
11 August 2024

AperTO - Archivio Istituzionale Open Access dell'Università di Torino

Original Citation:

DeltaJ 1.5: delta-oriented programming for Java 1.5

Publisher:

Published version:

DOI:10.1145/2647508.2647512

Terms of use:

Open Access

(Article begins on next page)

Anyone can freely access the full text of works made available as "Open Access". Works made available
under a Creative Commons license can be used according to the terms and conditions of said license. Use
of all other works requires consent of the right holder (author or publisher) if not exempted from copyright
protection by the applicable law.

Availability:

ACM - Association for Computing Machinery

This is a pre print version of the following article:

This version is available http://hdl.handle.net/2318/150604 since 2016-11-24T15:07:19Z

DRAFT—Do not distribute

DeltaJ 1.5: Delta-oriented Programming for Java 1.5

Jonathan Koscielny Sönke Holthusen
Ina Schaefer Sandro Schulze

Institut für Softwaretechnik und Fahrzeuginformatik,
Technische Universität Braunschweig
{j.koscielny, s.holthusen, i.schaefer,

sanschul}@tu-braunschweig.de

Lorenzo Bettini Ferruccio Damiani
Dipartimento di Informatica,

Università degli Studi di Torino
{bettini, damiani}@di.unito.it

Abstract
Delta-oriented programming (DOP) is a modular, yet flexible ap-
proach to implement software product lines. In DOP, a product line
is implemented by a set of deltas, which are containers of modifica-
tions to a program. A delta-oriented product line is specified by its
code base, i.e., the set of delta modules, and a product line declara-
tion specifying the set of possible product variants. In this paper, we
present DOP for JAVA 1.5 extending previous proof-of-concept re-
alizations of DOP for simple core JAVA-like languages. The novel
prototypical implementation DELTAJ 1.5 provides full integrated
access to the object-oriented features of JAVA. The extensions in-
clude delta operations to fully integrate the JAVA package system,
to declare and modify interfaces, to explicitly change the inheri-
tance hierarchy, to access nested classes and enum classes, to alter
field declarations, and to unambiguously remove overloaded meth-
ods. Furthermore, we improve the specification of the product line
declaration by providing a separate language. We have evaluated
DELTAJ 1.5 using a case study.

1. Introduction
A software product line (SPL) [10, 27] is a set of software systems
(the products) with well-defined commonalities and variabilities.
An SPL realizes a set of products by relying on a single code base
describing software artifacts that have to be assembled to generate
the possible products. Each product is described by a set of features.
A feature [4] is an abstract description of functionality. The set of
valid feature configurations determining the set of possible product
variants can be described by a feature model [18].

Delta-oriented programming (DOP) is a flexible paradigm to
implement SPLs. In the original formulation of DOP, called Core
DOP [29], the product-line code base consists of: (i) a core module
which contains the implementation of the base product variant (a
JAVA program); and (ii) a set of delta modules that expresses mod-
ifications to the product introduced by the core module, for adding
or removing features. A product line declaration connects the delta
modules to the features. Additionally, a partial order on the delta
modules (called the application order) is provided to capture the

[Copyright notice will appear here once ’preprint’ option is removed.]

necessary dependencies between the delta modules (which are usu-
ally semantic requires relations) and to ensure that for every feature
configuration a uniquely defined product is obtained. A product is
generated by selecting the delta modules associated to the prod-
uct features and incrementally applying them to the core module
according to the application order. A subsequent formulation of
DOP, called Pure DOP [28], introduced a conceptual simplifica-
tion by dropping the notion of core module. Every product variant
is generated only by applying delta modules where the first delta
module that is applied can only contain additions.

Pure DOP for JAVA has been first formalized by using core cal-
culi for JAVA: in [28] by using LIGHTWEIGHT JAVA (LJ) [34],
and then in [8, 30] by using an imperative version of FEATHER-
WEIGHT JAVA (FJ) [17]. The prototypical language DELTAJ 1.11

used the constructs described in [8, 28, 30] for implementing DOP
for a small subset of JAVA that roughly corresponds to the union
of FJ and LJ augmented with a selection of primitive types (int
and boolean) and the String type. DELTAJ 1.1 does not provide
any API access (importing types) and does not support interfaces,
packages and visibility modifiers for classes, methods or fields and
many other JAVA constructs.

In this paper, we present DELTAJ 1.5, a prototypical language
supporting DOP for full JAVA 1.5. The design of DELTAJ 1.5 goes
beyond the notion of delta module developed in [8, 28, 30] (and
adopted by DELTAJ 1.1) in order to support the integration of full
JAVA 1.5 syntax within the change operations specified in the delta
modules. This allows access to the object-oriented features of JAVA
1.5 within DOP which makes DELTAJ 1.5 one of the first program-
ming languages realizing a modular programming paradigm that
is fully integrated into JAVA. In particular, we developed a notion
of delta module that supports program transformations involving
the JAVA 1.5 package system, JAVA interfaces, the inheritance hier-
archy, nested classes, enum classes and field qualifiers. We devel-
oped a new unified code removal operation (integrated into the delta
module construct) and an improved language to express the product
line declaration. We have built an Eclipse plug-in for DELTAJ 1.5
that provides tool support with syntax highlighting, syntax check-
ing and product generation. The results presented in this paper are
based on a preliminary investigation carried out in the first author’s
Bachelor thesis [22] by exploiting a case study developed in [14].

The paper is structured as follows. In Section 2, we recall the
DOP constructs formalized [8, 28, 30]. The integration of DOP
with full JAVA 1.5 is discussed in Section 3. An overview of
the implementation of DELTAJ 1.5 is given in Section 4. The
evaluation is presented in Section 5 and related work in Section 6.
We conclude the paper by an outlook to future work.

1 http://deltaj.sourceforge.net/

1 2014/6/4

damiani
Cross-Out

2. Delta-oriented programming
In this section, we recall the notion of Pure DOP as described
in [8, 28, 30], present the currently available implementations of
DOP for JAVA, and briefly illustrate one of them by an example.

2.1 Delta-oriented software product lines
According to [8, 28, 30], a delta-oriented product line consists of
a code base and a product line declaration. The code base con-
sists of a set of delta modules (which are the software artifacts to
be assembled to generate the various products), while the product
line declaration expresses the connection between the delta mod-
ules and the product line variability specified in terms of product
features. A delta module is a container of modifications to a JAVA-
like program. Three kinds of operations are provided to implement
modifications.

1. Addition of a new class definition.

2. Modification of an existing class definition. Within the modifies
class operation the following operations can be used.

(a) Change of the immediate superclass.

(b) Addition of a new field to the class.

(c) Addition of a new method to the class.

(d) Modification of an method defined in the class. This op-
eration replaces the body of the method by a new method
body. The new method body may contain calls of the form
original(...), that represent calls to the original version
of the method. If the original version of the method is re-
cursive, the recursive calls in the original method body are
interpreted as calls to the new version of the method.

(e) Removal of a field defined in the class.

(f) Removal of a method defined in the class.

3. Removal of an existing class definition.

The product line declaration specifies:

1. The set of valid feature configurations.

2. A mapping that associates to each valid feature configuration
a set of delta modules that must be used to generate the corre-
sponding product.

3. A partial order of the delta modules (called the application
order) that captures the necessary dependencies between the
delta modules (which are usually semantic requires relations)
and ensures that for every feature configuration a uniquely
defined product is generated.

A product for a given feature configuration is generated by
selecting the delta modules associated to the feature configuration
and incrementally applying them to the empty program according
to the application order.

The application of a delta module to a program will fail if a class
to be removed or modified does not exist or, if for some modified
class, some method or field to be removed does not exist, or if a
method to be modified does not exist, or if some class, method or
field to be added already exist. The generation of a product fails if
the application of one of the required delta modules fails. The first
delta module that is applied must only contain additions.

Specifying the application order as a partial (rather than a total)
order on the set of delta modules, so that a product can be generated
applying the selected delta modules in any total order that extends
the application order, opens the possibility for automatic optimiza-
tion of the product checking and product generation processes (see,
e.g., [11]). However, it introduces the issue of ensuring unambigu-
ity of product generation. That is, for every feature configuration,

all the total orders of the selected delta modules that extend the
application order generate the same product. In [28], an effective
approach for ensuring unambiguity is introduced:

• Specify the application order as a total order on the sets of a
partition of the delta modules.

• Ensure that: (i) if a delta module in a partition adds or removes
a class, then no other delta module in the same partition may
add, remove or modify the same class; and (ii) if a delta module
in a partition adds, removes or modifies the extends clause or
a field or a method of a class, then no other delta module in
the same partition may add, remove or modify that extends
clause, field or method.

2.2 Prototypical implementations of DOP for Java
In [29], the name DELTAJAVA has been used to refer to a language
for Core DOP that was under development. Subsequently, three
prototypical implementations of DOP have been made available
and referred to by the generic name DELTAJ.

1. DELTAJ 1.0 for Core DOP. This prototype, available at http:
//deltaj.sourceforge.net is based on the notion of Core
DOP as presented in [29].

2. DELTAJ 1.1 for Pure DOP. This prototype, available at http:
//deltaj.sourceforge.net/new-version/, is based on
the notion of Pure DOP as presented in [8, 28, 30].

3. DELTAJ 1.1 with Refactorings. This prototype, available
at https://www.tu-braunschweig.de/isf/research/
deltas/, is a version of DELTAJ 1.1 for Pure DOP with an
improved tool support which provides source code refactorings,
described in [32].

The above implementations adopt the notion of delta module and
product line declaration introduced in [8, 28, 30] (cf. Sect. 2.1) and
consider products written in a small subset of JAVA that roughly
corresponds to the union of FJ and LJ augmented with a selection
of primitive types and the String type. That is, they consider
only classes, fields and methods (without qualifiers), class-based
inheritance with method overriding, field assignment, type casts,
the if statement, the types int, boolean and String.

2.3 An example of DELTAJ 1.1 SPL
In order to illustrate the main concepts of DOP, as introduced
in [8, 28, 30] and adopted by DELTAJ 1.1, we use a variant of the
expression product line (EPL) [25]. The EPL is based on the ex-
pression problem [37], an extensibility problem that has been pro-
posed as a benchmark for data abstractions’ capability to support
new data representations and operations. We consider the follow-
ing grammar:

Exp ::= Lit | Add | Neg
Lit ::= <non-negative integers>
Add ::= Exp "+" Exp
Neg ::= "-" Exp

Two different operations can be performed on the expressions
described by the above grammar: print, which prints the textual
representation the expression, and eval, which returns the value
of the expression. The products in the EPL are described by two
set of features, one concerning the data — Lit, Add, Neg —
and another concerning the operations — Eval and Print. The
features Lit and Print are mandatory, while the features Add,
Neg and Eval are optional. Figure 1 shows the feature model of the
EPL by means of a feature diagram [18].

The example illustrates the practical situation where an existing
product has to be used as a basis for developing a family of prod-

2 2014/6/4

ucts [23]. So, it does not provide an elegant implementation of the
EPL from scratch.

Figure 2 contains a delta module for introducing an existing
product (let us call it the legacy product), realizing the features Lit,
Add and Print. Figure 3 contains the delta modules for adding the
evaluation functionality to the classes Lit and Add of the legacy
product. Figure 4 contains the delta modules for incorporating
the Neg feature by adding and modifying the class Neg and for
adding glue code required by the two optional features Add and
Neg to cooperate properly—namely, when printing a sum of two
expressions, a couple of surrounding parentheses is used to prevent
ambiguities.2 Figure 5 contains the delta module for removing the
Add feature from the legacy product.

�����������������������

����

��� ��� 	��

���������

����� ����

�������

���������

�������

�������

��������

Figure 1: Feature model for Expression Product Line

1 delta DLitAddPrint {
2 adds class Exp { void print () { } }
3 adds class Lit extends Exp {
4 int value;
5 Lit(int n) {value = n;}
6 void print() {System.out.println(value);}
7 }
8 adds class Add extends Exp {
9 Exp expr1; Exp expr2;

10 Add(Exp a, Exp b) {expr1 = a; expr2 = b;}
11 void print() {
12 expr1.print (); System.out.print("␣+␣");
13 expr2.print ();
14 }
15 }
16 }

Figure 2: DELTAJ 1.1 delta module for the product with features Lit, Add
and Print

1 delta DLitEval {
2 modifies Exp { adds int eval() {return 0;} }
3 modifies Lit {
4 adds int eval() {return value ;}
5 }
6 }
7 delta DAddEval {
8 modifies Add {
9 adds int eval (){ return expr1.eval ()+ expr2.eval ();}

10 }
11 }

Figure 3: DELTAJ 1.1 delta modules for feature Eval in combination with
Lit and Add

Figure 6 shows a DELTAJ 1.1 product line declaration for the
EPL. It:

• Lists the product features.
• Describes the set of valid feature configurations by a proposi-

tional formula over the set of features (cf. the feature diagram
in Figure 1).

2 This example shows that DOP provides an elegant way to counter the
optional-feature problem [19], where two optional features require addi-
tional glue code to cooperate properly.

1 delta DNeg {
2 adds class Neg extends Exp {
3 Exp expr;
4 Neg(Exp a) {expr1 = a;}
5 }
6 }
7 delta DNegPrint {
8 modifies Neg {
9 adds void print() {

10 System.out.print("-"); expr.print ();
11 }
12 }
13 }
14 delta DNegEval {
15 modifies class Neg {
16 adds int eval() {return (-1) * expr.eval ();}
17 }
18 }
19 delta DOptionalPrint {
20 modifies Add {
21 modifies void print() {
22 System.out.print("("); original ();
23 System.out.println(")");
24 }
25 }
26 }

Figure 4: DELTAJ 1.1 delta modules for feature Neg in combination with
Print and Eval

1 delta DremAdd { removes Add; }

Figure 5: DELTAJ 1.1 delta module for removing feature Add

1 spl EPL {
2 features Lit , Add , Neg , Print , Eval
3 configurations Lit && Print
4 deltas
5 [DLitAddPrint ,
6 DNeg when Neg]
7 [DremAdd when !Add]
8 [DLitEval when Eval ,
9 DAddEval when (Add && Eval),

10 DNegEval when (Neg && Eval),
11 DNegPrint when Neg ,
12 DptionalPrint when (Add && Neg)]
13 product Basic from EPL : {Lit , Print}
14 product Full from EPL : {Lit , Add , Neg , Print , Eval}
15 }

Figure 6: DELTAJ 1.1 declaration of the EPL

1 class Exp { void print() {} }
2 class Lit extends Exp {
3 int value;
4 Lit(int n) {value = n;}
5 void print() {System.out.println(value);}
6 }

Figure 7: JAVA code for product Basic (generated by DELTAJ 1.1)

• Attaches to each delta module an application condition (rep-
resented by a propositional constraint over the set of features)
specifying for which feature configurations the delta module
has to be applied. Since only feature configurations that are
valid according to the feature model are used for product gener-
ation, the application conditions, given in the when clauses, are
understood as a conjunction with the formula describing the set
of valid feature configurations.

• Specifies the application order of the delta modules by defining
a total order on the sets of a partition of the delta modules.
Deltas in the same set of the partition can be applied in any
order, but the order of the sets must be respected. The ordering
is specified by writing an ordered list of the delta module sets
which are enclosed by [..] after the keyword deltas.

3 2014/6/4

1 class Exp {
2 void print() {}
3 int eval() {return 0;}
4 }
5 class Lit extends Exp {
6 int value;
7 Lit(int n) {value = n;}
8 void print() {System.out.println(value);}
9 int eval() {return value ;}

10 }
11 class Neg extends Exp {
12 Exp expr;
13 Neg(Exp a) {expr1 = a;}
14 void print() {
15 System.out.print("(-"); expr.print ();
16 System.out.println(")");
17 }
18 int eval() {return (-1) * expr.eval ();}
19 }
20 class Add extends Exp {
21 Exp expr1; Exp expr2;
22 Add(Exp a, Exp b) {expr1 = a; expr2 = b}
23 void print$DoptionalPrint () {
24 expr1.print (); System.out.print("␣+␣");
25 expr2.print ();
26 }
27 void print() {
28 System.out.print("("); print$DoptionalPrint ();
29 System.out.println(")");
30 int eval() {return expr1.eval() + expr2.eval ();}
31 }

Figure 8: JAVA code for product Full (generated by DELTAJ 1.1)

• Declares two products: the product Basic that contains only
the mandatory features, and the product Full that contains all
the features.

Figure 7 and 8 show the Basic and the Full generated prod-
ucts, respectively. Note that, in the class Add in the code of Full
product, the name print$DOptionalPrint corresponds to the
original version of the method print modified by the application
of the delta module DOptionalPrint.

3. Towards DELTAJ 1.5
The DOP language constructs, as introduced in [8, 28, 30] and
adopted by DELTAJ 1.1, are unfit for full JAVA 1.5. This section
illustrates the shortcomings of the DELTAJ 1.1 language constructs
and introduces the new or revised DOP constructs that we have
developed for integrating DOP with JAVA 1.5. JAVA 1.5 knows
four different kinds of user-defined types: classes, interfaces, enum
classes and annotations. Hence, we refer to type where operations
affect more than one type, otherwise we refer to the specific type.

DELTAJ 1.5 supports the basic operations of DOP (see Sec-
tion 2.1). It can add methods and fields to classes with the op-
eration adds member. The operation for adding classes is re-
placed by an operation for adding Java Compilation Units (see
below). Types and methods can be modified with the operation
modifies member and types, methods and fields can be removed
from the source code base with the operation removes member.
The original(...) call is also part of DELTAJ 1.5. It can be used
to access the original method body when a method is modified.

Packages. JAVA 1.5 provides a package system to organize types
in packages for structuring the source code of an application or an
API. DOP provides an orthogonal mean to organize source code:
the delta module, which groups source code fragments that are
related to program features. The challenge is to develop a DOP
construct for dealing with the package system. The DELTAJ 1.1
syntax provides no syntactic constructs to add a package or import
declaration.

Assuming that each delta module is stored in a separate source
file, our first attempt to add the JAVA package system to DOP could
be that each delta module may contain a package declaration and
several import declarations at the beginning of the delta module
source file—this would look as shown in Figures 9 and 10. How-
ever, then, it would not be possible to modify or remove the package
declaration of a type or the import clauses. Additionally, this would
severely restrict the possibilities for modularizing code with delta
modules, as we can see from the following scenarios:

1. Assume two classes that should naturally be organized in dif-
ferent packages (e.g., for the data structure and one for the user
interface) are both needed for a feature. Then, it would not be
possible to modify them within a single delta module.

2. Assume that only one class added by a delta module (e.g., class
C2 in Figure 9) needs to import the interface List. If we remove
this class by another delta module (Figure 11), the result would
be an unused import statement.

3. Assume a class (C1 in Figure 9) is added by a delta module be-
longing to a particular package and another delta module modi-
fies or removes this class, but belongs to another package. Then,
there is no opportunity to identify this class by its qualified
name (e.g., see the modification of the class C1 in delta2 in
Figure 10).

4. Furthermore, it would be unclear to which package a type be-
longs in the generated product variant if it is added by a delta
module in one package and modified by a delta module in an-
other package. One possibility would be to generate new pack-
age declarations for the product variants (see Figure 11), but
this would destroy the packaging information after the genera-
tion process.

To address the above issues, we have revised the delta opera-
tion adds to also handle package and import declarations. The new
adds operation allows to add a complete Java Compilation Unit
with the package declaration, the import list and the type definition.
Imports and package declarations are distinct for each type decla-
ration. This makes it possible to add types to different packages
within one delta module. The new adds operation is illustrated by
the example in Figure 13. Moreover, in DELTAJ 1.5, we are able to
introduce generic types with the new adds operation.

With the JAVA package declaration, it is possible to identify a
type distinctly by its qualified name. Following the extension of
the adds operation, this leads to extensions of the modifies and
removes operations. We provide the qualified name of a type to
modify or remove it. These extended operations are presented in
Figure 14. We also introduce the opportunity to define a type’s
package implicitly by writing the qualified name in the type dec-
laration (see C2 in d1).

To get a delta-oriented access to the import list and the pack-
age declaration, we provide a syntax extension to the adds, mod-
ifies and removes operations inside the modifies block. To mod-
ify the package declaration, we provide the operation modifies
package new.pkg. To add or remove an import, we provide
the operations {adds | removes} import qualified.Name.
Within these new operations, we are able to modify the package
system. A type with modified package declaration may lead to type
errors, because types from the original package will not be found
after this modification. The opportunity to modify the import list
avoids this error. We do not allow types with and types without a
package declaration side by side in the source code base. Hence, we
do not provide a removes package operation. When generating the
product variants, we extend the qualified names of generated types
with a prefix, containing the product line’s and product variant’s

4 2014/6/4

1 package org.pkg1;
2
3 import java.util.List;
4
5 delta delta1 {
6 adds class C1 {
7 private int i;
8 }
9 adds class C2 implements List { ... }

10 }

Figure 9: Adding a class with an import
0.45

1 package org.pkg2;
2
3 delta delta2 {
4 modifies C1 {
5 adds private int j;
6 }
7 removes C2;
8 }

Figure 10: Removing a class, but leaving the import
0.45

1 package spl.variante;
2
3 import java.util.List;
4
5 class C1 {
6 private int i;
7 private int j;
8 }

Figure 11: Resulting class with unused import

Figure 12: First attempt to add packages to DOP

name. The extension of the qualified names prevents ambiguities
of type names in the source code of generated variants.

Interfaces. Interfaces can be declared and added within the new
adds operation. In order to be able to alter interfaces, we also
introduce modification operations for interfaces. Figure 17 gives
an overview of DELTAJ 1.5’s capabilities to deal with interfaces.
Within an interface declaration, we can add and remove methods
declared by an interface as well as constants. Furthermore, we can
add and remove imports as well as super-interfaces.

Inheritance. JAVA provides single inheritance to extend function-
ality of a class. To overcome limitations of single inheritance, JAVA
also provides interfaces. A class has a unique name, an optional su-
perclass and can contain a list of interfaces which are implemented.
A complete class definition can look like this: class A extends
B implements C, D { ... } where A is the classname, B is
the superclass and C and D are interfaces. For DELTAJ 1.1, the
keyword extending was defined to modify the superclass. Figure
18 shows the usage of this operator.

However, in DELTAJ 1.1, we do not have operations to add or
remove a list of interfaces which have to be implemented in a class.
Furthermore, DELTAJ 1.1, does not have keywords for explicitly
adding or removing superclasses, instead this is encoded by the
extending keyword. JAVA allows to define classes without an
explicit superclass implicitly inheriting form java.lang.Object.
The keyword extending changes the implicitly defined superclass
java.lang.Object, if no superclass was defined. For removing

1 delta d1 {
2 adds {
3 package org.pkg1;
4 class C1 {...}
5 }
6 adds {
7 import java.util.List;
8 class org.pkg2.C2<T extends Number >
9 implements List <Number > { ... }

10 }
11 }

Figure 13: Delta adding classes in separate packages

1 delta d2 {
2 modifies org.pkg2.C2 {
3
4 modifies package com.pkg2;
5
6 adds import java.util.MyList;
7 removes import java.util.List;
8
9 removes interfaces List <Number >;

10 adds interfaces MyList:
11 }
12 removes org.pkg1.C1;
13 }

Figure 14: Delta changing the package and import structure

1 package spl.variante.org.pkg2;
2
3 import java.util.MyList;
4
5 class C2 implements MyList { ... }

Figure 15: Resulting variant

Figure 16: The new adds operation of DELTAJ 1.5 holding the complete
Java Compilation Unit

1 delta delta1 {
2 modifies my.pkg.MyInterface {
3 adds import my.other.pkg.MyList;
4 removes import my.other.pkg.MyList2;
5 adds interfaces MyInterface2:
6 adds public static final int MY_INT_CONST = 3;
7 adds int methodSingature1 (...);
8 removes methodSignature2 (...);
9 }

10 }
11 }

Figure 17: Modification of interface declarations

the superclass definition, this can be encoded by the construct
modifies A extending Object { ... }.

In order to provide more explicit control for superclass and in-
terface implementations, we remove the keyword extending in
DELTAJ 1.5. Instead, we introduce a new keyword superclass.
It can be combined with the already known keywords adds,
modifies and removes. We now can add, modify or remove the
superclass definition of a class directly. For delta-oriented manipu-
lation of the interface list, we provide a new keyword interfaces.
It can be combined with the adds and removes operations. Thus,
we can add and remove interfaces implemented by a class or super-
interfaces of interfaces. There is no syntactical possibility to modify
the interface list as this can be expressed by addition and removal

5 2014/6/4

1 delta delta1 {
2 adds class C1 {...}
3 adds class C2 extends C1 {...}
4 adds class C3 implements AnInterface {...}
5 }
6
7 delta delta2 {
8 modifies C1 extending C3 {...}
9 modifies C2 extending C3 {...}

10 }

Figure 18: The extending keyword in DELTAJ 1.1

of particular interfaces in the list. This syntax for superclasses and
interfaces unifies the usage of the existing delta operations and is
presented in Figure 19.

1 delta delta1 {
2 modifies my.pkg.ClassName {
3
4 adds superclass qualified.ClassName1;
5 modifies superclass qualified.ClassName2;
6 removes superclass;
7
8 adds interfaces qualified.InterfaceName1 , ...;
9 removes interfaces qualified.InterfaceName2 , ...;

10 }
11 }

Figure 19: Superclasses and Interfaces in DELTAJ 1.5.

Nested types. In Java, it is possible to nest a type into another
type. With the existing syntax of DELTAJ 1.1, we are not able
to deal with nested types. To overcome this, we provide a syn-
tax extension for nested types (see Figure 20). A nested type is
identified by its name. To avoid a collision with fields, we intro-
duce a new keyword nested which identifies a nested type by its
name. This keyword can be combined with the existing keywords
for adding, modifying and removing class members. For the defini-
tion and modification of the nested type itself, we can use the same
syntax as for types.

1 delta delta1 {
2 adds {
3 class C1 {
4 ...
5 public class Inner1 {...}
6 }
7 }
8 modifies C2 {
9 adds nested{

10 public class Inner2 {...}
11 }
12 modifies nested Inner3 {...}
13 removes nested Inner4;
14 }
15 }

Figure 20: Nested classes in DELTAJ 1.5

Enumerations. An enumeration class defines an enumeration
type. In JAVA, we are able to define enumeration types, but in
DELTAJ 1.1, there are no operations to alter an enumeration type.
Hence, we need a syntax extension to use enumeration types in
DELTAJ 1.1. Our goal is to add items to an enumeration type and
to remove items. We do not need to modify enumeration items, be-
cause an enumeration type can be interpreted as a list of identifiers.

Modifying a list means to add or to remove items of the list. Thus,
we provide the keywords adds and removes to add and remove
a list of enumeration items. Figure 21 shows the new syntax for
modifying an enumeration type.

1 delta delta0 {
2 adds {
3 public enum E { SEND, RECEIVE }
4 }
5 }
6 delta delta1 {
7 modifies E {
8 removes SEND;
9 adds ENCRYPTED , PLAIN;

10 }
11 }

Figure 21: Enumerations in DELTAJ 1.5

Fields and Methods. In DELTAJ 1.1, fields only have a type
and a name. Thus, there is no modifies operation for fields—a
field’s type can be changed by removing the field and adding it
again with the other type. In JAVA 1.5, however, fields can have
access modifiers which may have to be changed in a delta. The
above workaround for modifying a field is not practical, since it
requires to use two different delta operations, e.g., when a field
should be modified to become final, while the type and the other
modifiers should not be changed. Therefore, in DELTAJ 1.5, we
introduce a modifies operation for fields, which flexibly supports
to modify both the type and the different access modifiers. With the
new modifies field operation, we are able to refer only to the
modifiers we want to change. All other modifiers, set when adding
the field, are not touched.

1 delta delta1 {
2 adds {
3 class C1 {
4 private int i, j;
5 public static int k, l;
6 private List <Number > list;
7 }
8 }
9 }

10 delta delta2
11 modifies C1 {
12 modifies i {public };
13 modifies j {static };
14 modifies k {! static final};
15 modifies l {static !final Integer };
16 modifies list {protected List <Integer >};
17 }
18 }

Figure 22: Deltas introducing and modifying fields

1 class C1 {
2 public int i;
3 private static int j;
4 private final int k;
5 private static Integer l;
6 }

Figure 23: Resulting class after applying delta1 and delta 2

Figure 24: Modification of fields in DELTAJ 1.5

Figure 24 shows the usage of this operation. The syntax of
the new field modification operation consists of the keyword
modifies, the field’s name and a block, surrounded by curly

6 2014/6/4

braces. Between the braces one can override the access modifier
and type property of the field or remove modifiers. To remove a
modifier, it is marked with an exclamation mark. Every modifier
mentioned in the modifies clause overwrites the original modifier,
but modifiers that are not mentioned will not be overwritten. Fig-
ure 24 shows different modifies field operations: In line 12,
the visibility is changed from private to public. Line 13 gives
the field j the additional property of being static. The field k looses
the property static in line 14 and is set to final. In the case, that
one does not know if a property is set or unset, we allow to set
this property twice (see lines 5 and 15): l is introduced as static,
but this property is set again. Furthermore, the type modification
can deal with generic types. In line 16, the type List<Number>
of field list is changed to List<Integer>. It is also possible to
introduce a generic type to a field which had a non generic type and
vice versa. The instantiation (<...>) of a generic type cannot be
modified directly. As a workaround one can exchange the complete
type, e.g., from List<Number> to List<Integer>.

The modification of methods in DELTAJ 1.5 replaces the meth-
ods body with a new body like in DELTAJ 1.1. Within the new
body the original body can be accessed by calling it with its spe-
cial method call original(...). The modification of the methods
properties, i.e., parameters, modifiers and return type is currently
not possible. However, a similar modification operation as for fields
is possible and currently being designed.

JAVA 1.5 allows to overload method names. Because a method
is identified by its signature, it is possible to define several meth-
ods with the same name, but with a different signature. DELTAJ
1.1 provides the operation, removes methodName to remove a
method. This operation will not work safely in a context where
methods are overloaded. A problem also occurs if a class has a field
and a method with the same name. Because the keyword removes
is only followed by the name of the member to be removed in
DELTAJ 1.1, it is ambiguous which member will be removed.

To overcome this issue, we extend the removal operation for
methods in DELTAJ 1.5 by its signature and fields by its name.
We propose the syntax removes methodName(...) and removes
fieldName to remove methods and fields, respectively, shown in
Figure 25. The removal of methods just needs to include the types
of the method parameters, for fields it just needs the name.

1 delta delta1 {
2 adds {
3 class C1 {
4 private int i, j, k;
5 public void doSomething () {...};
6 public void doSomething(int i){...};
7 public void doSomething(Number n){...};
8 }
9 }

10 }
11 delta delta2 {
12 modifies C1 {
13 removes i;
14 removes k;
15 removes doSomething ();
16 removes doSomething(int);
17 }
18 }

Figure 25: Removal operations in DELTAJ 1.5

4. Implementation
There is an existing Eclipse plug-in for DELTAJ 1.13. It was im-
plemented with Xtext4, an Eclipse framework to implement DSLs
and its corresponding Eclipse plug-ins. Because of the existing im-
plementation, we decided to use Xtext again to implement a new
Eclipse plug-in for DELTAJ 1.5. This section will give an overview
of the main ideas of implementing DELTAJ 1.5 with Xtext.

4.1 Xtext
Xtext [1, 7] is a language workbench (such as MPS [38] and
Spoofax [20]): it takes as input a grammar definition, specified
in a DSL similar to EBNF, and it generates a parser, an abstract
syntax tree, and Eclipse-based tooling features (e.g., editors with
syntax highlighting, code completion and static error highlighting).
For this reason, it is much more powerful than traditional parser
generators (such as Flex/Bison [24] or ANTLR [26]) which only
deal with the syntax of a language.

The first task in Xtext is to write the grammar of the language
using an EBNF-like syntax. The grammar of our language defined
in Xtext is partially shown later in Figure 28-(b). Using this gram-
mar, Xtext generates an ANTLR parser [26]. During parsing, the
AST is automatically generated by Xtext in the shape of an EMF
model (Eclipse Modeling Framework [33]). Thus, we can manipu-
late the AST using all mechanisms provided by EMF itself.

Most of the code generated by Xtext can already be used as
it is, since the main aim of Xtext is to infer good and sensible de-
fault implementations from the grammar definition itself. However,
most constraint checks, like type checking, have to be adapted by
customizing some classes used in the framework. The customiza-
tions are “merged” into Xtext’s classes using Google-Guice, a de-
pendency injection framework [13].

Xbase [12] is an extendable and reusable expression language
that is part of Xtext and can be embedded in a DSL. Xbase inte-
grates completely with the JAVA platform and JDT (Eclipse JAVA
development tools). In particular, Xbase reuses the JAVA type sys-
tem (including generics) without modifications; this means that a
language that uses Xbase will automatically and transparently ac-
cess any JAVA type. In order to reuse Xbase’s JAVA type system,
we have to map the concepts of our language into the Java model
elements of Xbase (e.g., classes, fields, methods, etc.). Such map-
ping will let Xbase automatically implement type checking for the
expressions.

We have considered to use Xbase in our implementation for
the body of JAVA methods, but we decided against it for two main
reasons. First of all, Xbase expressions are not JAVA expressions,
since one of the main goals of Xbase is removing most of the
“syntactic noise” from JAVA (e.g., types of variable declarations can
be inferred by Xbase itself) and providing more advanced features
(e.g., lambda expressions). Thus, using Xbase would have implied
to implement deltas for a language that is similar to JAVA, but not
strictly compliant with it from the syntactic point of view. Most of
all, Xbase strictly requires that each Xbase expression (i.e., in our
case, each method body) is mapped exactly into one JAVA model
expression. This is not possible in our language since we need to
generate different versions of the same method according to the
modification operations. In the future, we might consider to further
investigate if we can bypass these issues in order to benefit from
the automatic JAVA integration offered by Xbase.

4.2 Extending DELTAJ 1.1 to DELTAJ 1.5
This section gives an overview of the implementation of the lan-
guage plug-ins for DELTAJ 1.5.

3 https://www.tu-braunschweig.de/isf/research/deltas
4 http://www.eclipse.org/Xtext

7 2014/6/4

4.2.1 DELTAJ 1.5 Grammar
As described above, the implementation starts with the language’s
grammar. To implement DELTAJ 1.5, we took a JAVA 1.5 ANTLR
grammarto implement the JAVA core, translated it into the Xtext
grammar language and refactored some grammar rules to have
better access to model elements. As an example of the refactor-
ings, Figure 28 shows the statement rule of both grammars. In
the ANTLR grammar (Figure 28-(a)), the statement rule is con-
crete and implements all possible statements. The keyword de-
cides which kind of statement it is and which other keywords
and elements have to occur in the source code (e.g., ’for’ ’(’
forControl ’)’ statement in line 6). This implementation of
the statement rule is ambiguous. To identify the concrete state-
ment, a complex if-else if-. . . -else statement has to check all child
elements, if information from a concrete statement has to be ex-
tracted or modified. To overcome this, we have refactored this
rule. In our Xtext grammar (Figure 28-(b)), the statement rule is
an abstract rule which can be one of a number of subrules. Each
JAVA statement occurs as a unique rule (e.g., For: ’for’ ’(’
control=ForControl ’)’ statement=Statement; in ll. 16-
18). The refactoring leads to less code, as the decision which kind
of statement is used is made with one instanceof-operation.
The delta-oriented part of the grammar was extended by a set of
new rules. These rules implement the syntax extensions we have
presented in the previous section. Some of the existing rules of
DELTAJ 1.1 were refactored to implement the modified operations.
As a result, we are able to provide a grammar which allows to add
classes with full JAVA syntax and most of a class’ properties can be
modified or removed within DOP.

4.2.2 Product line declaration
To specify the product line declaration in DELTAJ 1.5, we provide
a novel domain specific language (DSL) (see Figure 29 for the
corresponding product line declaration of the expression product
line of Section 2.3). This allows a separate specification of the
product line declaration in DELTAJ 1.5 which in DELTAJ 1.1 was
still integrated with the definition of the delta modules. The DSL in
DELTAJ 1.5 contains

1. the set of all features of the product line (l. 2),

2. the set of all delta names which implement the features (ll. 3-4),

3. a set of constraints which describes the valid configurations of
the feature model (ll. 5 - 7),

4. a set of partitions which contains the mappings between deltas
and features (ll. 8 - 17) and

5. the set of all products which can be generated in the product
line (ll. 18 - 21).

A feature model constraint is a propositional formula which
describes dependencies between features. We provide the operators
and (AND or * or &), or (OR or + or |), exclusive or (XOR or ˆ), not
(! or - or ˜) and implies (IMPLIES or =>) to build a constraint. The
constraints block is followed by the partitions block (Partitions
{...}). A partition consists of a set of when clauses. A when
clause begins with a list of deltas followed by the keyword when
and a propositional formula like in the constraints block. The when
clause determines for which feature combinations a delta is applied.
This allows saving to copy the when clauses for several deltas.
The end of a partition is marked by a semicolon. The order of the
partitions implies a partial order of the deltas. The deltas in a single
partition have no special application order, but deltas in an earlier
partition are applied before the deltas of a later partition. The last
block is the products block (Products {...}). It contains a set
of products of the product line. A product starts with the product’s

1 statement:
2 block |
3 ASSERT expression (’:’ expression)? ’;’ |
4 ’if’ parExpression statement
5 (options {k=1;}: ’else ’ statement)? |
6 ’for ’ ’(’ forControl ’)’ statement |
7 ’while ’ parExpression statement |
8 ’do’ statement ’while ’ parExpression ’;’ |
9 ’try ’ block (catches ’finally ’ block |

10 catches |
11 ’finally ’ block) |
12 ’switch ’ parExpression ’{’
13 switchBlockStatementGroups ’}’ |
14 ’synchronized ’ parExpression block |
15 ’return ’ expression? ’;’ |
16 ’throw ’ expression ’;’ |
17 ’break ’ Identifier? ’;’ |
18 ’continue ’ Identifier? ’;’ |
19 ’;’ |
20 statementExpression ’;’ |
21 Identifier ’:’ statement;

Figure 26: Statement rule of JAVA 1.5 (ANTLR)

1 Statement:
2 Block | Assert | If | For | While | Do | Try |
3 Switch | Synchronized | Return | Throw | Break |
4 Continue | {Empty} ’;’ | StatementExpression1 |
5 Identifier;
6
7 Assert:
8 ’assert ’ expression += Expression
9 (’:’ expression += Expression)? ’;’;

10
11 If:
12 ’if’ expression=ParExpression
13 ifStatement=Statement (=>
14 ’else ’ elseStatement=Statement)?;
15
16 For:
17 ’for ’ ’(’ control=ForControl ’)’
18 statement=Statement;

Figure 27: Statement rule of JAVA 1.5 (Xtext)

Figure 28: Grammar translation an refactoring

name followed by an assignment and the set of the features which
should be implemented by this product.

4.2.3 Product generation
We re-designed the process of product generation based on a sec-
ond plugin implementing the product line declaration explained in
the previous subsection. The functionality of this plug-in helps the
developer to easily specify a valid delta-oriented SPL. The plug-
in contains validation of the feature model and of the mapping
of deltas to feature combinations (and vice versa). For the defined
deltas, it validates, if these deltas exists in the source code If not,
these deltas will be automatically generated (with an empty body).
The plug-in provides information if a feature or delta is never used.

To generate a product for a given feature configuration, we need
to find the necessary deltas to be applied. First, we create a con-
junction of all feature names. If a feature is not selected in the
given feature configuration, it is negated. This Boolean expression
is as follows for a feature configuration of the EPL (see Figure 29):
MyEPL = Lit∧!Add∧Neg∧Print∧Eval. Then, for each when-
clause W of each partition, a Boolean expression is constructed
which states that the when clause is implied by the feature con-
figuration, e.g., ToApply = MyEPL → W. The expression ToApply

8 2014/6/4

1 SPL EPL {
2 Features = {Lit , Add , Neg , Print , Eval}
3 Deltas = {DLitAddPrint , DLitEval , DAddEval , DNeg ,
4 DNegPrint , DNegEval , DOptionalPrint , DremAdd}
5 Constraints {
6 Lit & Print;
7 }
8 Partitions {
9 {DLitAddPrint , DNeg} when (Neg);

10
11 {DremAdd} when (!Add);
12
13 {DLitEval} when (Eval),
14 {DAddEval} when (Add & Eval),
15 {DNegPrint} when (Neg),
16 {DOptionalPrint} when (Add & Neg);
17 }
18 Products {
19 Basic = {Lit , Print};
20 Full = {Lit , Add , Neg , Print , Eval};
21 }
22 }

Figure 29: Product line declaration of the EPL in DELTAJ 1.5

is evaluated with a SAT Solver5. If the expression ToApply is sat-
isfiable, the deltas of this partition have to be applied to build the
product. Internally, we add the names of these deltas to a list of
applicable deltas. The order of this deltas is given by the order of
their occurrence in the partitions.

After deltas that have to be applied have been determined, the
source code for this product is generated. To do that, we extract
the implementation of all necessary deltas and apply the contained
delta operations. The generation process is a model-to-model trans-
formation. The input model is an instance of the EMF meta-model
which is created by Xtext during the parsing. The root element of
this model is DeltaJUnit. It holds elements of the type Delta
from the list of delta modules that have to be applied. The output
model is an instance of this EMF meta-model, too. Here, the root
element is the JavaCompilationUnit, i.e., the root element of the
JAVA part of the DELTAJ 1.5 grammar.

For each class, which is added, the class elements are copied
from the input to the output model, and the copy is referenced
by an instance of a wrapper class for the Java Compilation Unit
(JCU). This wrapper class provides a method to apply modify ac-
tions, which are elements of the input model. This method identifies
the modifies or removes actions, extracts the information that has to
be modified and identifies the element in the JCU where this mod-
ification has to be made. Then, it modifies the identified element.
After all deltas are applied, the generated classes are serialized and
written into the JAVA source files in the file system.

Since the JAVA code is generated in source folders of an Eclipse
project, Eclipse will automatically compile such generated files.
Thus, the programmer does not need to invoke the JAVA compiler
manually on the generated JAVA code.

5. Evaluation
With DELTAJ 1.5, extended to full JAVA 1.5 syntax, we can now ex-
ploit the full power of DOP for large-scale software development.
As a first step, we provide an initial case study, where we compare
DELTAJ 1.5 with a plugin-based approach, that is, the ECLIPSE
RCP. The plugin-based approach is widely used for flexible and
modular software development and thus aims at supporting variant-

5 We use the Prop4J (part of the FeatureIDE project [36]) and Sat4J [6] APIs
to evaluate this expression.

Figure 30: Feature diagram of the STE

rich systems, similarly as DELTAJ 1.5. To guide our case study, we
formulate the following research questions:

RQ1 Is DELTAJ 1.5 expressive enough to implement a real
world, variant-rich software system?

RQ2 Is the architecture of a variant-rich software system less
redundant and more intuitive than the ECLIPSE RCP ap-
proach?

With RQ 1, we want to demonstrate that, with the new DELTAJ
1.5, we unleash the full power of Java to the delta-oriented ap-
proach and thus, we are capable to support large-scale development
similarly to well-established approaches. Moreover, with RQ 2, we
show that implementing variable software systems is more flexible
(in terms of granularity) and less redundant with our language (e.g.,
no boilerplate code).

SimpleTextEditor SPL. Next, we present the subject system of
our case study, SimpleTextEditor SPL (STE) [14], which we de-
signed as SPL and implemented with DELTAJ 1.5 and as a set
of plug-ins for the ECLIPSE RCP. The STE product line consists
of 11 features, resulting in 128 valid variants. In Figure 30, we
show the corresponding feature diagram. Basically, the STE pro-
vides a text area, which is mandatory (feature TextField), but
has alternatively a single area (Single) or a tabbed multiple ar-
eas (Multiple). Moreover, different optional features exist for ex-
tended capabilities, such as syntax highlighting for different pro-
gramming languages, line wrapping or statistics about active docu-
ments within the editor.

As mentioned earlier, two versions of the STE product line
exists (for DELTAJ 1.5 and ECLIPSE RCP, respectively). Both
are based on an implementation with plain JAVA, which we de-
composed and migrated manually to the respective implementa-
tion approach. This way, we want to ensure comparability between
both (variable) implementations. With DELTAJ 1.5, each feature is
mapped to a delta module that encompasses all code artifacts, re-
lated to this feature. Similarly, the ECLIPSE RCP implementation
provides a plug-in for each feature. Dependencies between features
are mapped accordingly as plug-in dependencies. Product variants
are generated in DELTAJ 1.5 by applying the delta operations to
the variant’s source code base. An ECLIPSE RCP variant is created
by installing its corresponding plug-ins.

The implementation of the STE uses a lot of widely used lan-
guage concepts of JAVA 1.5 including abstract classes, annotated
methods, anonymous classes, arrays, exception handling, generic
types, imported types, interfaces, loops, modifiers and packages.
This is of particular importance for RQ 1. The STE also uses types
from the JAVA API (java.util and java.io) and the ECLIPSE
SWT API6. An observation we made during decomposition is that

6 http://www.eclipse.org/swt/

9 2014/6/4

DELTAJ Full variant Basic variant AVG
1.5 M S M S
Files 10 10 8 8 9

Classes 37 34 24 21 28.75
LOC 1150 1088 616 554 852
MPC 2.81 2.94 2.42 2.57 2.61

MC 440 401 286 247 343.5

ECLIPSE Full variant Basic variant AVG
RCP M S M S

Files 25 25 16 16 20.5
Classes 56 54 36 34 45.25

LOC 1275 1215 792 732 1003.5
MPC 2.25 2.26 2.31 2.32 2.29

MC 455 415 324 284 369.5

Table 1: Result of the measurement of the STE. It shows the number of files
(Files), number of classes (Classes), lines of code (LOC), average methods
per class (MPC) and method calls (MC) for the four products of the STE.

with DELTAJ 1.5, it is possible to keep the source code structure
of the original implementation. In contrast, for the ECLIPSE RCP
implementation, we had to adapt the structure so that it fits the ex-
tension points mechanism, needed to access a feature’s implemen-
tation.

Metrics. The analysis and evaluation of DELTAJ 1.5 source code
is difficult, because of missing tool support to measure variability-
aware metrics. To overcome this problem, we generate products,
measure the generated JAVA source code and transfer the results to
the DELTAJ 1.5 source code. To cover all features, we measure four
variants for each implementation, respectively: A basic (minimal)
variant and a full variant for each alternative feature Single and
Multiple .

We used different source code measures for answering our re-
search questions and show the results in Table 1. To evaluate the
expressiveness (RQ1), we are looking for JAVA 1.5 language fea-
tures used in the source code. As qualitative measure, we count the
method calls (row MC), because we consider methods as the most
natural building blocks (even more than classes) of JAVA programs.
To evaluate the complexity (RQ2) of the source code, we measure
the number of files (row Files) and classes (row Classes). More-
over, we measured size-related metrics, in particular lines of code
(row LOC) and the average number of methods implemented in a
class (row MPC).

Result. For a better comparison of DELTAJ 1.5 and ECLIPSE
RCP, in Figure 31, we show the ratio between the DELTAJ 1.5 and
the ECLIPSE RCP metrics. Each bar shows the relative value of
DELTAJ 1.5 compared to ECLIPSE RCP. For instance, the source
code’s base size of the DELTAJ 1.5 variant is only 75.68% of the
corresponding ECLIPSE RCP variant’s source code size. Next, we
present the concrete results and interpret them with respect to the
research questions:

1. DELTAJ 1.5 is expressive enough (RQ1) to implement a real
world, variant-rich software system. An inspection of the source
code (paragraph implementation details) revealed that the STE
makes use of many JAVA 1.5 language concepts, which are only
available with DELTAJ 1.5 but not within DELTAJ 1.1. More-
over, the DELTAJ 1.5 implementation demonstrates that these
concepts integrate seamlessly with the delta-oriented concepts
such as modifies or removes. Finally, based on the fact that
we reused most of the original structure of STE, we argue that
DELTAJ 1.5 is highly expressive in the sense that it can be

45.00%
63.47%

83.30%

114.31%

92.14%

0%

20%

40%

60%

80%

100%

120%

140%

Files Classes LOC MPC MC

Basic M Basic S AVG Full M Full S

Figure 31: Results of the quantitative evaluation. Each bar represents the
DELTAJ 1.5 measurement relatively to the ECLIPSE RCP measurement.

easily adopted in existing implementations without a migration
overhead.

2. DELTAJ 1.5 source code is less redundant (RQ2). Our data re-
veal that implementing variability (w.r.t. to our STE product
line) with DELTAJ 1.5 is less ambiguous than with ECLIPSE
RCP. First, for DELTAJ 1.5, only half of the files (45%) is
needed, compared to ECLIPSE RCP. Thinking of large soft-
ware systems, we argue that this causes less ambiguity, and
searching for concrete feature implementation is not hindered
or obfuscated by meaningless files. Second, DELTAJ 1.5 imple-
ments considerably less classes (63.47%) compared to ECLIPSE
RCP, while providing the same functionality for the analyzed
variants. The main reason might be the fact that with ECLIPSE
RCP additional code is needed especially for implementing in-
terfaces, which are necessary for interaction between plug-ins.
Particularly, an interface provides access to the implementation
of a feature, which allows to extend this feature, but results
in a certain amount of boilerplate code. In contrast, DELTAJ
1.5 directly extends existing classes due to the concept of delta
module, which encompass everything related to such a module.
There is no glue code needed to connect delta module and thus,
boilerplate code is completely omitted. As a consequence, the
DELTAJ 1.5 implementation has a smaller code base (83.3%
in average), especially for variants that to not make use of all
features. We argue that this also indicates a less complex design
(no interface overhead, no boilerplate code) and thus, imple-
menting variability with DELTAJ 1.5 is more intuitive. Never-
theless, common design principles are still needed and should
be applied where necessary.

Threats to Validity: Although we conducted our evaluation with
care, it exhibits some limitations. First, our case study consists of
only one system that is small in size and has been implemented for
this purpose only. Hence, our findings are not generalizable to other
(large-scale) systems. Second, we compared DELTAJ 1.5 with one
other approach for implementing variant-rich systems. Hence, we
cannot generalize our findings (w.r.t. expressiveness and redun-
dancy) to other variability mechanisms such as feature-oriented
programming or preprocessor annotations. Third, we analyzed con-
crete variants rather than the complete code base. Especially for
quality-related measures, such as complexity or cohesion, this may
be limited. However, the main focus of this paper was rather the
technical realization of DELTAJ 1.5, whereas the evaluation was
complementary in order to demonstrate the applicability of DELTAJ
1.5 for implementing SPLs. We will address the aforementioned
shortcomings in a comprehensive case study in future work.

10 2014/6/4

6. Related Work
For implementing software product lines, there are three main ap-
proaches [31]. First, annotative approaches, such as conditional
compilation, mark parts of the source code as belonging to a fea-
ture. These parts are only used in the final product when the re-
spective feature is selected, all other parts are removed. This leads
to large and complex programs if many features are considered.
Second, compositional approaches encapsulate the artifacts of a
feature into a distinct module which are composed to form the fi-
nal product. Examples are feature-oriented (FOP) [5] and aspect-
oriented (AOP) [21] programming. Third, transformational ap-
proaches, such as DOP [8, 28, 30] construct further program vari-
ants by modifying an existing program.

Delta modeling, the variability modeling technique underlying
DOP, is not only used to express variability on the programming
language level, but is also applied to express variability of modeling
languages, such as software architectures [15] or Matlab/Simulink
models [16]. Recently, the concept of delta modeling has been
applied to express variability in the abstract behavioral modeling
language ABS [9].

Comparing DELTAJ 1.5 with FOP and AOP. As the main con-
tribution of this paper is the extension of DOP to JAVA 1.5, we
compare other programming languages for modular programming
paradigms with respect to their capabilities to access the object-
oriented features of JAVA. Although FOP and AOP do not allow
the removal of source code, they are the modular programming
paradigms closest to DOP. Thus, we compare AHEAD and Fea-
tureHouse (FOP) and AspectJ (AOP) with DELTAJ 1.5.

AHEAD. An early approach to implement feature-oriented SPLs
is the AHEAD tool suite [5]. It facilitates the stepwise refinement
of classes and supports jampack (i.e., the class modifications are
merged into the final class) and mixins (i.e., refined classes be-
come abstract with a generated name and are extended by the final
class). AHEAD extends the JAVA syntax by the keywords Super,
referencing a refined method (similar to the original call), and
refines, used for refining interfaces and classes.

An implementation of AHEAD for JAVA is available7. Concern-
ing JAVA’s object-oriented features, it is possible to change the
package of a class when it is first introduced, but not afterwards.
Imports can be added to a class or interface, but an import can
not be removed. The superclass may not be changed, but interfaces
can be added to a class or interface. Interfaces can also be refined.
Fields can be added. Methods can be added or overridden using the
Super keyword to call the overridden method. Nested classes and
enumerations are not supported.

FeatureHouse. FeatureHouse is a language independent-concept
for composing different kinds of software artifacts (e.g., JAVA
source code) using the concept of FOP [3]. The artifacts of a feature
module are transformed into feature structure trees (FST) and sub-
sequently superimposed with the corresponding FSTs of another
feature module. The terminal nodes (in the case of JAVA, methods
and fields) are overridden. The original keyword can be used to
call the overridden method.

Concerning JAVA’s object-oriented features, the package of a
class in FeatureHouse cannot be changed after it is introduced.
Imports can be added to a class, but they can not be removed. It
is not possible to change the superclass, but additional interfaces
can be added. The type of a field and the return type of a method
can be changed by overriding a method, but the modifiers of fields
and methods cannot be changed. A method can be overridden
and the original method can be called from inside the overriding

7 http://www.cs.utexas.edu/users/schwartz/ATS/fopdocs/

method using the original keyword. Besides the new keyword
original, FeatureHouse uses the syntax of plain JAVA classes.
Nested classes are supported and can be changed the same way a
normal class can. Enumerations cannot be changed.

FeatureHouse does not have a technical documentation describ-
ing the exact behavior of the composition. We used FeatureIDE 8

to observe how refinements are handled.

AspectJ. AspectJ9 is an extension to JAVA which allows enhanc-
ing functionality by weaving additional code in the form of aspects
into a program. AspectJ is intended to implement crosscutting con-
cerns, but not for realizing software product lines, although it is
also used in this way [2]. AspectJ uses joint points to define where
extensions, called advices, are executed. A point cut is set of join
points and can be defined over method or constructor calls, excep-
tions or field accesses. Point cuts can be combined by operators
(not, and, or) and restricted, e.g., by the class the control flow cur-
rently is in. Aspects can have their own variables and methods, but
they are not added to a class. The syntax is similar to that of JAVA
with the addition of point cuts and advices.

Concerning other object-oriented features of JAVA, a class itself
cannot be changed by an aspect. Therefore the package, superclass
and imports cannot be changed either. It is not possible to add or
modify fields of a class, but an aspect can introduce fields and
methods and associate them with a class to be used inside advices.
An advice can be executed before, after or instead of a method
which works the same as using the original keyword in DELTAJ
1.5. It is not possible to add nested classes.

Discussion. AHEAD and FeatureHouse try to minimize the
changes to the JAVA syntax to make it easy for the developer to im-
plement feature-oriented SPLs. This leaves some of JAVA’s object-
oriented features uncovered. Implementing SPLs is not the goal of
AspectJ. This makes it necessary to use a more complex syntax for
expressing point cuts and advices, but by construction, this does
not cover JAVA’s object-oriented features completely. In DELTAJ
1.5, in addition to adding and modifying elements, elements like
classes, methods or fields can also be removed. This makes it nec-
essary to provide additional delta operations. The explicit removal
operation leads to a much more expressive language for software
reuse compared to FeatureHouse or AHEAD. Furthermore, com-
pared to the above languages, DELTAJ 1.5 is the first language
for modular implementation of software product lines that allows
integrated access to the object-oriented features of JAVA 1.5.

7. Conclusion and Future Work
DOP [8, 28, 30] is a modular programming paradigm for imple-
menting software product lines. In this paper, we have presented
DELTAJ 1.5 extending previous proof-of-concept realizations of
DOP for java-like core languages. DELTAJ 1.5 allows integrated
access to the object-oriented features of JAVA 1.5 as one of the first
programming languages for a modular programming paradigm. Al-
though, DELTAJ 1.5 integrates most of JAVA 1.5’s object-oriented
features, there is still room for improvements. We are currently
working on language support for delta operations on JAVA anno-
tations and an extension of the modification operations for JAVA
generics and for method signatures, including alterations of access
modifiers. Our final goal is to support all JAVA language features up
to JAVA 8 in DOP, such as lambda expressions, anonymous meth-
ods, default interface methods, switch-case-statements with strings
and multi-catch-blocks. The prototype for DELTAJ 1.510 imple-
ments an editor with syntax highlighting, a customized outline view

8 http://fosd.de/fide
9 http://eclipse.org/aspectj/
10 https://www.tu-braunschweig.de/isf/research/deltas

11 2014/6/4

and product generation. In order to avoid the generation of prod-
ucts which are not well-typed, we have developed a light-weight
type checking approach [22] which adapts the concepts of [35] to
DOP. The main idea of this type checking approach is to collect the
dependencies between language elements defined in delta modules
and elements accessed in delta modules. These dependencies are
then checked against the product line declaration in order to ensure
that all possible products are well-typed. This approach is currently
implemented within the prototype of DELTAJ 1.5.

References
[1] Xtext 2.4 Documentation. PDF document from the frame-

works website, 16. April 2013. Online at www.eclipse.org/
Xtext/documentation/2.4.0/Documentation.pdf; last visited
on 2013/05/13.

[2] Vander Alves, Pedro Matos, Leonardo Cole, Alexandre Vasconcelos,
Paulo Borba, and Geber Ramalho. Extracting and evolving code in
product lines with aspect-oriented programming. T. Aspect-Oriented
Software Development, 4:117–142, 2007.

[3] Sven Apel, Christian Kastner, and Christian Lengauer. Language-
independent and automated software composition: The featurehouse
experience. Software Engineering, IEEE Transactions on, 39(1):63–
79, 2013.

[4] Don Batory. Feature models, grammars, and propositional formulas.
In Proceedings of the 9th international conference on Software Prod-
uct Lines, SPLC’05, Berlin, Heidelberg, 2005. Springer-Verlag.

[5] Don Batory, Jacob Neal Sarvela, and Axel Rauschmayer. Scaling step-
wise refinement. Software Engineering, IEEE Transactions on, 30(6):
355–371, 2004.

[6] Daniel Le Berre and Anne Parrain. The Sat4j library, release 2.2.
JSAT, 2010.

[7] Lorenzo Bettini. Implementing Domain-Specific Languages with Xtext
and Xtend. Packt Publishing, 2013. ISBN 9781782160304.

[8] Lorenzo Bettini, Ferruccio Damiani, and Ina Schaefer. Compositional
type checking of delta-oriented software product lines. Acta Informat-
ica, 50(2):77–122, 2013.

[9] Dave Clarke, Nikolay Diakov, Reiner Hähnle, Einar Broch Johnsen,
Ina Schaefer, Jan Schäfer, Rudolf Schlatte, and Peter Y. H. Wong.
Modeling spatial and temporal variability with the hats abstract be-
havioral modeling language. In SFM, pages 417–457, 2011.

[10] Paul Clements and Linda Northrop. Software product lines: practices
and patterns. Addison-Wesley Longman Publishing Co., Inc., Boston,
MA, USA, 2001.

[11] Ferruccio Damiani and Ina Schaefer. Family-based analysis of type
safety for delta-oriented software product lines. In Leveraging Appli-
cations of Formal Methods, Verification and Validation. Technologies
for Mastering Change, volume 7609 of Lecture Notes in Computer
Science, pages 193–207. Springer, 2012.

[12] Sven Efftinge, Moritz Eysholdt, Jan Köhnlein, Sebastian Zarnekow,
Robert von Massow, Wilhelm Hasselbring, and Michael Hanus.
Xbase: Implementing Domain-Specific Languages for Java. In GPCE,
pages 112–121. ACM, 2012.

[13] Martin Fowler. Inversion of Control Containers and the Dependency
Injection pattern. http://www.martinfowler.com/articles/
injection.html, January 2004.

[14] Konstantin Friesen. Entwicklung einer Werkzeugunterstützung für
DeltaJava und Evaluierung der Sprache anhand einer Fallstudie. Mas-
ter thesis, Technische Universität Braunschweig, Institut für Soft-
waretechnik und Fahrzeuginformatik, September 2012.

[15] Arne Haber, Thomas Kutz, Holger Rendel, Bernhard Rumpe, and Ina
Schaefer. Delta-oriented architectural variability using monticore. In
ECSA Companion Volume, 2011.

[16] Arne Haber, Carsten Kolassa, Peter Manhart, Pedram Mir Seyed
Nazari, Bernhard Rumpe, and Ina Schaefer. First-class variability
modeling in Matlab/Simulink. In VaMoS, 2013.

[17] Atsushi Igarashi, Benjamin C. Pierce, and Philip Wadler. Feather-
weight Java: A Minimal Core Calculus for Java and GJ. ACM Trans.
Program. Lang. Syst., May 2001.

[18] Kyo C Kang, Sholom G Cohen, James A Hess, William E Novak,
and A Spencer Peterson. Feature-oriented domain analysis (FODA)
feasibility study. Technical report, DTIC Document, 1990.

[19] Christian Kästner, Sven Apel, Syed Saif ur Rahman, Marko Rosen-
müller, Don Batory, and Gunter Saake. On the impact of the op-
tional feature problem: analysis and case studies. In Proceedings of
the 13th International Software Product Line Conference, SPLC ’09,
pages 181–190, 2009.

[20] Lennart C. L. Kats and Eelco Visser. The Spoofax language work-
bench. Rules for declarative specification of languages and IDEs. In
OOPSLA, pages 444–463. ACM, 2010.

[21] Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda,
Cristina Videira Lopes, Jean-Marc Loingtier, and John Irwin. Aspect-
oriented programming. In ECOOP, pages 220–242, 1997.

[22] Jonathan Koscielny. Typsicherheit in delta-orientierten Softwarepro-
duktlinien. Bachelor thesis, Technische Universität Braunschweig, In-
stitut für Softwaretechnik und Fahrzeuginformatik, May 2013.

[23] Charles Krueger. Eliminating the Adoption Barrier. IEEE Software,
19(4):29–31, 2002. .

[24] John Levine. flex & bison. O’Reilly Media, 2009.
[25] Roberto E Lopez-Herrejon, Don Batory, and William Cook. Evalu-

ating support for features in advanced modularization technologies.
Springer, 2005.

[26] Terence Parr. The Definitive ANTLR Reference: Building Domain-
Specific Languages. Pragmatic Programmers, May 2007. ISBN 978-
0-9787392-5-6.

[27] Klaus Pohl, Günter Böckle, and Frank J. van der Linden. Software
Product Line Engineering: Foundations, Principles and Techniques.
Springer-Verlag New York, Inc., 2005.

[28] Ina Schaefer and Ferruccio Damiani. Pure delta-oriented program-
ming. In Proceedings of the 2nd International Workshop on Feature-
Oriented Software Development, FOSD ’10, New York, NY, USA,
2010. ACM.

[29] Ina Schaefer, Lorenzo Bettini, Viviana Bono, Ferruccio Damiani, and
Nico Tanzarella. Delta-oriented Programming of Software Product
Lines. In Proc. of 15th Software Product Line Conference, SPLC 2010,
Korea, September 2010.

[30] Ina Schaefer, Lorenzo Bettini, and Ferruccio Damiani. Compositional
type-checking of delta-oriented programming. In Proceedings of the
Tenth International Conference on Aspect-oriented Software Develop-
ment, AOSD ’11, pages 43–56, 2011.

[31] Ina Schaefer, Rick Rabiser, Dave Clarke, Lorenzo Bettini, David Be-
navides, Goetz Botterweck, Animesh Pathak, Salvador Trujillo, and
Karina Villela. Software diversity: state of the art and perspectives.
International Journal on Software Tools for Technology Transfer, 14
(5):477–495, 2012. ISSN 1433-2779.

[32] Sandro Schulze, Oliver Richers, and Ina Schaefer. Refactoring delta-
oriented software product lines. In Proceedings of the 12th Annual
International Conference on Aspect-oriented Software Development,
AOSD ’13, pages 73–84, 2013.

[33] Dave Steinberg, Frank Budinsky, Marcelo Paternostro, and Ed Merks.
EMF: Eclipse Modeling Framework. Addison Wesley Professional,
2nd edition, 2008.

[34] Rok Strniša, Peter Sewell, and Matthew Parkinson. The Java module
system: core design and semantic definition. In Proc. of OOPSLA
2007, pages 499–514. ACM, 2007.

[35] Sahil Thaker, Don Batory, David Kitchin, and William Cook. Safe
composition of product lines. In Proceedings of the 6th international
conference on Generative programming and component engineering,
GPCE ’07, New York, NY, USA, 2007. ACM.

[36] Thomas Thüm and Christian Kästner and Fabian Benduhn and Jens
Meinicke and Gunter Saake and Thomas Leich. FeatureIDE: An
Extensible Framework for Feature-Oriented Software Development.
Science of Computer Programming, 2014.

12 2014/6/4

[37] Mads Torgersen. The Expression Problem Revisited. In ECOOP 2004,
pages 123–146. Springer, 2004. .

[38] Markus Voelter. Language and IDE Modularization and Composition
with MPS. In GTTSE, volume 7680 of Lecture Notes in Computer
Science, pages 383–430. Springer, 2011.

13 2014/6/4

