
14 October 2024

AperTO - Archivio Istituzionale Open Access dell'Università di Torino

Original Citation:

Delta-oriented multi software product lines

Publisher:

Published version:

DOI:10.1145/2648511.2648536

Terms of use:

Open Access

(Article begins on next page)

Anyone can freely access the full text of works made available as "Open Access". Works made available
under a Creative Commons license can be used according to the terms and conditions of said license. Use
of all other works requires consent of the right holder (author or publisher) if not exempted from copyright
protection by the applicable law.

Availability:

ACM - Association for Computing Machinery

This is the author's manuscript

This version is available http://hdl.handle.net/2318/150060 since 2015-12-22T19:54:18Z

Delta-Oriented Multi Software Product Lines∗

Ferruccio Damiani
Università di Torino, Italy
damiani@di.unito.it

Ina Schaefer
TU Braunschweig, Germany

i.schaefer@tu-bs.de

Tim Winkelmann
TU Braunschweig, Germany
t.winkelmann@tu-bs.de

ABSTRACT
Modern software systems outgrow the scope of traditional soft-
ware product lines (SPLs) resulting in multi software product lines
(MSPLs) with many interconnected subsystem versions and vari-
ants. Delta-oriented programming (DOP) is a flexible, modular
approach for implementing SPLs, but DOP so far does not allow
the realization of MSPLs. In this paper, we extend DOP to sup-
port MSPL development and provide the first holistic modeling
approach for MSPLs that spans problem, solution and configura-
tion space. The main concept is the extension of DOP with the
possibility to import other SPLs or MSPLs into a new MSPL. By
expressing constraints amongst the imported SPLs, a common con-
figuration and product generation is enabled.

Categories and Subject Descriptors
D.1.5 [Programming Techniques]: Object-oriented Programming;
D.3.3 [Programming Languages]: Language Constructs and Fea-
tures

General Terms
Design, Languages

Keywords
Java, Delta-Oriented Programming, Multi Software Product Line

1. INTRODUCTION
Modern variant-rich software systems can be managed by soft-

ware product line (SPL) engineering techniques. In this paper, we
assume an SPL along the lines of Czarnecki and Eisenecker [6]
that consists of a problem space variability model defining the set
of possible product variants in terms of product features, a solution
space code base with the reusable code artifacts and a configuration
space which connects problem and solution space and defines how
to derive product variants from the code artifacts based on valid

∗Work partially supported by MIUR (proj. CINA), Ateneo/CSP
(proj. SALT), and ICT COST Action IC1201 BETTY.
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SPLC ’14, September 15 - 19 2014, Florence, Italy.
Copyright 2014 ACM This is the author’s version of the work. It is posted
here by permission of ACM for your personal use. Not for redistribution.
The definitive version was published in 978-1-4503-2740-4/14/09...$15.00.
http://dx.doi.org/10.1145/2648511.2648536.

problem space feature selection. However, today’s software sys-
tems out-grow the scope of SPLs. MSPLs are a union of several
SPLs with a common variability model [9]. MSPLs are prevalent
in today’s large-scale systems, such as in industrial automation [8],
data bases systems [14]. MSPLs are beneficial in large-scale sys-
tem development as they allow reuse of existing SPLs in a new
context, reduce complexity by decomposition of a large SPL and
enable the distribution of work over several development teams.

Most existing MSPL modeling approaches have considered only
the problem space variability model explicitly and treated the prob-
lem space code artifacts and the configuration mechanism as a black-
box [7, 15, 8]. However, in order to provide reuse within MSPLs
also on the code level, we need a MSPL modeling approach that
spans problem space (variability model), solution space (code arti-
facts) and configuration space (product generation). An according
modeling approach for MSPLs has to satisfy the following require-
ments: The MSPL has to import other SPLs. The variability model
of the MSPL has to combine the variability models of the composed
SPLs. In the variability model of the MSPL, it should be possi-
ble to define additional features and restrict the variability of the
composed SPLs, e.g., by pre-selection of features of the composed
SPLs. Additional dependencies between the variability models of
the composed SPLs may have to be introduced in order to define
valid combined variants. In the problem space, the MSPL should
combine the code base of the composed SPLs, add own code or
modify imported code artifacts. In the configuration space, it has to
be defined how code artifacts, newly introduced and modified im-
ported, are assembled for a particular product configuration from
the MSPL’s variability model.
In this paper, we propose MULTIDELTAJ in order to holistically
represent delta-oriented MSPLs. MULTIDELTAJ extends
DELTAJ [4] by linguistic constructs for problem space and solution
space specification of MSPLs to support composing and re-defining
imported SPLs. Furthermore, it provides a well-defined process for
product derivation in MSPLs. The MULTIDELTAJ approach is hi-
erarchical such that an MSPL can be composed from SPLs and
other, already defined, MULTIDELTAJ MSPLs. Additionally, it is
modular such that an MULTIDELTAJ MSPL can be defined by only
accessing the MULTIDELTAJ specifications of the imported SPLs
or MSPLs.

2. DELTA-ORIENTED SPLS
In this section, we recall the main concepts of DELTAJ [4], which

is the archetypal language for delta-oriented programming of SPLs.
As an example, we consider a product line of JAVA programs im-
plementing a family of text editors called the Text SPL. Figure 1
shows the feature model of the Text SPL. The products in the Text
SPL are described by the features Editor, Persist, CandP, Format

Text

Editor Persist CandP Format

Scalable

Color

Figure 1: Feature diagram of the Text SPL

delta DEditor {
adds class EditorListener {

Editor editor;
void update(String s) { editor.show(s); }

... }
... }
delta DPersist {

modifies class EditorListener {
adds File file;
modify void update(String s) { file.store(s); original(s); }

... }
... }

Listing 1: A fragment of the code base of the Text SPL

and Color. The features Editor and Persist are mandatory, all other
features are optional. The feature Editor corresponds to the base
functionality of an editor; featurePersist adds storage and loading
functionality; feature CandP adds the functionality for Copy and
Paste history; feature Color adds syntax highlighting; feature For-

mat adds formatting; and feature Scalable adds the ability to scale
text.

A delta-oriented SPL consists of a code base and a declaration.
The code base consists of a set of delta modules, which are con-
tainers of modifications to a JAVA program. The modifications may
add, remove or modify interfaces or classes. Modifying an inter-
face means to change its super interfaces, or to add or to remove
method signatures. Modifying a class means to change its super
class or implemented interfaces, to add or to remove fields or meth-
ods or to modify methods. The modification of a method can either
replace the method body by another implementation, or wrap the
existing method using the original construct (similar to the Super()
call in AHEAD [3]). The original construct expresses a call to the
method with the same name before the modifications and is bound
at the time the product is generated. Before or after the original

construct, other statements can be introduced. The code base for
the Text SPL, shown in figure 1, consists of 6 delta modules cor-
responding to the respective features: DEditor, DPersist, DCandP,
DColor, DFormat, and DScalable. Listing 1 shows a fragment of the
code base for the Text SPL. The delta module DEditor introduces
the class EditorListener and its method update, and the delta mod-
ule DPersist modifies the method update by adding the persistence
of the parameter into a file and then calling the original version of
the method.

The product-line declaration creates the connection to the prod-
uct line variability specified in terms of product features. Listing 2
shows the product line declaration for the Text SPL. An applica-
tion condition is attached to each delta module in a when clause
specifying for which feature configurations the delta module has
to be applied. The possible application orders of the delta mod-
ules are described by a total order on a partitioning of the set of
delta modules, which (in Listing 2) is expressed by an ordered list
of delta module sets enclosed by { .. }. The ordering captures
semantic requires-relations that are necessary for the applicability
of the delta modules. If a part contains a delta module that adds
or removes a class, no other delta module in the same part may

spl Text
features Editor, Persist, CandP, Format, Color, Scalable
configurations Editor & Persist & (Scalable −> Format)
deltas
{ DEditor when Editor}
{ DPersist when Persist}
{ DCandP when CandP, DColor when Color}
{ DFormat when Format}
{ DScalable when Scalable}

Listing 2: DELTAJ declaration of the Text SPL

add, remove or modify the same class, and the modifications of the
same class in different delta modules of the same partition must be
disjoint. Deltas in the same part can be applied in any order, since
the result will be the same, but the order of the parts is fixed. In or-
der to obtain a product for a particular feature configuration, those
modifications specified in the delta modules with valid application
conditions are applied incrementally to the empty product.

3. DELTA-ORIENTED MSPLS
In this section, we introduce MULTIDELTAJ, the extension of

DELTAJ to support delta-oriented programming of MSPLs. A delta-
oriented MSPL is a delta-oriented SPL that uses other SPLs by im-
porting them. The import of an SPL allows restricting the variant
space of the imported SPL by providing a pre-configuration of its
features. The MSPL itself defines a set of features and binds the
non-resolved features of the imported SPLs to newly declared fea-
tures. A MULTIDELTAJ MSPL may define delta modules (the same
as in DELTAJ) which can add new classes/interfaces and remove/-
modify classes/interfaces introduced by the MSPL itself or made
available from imported SPLs. The configuration of a MSPL de-
termines the configuration of the used sub-SPLs by resolving all
un-resolved imported SPL features via their binding. Generating a
product of the declared MSPL means generating the selected prod-
uct variants of the imported SPLs and modifying them as specified
by the MSPL declaration.

3.1 Delta-oriented MSPL declaration
A MULTIDELTAJ MSPL declaration has the syntax illustrated in

Figure 2 (the extensions w.r.t. non-multi SPL declaration are high-
lighted in grey), where square brackets “[” and “]” indicate optional
elements; <sname> ∈MSPL names; <fname> ∈ feature names;
<fselection> denotes either <fname> (the selection of the feature
<fname>) or ! <fname> (the deselection of feature <fname>);
<fformula> denotes a propositional formula over feature names;
<iname>∈ JAVA interface names, <cname>∈ JAVA class names;
<usname> ∈ used sub-MSPL names; <dname> ∈ delta module
names.

An MSPL declaration starts with the keyword mspl to declare
the name of the defined MSPL (that we call the top-MSPL). The
uses clause defines sub-(M)SPLs by importing an (M)SPL. A sub-
(M)SPL definition declares the name <usname> of the sub-(M)SPL
(this name will be visible when the declared MSPL will be imported—
cf. the third example below) and provides (after the symbol “=”) a
definition body consisting of three parts:

1. The name <sname> of the imported (M)SPL, possibly fol-
lowed by a list (<fselection>,...,<fselection>) that restricts
its configurations by resolving (i.e., selecting or deselecting)
some of its features. The name of a resolved feature is no
longer accessible.

2. An optional with clause that further restricts the configura-
tions of the imported (M)SPL by specifying a propositional
formula <fformula> over the non-resolved features of the
imported (M)SPL that has to be conjoined to the formula

m spl <sname>

[uses <usname>=<sname>[(<fselection>,...,<fselection>)]

[with<fformula>][when<fformula>]

· · ·
<usname>=<sname>[(<fselection>,...,<fselection>)]

[with<fformula>][when<fformula>]

]

features <fname> [=<usname>.<fname>...=<usname>.<fname>] ,

· · ·
<fname> [=<usname>.<fname>...=<usname>.<fname>]

configurations <fformula>

[interfaces <iname>=<usname>.<iname>,

· · ·
<iname>=<usname>.<iname>

]

[classes <cname>=<usname>.<cname>,

· · ·
<cname>=<usname>.<cname>

]

[spls [<usname>.]<usname>=<usname>.<usname>

[=<usname>.<usname>...=<usname>.<usname>],

· · ·
[<usname>.]<usname>=<usname>.<usname>

[<usname>.<usname>...=<usname>.<usname>]

]
deltas
{ <dname> [when<fformula>],
· · ·
<dname> [when<fformula>]}

· · ·
{ <dname> [when<fformula>],
· · ·
<dname> [when<fformula>]}

Figure 2: Syntax of MSPL declarations

that describes the feature configuration specified by config-

urations clause in the declaration of the imported (M)SPL.
3. An optional when clause that specifies that the sub-(M)SPL

is used only when the given propositional formula over the
features of the top-MSPL holds.

The features clause introduces the features of the top-MSPL—
each feature of the top-MSPL may be bound to (i.e., unified with)
some (non-resolved) feature of a sub-(M)SPL and each non-resolved
feature of a sub-(M)SPL must be bound to exactly one feature of the
top-MSPL. Binding a feature f of the top-MSPL to a non-resolved
feature f′ of a sub-(M)SPL means that, if a product variant of the
sub-(M)SPL is included in a variant of the declared MSPL (i.e.,
if the condition specified by the when clause is satisfied) then the
selection or deselection of the feature f propagates to the feature
f′. The configurations clause introduces the formula describing the
valid configurations of the top-MSPL—it mentions only the fea-
tures declared by the features clause.

The interfaces (or classes) clause renames interfaces (or classes)
defined in some imported sub-(M)SPL—these new names can be
used in the code base of the declared MSPL and will be visible
when the declared top-MSPL will be imported by another MSPL.
The spls clause provides the ability to:
• Unify sub-(M)SPLs of MSPLs that are imported into the top-

MSPL. If two imported MSPLs use the same sub-(M)SPL,
in this way, it can be ensured that only one instance of the
sub-(M)SPL is included in a product generated from the top-

AddressBook

Names

NickName

Phone EMail Note

require Text

Figure 3: Feature diagram of the Addressbook MSPL

mspl AddressBook
uses text = Text(Editor,Persists) when Note
features Names, Phone, EMail, NickName, Note,

TextCandP=text.CandP, TextFormat=text.Format, TextColor=text.Color,
TextScalable=text.Scalable

configurations Names
interfaces FileManagerService = text.FileManagerService
classes Editor = text.Editor
deltas
{DNames when Names}
{DNickname when NickName}
{DPhone when Phone}
{DEMail when EMail}
{DNote when Note}

Listing 3: MULTIDELTAJ declaration of the AddressBook SPL

MSPL—an error is reported if this is not possible.
• Introduce a new name for the sub-(M)SPLs of MSPLs that

are imported into the top-MSPL—when the top-MSPL will
be imported, these names (of the sub-(M)SPLs of the im-
ported (M)SPL) will be visible in the spls clause of the im-
porting MSPL. This will allow to make further unifications.

The delta modules defined in the top-MSPL may add new class-
es/interfaces and remove/modify classes/interfaces that are either
introduced in other delta modules defined in the top-MSPL or made
available via the interfaces or classes clause.

Examples. As first example, Figure 3 and Listing 3 show the
feature diagram and the MSPL declaration for the AddressBook
MSPL. The features represent data fields for a list of contacts and
are straightforward, except the Note feature. For the implementa-
tion of the feature Note, an editor from the Text SPL is required in-
dicated by the dashed arrow. In Listing 3, the uses clause specifies
that a product of the sub-SPL text, defined in terms of the Text SPL,
is included when feature Note is selected. The sub-SPL text is de-
fined by resolving the mandatory features of the imported Text SPL
by selecting them. The other non-resolved features of the Text SPL
are bound to newly declared features of the AddressBook MSPL.
To use the editor, new names for the interface FileManagerService

and the class Editor from the Text SPL are defined. Otherwise, the
interface and class would not be visible to use in the code base of
AddressBook MSPL. The code base for the AddressBook SPL con-
sists of 5 new delta modules: Delta DNames is mandatory and in-
troduces the contact list. Delta DNickname adds additional names,
delta Phone adds fields for phone numbers, delta DEMail fields for
email addresses and DNote a field for other notes.

As second example, Figure 4 and Listing 4 show the feature di-
agram and the MSPL declaration for the Mail MSPL. The Mail
MSPL handles the receiving and sending of mails and uses the Text
SPL to write the mails in a text editor. The uses clause imports the
Text SPL, if the feature Write of the Mail MSPL is selected. The
sub-SPL text is defined by selecting the mandatory features of the
imported Text SPL. Then, the features of the declared Mail MSPL
are defined and the non-resolved features of the imported SPL are
bound to features of the declared MSPL. The configurations clause
captures the constraints of the feature diagram in Figure 4. We re-

Mail

Send

Write

Receive

Reply
require

require Text

Figure 4: Feature diagram of the Mail MSPL

mspl Mail
uses text = Text (Editor,Persist) when Write
features Send, Receive, Write, Reply,

TextCandP=text.CandP, TextFormat=text.Format, TextColor=text.Color,
TextScalable=text.Scalable

configurations Receive & (Send <−> Write) & (Reply −> Write)
interfaces FileManagerService = text.FileManagerService
classes MailEditor=text.Editor,

MailEditorListener=text.EditorListener
deltas
{DReceive when Receive}
{DSend when Send}
{DWrite when Write}
{DReply when Reply}

Listing 4: MULTIDELTAJ declaration of the Mail MSPL

name the class EditorListener and class Editor of the Text SPL to
MailEditorListener and MailEditor. The interface FileManagerSer-

vice keeps the name it has in the Text SPL as it does not have to be
modified in the declared MSPL. The code base for the Mail SPL
consists of 4 delta modules: Delta DReceive is mandatory and col-
lects new mail from a mail server. Delta DWrite introduces a mail
editor and, thus, needs the Text SPL. Delta DSend allows sending
mails to the recipients. Delta DReply creates a new draft of an mail
with the contents of the last mail and its recipients.

As third example, Figure 5 and Listing 5 show the feature di-
agram and the MSPL declaration of the MailClient MSPL. The
MailClient MSPL manages mail accounts and stores mails which
are send and received by the Mail SPL. Optionally, it can store the
mail addresses from incoming and outgoing mails with the feature
Addresses which uses the AddressBook MSPL. Since both imported
MSPLs use the Text SPL, we want to import only one instance of
the Text SPL into a variant of the MailClient MSPL. Therefore,
the features clause unifies the features of the Text SPL of both im-
ported MSPLs. It would be also possible to use two separate in-
stances of the Text SPL. In this case, we could bind any of the
non-resolved features from both imported Text SPLs to separate
features of the MailClient MSPL. The fact that the MailClient in-
cludes only one instance of the Text SPL (imported by both MSPLs
Mail and AddressBook) is specified by the spls clause. Both sub-
MSPLs mail.text and addresses.text are unified as sub-SPL text. We
also rename interfaces and classes from the imported SPLs, in order
to make them visible in the code base of the MailClient MSPL. The
code base for the MailClient MSPL consists of 5 delta modules in
4 partitions: delta DClient builds the basic client. Delta DAddresses

MailClient

Protocols

IMAP POP3

Addresses Mail

require AddressBook require Mail

Figure 5: Feature diagram of the MailClient MSPL

mspl MailClient
uses mail = Mail (Send, Write, Receive) when Mail,

addresses = AddressBook (Names, EMail) when Addresses
features Protocols, IMAP, POP3, Addresses, Mail,

MailReply=mail.Reply, AddressesNickName=addresses.NickName,
AddressesPhone=addresses.Phone,AddressesNote=addresses.Note,
MailTextCandP=mail.TextCandP=addresses.TextCandP,
MailTextFormat=mail.TextFormat=addresses.TextFormat,
MailTextColor=mail.TextColor=addresses.TextColor,
MailTextScalable=mail.TextScalable=addresses.TextScalable

configurations Mail & Protocols & (IMAP | POP3)
interfaces ContactManagerService = adresses.ContactManagerService
classes Contact = addresses.Contact

MailAccount = mail.MailAccount
Mail = mail.Mail

spls text = mail.text = addresses.text
deltas
{DClient when Mail}
{DAddresses when Addresses}
{DIMAP when IMAP, DPOP3 when POP3}
{DReply when MailReply}

Listing 5: MULTIDELTAJ declaration of the the MailClient MSPL

adds the address book. Deltas IMAP and POP3 are the supported
protocols. Delta DReply adds the reply functionality, if the feature
Reply from the Mail MSPL is selected, which is called MailReply.

3.2 Product generation
We outline the MULTIDELTAJ product generation procedure for

the above examples. The AddressBook MSPL (cf. Listing 3) uses
the sub-SPL text which is defined in terms of the Text SPL when
feature Note is selected. The product with features Names, Note

and TextCandP is generated by performing the following steps:
1. Add the code of the product of the Text SPL with features

Editor, Persist and CandP (cf. Listing 2), where the name of
every class and interface is changed to avoid name clashes by
appending to the original names the name of the used SPL,
i.e., the string “$$text”.

2. Because of the interfaces clause, rename the interface File-

ManagerService$$text to FileManagerService (i.e., restore its
original name).

3. Because of the classes clause, rename the class Editor$$text

to Editor (i.e., restore its original name).
4. Apply the selected delta modules of the AddressBook MSPL,

i.e., DNames and DNote—the delta module DNote may con-
tain occurrences of the interface name FileManagerService

and of the class name Editor introduced by the interfaces and
classes clauses.

The Mail MSPL (cf. Listing 4) uses the sub-SPL text which is
defined in terms of the Text SPL when feature Write is selected.
The product with features Send, Write and TextCandP is generated
by performing steps similar to those for the AddressBook MSPL.

The MailClient MSPL (cf. Listing 5) uses the sub-SPL mail which
is defined in terms of the Mail MSPL and (when feature Addresses

is selected) the sub-SPL addresses which is defined in terms of the
AddressBook MSPL. The product with features Protocols, IMAP,
Addresses, Mail and MailTextCandP is generated by performing steps
similar to those for the Mail and AddressBook MSPLs, together
with additional steps for dealing with the spls clause, i.e., the fol-
lowing steps are performed:

1. Add the code of the product of the Mail SPL with features
Send, Receive, Write and TextCandP (cf. Listing 4), where
every class and interface is renamed by appending to its name
the string “$$mail”;

2. Add the code of the product of the AddressBook SPL with
features Names, Note and TextCandP (cf. Listing 3), where
every class and interface is renamed to avoid name clashes.

3. Perform the renamings specified by the interfaces clause.

4. Perform the renamings specified by the classes clause.
5. Because of the spls clause: (i) The names of the interfaces

and classes coming from the instance of in the Text SPL im-
ported by the Mail MSPL are made equal to the names of
the interfaces and classes coming from the instance of in the
Text SPL imported by the AddressBook MSPL—an error is
reported if any of those interfaces and classes has been mod-
ified during the generation of the product of the Mail MSPL
or of the product of the AddressBook MSPL; and (ii) Only
one copy of the code of the two (now identical) products of
the Text SPL is kept.

6. Apply the selected delta modules of the MailClient MSPL,
i.e., DClient, DAddresses and DIMAP.

4. RELATED WORK
Research on modeling MSPLs can categorized according to the

spaces (problem, solution and/or configuration space [6]) which
it covers. For problem space variability modeling, tools origi-
nally developed for SPLs are fully or partially capable of modeling
MSPLs, such as TVL by Classen et al. [5] or FAMILIAR by Acher
et al. [2]. In the CVM framework [1], different feature models
can be connected via configuration links expressing requirements
for feature selection between several feature models. Velvet is a
textual variability modeling language designed by Rosenmüller et
al. [12] for multi-dimensional variability modeling, explicitly in-
tended for MSPL variability. All these approaches are located only
in the problem and configuration space and do not consider the so-
lution space. To modularly capture solution space variability, Käst-
ner et al. [10] introduce a variability-aware module system where
variability within modules is represented by presence conditions.
This approach can only be applied in an MSPL context when con-
nected to problem space variability modeling. The EASy-Producer
[7] is a tool for multi-dimensional variability modeling and config-
uration of MSPLs. It uses a decision-oriented problem space vari-
ability modeling approach. For solution space variability, instan-
tiators are used as wrappers to support the variability realization
mechanisms of the imported SPLs. In this way, the EASy-Producer
allows multi-product line configuration on the solution space level,
however, dependencies on the solution space level are not captured
as the imported SPLs are treated as black-boxes. Several com-
mercial tools, such as pure::variants (www.pure-systems.com)
or GEARS(www.biglever.com), have support for multi-product
line configuration in a similar manner [13]. In the DOPLER tool
suite [15, 8], product line bundles (PLiBs) integrate several SPLs
into one MSPL from a tool-oriented perspective. PLiBs go be-
yond pure problem space variability by including configuration, but
do not explicitly cover the solution space artifacts. Keunecke et
al. [11] propose feature packs for software eco systems consisting
of a problem space variability model and the corresponding vari-
able solution space artifacts. Feature packs modularize problem
and solution space variability for software ecosystems, hence, no
unified explicit variability model, as for MSPLs in MULTIDELTAJ,
is supported. To summarize, the state-of-the-art in MSPL model-
ing/programming concentrates either on the problem space, on the
solution space, or integrates only problem space and configuration
space.

5. CONCLUSION
In this paper, we have presented MULTIDELTAJ, a program-

ming language for delta-oriented MSPLs allowing to obtain MSPLs
by fine-grained reuse of delta-oriented (M)SPLs. MULTIDELTAJ
is the first approach for a holistic modeling of MSPLs covering

problem, solution and configuration space. An implementation of
MULTIDELTAJ based on the existing implementation of DELTAJ is
currently in progress.

6. REFERENCES
[1] A. Abele, Y. Papadopoulos, D. Servat, M. Törngren, and

M. Weber. The CVM Framework - A Prototype Tool for
Compositional Variability Management. In VaMoS’10, pages
101–105, 2010.

[2] M. Acher, P. Collet, P. Lahire, and R. B. France. Familiar: A
domain-specific language for large scale management of
feature models. Sci. Comput. Program., 78(6):657–681,
2013.

[3] D. Batory, J. N. Sarvela, and A. Rauschmayer. Scaling
step-wise refinement. IEEE Transactions on Software
Engineering, 30(6):355–371, 2004.

[4] L. Bettini, F. Damiani, and I. Schaefer. Compositional type
checking of delta-oriented software product lines. Acta
Informatica, 50:77–122, 2013.

[5] A. Classen, Q. Boucher, and P. Heymans. A text-based
approach to feature modelling: Syntax and semantics of
TVL. Science of Computer Programming, Special Issue on
Software Evolution, Adaptability and Variability,
76(12):1130–1143, 2011.

[6] K. Czarnecki and U. W. Eisenecker. Generative
Programming: Methods, Tools, and Applications.
Addison-Wesley, 2000.

[7] S. El-Sharkawy, C. Kröher, and K. Schmid. Supporting
heterogeneous compositional multi software product lines. In
Proceedings of the 15th International Software Product Line
Conference, Volume 2, SPLC ’11, pages 25:1–25:4. ACM,
2011.

[8] G. Holl, C. Elsner, P. Grünbacher, and M. Vierhauser. An
infrastructure for the life cycle management of multi product
lines. In Proceedings of the 28th Annual ACM Symposium on
Applied Computing, SAC ’13, pages 1742–1749. ACM,
2013.

[9] G. Holl, P. Grünbacher, and R. Rabiser. A systematic review
and an expert survey on capabilities supporting multi product
lines. Inf. Soft. Technol., 54:828–852, 2012.

[10] C. Kästner, K. Ostermann, and S. Erdweg. A
variability-aware module system. In Proceedings of the ACM
international conference on Object oriented programming
systems languages and applications, OOPSLA ’12, pages
773–792. ACM, 2012.

[11] M. Keunecke, H. Brummermann, and K. Schmid. The
feature pack approach: Systematically managing
implementations in software ecosystems. In VaMoS ’14,
pages 20:1–20:7. ACM, 2013.

[12] M. Rosenmüller, N. Siegmund, T. Thüm, and G. Saake.
Multi-dimensional variability modeling. In VaMoS’11, pages
11–20. ACM, 2011.

[13] K. Schmid and E. S. de Almeida. Product line engineering.
IEEE Software, 30(4):24–30, 2013.

[14] R. Schröter, T. Thüm, N. Siegmund, and G. Saake.
Automated analysis of dependent feature models. In
VaMoS’13, pages 9:1–9:5. ACM, 2013.

[15] M. Vierhauser, G. Holl, R. Rabiser, P. Grunbacher,
M. Lehofer, and U. Sturmer. A deployment infrastructure for
product line models and tools. In SPLC’11, pages 287–294.
IEEE, 2011.

