not empty, but the

corresponding channel will never appear as subject of an input. I.e.
the process has the shape (νab)(P |baIh) where h is not empty,
but P will neither reduce to a parallel process containing an input
on channel a nor pass the channel a to an outer process.

To define statically the second error situation, we need to com-
pute an over approximation (denoted by ϕ(P)) of the set of names
which might appear as subjects of inputs by reducing a process P.
Notice that to consider the set of names which occur in a process
is too large, since for example a recursive process which always
sends messages will always contain both the names of the subjects
and of the objects of the outputs, but it will never read a message
on its queue. The definition of ϕ requires some care, as shown for
example by the process:

P = b?l0(x).x?l1(y) | c!l0〈a〉 | cbI∅ (4)

Notice that P does not contain inputs with subject a, but

P→a b?l0(x).x?l1(y) | cbI l0〈a〉 →a a?l1(y) | cbI∅
and this last process has an input with subject a. Hence to define
ϕ(P), we need to take names carried by outputs as well as names
occurring in messages inside queues. For the choice, only one of
the two processes could have an input on channel a, so the error
could arise only if and when the other process is selected. Another
delicate case in the definition of ϕ(P) comes from recursive defi-
nitions, as exemplified in Example 4.2. For simplicity we consider
process variables with only one parameter. This is enough since
we look for errors generated by characteristic asynchronous pro-
cesses (see Definition 5.1) and they satisfy this restriction. We use
two auxiliary mappings. The mapping δ from processes and sets of
declarations to sets of identifiers and the mapping γ from queues to
sets of channels.

Definition 4.1. (Mapping ϕ) The mapping γ is defined by induc-
tion on queues:

γ(∅) = /0 γ(l〈a〉) = {a} γ(h1 ·h2) = γ(h1)∪ γ(h2)

The mapping δ is defined by induction on processes in Table 11.
The mapping ϕ is defined by ϕ(P) = δ (P, /0).

δ (0, D̃) = /0

δ (X〈u〉, D̃) =

{
δ (P, D̃){u/x} if X〈x〉= P ∈ D̃
/0 otherwise.

δ (∑i∈I u?li(xi).Pi, D̃) = {u}∪
⋃

i∈I(δ (Pi, D̃)\{xi})
δ (u!l〈u′〉.P, D̃) = {u′}∪δ (P, D̃)

δ (P1⊕P2, D̃) = δ (P1, D̃)∪δ (P2, D̃)
δ (P1 |P2, D̃) = δ (P1, D̃)∪δ (P2, D̃)

δ (def D in P, D̃) = δ (P, D̃ ·D)
δ ((νab)P, D̃) = δ (P, D̃)\{a,b}
δ (error, D̃) = /0
δ (abIh, D̃) = γ(h)

Table 11. The mapping δ .

For the process P of (4), we obtain ϕ(P) = {a,b}.
Example 4.2. Assume

P = def X(x) = a!l〈x〉 in X〈c〉 |b?l(y).y?l(z) |abI∅ |baI∅
Then we obtain:

ϕ(P) = δ (P, /0)
= δ (X〈c〉 |b?l(y).y?l(z) |abI∅ |baI∅,D)
= δ (X〈c〉,D)∪δ (b?l(y).y?l(z),D)∪

δ (abI∅,D)∪δ (baI∅,D)
= (δ (a!l〈x〉,D){c/x})∪{b}∪ (δ (y?l(z),D)\{y})
= ({x}{c/x})∪{b}= {c}∪{b}= {c,b}

where D is X(x) = a!l〈x〉. The evaluation of ϕ(P) tells that c can
become the subject of an input. We illustrate this fact also by the
following reduction:

def X(x) = a!l〈x〉 in X〈c〉 |b?l(y).y?l(z) |abI∅ |baI∅
→a def X(x) = a!l〈x〉 in a!l〈c〉 |b?l(y).y?l(z) |abI∅ |baI∅
→a def X(x) = a!l〈x〉 in b?l(y).y?l(z) |abI l〈c〉 |baI∅
→a def X(x) = a!l〈x〉 in c?l(z) |abI∅ |baI∅

The error reduction rules for asynchronous processes are the
rules of Table 12 plus rule [ERR-CONTEXT] of Table 4. Rule [ERR-
MISM-ASYNC] deals with a label mismatch between a message on
the top of the queue and an input. Rule [ERR-IN-IN-ASYNC] gives an
error when two processes with bounded channels are in deadlock
waiting to read from empty queues. Rule [ERR-IN-ASYNC] deals with
the case of one process waiting to read from an empty queue which
will never contain a message, since there are no occurrences of the
unique channel that can enqueue messages. Rule [ERR-ORPH-MESS-
ASYNC] corresponds to the orphan message error. In this rule the
condition fpv(P) = /0 assures that we consider all needed declara-
tions in computing ϕ(P). We write P→a error if P→ error can
be derived using the rules of Table 12 plus rule [ERR-CONTEXT] of
Table 4. The notation→∗a is used with the expected meaning.

Our definition of error reductions captures all deadlocks and
orphan message errors that can be generated by reducing parallel
compositions of two characteristic asynchronous processes with the
two required queues. This is a consequence of preciseness of sub-
typing (see Theorem 4.12 and the proof of Theorem 5.4): a process
P(a,T) |P(b,S) | baI∅ | abI∅ is typable (in the system defined
in § 4.4) if and only if it does not reduce to error. The function
ϕ is then enough for the definition of error. Obviously arbitrary
processes can be stuck without reducing to error. Typical cases
are processes in which companion processes or queues are missing,
or sessions are interleaved. A simple example is the characteristic
process P(a,?l(end)) = a?l(x), which is deadlocked. Note that the
type system of § 4.4 is an adaptation of those in [28, 29] to our

[ERR-MISM-ASYNC]
∀i ∈ I : l 6= li

abI l〈a〉 ·h |∑
i∈I

b?li(xi).Pi→ error

[ERR-IN-IN-ASYNC]

∑
i∈I

a?li(xi).Pi |∑
j∈J

b?l′j(x
′
j).Q j |baI∅ |abI∅→ error

[ERR-IN-ASYNC]
∀i ∈ I : b 6∈ fn(Pi)

(νab)(∑
i∈I

a?li(xi).Pi |baI∅ |abIh)→ error

[ERR-ORPH-MESS-ASYNC]
a 6∈ ϕ(P) fpv(P) = /0 h 6=∅
(νab)(P |baIh)→ error

Table 12. Error reduction for asynchronous processes.

calculus, and it does not aim to avoid deadlock or orphan message
errors.

4.3 Asynchronous subtyping
The asynchronous subtyping is not only essential for the complete-
ness result, but it is also important in practice. As observed in [38],
implementing this subtyping is a key tool for maximising message-
overlapping in the high-performance computing environments. To
explain the usefulness of the asynchronous subtyping, consider:

P1 = a?l(y1).a!l〈5〉.Q1 P2 = b!l〈Large datum〉.b?l(y2).Q2

First P2 sends a large datum on channel b; then after receiving it,
P1 sends 5 to P2. We note that P1’s output is blocked until this large
datum is received. Since the value replacing y1 does not influence
the subsequent output at a, process P1 can be optimised by sending
the small datum “5” first, so that once the large datum is put in the
queue at ba, process P2 can immediately receive the small datum.
Thus a better version of P1 is P′1 defined by:

P′1 = a!l〈5〉.a?l(y1).Q1

Asynchronous subtyping specifies safe permutations of actions,
by which we can refine a local protocol to maximise asynchrony
without violating session safety.

To define asynchronous subtyping the notion of asynchronous
context of types introduced in [27] is handy. An asynchronous
context is a sequence of branchings containing holes that we index
in order to distinguish them.

Definition 4.3 (Asynchronous context).

A ::= []n | &i∈I?li(Si).Ai

We write A []n∈N to denote a context with holes indexed by el-
ements of N and A [Tn]

n∈N to denote the same context when the
hole []n has been filled with Tn.

Example 4.4. Let N = {1,2} and

T1=!m〈Sm〉.Tm⊕!p〈Sp〉.Tp, T2=!m〈S′m〉.T ′m⊕!p〈S′p〉.T ′p⊕!q〈Sq〉.Tq.

Assume A = ?r(Sr).[]
1 & ?s(Ss).[]

2, then

A [T1]
1[T2]

2 = ?r(Sr).!m〈Sm〉.Tm⊕ !p〈Sp〉.Tp &
?s(Ss).!m〈S′m〉.T ′m⊕ !p〈S′p〉.T ′p⊕ !q〈Sq〉.Tq.

We write &∈ T if T = &i∈I?li(Si).Ti, or T =
⊕

i∈I !li〈Si〉.Ti and
& ∈ Ti for all i ∈ I (i.e. all selections in T contain some branching

Sr
m 6 Sm Ss

m 6 Sm Sr
p 6 Sp Ss

p 6 Sp Tm 6 ?r(Sr).Tr & ?s(Ss).Ts Tp 6 ?r(Sr).T ′r & ?s(Ss).T ′s

(!m〈Sm〉.Tm)⊕ (!p〈Sp〉.Tp)6 (?r(Sr).(!m〈Sr
m〉.Tr⊕ !p〈Sr

p〉.T ′r ⊕ !q〈Sq〉.Tq)) & (?s(Ss).(!m〈Ss
m〉.Ts⊕ !p〈Ss

p〉.T ′s))
===

Figure 1. An application of rule [SUB-PERM-ASYNC], where Tm = ?r(Sr).Tr & ?s(Ss).Ts & ?u(Su).Tu and Tp = ?r(S′r).T
′

r & ?s(Ss).T ′s and we
assume S′r 6 Sr.

types), or T = µt.T and & ∈ T . Similarly, we write & ∈A if A is
a branching, i.e. it is not a single hole.

We define the asynchronous subtyping relation T 6a S if T 6 S
is derived by the rule:

[SUB-PERM-ASYNC]
∀i ∈ I ∀n ∈ N : Sn

i 6 Si Ti 6 A [T n
i]

n∈N & ∈A & ∈ Ti⊕
i∈I !li〈Si〉.Ti 6 A [

⊕
i∈I∪Jn

!li〈Sn
i 〉.T n

i]
n∈N

==

together with the rules in Table 5.
Rule [SUB-PERM-ASYNC] allows the asynchronous safe permuta-

tion explained above. It postpones a selection after an unbounded
but finite number of branchings, and the selections inside these
branchings can be bigger according to rule [SUB-SEL] of Table 5.

Example 4.5. (Asynchronous subtyping)

1. We show T1 6a S1, where T1 = µt.!l〈T ′〉.?l′(S′).t and S1 =
µt.?l′(S′).!l〈T ′〉.t. If we assume T1 6 S1, we obtain

!l〈T ′〉.?l′(S′).T1 6 ?l′(S′).!l〈T ′〉.S1

by rule [SUB-PERM-ASYNC], which is T1 6 S1 by folding.
2. We show T2 6a S2, where T2 = !l〈T ′〉.T1 and S = ?l′(S′).S1 and

T1,S1 are as in previous example. We assume T2 6 S2. We get
!l〈T ′〉.!l〈T ′〉.?l′(S′).T1 6 ?l′(S′).!l〈T ′〉.!l〈T ′〉.T1

by rule [SUB-PERM-ASYNC]

6 ?l′(S′).!l〈T ′〉.?l′(S′).S1
by the assumption T2 6 S2

6 ?l′(S′).?l′(S′).!l〈T ′〉.S1
by rule [SUB-PERM-ASYNC]

which is T2 6 S2 by folding.
3. Choosing A as in Example 4.4 Figure 1 gives an application of

rule [SUB-PERM-ASYNC]. The rightmost premises are

Tm 6 A [Tr]
1[Ts]

2 and Tp 6 A [T ′r]
1[T ′s]

2,

which hold by rule [SUB-BRA] . The left-hand-side of the con-
clusion is a selection between the outputs !m〈Sm〉.Tm and
!p〈Sp〉.Tp. The right-hand-side of the conclusion is the type

A [!m〈Sr
m〉.Tr⊕ !p〈Sr

p〉.T ′r ⊕ !q〈Sq〉.Tq]
1[!m〈Ss

m〉.Ts⊕ !p〈Ss
p〉.T ′s]2.

Notice that selections are moved inside branchings (possibly
making smaller the types of the sent channels) and extra selec-
tions (in this case !q〈Sq〉.Tq) can be added.

Reflexivity of 6a is immediate, while the proof of transitivity
requires some ingenuity.

Theorem 4.6. The relation 6a is transitive.

4.4 Typing asynchronous processes
Since processes now include queues, we need queue types defined
by:

τ ::= ε | l〈S〉 | τ · τ
where we assume associativity of · and τ · ε = ε · τ = τ . We also
extend session environments as follows:

∆ ::= . . . | ∆,ab : τ

[T-NEW-ASYNC]
Γ ` P.∆,a : T1,b : T2,ba : τ1,ab : τ2 T1− τ1 ./ T2− τ2

Γ ` (νab)P.∆

[T-EMPTY-Q]
Γ ` baI∅.{ba : ε}

[T-MESSAGE-Q]
Γ ` baIh.∆,ba : τ

Γ ` baIh · l〈c〉.∆,c : S,ba : τ · l〈S〉

Table 13. Typing rules for asynchronous processes and queues.

The added new element ab : τ is the type of messages in the queue
abIh.

We denote by domq(∆) the set of local queues which occur in
∆. Two session environments ∆1 and ∆2 agree if

dom(∆1)∩dom(∆2) = domq(∆1)∩domq(∆2) = /0.
If ∆1 and ∆2 agree, their composition ∆1,∆2 is given by ∆1,∆2=
∆1∪∆2 as in the synchronous case. We also define ∆1 6a ∆2 by:

u ∈ dom(∆1)∩dom(∆2) implies ∆1(u)6a ∆2(u) and
u ∈ dom(∆1) and u 6∈ dom(∆2) imply ∆1(u) = end and
u 6∈ dom(∆1) and u ∈ dom(∆2) imply ∆2(u) = end and
domq(∆1) = domq(∆2) and
ab ∈ domq(∆1) implies ∆1(ab) = ∆2(ab)

We write ∆1 ≈a ∆2 if ∆1 6a ∆2 and ∆2 6a ∆1.

We need to take into account the interplay between the session
type of a channel and the queue type of the queue dequeued by this
channel. Following [27, 28] we define the session remainder of a
session type T and a queue type τ as the session type obtained from
T by erasing all branchings that have corresponding selections in
τ . Clearly the session remainder is defined only if T and τ agree
on labels and on types of exchanged channels. More formally we
define:

[RM-EMPTY]
T − ε = T

[RM-BRA]
Tk− τ = T ′ Sk 6a S k ∈ I
&i∈I?li(Si).Ti− lk〈S〉 · τ = T ′

[RM-SEL]
∀i ∈ I : Ti− τ = T ′i⊕

i∈I !li〈Si〉.Ti− τ =
⊕

i∈I !li〈Si〉.T ′i
The typing rules for asynchronous processes are the rules of

Table 6 by replacing rule [T-NEW-SYNC] with rule [T-NEW-ASYNC]
and 6s with 6a in rule [T-SUB] and adding the rules for typing the
queues. Table 13 gives all the new rules. In rule [T-NEW-ASYNC] we
take into account not only the types of the channels, but also those
of the queues, and we require duality between their remainders.
Rule [T-EMPTY-Q] types the empty queue. Rule [T-MESSAGE-Q] says
how the type of a queue changes when a message is added.

4.5 Soundness of asynchronous subtyping
Reduction of session environments is standard in session calculi to
take into account how communications modify the types of free
channels and queues [4, 21]. In the synchronous case only re-
stricted channels can exchange messages. We could reduce only
restricted channels also in the asynchronous case, but this would
make heavier the reduction rules. Table 14 defines the reduction

[TR-IN]
Sk 6a S k ∈ I

b : &i∈I?li(Si).Ti,ab : lk〈S〉 · τ ⇒ b : Tk,ab : τ

[TR-RES]
∆1⇒ ∆′1

∆1,∆2⇒ ∆′1,∆2

[TR-OUT]
∀n ∈ N ∃in ∈ In : ln

in = l∧Sn
in 6a S

a : A [
⊕

i∈In !ln
i 〈Sn

i 〉.T n
i]

n∈N ,ab : τ ⇒ a : A [T n
in]

n∈N ,ab : τ · l〈S〉

Table 14. Reduction of asynchronous session environments.

between session environments. Rule [TR-IN] simply corresponds to
the dequeue of a message. Rule [TR-OUT] takes into account the
asynchronous subtyping: we need to dig a selection under a con-
text since a typable process might contain a selection followed by
several branches. The following example illustrates rule [TR-OUT].

Example 4.7. Let T1,T2,A be defined as in Example 4.4 and
assume that there is S such that Sm,S′m 6a S and that there is no
S′ such that Sp,S′p 6a S′. By rule [TR-OUT], only branch m can be
triggered to output, since branch q is only at hole 2, and the above
assumption forbids to choose branch p.

a :A [T1]
1[T2]

2,ab : τ⇒a :?r(Sr).Tm & ?s(Ss).T ′m,ab : τ ·m〈S〉.
In order to get subject reduction we cannot start from an arbi-

trary session environment. For example the process

a?l(x).a!l′〈x+1〉 |baI l〈true〉
can be typed with the session environment

{a : ?l(int).!l′〈int〉.end,ba : l〈bool〉}
but it reduces to a!l′〈true+ 1〉 which cannot be typed. As in [4,
21] we restrict to balanced session environments according to the
following definition.

Definition 4.8 (Balanced session environments). A session envi-
ronment ∆ is balanced if:

1. a : T,ba : τ ∈ ∆ imply that T − τ is defined; and
2. a : T,ba : τ,b : T ′,ab : τ ′ ∈ ∆ imply that T − τ ./ T ′− τ ′.

Notice that ?l(int).!l′〈int〉.end− l〈bool〉 is undefined. It is easy
to verify that reduction preserves balancing of session environ-
ments.

Lemma 4.9. If ∆⇒ ∆′ and ∆ is balanced, then ∆′ is balanced.

We can now state subject reduction:

Theorem 4.10 (Subject reduction for asynchronous processes). If
Γ `a P.∆ where ∆ is balanced and P→∗a Q, then there is ∆′ such
that ∆⇒∗ ∆′ and Γ `a Q.∆′.

Also the assurance that well-typed processes cannot go wrong
requires balanced session environments.

Corollary 4.11. If Γ `a P.∆ and ∆ is balanced, then P 6→∗a error.

Lastly we get:

Theorem 4.12. The asynchronous subtyping relation 6a is sound
for the asynchronous calculus.

5. Completeness for Asynchronous Subtyping
We start this section by remarking that the synchronous subtyp-
ing is incomplete for the asynchronous calculus. In fact the syn-
chronous subtyping is properly included in the asynchronous sub-
typing. For example T 6s S by rule [N-SELBRA-SYNC] but T 6a S,
where T = !l〈T ′〉.?l′(S′) and S = ?l′(S′).!l〈T ′〉. Then soundness

[N-LABEL-ASYNC]
∃i0 ∈ I ∃n0 ∈ N ∀ j ∈ Jn0 : ln0

j 6= li0⊕
i∈I !li〈Si〉.Ti 6 A [

⊕
j∈Jn

!ln
j 〈Sn

j 〉.T n
j]

n∈N

[N-EXCH-ASYNC]
∃i0 ∈ I ∃n0 ∈ N ∃ j0 ∈ Jn0 : ln0

j0 = li0 ∧Sn0
j0 6 Si0⊕

i∈I !li〈Si〉.Ti 6 A [
⊕

j∈Jn
!ln

j 〈Sn
j 〉.T n

j]
n∈N

[N-CONT-ASYNC]
∃i0 ∈ I ∃n0 ∈ N ∃ j0 ∈ Jn0 : ln0

j0 = li0 ∧Ti0 6 (A↓n0)[T
n0
j0]

n0⊕
i∈I !li〈Si〉.Ti 6 A [

⊕
j∈Jn

!ln
j 〈Sn

j 〉.T n
j]

n∈N

[N-BRA-ASYNC]
& 6∈ T

T 6 &i∈I?li(Si).Ti

Table 15. Negation of asynchronous subtyping rules.

of the asynchronous subtyping implies incompleteness of the syn-
chronous subtyping.

We show completeness for asynchronous subtyping following
the three steps described in § 3. In the third step we need to add two
queues for exchanging messages, see the proof of Theorem 5.4.
The proofs are more delicate than in the synchronous case since
the asynchronous subtyping makes the shapes of types less struc-
tured. The first difficulty is to define the negation 6a inductively
and prove that it implies the non-derivability of 6a. The second dif-
ficulty is to catch the error states arising after an unbounded number
of message enqueues, since rule [SUB-PERM-ASYNC] can exchange
a selection with an unbounded number of branchings.

Characteristic asynchronous processes The definition of charac-
teristic processes for the asynchronous case differs from that of the
synchronous one only for outputs, since the creation of a new pair
of restricted channels requires also the creation of the correspond-
ing queues.

Definition 5.1 (Characteristic asynchronous processes). The char-
acteristic process offering communication T on identifier u for the
asynchronous calculus, denoted by P(u,T), is defined as in Defini-
tion 3.1, but for the case of P!(u, l,S,T), which is now:

P!(u, l,S,T)
def
= (νab)(u!l〈a〉.P(u,T) |P(b,S) |baI∅ |abI∅)

For example if T = !l1〈end〉⊕ !l2〈!l3〈end〉.end〉.end, then

P(a,T) = P!(a, l1,end,end)⊕P!(a, l2, !l3〈end〉.end,end)
= (νbb′)(a!l1〈b〉.P(a,end) |P(b′,end) |bb′I /0 |b′bI /0)⊕
(νcc′)(a!l2〈c〉.P(a,end) |P(c′,?l3(end).end)|

cc′I /0 | c′cI /0)
= (νbb′)(a!l1〈b〉.0 |0 |bb′I /0 |b′bI /0)⊕
(νcc′)(a!l2〈c〉.0 | c′?l3(x).(P(c′,end) |P(x,end))|

cc′I /0 | c′cI /0)
= (νbb′)(a!l1〈b〉.0 |0 |bb′I /0 |b′bI /0)⊕
(νcc′)(a!l2〈c〉.0 | c′?l3(x).(0 |0) | cc′I /0 | c′cI /0)
≡ (νbb′)(a!l1〈b〉 |bb′I /0 |b′bI /0)⊕
(νcc′)(a!l2〈c〉 | c′?l3(x) | cc′I /0 | c′cI /0)

Similarly to Lemma 3.2 we get:

Lemma 5.2. `a P(u,T).{u : T}.

Rules for negation of the asynchronous subtyping To define the
negation of asynchronous subtyping we need the projection of a
type context on a hole with a given index. This projection chooses

at each branching the right input to reach the hole, if any. More
formally:

[]n
′↓n =

{
[]n if n = n′,
undefined otherwise.

(&i∈I?li(Si).Ai)↓n =

{
?li0(Si0).(Ai0↓n) if []n occurs in Ai0 ,

undefined otherwise.

For example (?r(Sr).[]
1&?s(Ss).[]

2)↓2=?s(Ss).[]
2.

The negation rules of asynchronous subtyping are the rules of
Table 7 excluding rule [N-SELBRA-SYNC] plus the rules of Table 15.
Rule [N-LABEL-ASYNC] deals with the case that the selection cannot
find a matching label inside the n0-th hole. Rule [N-EXCH-ASYNC]
considers a mismatch between carried types inside the n0-th hole.
Rule [N-CONT-ASYNC] considers a mismatch between continuation
types, always inside the n0-th hole, but preceded by the inputs
needed to reach that hole. These three rules correspond to the rules
[N-LABEL SEL], [N-EXCH SEL] and [N-CONT SEL] of Table 7, respec-
tively, when the context A is just one hole. Rule [N-BRA-ASYNC]
assures that a type without branchings cannot be a subtype of a
branching type. We write T 6a S if T 6 S is generated by the rules
in Table 15 and Table 7 excluding rule [N-SELBRA-SYNC].

For example, by rule [N-CONT-ASYNC],

!m〈Sm〉.(?r(Sr).Tr&?s(Ss).end)6a
?r(Sr).!m〈Sm〉.Tr&?s(Ss).!m〈Sm〉.!p〈Sp〉.Tp

since ?r(Sr).Tr&?s(Ss).end6a ?r(Sr).Tr&?s(Ss).!p〈Sp〉.Tp.

We can prove that 6a is the negation of the asynchronous sub-
typing, by observing that the premises of rule [SUB-PERM-ASYNC]
correspond to the rules of Table 15.

Lemma 5.3. S 6a T is not derivable if and only if S 6a T is
derivable.

Completeness can now be shown:

Theorem 5.4 (Completeness for asynchronous subtyping). The
asynchronous subtyping relation 6a is complete for the asyn-
chronous calculus.

Proof. We prove that T 6a S implies

(νab)(P(a,T) |P(b,S) |baI∅ |abI∅)→∗a error

where P(a,T), P(b,S) are characteristic asynchronous processes.
The proof is by induction on T and S and by cases on the definition
of 6a. We only consider some interesting cases.

1. For rule [N-LABEL-ASYNC] we get

T =
⊕

i∈I !li〈T ′i 〉.Ti, S = A [
⊕

j∈Jn
!l′j

n〈S′j
n〉.Sn

j]
n∈N ,

and there are i0 ∈ I,n0 ∈ N such that for all j ∈ Jn0 we get
l′j

n0 6= li0 . We show by induction on A that T 6a S implies

(νab)(P(a,T) |P(b,S) |baIh |abI∅)→∗a error
for an arbitrary queue h.

(a) If A is just one hole, then S =
⊕

j∈J !l′j〈S′j〉.S j, where J =

Jn0 , and S = & j∈J?l′j(S
′
j).S j. We get

(νab)(P(a,T) |P(b,S) |baIh |abI∅)
→a (νab)(P!(a, li0 ,T

′
i0 ,Ti0) |∑ j∈J P?(b, l′j,S

′
j,S j)

| baIh |abI∅)→a (νab)((νcd)(P(a,Ti0) |P(d,T ′i0)
| dcI∅ | cdI∅
| ∑ j∈J b?l′j(x).(P(b,S j) |P(x,S′j))
| baIh |abI li0〈c〉))

→a error

by rule [ERR-MISM-ASYNC].

(b) If &∈A , let A =&k∈K?l∗k (S
∗
k).Ak[]

n∈Nk , where
⋃

k∈K Nk =
N. Then

S =
⊕
k∈K

!l∗k 〈S
∗
k〉.Ak[& j∈Jn ?l′j

n
(S′j

n
).S j

n
]n∈Nk .

Let k0 ∈ K be such that n0 ∈ Nk0 and

V = Ak0 [& j∈Jn ?l′j
n
(S′j

n
).S j

n
]n∈Nk0 .

We get

(νab)(P(a,T) |P(b,S) |baIh |abI∅)

→a (νab)(P(a,T) | (νcd)(b!l∗k0
〈c〉.P(b,V) |P(d,S∗k0

)

| dcI∅ | cdI∅) |baIh |abI∅)

→a (νab)(P(a,T) |P(b,V) | (νcd)(P(d,S∗k0
)

| dcI∅ | cdI∅ |baIh · l∗k0
〈c〉 |abI∅))

and by induction
(νab)(P(a,T) |P(b,V) |baIh · l∗k0

〈c〉 |abI∅)→∗a error

2. For rule [N-BRA-ASYNC] we get & 6∈ T and S = &i∈I?li(Si).Ti.
Then S =

⊕
i∈I !li〈Si〉.Ti.

(νab)(P(a,T) |P(b,S) |baI∅ |abI∅)

→a (νab)(P(a,T) |P!(b, li0 ,Si0 ,Ti0) |baI∅ |abI∅)
→a C[(νab)(P(a,T) |P(b,Ti0) |baI li0〈c〉 |abI∅)]

where C[] = (νcd)([] |P(d,Si0) |dcI∅ | cdI∅).

It is easy to verify that a 6∈ ϕ(P(a,T) |P(b,Ti0) | abI∅) since
& 6∈ T , and fpv(P(a,T) |P(b,Ti0) | abI∅) = /0, so by [ERR-
ORPH-MESS-ASYNC] we get

(νab)(P(a,T) |P(b,Ti0) |baI li0〈c〉 |abI∅)→a error.

Then by [ERR-CONTEXT]

C[(νab)(P(a,T)|P(b,Ti0)|baI li0〈c〉|abI∅)]→∗a error.

6. Denotational Preciseness
In λ -calculus types are usually interpreted as subsets of the do-
mains of λ -models [2, 18]. Denotational preciseness of subtyping
is then:

T 6 S if and only if [[T]]⊆ [[S]],
using [[]] to denote type interpretation.

In the present context let us interpret a session type T as the set
of processes with only one free channel typed by T , i.e.

[[T]]∗ = {P | `∗ P.{a : T}}
where ∗ ∈ {s,a}. We can then show that both the synchronous
and the asynchronous subtypings are denotationally precise. Rule
[T-SUB] gives the denotational soundness. Denotational complete-
ness follows from the following key property of characteristic pro-
cesses:

`∗ P∗(a,T).{a : S} implies T 6∗ S,
where P∗(a,T) is the synchronous characteristic process if ∗ = s
and the asynchronous characteristic process if ∗ = a. If we could
derive `∗ P∗(a,T).{a : S} with T 66∗ S, then the processes

(νab)(Ps(a,T) |Ps(b,S)) and

(νab)(Pa(a,T) |Pa(b,S) |baI∅ |abI∅)

could be typed. Theorems 3.4 and 5.4 show that these processes re-
duce to error, and this contradicts soundness of the type systems.
We get the desired property, which implies denotational complete-
ness, since if T 66∗ S, then P∗(a,T) ∈ [[T]]∗, but P∗(a,T) 6∈ [[S]]∗.

Theorem 6.1 (Denotational preciseness). The synchronous and the
asynchronous subtyping relations are denotationally precise for the
synchronous calculus and the asynchronous calculus, respectively.

7. Related Work
Preciseness To the best of our knowledge operational preciseness
was first defined in [3] for a call-by-value λ -calculus with recursive
functions, pairs and sums. In that paper the authors show that the
iso-recursive subtyping induced by the Amber rules [5] is incom-
plete. They propose a new iso-recursive subtyping which they prove
to be precise.

Operational and denotational preciseness are shown in [9] for
the concurrent λ -calculus with intersection and union types intro-
duced in [10]. In that paper divergence plays the rôle of reduction
to error.

Preciseness in concurrency is more useful and challenging than
in the functional setting, since there are many interesting choices
for the syntax, semantics, type errors of the calculi and for the typ-
ing systems. A similar situation appears in the study of bisimu-
lations where many labelled transition relations can be defined. It
is now common that researchers justify the correctness of labelled
transition systems by proving that the bisimulation coincides with
the contextual congruence [20, 26]. Our claim is that preciseness
should become a sanity check for subtypings.

Choices of subtypings The first branching-selection subtyping
for the session types was proposed in [12] and used for example
in [6, 7, 31, 36]. That subtyping is the opposite of the current syn-
chronous subtyping, since branch is covariant and selection is con-
travariant in the set of labels. We can establish the preciseness of
the subtyping in [12] for the synchronous calculus if we reverse the
ordering both in the preciseness definition and in the extension of
subtyping to session environments. We have chosen the subtyping
used in [4, 8, 28, 29] since we claim it fits better with the precise-
ness definition. In fact the approach of [12] corresponds to safe
substitutability of channels, while the approach of [29] corresponds
to safe substitutability of processes. The subtyping of [4, 8, 28, 29]
differs from ours since the types of exchanged values are invariant.

Other completeness results Subtyping of recursive types requires
algorithms for checking subtype relations, as discussed in [32,
Chapter 21]. These algorithms need to be proved sound and com-
plete with respect to the definition of the corresponding subtyping,
as done for example in [7, 12, 33]. Algorithms for checking the
synchronous and asynchronous subtypings of the present paper can
be easily designed.

Several works on subtyping formulate the errors using typed
reductions or type environments (e.g. [17, 33]), and they prove
soundness with respect to the typed reductions and their erasure
theorems. In contrast with these approaches, our error definitions
in Tables 4 and 12 do not rely on any type-case construct or ex-
plicit type information, but are defined syntactically over untyped
terms. Note that once the calculus is annotated by type information
or equipped with type case, completeness becomes trivial, since
any two processes of incomparable types can be operationally dis-
tinguished.

Semantic subtyping In the semantic subtyping approach each
type is interpreted as the set of values having that type and sub-
typing is subset inclusion between type interpretations [11]. This
gives a precise subtyping as soon as the calculus allows to distin-
guish operationally values of different types. Semantic subtyping
has been studied in [6] for a π-calculus with a patterned input and
in [7] for a session calculus with internal and external choices and
typed input. Types are built using a rich set of type constructors
including union, intersection and negation: they extend IO-types

in [6] and session types in [7]. Semantic subtyping is precise for
the calculi of [6, 7, 11], thanks to the type case constructor in [11],
and to the blocking of inputs for values of “wrong” types in [6, 7].

Subtyping of Mostrous Note that our subtyping relation differs
from that defined in [27] only for the premises & ∈ A and & ∈
Ti in rule [SUB-PERM-ASYNC]. As a consequence T is a subtype
of S when T = µt.!l〈T ′〉.t and S = µt.!l〈T ′〉.?l′(S′).t (see [27,
p. 116]). This subtyping is not sound in our system: intuitively
T accumulates infinite orphan messages in a queue, while S en-
sures that the messages are eventually received. The subtyping re-
lation in [27] unexpectedly allows an unsound process (typed by
T) to act as if it were a sound process (typed by S). Let C =
(νab)([] | Q | abI∅ | baI∅) where

Q = def Y (x) = b!l〈x〉.b?l′(y).Y 〈x〉 in (νcc′)(Y 〈c〉).
Then we can derive C[a : S]. /0. Let

P = def Z(z) = a!l〈z〉.Z〈z〉 in (νdd′)(Z〈d〉).
Then P.{a : T}. We get

C[P]→∗a (νab)(νcc′)(P | Q | abI∅ | baI l〈c〉)→a error

by rule [ERR-ORPH-MESS-ASYNC], since a 6∈ ϕ(P | Q | abI∅) and
fpv(P | Q | abI∅) = /0.

The subtyping of [27] is sound for the session calculus de-
fined there, which does not consider orphan messages as errors.
However, the subtyping of [27] is not complete, an example being
µt.!l〈T 〉.t 66 µt.?l′(S).t. There is no context C which is safe for all
processes with one channel typed by µt.?l′(S).t and no process P
with one channel typed by µt.!l〈T 〉.t such that C[P] deadlocks.

8. Conclusion
This paper gives, as far as we know, the first formulation and proof
techniques for the preciseness of subtyping in mobile processes.
We consider the synchronous and asynchronous session calculi to
investigate the preciseness of the existing subtypings. While the
well-known branching-selection subtyping [4, 8, 12] is precise for
the synchronous calculus, the subtyping in [27] turns out to be not
sound for the asynchronous calculus. We propose a simplification
of previous asynchronous subtypings [28, 29] and prove its precise-
ness. As a matter of fact only soundness is a consequence of subject
reduction, while completeness can fail also when subject reduction
holds.

Our calculus lacks the session initialisation as well as the com-
munication of expressions which are present in the original calcu-
lus [21]. These extensions are straightforward and we can obtain
the same preciseness results. First, for the extension to session ini-
tialisation, we just need to add a negation of the subtyping rela-
tion over the shared channel type (〈T,T 〉 in [21]), and define its
corresponding session initialisation process as a characteristic pro-
cess for a shared channel type. The definitions of deadlock/error
processes remain the same. Second, for the extension to expres-
sions (e.g. succ(n)) and to ground types (e.g. nat), we require con-
travariance of input and covariance of output for ground types and
we add constructors distinguishing values of different ground types
(e.g. succ can be applied to a value of type nat but not to a value
of type bool). We then use these constructors in building charac-
teristic processes following [3].

The formulation of preciseness along with the proof methods
and techniques could be useful to examine other subtypings and
calculi. Our future work includes the applications to higher-order
processes [27, 28], polymorphic types [15], fair subtypings [31]
and contract subtyping [1]. We plan to use the characteristic pro-
cesses in typecheckers for session types. More precisely the error
messages can show processes of given types when type checking

fails. One interesting problem is to find the necessary and sufficient
conditions to obtain completeness of the generic subtyping [23].
Such a characterisation would give preciseness for the many type
systems which are instances of [23].

The preciseness result for the synchronous calculus in § 2 and
§ 3 shows a rigorousness of the branching-selection subtyping,
which is implemented (as a default) in most of session-based pro-
gramming languages and tools [4, 8, 22, 35] for enlarging typabil-
ity. For the asynchronous calculus, preciseness is more debatable
since it depends on the choice of type safety properties, see § 4
and § 5. But in this case preciseness plays a more important rôle
since a programmer can adjust a subtyping relation to loosen or
tighten subtypings with respect to the type safety properties which
she wishes to guarantee. Once preciseness has been proved, she
can be sure that her safety specifications and the subtyping have an
exact match with respect to both static and dynamic semantics.

Acknowledgments
This work has been partially sponsored by EPSRC EP/K034413/1
and EP/K011715/1, ICT COST Action IC1201 BETTY, MIUR
PRIN Project CINA Prot. 2010LHT4KM and Torino Univer-
sity/Compagnia San Paolo Project SALT. We thank Kohei Honda
and Luca Padovani for their suggestions and discussions. We also
gratefully thank the anonymous referees for their accurate and en-
lightening remarks, that strongly improved both the presentation
and the technical development.
References

[1] F. Barbanera and U. de Liguoro. Two notions of sub-behaviour for
session-based client/server systems. In PPDP, pages 155-164. ACM,
2010.

[2] H. Barendregt, M. Coppo, and M. Dezani-Ciancaglini. A filter lambda
model and the completeness of type assignment. Journal of Symbolic
Logic, 48(4): 931-940, 1983.

[3] J. Blackburn, I. Hernandez, J. Ligatti, and M. Nachtigal. Completely
subtyping iso-recursive types. Technical Report CSE-071012, Univer-
sity of South Florida, 2012.

[4] M. Carbone, K. Honda, and N. Yoshida. Structured communication-
centered programming for web services. ACM Transactions on Pro-
gramming Languages and Systems, 34(2):8:1–8:78, 2012.

[5] L. Cardelli. Amber. In Combinators and functional programming lan-
guages, volume 242 of LNCS, pages 21–47. Springer, 1986.

[6] G. Castagna, R. De Nicola, and D. Varacca. Semantic subtyping for the
pi-calculus. Theoretical Computer Science, 398(1–3):217–242, 2008.

[7] G. Castagna, M. Dezani-Ciancaglini, E. Giachino, and L. Padovani.
Foundations of session types. In PPDP, pages 219–230. ACM, 2009.

[8] R. Demangeon and K. Honda. Full abstraction in a subtyped pi-
calculus with linear types. In CONCUR, volume 6901 of LNCS, pages
280-296. Springer, 2011.

[9] M. Dezani-Ciancaglini and S. Ghilezan. Preciseness of subtyping on
intersection and union types. In RTATLCA, volume 8560 of LNCS,
pages 194–207. Springer, 2014.

[10] M. Dezani-Ciancaglini, U. de’ Liguoro, and A. Piperno. A filter model
for concurrent lambda-calculus. SIAM Journal on Computing, 27(5):
1376–1419, 1998.

[11] A. Frisch, G. Castagna, and V. Benzaken. Semantic subtyping: dealing
set-theoretically with function, union, intersection, and negation types.
Journal of ACM, 55(4):1–64, 2008.

[12] S. Gay and M. Hole. Subtyping for session types in the pi calculus.
Acta Informatica, 42(2/3):191–225, 2005.

[13] S. Gay and V. T. Vasconcelos. Linear type theory for asynchronous
session types. Journal of Functional Programming, 20(1):19–50,
2010.

[14] S. J. Gay, V. T. Vasconcelos, A. Ravara, N. Gesbert, and A. Z. Caldeira.
Modular session types for distributed object-oriented programming. In
POPL, pages 299–312. ACM, 2010.

[15] M. Goto, R. Jagadeesan, A. Jeffrey, C. Pitcher, and J. Riely. An exten-
sible approach to session polymorphism. Mathematical Structures in
Computer Science, 2014. To appear.

[16] M. Gouda, E. Manning, and Y. Yu. On the progress of communication
between two finite state machines. Information and Control, 63:200–
216, 1984.

[17] M. Hennessy and J. Riely. Resource access control in systems of
mobile agents. Information and Computation, 173(1):82–120, 2002.

[18] J. R. Hindley. The completeness theorem for typing lambda-terms.
Theoretical Computer Science, 22:1–17, 1983.

[19] D. Hirschkoff, J.-M. Madiot, and D. Sangiorgi. Name-passing calculi:
from fusions to preorders and types. In LICS, pages 378-387. IEEE
Computer Society, 2013.

[20] K. Honda and N. Yoshida. On reduction-based process semantics.
Theorical Computer Science, 151(2):437–486, 1995.

[21] K. Honda, V. T. Vasconcelos, and M. Kubo. Language primitives and
type disciplines for structured communication-based programming. In
ESOP, volume 1381 of LNCS, pages 122–138. Springer, 1998.

[22] R. Hu, N. Yoshida, and K. Honda. Session-based distributed program-
ming in Java. In ECOOP, volume 5142 of LNCS, pages 516–541.
Springer, 2008.

[23] A. Igarashi and N. Kobayashi. A generic type system for the pi-
calculus. Theoretical Computer Science, 311(1–3):121–163, 2004.

[24] N. Kobayashi, B. C. Pierce, and D. N. Turner. Linearity and the Pi-
Calculus. ACM Transaction on Programming Languages and Systems,
21(5):914–947, 1999.

[25] R. Milner. The polyadic π-calculus: a tutorial. In Logic and Algebra
of Specification. Springer, 1991.

[26] R. Milner and D. Sangiorgi. Barbed bisimulation. In ICALP, volume
623 of LNCS, pages 685–695. Springer, 1992.

[27] D. Mostrous. Session Types in Concurrent Calculi: Higher-Order Pro-
cesses and Objects. PhD thesis, Imperial College London, 2009.

[28] D. Mostrous and N. Yoshida. Session-based communication optimi-
sation for higher-order mobile processes. In TLCA, volume 5608 of
LNCS, pages 203–218. Springer, 2009.

[29] D. Mostrous, N. Yoshida, and K. Honda. Global principal typing in
partially commutative asynchronous sessions. In ESOP, volume 5502
of LNCS, pages 316–332. Springer, 2009.

[30] N. Ng, N. Yoshida, and K. Honda. Multiparty Session C: Safe parallel
programming with message optimisation. In TOOLS, volume 7304 of
LNCS, pages 202–218. Springer, 2012.

[31] L. Padovani. Fair subtyping for open session types. In ICALP, volume
7966 of LNCS, pages 373–384. Springer, 2013.

[32] B. C. Pierce. Types and Programming Languages. MIT Press, 2002.
[33] B. C. Pierce and D. Sangiorgi. Typing and subtyping for mobile pro-

cesses. Mathematical Structures in Computer Science, 6(5):376–385,
1996.

[34] B. C. Pierce and D. N. Turner. Pict: A programming language based on
the pi-calculus. In Proof, Language and Interaction: Essays in Honour
of Robin Milner. MIT Press, 2000.

[35] Scribble. Scribble Project homepage. http://scribble.github.
io/.

[36] V. T. Vasconcelos. Fundamentals of session types. In SFM, volume
5569 of LNCS, pages 158–186. Springer, 2009.

[37] V. T. Vasconcelos. Session types for linear multithreaded functional
programming. In PPDP, pages 1–6. ACM, 2009.

[38] N. Yoshida, V. T. Vasconcelos, H. Paulino, and K. Honda. Session-
based compilation framework for multicore programming. In FMCO,
volume 5751 of LNCS, pages 226–246. Springer, 2009.

http://scribble.github. io/
http://scribble.github. io/

	Introduction
	Synchronous Session Calculus
	Syntax
	Operational semantics
	Typing synchronous processes
	Soundness of synchronous subtyping

	Completeness for Synchronous Subtyping
	Asynchronous Session Calculus
	Syntax and operational semantics
	Errors in asynchronous processes
	Asynchronous subtyping
	Typing asynchronous processes
	Soundness of asynchronous subtyping

	Completeness for Asynchronous Subtyping
	Denotational Preciseness
	Related Work
	Conclusion

