
20 February 2025

AperTO - Archivio Istituzionale Open Access dell'Università di Torino

Original Citation:

Generic traits for the Java platform

Publisher:

Published version:

DOI:10.1145/2647508.2647518

Terms of use:

Open Access

(Article begins on next page)

Anyone can freely access the full text of works made available as "Open Access". Works made available
under a Creative Commons license can be used according to the terms and conditions of said license. Use
of all other works requires consent of the right holder (author or publisher) if not exempted from copyright
protection by the applicable law.

Availability:

ACM - Association for Computing Machinery

This is the author's manuscript

This version is available http://hdl.handle.net/2318/150607 since 2016-11-24T15:11:15Z

Generic Traits for the Java Platform ∗

Lorenzo Bettini Ferruccio Damiani
University of Torino, Italy

{bettini,damiani}@di.unito.it

Abstract
A trait is a set of methods that is independent from any class
hierarchy and can be flexibly used to build other traits or classes by
means of a suite of composition operations. Traits were proposed
as a mechanism for fine-grained code reuse to overcome many
limitations of class-based inheritance. In this paper we present the
extended version of XTRAITJ, a trait-based programming language
that features complete compatibility and interoperability with the
Java platform. XTRAITJ provides a full Eclipse IDE that aims to
support an incremental adoption of traits in existing JAVA projects.
This new version fully supports JAVA generics: traits can have
type parameters just like in JAVA, so that they can completely
interoperate with any existing JAVA library. Furthermore, XTRA-
ITJ now supports JAVA annotations, so that it can integrate with
frameworks like JUNIT 4.

Categories and Subject Descriptors D.1.5 [Programming Tech-
niques]: Object-oriented Programming; D.2.6 [Programming En-
vironments]: Integrated environments; D.2.3 [Coding Tools and
Techniques]: Object-oriented programming, Program editors; D.3.2
[Language Classifications]: Object-oriented languages, Java; D.3.3
[Programming Languages]: Language Constructs and Features

General Terms Design, Languages

Keywords Java, Trait, IDE, Implementation, Eclipse

1. Introduction
Traits were proposed by Schärli et al. [30, 52] as pure units of
behavior, aiming to support fine-grained reuse. The main goal of
traits is providing a flexible solution to the problems of class-based
inheritance with respect to code reuse, since the two traditional
roles of classes as object generators and units of code reuse are
competing (see, e.g., [26, 30, 45] for discussions and examples). A
trait provides a set of methods that is completely independent from
any class hierarchy; the rationale is that the common methods of a
set of classes can be factored into a trait. Traits can be composed in

∗Work partially supported by MIUR (proj. CINA), Ateneo/CSP (proj.
SALT), and ICT COST Action IC1201 BETTY. Authors listed in alpha-
betical order.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
This is the author’s version of the work. It is posted here by permission of ACM for

your personal use. Not for redistribution. The definitive version was published in PPPJ
’14, September 23 - 26 2014, Cracow, Poland.
Copyright c© 2014 ACM 978-1-4503-2926-2/14/09. . . $15.00.
http://dx.doi.org/10.1145/2647508.2647518

an arbitrary order leading to a class or another trait. The resulting
composite unit has complete control over the conflicts that may
arise in the composition, and must solve these conflicts explicitly.

These features make traits simpler and more flexible than mixins
(a mixin is a subclass parameterized over its superclass) [3, 23,
33, 37, 41]—the “trait” construct incorporated in SCALA [47] is
indeed a form of mixin. The original proposal of traits [30, 52]
was given in SQUEAK/SMALLTALK, that is, in a dynamically typed
setting. Various formulations of traits in a JAVA-like (statically
typed) setting can be found in the literature (see, e.g., [15, 17, 19,
20, 42, 46, 48, 51, 53]).

In most of the above proposals, trait composition and class-
based inheritance live together. In some formulations [42, 46, 53]
trait names are types, just like class names and interface names
in JAVA—this choice limits the reuse potential of traits, since the
role of unit of code reuse and the role of type are competing (see,
e.g., Snyder [54] and Cook et al. [27]). This does not happen in
pure trait-based programming languages [17, 19, 20], which aim
to maximize the opportunity for reuse:

• class-based inheritance is not present, in order to prevent writing
code that might be difficult to reuse, and
• traits are not types, in order to not restrict the flexibility of traits.

This way, the two traditional roles of classes as object generators
and units of code reuse are completely separated. Classes only play
the role of object generators and the role of units of reuse is played
only by traits.

These design choices do not reduce the expressivity and usabil-
ity of the language. In fact, even though class-based inheritance is
not present, still type subsumption is supported by JAVA-like inter-
faces. Moreover, not using trait names as types in the source pro-
gram does not prevent to analyze each trait definition in isolation
from the classes and the traits that use it; this way, it is not neces-
sary to reanalyze a trait whenever it is used by a different class.

In [14] we presented the prototype implementation of XTRAITJ,
a language for pure trait-based programming. XTRAITJ provides
complete compatibility and interoperability with the JAVA type
system without reducing the flexibility of traits. XTRAITJ programs
are compiled into JAVA programs, which can then be compiled
with a standard JAVA compiler. XTRAITJ is implemented with
XTEXT [2, 11] that provides a full Eclipse IDE integration, and
XBASE [31], a reusable expression language that facilitates full
integration with the JAVA type system. Since XTRAITJ code can
coexist with JAVA code, single parts of a project can be refactored
to use traits, without requiring a complete rewrite of the whole
existing code-base. This also allows an incremental adoption of
traits in existing JAVA projects.

With a year’s experience we came to the conclusion that XTRA-
ITJ was not practical without full support of JAVA generics. Not
being able to write traits and classes with type parameters limited
the possibility of writing reusable code, forcing us to use Object

in many places (e.g., field declarations and method signatures)
and to resort to explicit type casts (thus undermining the static
type safety). Moreover, we could not fully use all existing JAVA
libraries that use generics. Another thing that we missed in XTRA-
ITJ was the ability to annotate elements of our language with JAVA
annotations. This prevented us from reusing many existing JAVA
frameworks that are based on annotations, such as, e.g., JUNIT,
mocking frameworks and dependency injection frameworks.

For all the above reasons we decided to extend XTRAITJ with
respect to the above mentioned features. Adding annotations was
not that difficult, while adding generics required much more ef-
fort (indeed, adding type parameters to a language is usually time
consuming). XBASE provides a nice integration with the JAVA type
system, and takes care of type checking expressions, but it requires
a mapping of our language elements to a JAVA type model elements
(classes, methods, inheritance relations, etc.). In the existing ver-
sion of XTRAITJ this mapping was involved due to the several JAVA
model elements that we need to create to implement the semantics
of traits. When adding type parameters to XTRAITJ elements, we
had to make sure that in the corresponding mapped JAVA model el-
ements the binding to the original type parameters was solved cor-
rectly, otherwise the JAVA type checking implemented by XBASE
would not work. This was the part that required much work. When
this part was in place, the translation into JAVA code worked as be-
fore, and did not require us to change the main translation strategy
that was already implemented.

In this paper we present the new extended version of XTRAITJ,
with full support of JAVA generics and JAVA annotations. We will
discuss design choices, implementation strategy and rationale, and
provide examples of use of XTRAITJ with JAVA generics and JAVA
annotations. All examples shown in the paper concentrate on the
use of these two main new features, showing that we are now able
to implement generic traits, classes and generic trait methods (for
instance, as we will see in the paper, libraries of generic collection
classes) and that we can annotate such elements (in order to use
existing JAVA frameworks such as JUNIT to write test cases directly
in XTRAITJ). Note that, since our generics (type parameters and
generic type arguments) have the same syntax of JAVA generics and
are translated directly into JAVA generics, they do not introduce
any overhead in the final program. This new version of XTRA-
ITJ also improved IDE tooling such the “Outline View” that now
takes generics into consideration, and “Quickfixes” to help the
programmer add required fields into a class that uses traits.

The implementation is available as an open source project and
ready-to-use update site at http://xtraitj.sf.net. We also
provide pre-configured Eclipse distributions with XTRAITJ in-
stalled, for several architectures.

Organization of the paper Section 2 recalls the syntax (and infor-
mally the semantics) of the XTRAITJ programming language with
generics through examples. Section 3 shows some advanced exam-
ples in XTRAITJ using JAVA-like generics, functional programming
features and JAVA-like annotations. Section 4 outlines the technical
details of our implementation: discusses the main design choices,
the strategy used to generate the JAVA code, the support for XTRA-
ITJ code validation and the integration of XTRAITJ in Eclipse (con-
centrating on the new features). Section 5 briefly discusses the pros
and cons of the implementation. Section 6 concludes the paper by
discussing some related work and outlining possible directions for
future work.

2. The XTRAITJ programming language
In this section we describe the main features of XTRAITJ by exam-
ples. The syntax of XTRAITJ is given in Table 1, where the ques-
tion mark symbol ‘?‘ and the big parens ‘

(
‘ and ‘

)
‘ are part of

GS ::= GI
∣∣ GC source language type

GI ::= I(<GT>)? generic interface reference
GC ::= C(<GT>)? generic class reference

ID ::= interface I(<TP>)?
(
extends GI

)
? { H;} interface

H ::= (<TP>)?
(
GT

∣∣void
)
m(GT x) method header

TD ::= trait T(<TP>)?
(
uses TA

)
? { D } trait

D ::= F;
∣∣ H;

∣∣ (private
)
? M trait member declaration

TA ::= T(<GT>)?
(
[ao]

)
? trait alteration expression

ao ::= alias m as m | restrict m
∣∣ hide m trait alteration operation∣∣ rename m to m

∣∣ redirect m to m∣∣ rename f to f
∣∣ redirect f to f

F ::= GS f field
M ::= H {· · ·} method

CD ::= class C(<TP>)?
(
implements GI

)
?
(
uses TA

)
? { FI; K } class

FI ::= F
(
= · · ·

)
? field initialization

K ::= C(GS x) {· · ·} constructor

Table 1. XTRAITJ syntax (including generics)

the Extended BNF notation, and the overline notation for (possibly
empty) sequences is borrowed from [38]. A program consists of
interface declarations, trait declarations, and class declarations. In
XTRAITJ, interface declarations ID, method headers H, field dec-
larations F, method declarations M, and class constructors K have
a similar syntax as in JAVA (but ignoring, e.g., visibility modifiers
and checked exception declarations). All type references can con-
tain type arguments (denoted by GT), and interfaces, traits, classes
and method headers can specify type parameters (denoted by TP).
The syntax of generic types and type parameter declarations is ex-
actly the same as in JAVA (including bounded quantifications and
wildcards).

in XTRAITJ a trait consists of provided methods (the methods
defined in the trait), required methods (abstract methods assumed
to be available in a trait or a class using the trait) and required
fields (fields assumed to be available in a class using the trait). The
required fields and the required or provided methods of a trait can
be directly accessed in the body of the trait’s provided methods.
Traits can then be used to compose classes and other traits by
means of uses (trait sum operation) and a suite of trait alteration
operations. Note that traits do not introduce any state, thus, a class
has to provide all the required fields of the traits it uses. A class in
XTRAITJ can implement interfaces by using traits and can define
fields (possibly with initialization expression) and constructors (but
it cannot define methods).

Qualifying a method m as private in a trait T, hides the name m
and permanently binds the method m to the trait. Since the name of
a private method is bound, the actual name of a private method
is immaterial. When two or more traits are summed the names of
private methods are automatically managed to avoid name clashes
and name captures. Note that it would not make sense (and hence
it is forbidden) to declare a required method as private. Currently,
apart from private, there are no other qualifiers in XTRAITJ. We
plan to add other qualifiers in the future.

A method m is declared by a trait T if and only if m is either
required or provided by T. A field f is declared by T if and only
if f is required by T. In a trait, any field that is used by a provided
method must be declared and any method that is used by a provided
method must be either required or provided. However, a trait can
also require fields and methods that are not used by any of its
provided methods. Currently, there is no method overloading in
XTRAITJ; we plan to add method overloading in future releases
(see also Section 6).

As stated in the Introduction, XTRAITJ is a pure trait-based
programming language, thus, class-based inheritance is not present,
so classes only play the role of object generators and types; traits
only play the role of units of code reuse and are not types. This is
reflected by the syntax of types and type references in Table 1.

XTRAITJ programs are compiled into JAVA source code, which
can then be compiled using a standard JAVA compiler. In particu-
lar, since we provide Eclipse IDE tooling, when editing XTRAITJ
programs from Eclipse, using the XTRAITJ editor, the generated
JAVA sources will be automatically compiled into byte code inside
Eclipse.

The semantics of traits can be specified in terms of the so called
flattening principle [30] that prescribes that the semantics of a class
that uses traits is equivalent to the semantics of the class obtained
by inlining in the body of the class the methods provided by the
traits it uses. In general, a flattening semantics aims to specify
the semantics of traits by describing a way to transform classes
and traits that use other traits into equivalent formulations that
does not use other traits.1 The flattening semantics of XTRAITJ
can be formally described by means of a translation function that
looks up the named traits listed in the uses clause and evaluates
all the trait composition operations. For simplicity, we have not
included such a formal definition in this paper—we refer to [17]
for the presentation of the flattening semantics of TRAITRECORDJ,
our previous language proposal for integrating traits in Java (the
differences between TRAITRECORDJ and XTRAITJ are discussed
in [14]).

2.1 Xbase in a nutshell
The method bodies in XTRAITJ are not written in JAVA: we use
XBASE for that. XBASE [31] is an extendable and reusable expres-
sion language developed with XTEXT. It integrates tightly with the
JAVA platform and JDT (Eclipse JAVA development tools). In par-
ticular, XBASE reuses the JAVA type system (including generics)
without modifications, thus, when a language uses XBASE it can
automatically and transparently access any JAVA type. XBASE re-
moves much “syntactic noise” from JAVA (e.g., types of variable
declarations can be inferred by XBASE itself) and provides more
advanced features (e.g., lambda expressions). We refer to XBASE
documentation [2], here we only describe the main differences with
respect to JAVA, so that the reader can understand the examples
shown in the paper.

Variable declarations use a different syntax and do not require
to specify the type if it can be inferred from the initialization
expression. For example,
val l = new ArrayList<String>();
var s = "foo";

correspond to the following JAVA variable declarations:
final ArrayList<String> l = new ArrayList<String>();
String s = "foo";

A cast expression in XBASE is written using the infix keyword
as, thus, instead of writing “(C) e” we write “e as C”.

The other interesting feature provided by XBASE is lambda
expressions, which have the shape [p1, p2, ... | body].
XBASE automatically translates lambda expressions into JAVA
anonymous classes. Moreover, if the runtime JAVA library is ver-
sion 8, then XBASE automatically compiles its lambda expressions
into JAVA 8 lambda expressions. XBASE also introduces func-
tion types for lambda expressions, which have the shape (param
types) => return type. For example,
val (int, int)=>String f = [x, y | x+y+""]

1 A flattening semantics aims to provide a specification, it is not an espe-
cially effective implementation technique.

Note that in XBASE type inference works also the other way: since
we specified the (function) type in the variable declaration, we do
not need to specify the types of lambda parameters.

A lambda expression can be evaluated using the method apply
and passing all the required arguments, for example

val result = f.apply(1, 2)

2.2 Trait sum operation and ‘uses’ clause
The symmetric sum operation merges two traits to form a new trait.
The summed traits must be disjoint (i.e., they must not provide
identically named methods) and consistent (i.e., identically named
declared fields and identically named required methods must have
the same type).

Traits can be used to build another trait via the uses clause.
All the traits that are listed in a uses clause are summed to the
body of the trait declaration. For example, given these two trait
declarations:

trait T1 {
int f1; // required field
int m(); // required method
int m1() { return f1; } // provided method

}
trait T2 {

int f2; // required field
int m(); // required method
int m2() { return f2; } // provided method

}

the following trait declaration creates a new trait by merging the
two traits above

trait T3 uses T1, T2 { }

This means that T3 is equivalent to the “flattened” trait declaration:

trait T3 {
int f1; // required field
int f2; // required field
int m(); // required method
int m1() { return f1; } // provided method
int m2() { return f2; } // provided method

}

Note that this trait sum is well-formed: both T1 and T2 require the
method m with the same signature.

All required fields and required/provided methods of any of the
traits listed in the uses clause are visible in the body of the trait.
Therefore it would be useless (and hence it is forbidden) to declare
any of them as required.

2.3 Generic traits and classes
Consider the task of developing a class CStack that implements the
generic interface2:

public interface IStack<T> {
boolean isEmpty();
void push(T o);
T pop();

}

In a trait-based programming language like XTRAITJ, we im-
plement a generic trait, TStack that requires a field (to store the
actual stack data in memory) and provides all the methods of the
interface:

import java.util.List;

2 Whether we are using T to refer to a trait name or to a type parameter
should be clear from the context.

import static org.junit.Assert.∗;
import org.junit.Test;

public class StackTest {
@Test public void testEmptyStack() {

IStack<String> stack = new CStack<String>();
assertTrue(stack.isEmpty());
assertNull(stack.pop());

}
@Test public void testPushAndPop() {

IStack<String> stack = new CStack<String>();
stack.push("foo");
stack.push("10");
assertEquals("10", stack.pop());
assertEquals("foo", stack.pop());

}
}

Listing 1: Using JUNIT for testing XTRAITJ generated JAVA code

trait TStack<T> {
List<T> collection; // required field

boolean isEmpty() { return collection.size() == 0; }
void push(T e) { collection.add(0, e); }
T pop() {

if (isEmpty())
return null;

return collection.remove(0);
}

}

We then define the generic class CStack that implements the
interface IStack using the above trait as follows:

import java.util.ArrayList;
import java.util.Collection;
import java.util.List;

class CStack<T> implements IStack<T> uses TStack<T> {
List<T> collection = new ArrayList();

CStack() {}

CStack(Collection<T> c) {
collection.addAll(c);

}
}

We can then use this XTRAITJ class inside trait methods, for
example we can create instances of that, after instantiating type
parameters:

new CStack<String>().push("my string");
new CStack<Integer>().push(10);

Of course, all these expressions will be type checked according
to instantiated generic types, as in JAVA.

In the above example we also show how XTRAITJ code can
seamlessly refer to any existing JAVA type (in this example we use
the standard collections).

Since XTRAITJ programs are compiled into JAVA source code,
we can also seamlessly use XTRAITJ classes into standard JAVA
programs3. This means that we can use existing frameworks like
JUNIT, and write JAVA unit tests for our XTRAITJ code, as shown
in Listing 1 (in Section 3.3 we will show that we can write JUNIT
tests directly in XTRAITJ).

The use of generics in XTRAITJ reflects JAVA generics, so it
should be immediately clear to a JAVA programmer how to declare

3 Of course, we mean “use the corresponding generated JAVA classes/inter-
faces”, which have the same name of the XTRAITJ source elements.

type parameters and type arguments. In the following example we
declare a class parameterized on a bounded type variable (note
the F-bounded quantification [25]) and pass as type argument to
interface and trait references a generic type parameterized on such
type variable:

import java.util.ArrayList;
import java.util.List;
import java.util.Set;

class CStackOfSetsOfComparable<T extends Comparable<T>>
implements IStack<Set<T>> uses TStack<Set<T>> {

List<Set<T>> collection = new ArrayList();
}

2.4 Trait operations by examples
Let us now suppose that a class implementing the following inter-
face should be developed:

public interface ILifo<T> {
boolean isNotEmpty();
void push(T o);
void pop();
T top();

}

If we implemented the previous interface IStack directly in
a JAVA class there would be no straightforward way to reuse the
code in such class, as it would not be possible to override the pop
method changing the return type to void—this would break the
type system. The same problem would arise with the formulations
of traits where traits are types (see, e.g., [42, 46, 53]), with JAVA
8 interfaces with default methods (see the programming patterns
proposed in [21]), and with the “trait” construct of SCALA—c.f.
the discussion in Section 1. In the following we show how we can
employ XTRAITJ trait operations to reuse code and avoid method
conflicts.

We can write a new trait TLifo as follows:

trait TLifo<T> uses TStack<T>[hide pop] {
void pop() {

if (!isEmpty())
collection.remove(0);

}
T top() {

if (isEmpty())
return null;

return collection.get(0);
}
boolean isNotEmpty() { return !isEmpty(); }

}

This trait uses the trait TStack, but it “hides” the method pop:
The expression T[hide m], where the method m must be provided
by T, denotes the trait obtained from T by making the method m
private to the trait. By hiding that method we avoid a conflict with
the method pop provided in this new trait (the two methods have
different return types).

Note that a trait “inherits” all the field and method requirements
of the used traits.

It is now straightforward to write a class CLifo implementing
ILifo using the trait TLifo:

class CLifo<T> implements ILifo<T> uses TLifo<T> { ... }

We can further improve the implementation of TLifo. In fact, in
the above implementation of TLifo’s pop method, we do not reuse
the implementation of TStack’s pop4. Another thing that does not

4 While this might not be a real problem in this simple example, in more
complex scenarios reusing entire methods would really improve code main-
tainability.

look right is that isNotEmpty does not make sense in TLifo (the
only reason we put it there is because we need it to declare a class
implementing the interface ILifo). We will fix these issues in the
following.

We can reuse the implementation of TStack’s pop by using
the rename operation: The expression T[rename n1 to n2], where
the method (or field) n1 must be declared by T and the method
(resp. field) n2 must not be declared by T, denotes the trait obtained
from T by replacing all the references to n1 with (possibly implicit)
receiver this by references to n2 and by changing the declaration of
n1 into a declaration of n2. Thus, we write this alternative version:
trait TLifo<T> uses TStack<T>[rename pop to old pop] {

void pop() {
old pop(); // ignore returned value

}
// ...as above

}

With this implementation of TLifo we reuse the implemen-
tation of TStack’s provided method pop, after renaming it to
old pop.

Note that, since rename acts both on method declarations and
on method references, possible recursive occurrences in the origi-
nal pop implementation will be renamed too.

When we declare the class implementing ILifo using the trait
TLifo we can even hide the renamed version of pop as follows:
class CLifo<T> implements ILifo<T>

uses TLifo<T>[hide old pop] { ... }

To further demonstrate XTRAITJ programming features, we
now factor the pattern of negating a boolean method into a trait:
trait TNegate {

boolean op(); // required
boolean notOp() { return !op(); }

}

This trait requires a boolean method op and provides the method
notOp that simply returns the negation of the result of op.

We can now remove the implementation of isNotEmpty from
TLifo, and in the class CLifo we use the trait TNegate after
renaming op to isEmpty and notOp to isNotEmpty:
trait TLifo<T> uses TStack<T>[rename pop to old pop] {

void pop() {
old pop(); // ignore returned value

}
T top() {

if (isEmpty())
return null;

return collection.get(0);
}

}

class CLifo<T> implements ILifo<T>
uses TLifo<T>[hide old pop],

TNegate[rename op to isEmpty, rename notOp to isNotEmpty] {
...

}

This shows the high and flexible compositional nature of XTRA-
ITJ operations:

• the method op is required by TNegate; after renaming, the
required method isEmpty is provided by the other trait used in
the uses clause, TLifo;
• TNegate provides the method notOp, but since we rename it to
isNotEmpty, then the class is able to implement all the ILifo’s
methods;
• since rename acts both on method declarations and on method

references, isNotEmpty (i.e., the original notOp) is effectively
implemented in terms of isEmpty.

trait TIterableExtensions<T> {
Iterable<T> iterable;

T head() {
val iterator = iterable.iterator();
if (iterator.hasNext())

return iterator.next();
return null;

}

T last() {
// optimized according to the iterable type
if (iterable instanceof List<?>) {

val list = iterable as List<T>
if (list.isEmpty())

return null;
return list.get(list.size() − 1);

} else if ... // other optimizations
} else {

var T result = null;
for (T t : iterable)

result = t;
return result;

}
}

}

Listing 2: The trait implementing utility methods for Iterable
JAVA objects.

XTRAITJ provides other alteration operations (see Table 1)
that we will not use in this paper. We refer to [14] and http:-
//xtraitj.sf.net for the complete list of alteration operations.

3. XTRAITJ at work
In this section we show some examples of the new programming
features of XTRAITJ, and how they can be used in a JAVA program-
ming context. We refer to XTRAITJ implementation site for other
examples: http://xtraitj.sf.net.

3.1 Utility Methods for Collections
Using the new XTRAITJ trait features we can easily implement util-
ity methods for JAVA collections and iterables thanks to the full
JAVA generics support. The implementation we show in the follow-
ing is inspired by the utility static methods for iterable collections
provided by the Google Guava JAVA library.

In Listing 2 we show the trait implementing utility methods for
a JAVA generic Iterable object. First, we only show two simple
utility methods returning the first element and the last element of an
iterable object (these methods are not part of the JAVA Iterable
interface). In particular, for the method last we have specialized
and optimized implementations for specific iterable types (again,
inspired by the implementation of the Guava library).

We can easily implement a trait, TList that acts as a wrapper
for a standard JAVA list (i.e., that requires a list field, and forwards
to that field all the methods of the JAVA List interface); for the
lack of space we will not show this trait here.

We then assemble a class implementing the JAVA List interface
using TList and TIterableExtensions. This class represents a
List with the additional methods of TIterableExtensions:

class StringListWithExtensions implements List<String> uses
TIterableExtensions<String>, TList<String>

{
List<String> list; // required by TList
Iterable<String> iterable; // required by TIterableExtensions

StringListWithExtensions(String..args) {
this.list = new ArrayList();

// ... add args to the list
this.iterable = this.list;

}
}

Another utility method that we can implement in TIterable-
Extensions is join to return a string representation with a spe-
cific separator:

// in TIterableExtensions<T>
String join(CharSequence separator) {

val result = new StringBuilder();
val iterator = iterable.iterator();
while (iterator.hasNext()) {

result.append(iterator.next().toString());
if (iterator.hasNext())

result.append(separator);
}
return result.toString();

}

3.2 Functional Programming
As an example of generic method and functional programming,
we also implement mapToList that returns a List version of the
iterable after applying a mapper function (the type of the elements
of the returned list might be different from the type of the iterable’s
elements); note that we use the XBASE syntax for specifying a
functional type (see Section 2.1):

// in TIterableExtensions<T>
<R> List<R> mapToList((T) => R mapper) {

val result = new ArrayList<R>();
for (e : iterable)

result += mapper.apply(e);
return result;

}

We can also implement a more general version of the popular
functional programming concept called map, which allows to trans-
form a collection into another one, applying a mapping function
to each element. The above implementation of mapToList can be
seen as an eager implementation of mapping; now we implement
a lazy version of mapping that returns a new Iterable: the trans-
formation will actually take place only when iterating over the new
iterable.

In order to implement this, we need an implementation of a
JAVA Iterator in XTRAITJ, that we will use to implement a
custom version of the next method. We then write a “wrapper”
trait:

trait TIterator<E> {
Iterator<E> iterator;

boolean hasNext() { return iterator.hasNext(); }
E next() { return iterator.next(); }
void remove() { iterator.remove(); }

}

Then we write a transformer iterator as follows5:

trait TTransformerIterator<T,R>
uses TIterator<T>[rename next to origNext] {

(T) => R function;

R next() { return function.apply(origNext()); }
}

5 We could have avoided to write the wrapper trait TIterator and imple-
ment everything in TTransformerIterator; however, since we may want
to implement other customized iterators, we preferred this solution, which
is more code reuse oriented.

Finally, the following class acts as the bridge between the JAVA
iterator interface and our implemented traits:

class TransformerIterator<T,R>
implements Iterator<R>
uses TTransformerIterator<T,R> {

Iterator<T> iterator;
(T) => R function ;

TransformerIterator(Iterator<T> iterator, (T) => R function) {
this.iterator = iterator
this.function = function

}
}

This class implements an Iterator for the transformed iterables
(note the type parameter R). We can now implement:

// in TIterableExtensions<T>
<R> Iterable<R> map((T) => R mapper) {

return [| new TransformerIterator(iterable.iterator(), mapper)];
}

The above method implementation uses an XBASE feature re-
lated to lambda expressions: Iterable is a JAVA interface with
only one method, i.e., a SAM type (Single Abstract Method type),
and when such a type is expected, we can instead specify a lambda
expression that is meant to implement such abstract method. In this
example the abstract method is Iterator iterator() and we
specify a lambda expression without parameters returning an iter-
ator (note that type inference for generics is automatic). Basically,
XBASE will generate the following JAVA code for the above return
statement, using an anonymous class:

return new Iterable<R>() {
public Iterator<R> iterator() {

return new TransformerIterator<T, R>(iterable.iterator(), mapper);
}
};

This useful feature of XBASE predated the use of JAVA 8 lambda
expressions in the context of SAM types, also called functional
interfaces. For example, in JAVA 8, we could have written6

return () −> new TransformerIterator<T, R>(iterable.iterator(), mapper);

Following similar techniques we can implement other util-
ity methods based on lambda expressions, such as, e.f., filter,
forEach, etc.

3.3 Writing JUNIT tests
Together with generics, the new version of XTRAITJ also supports
JAVA annotations: one can annotate a trait’s provided method and
a class’ field7. Using annotations we can easily implement JUNIT
tests directly in XTRAITJ, as shown in Listing 3 (note that XTRAITJ
supports static imports as in JAVA).

Thanks to traits compositionality features, we can easily sepa-
rate the actual test cases from test initialization: both traits require
the same field used as test fixture8, and we can write several classes
executing the same tests (implemented in TStackTestCase) us-
ing different fixtures, i.e., implementing variations of setup traits
(TStackAsArrayListSetup, etc.):

class CStackAsArrayListTest
uses TStackTestCase, TStackAsArrayListSetup {

6 As hinted in Section 2.1, XBASE is fully compliant with JAVA 8.
7 We did not find any benefit in annotating required methods and fields; not
to mention in such cases annotations would make conflict resolution harder
to handle, thus we ruled out such situations.
8 In tests, a fixture refers to the fixed state used as a baseline for tests.

import static org.junit.Assert.∗

trait TStackTestCase {
IStack<String> fixture;

@Test void testNotEmpty() {
assertFalse(fixture.isEmpty());

}
@Test void testContents() {

assertEquals("foo", fixture.pop());
assertEquals("bar", fixture.pop());
assertNull(fixture.pop());

}
}

trait TStackAsArrayListSetup {
IStack<String> fixture;
@Before void setup() {

fixture = new CStack<String>(newArrayList("foo", "bar"));
}

}

trait TStackAsLinkedListSetup {
IStack<String> fixture;
@Before void setup() {

fixture = new CStack<String>(newLinkedList("foo", "bar"));
}

}

Listing 3: Implementing JUNIT tests in XTRAITJ

IStack<String> fixture;
}

The corresponding generated JAVA class can be executed as a
JUNIT test (as a future extension, we will implement the feature
to run a JUNIT test in Eclipse directly on the original XTRAITJ
file).

The Dependency Injection pattern [34] is based on “injecting”
actual implementation classes into a class hierarchy in a consistent
way. This is useful when classes delegate specific functionalities to
other classes. For example messages are forwarded to the objects
referenced in fields, which abstract the actual behavior. These fields
are instantiated through injection mechanisms so that implementa-
tion classes’ names are not hardcoded in the code. With respect
to manual implementation of existing patterns [35], with depen-
dency injection frameworks it is much easier to keep the desired
consistency, and the programmer needs to write less code. Google
Guice [1] uses JAVA annotations, @Inject, for specifying the fields
that will be injected, and a module is responsible for configuring the
bindings for the actual implementation classes. We can then use
Google Guice also in XTRAITJ code; in particular, we can anno-
tate class’ fields with the @Inject annotation and have such fields
injected using different Guice module implementations in different
scenarios.

4. Implementation
In this section we describe the main parts of the implementation of
XTRAITJ, including some design choices and the integration with
the Eclipse IDE.

4.1 Design choices
In [14] we described in details all the design choices we fol-
lowed when implementing XTRAITJ; here we just summarize
the main ones, and we refer the interested reader to [14] for
full details (also concerning the comparison with the calculus
TRAITRECORDJ [17], which was the starting point for the im-
plementation of XTRAITJ).

XTRAITJ traits have been designed with the goals of being as
much as possible compliant to the characteristics of the original
formulation of traits [30], namely the complete conflict resolution
control on compositionality of traits and their lightweight mecha-
nisms with an intuitive semantics. Moreover, our main goal is the
complete integration with the JAVA platform. JAVA is a mainstream
language, with a huge ecosystem of libraries and many tools. We
then believe that it is crucial to be completely compatible and inter-
operable with the JAVA platform: this allows us to seamlessly reuse
all existing JAVA libraries and frameworks and to target any JVM
compatible platform (including Android). In order to achieve this,
we chose XTEXT [2, 11] and XBASE [31].

For similar reasons, we adopted full JAVA generics. JAVA Gener-
ics are known to have several limitations, especially when com-
pared to C++ templates (we refer to Ghosh [36] and Batov’s
work [4] for a broader comparison between Java generics and C++
templates). However, JAVA generics have already been accepted by
a huge community and we want to target full JAVA compatibility.
Similarly, in this new version of XTRAITJ we introduced JAVA an-
notations, so that we are able to use all its benefits; a clear example
is the possibility to write JUNIT tests in XTRAITJ, as shown in
Section 3.3.

We translate XTRAITJ programs into JAVA source code, which
will then be compiled with the standard JAVA compiler, so there are
no backward binary compatibility issues with the resulting output.
Our implementation allows for an incremental adoption of traits
in an existing JAVA project: single parts of the project can be
refactored to use our traits, without requiring a complete rewrite
of the whole existing code-base. It is not even mandatory to use
traits everywhere, since XTRAITJ code seamlessly coexists with
JAVA code. As a demonstration of the complete integration with the
JAVA type system, in the implementation of XTRAITJ we did not
include interface specifications: XTRAITJ programs can seamlessly
use existing JAVA interfaces. Indeed, the syntax and semantics of
interfaces in XTRAITJ is exactly the same as JAVA interfaces, thus,
if we added them to the implementation we would have duplicated
effort without any further benefits.

Although an IDE is not a strict requirement to develop applica-
tions, still it surely helps programmers a lot with features like syn-
tax aware editor, compiler and debugger integration, build automa-
tion and code completion, just to mention a few. In an agile [43] and
test-driven context [5] the features of an IDE like Eclipse become
essential and they dramatically increase productivity. With this re-
spect, XTEXT provides a complete solution for the development of
new languages, since it also deals with all the artifacts related to
the integration of the language in Eclipse with all the editing and
programming tooling. In particular, by using XBASE, our language
also supports debugging in Eclipse: one can debug both the gener-
ated JAVA code and the original XTRAITJ code (see Section 4.4).

4.2 Translation to JAVA

In this section we sketch the main steps we used to implement
XTRAITJ. By using XBASE we inherit not only the syntax of JAVA-
like expressions, but also all its language infrastructure compo-
nents, like its type checking implementation and the compiler gen-
erating JAVA code. XBASE type system is completely integrated
with the JAVA type system, thus, also a language using XBASE will
be compatible with JAVA and its type system (including generics):
the language will be able to seamlessly access all the JAVA types,
i.e., any existing JAVA library. However, XBASE only deals with
expressions: language features like traits, classes, field and method
declarations are dealt with directly by XTRAITJ; method bodies,
instead, completely rely on XBASE expressions.

In order to reuse XBASE JAVA type system in XTRAITJ, we have
to map the concepts of our language (e.g., traits, required fields, re-

quired and provide methods, etc.) into the JAVA model elements of
XBASE (e.g., classes, fields, methods, etc.). This mapping is per-
formed by implementing a model inferrer. The XBASE expressions
used in XTRAITJ, i.e., the body of trait provided methods, will then
have to be associated to the corresponding mapped JAVA model
method, which becomes the expression’s logical container. Such
mapping will let XBASE automatically implement type checking
for the expressions (XBASE will also be able to define the proper
scope for this). This means that the whole type system of XBASE
(which corresponds to the type system of JAVA) will be automati-
cally part of XTRAITJ.

With this mapping implemented by the model inferrer, XBASE
will also be able to automatically generate JAVA code starting from
the mapped JAVA model. Thus, the translation of XTRAITJ to JAVA
sketched in the following is implied by our implementation of the
model inferrer for XTRAITJ.

4.2.1 The basic idea of the translation
We will now informally sketch the generated JAVA code corre-
sponding to XTRAITJ programs using some examples. For a more
detailed description we refer the interested reader to [14]. Note that
the JAVA code is generated only if the XTRAITJ program has passed
the validation phase, thus, the generated JAVA code is always well-
typed.

Our strategy for generating the JAVA code for traits and classes
is based on a crucial property: there will be exactly one JAVA
interface and one JAVA class for each trait and class declaration;
each original method body in each trait will have exactly one
corresponding generated JAVA method. The generated JAVA code
then will enjoy compositionality. Indeed, trait compositions are
implemented through object composition and method delegation.

Let us consider this trait definition (here we are only considering
required fields and provided methods):

trait T1<V,U extends List<V>> {
U f;
U m(U f1) {

this.f = f1;
return this.f;

}
V n(U f1) {

val r = this.m(f1);
return r.get(0);

}
}

From this trait definition the following JAVA interface is generated:

public interface T1<V, U extends List<V>> {
public abstract U getF();
public abstract void setF(final U f);
public abstract U m(final U f1);
public abstract V n(final U f1);
}

A (required) field in a trait corresponds to the getter and setter meth-
ods in the generated JAVA interface. This interface also contains
the signatures of all the method declarations of the traits (i.e., both
provided and required methods). Thus, the generated interface im-
plicitly contains all the requirements of the corresponding trait. Of
course, private methods in a trait will not be part of the generated
JAVA interface.

Then, a JAVA class is generated implementing such interface:

public class T1Impl<V, U extends List<V>> implements T1<V,U> {
private T1<V,U> delegate;

public T1Impl(final T1<V,U> delegate) { this. delegate = delegate; }

public U getF() { return delegate.getF(); }
public void setF(final U f) { delegate.setF(f); }

public U m(final U f1) { return delegate.m(f1); }
public U m(final U f1) {

this.setF(f1);
return this.getF();
}

public V n(final U f1) { return delegate.n(f1); }
public V n(final U f1) {

final U r = this.m(f1);
return r.get(0);
}
}

The important thing in the generated JAVA class is the delegate
field, of type T1 (i.e., the JAVA interface generated for the trait); re-
call that this interface contains all the required methods (including
getter and setter methods for fields) and all the provided methods.
The actual implementation for this field will be passed to the con-
structor of this JAVA class. In this class, all the methods defined
in T1 are delegated to the field delegate, even the ones corre-
sponding to methods provided by the trait. In fact, for each method
provided in the trait there will be a method with the same name but
prefixed with that contains the translation into JAVA of the original
method’s body. Both read and write access to fields are translated
into calls to getter and setter methods, respectively, in the gener-
ated JAVA code. Of course, private methods will be directly trans-
lated to corresponding JAVA private methods without any additional
method forwarding; indeed private methods are always statically
bound.

We also forward provided methods to the delegate because
this allows a standard JAVA class to override methods and makes
sure that the standard JAVA dynamic binding mechanism for over-
ridden methods still works.

Let us now consider the XTRAITJ class definition:

class C uses T1<String,ArrayList<String>> {
ArrayList<String> f;

}

The JAVA class that is generated from the above XTRAITJ class
definition is:

public class C implements T1<String,ArrayList<String>> {
private ArrayList<String> f;

public ArrayList<String> getF() { return this.f; }
public void setF(final ArrayList<String> f) { this.f = f; }

private T1Impl<String,ArrayList<String>> T1 = new T1Impl(this);

public ArrayList<String> m(final ArrayList<String> f1) {
return T1. m(f1);
}

public String n(final ArrayList<String> f1) {
return T1. n(f1);
}
}

This shows that the generated JAVA class implements the generated
JAVA interface of the used trait (including getter and setter methods
for defined fields) with the corresponding type parameters instan-
tiation. The generated JAVA class defines a field for each used trait
and creates an object for such field, in this example it is T1Impl,
passing itself to the trait’s class constructor. This is well-typed in
JAVA since the class implements the interface T1, and T1Impl’s
constructor expects such a type. Note the use of type arguments for
generics and the corresponding type parameters correctly instanti-
ated in the generated class. The class forwards each method defined
in the trait to the T1Impl instance, in particular, it calls the method

with name prefixed with the underscore (recall that such method
contains the translation into JAVA of the original method’s body).

Summarizing, the main idea is that C delegates to T1Impl for
the methods defined in the trait, and T1Impl delegates to C for the
fields required in the trait.

The generated JAVA class for the class definition in XTRAITJ
can be used in any JAVA program and can be itself subclassed. In
particular, thanks to our method forwarding, dynamic binding will
be correctly implemented.

4.2.2 Dealing with alteration operations
Alteration operations in trait sums will not correspond to copies and
modifications of the original trait methods bodies: we will deal with
such operations in the generated JAVA code by generating “adapter”
interfaces and classes (see Section 5 for the discussion about trade-
offs of our implementation).

If a trait or a class uses a trait with some alteration operations,
then, in the generated JAVA code, we cannot simply use the gen-
erated JAVA interface (and class) of the referred trait, since such
interface will be different: Alteration operations introduce changes
in the interface of the new trait that make it incompatible with the
interface of the original trait. We refer the interested reader to [14]
for further details about the treatment of alteration operations in our
implementation.

4.3 Validation
Since we provide a mapping from a trait method to a JAVA method,
then XBASE is able to automatically type-check the expression of
the trait method (e.g., using the return type of the method and the
types of the parameters). This works since the types that we use in a
XTRAITJ program are actually references to JAVA types. Thus, we
completely delegate the type-checking of method bodies to XBASE.
Reusing the type system implementation of XBASE is straightfor-
ward when the mapping between the language model and the JAVA
model is one-to-one, i.e., each element of your language corre-
sponds to exactly one element in the JAVA model. This is not the
case for XTRAITJ as shown in Section 4.2.1. The introduction of
generics in this new version of XTRAITJ raised many issues with
that respect, since we need to make sure that type parameters and
the corresponding type arguments are correctly translated. This re-
quired us to tweak the default scoping mechanism of XTEXT in
many parts, in order to make XBASE’s type system work in the
presence of generics.

In Figure 1 we show some type errors reported by XBASE. All
the checks concerning method conflicts are instead implemented
by us; these also include the check that a class provides all fields
and methods required by the used traits (in Figure 1 we issue an
error since the trait requires String f while the class defines
int f). Moreover, we also implement the checks related to the
correct usage of trait alteration operations (e.g., required methods
and fields cannot be hidden).

4.4 IDE
One of our main design choices and goals is the integration of our
language in Eclipse (see Section 4.1). With this respect, XTEXT
and XBASE enhance the Eclipse tooling concerning the integration
with JAVA. For instance, we can navigate to a JAVA type definition
directly from an XTRAITJ program, see its type hierarchy, and other
features that are present in the Eclipse JAVA editor. This also holds
the other way round: from a JAVA program that uses code generated
from a XTRAITJ program we can navigate directly to the original
XTRAITJ method definition (see Figure 2).

A well-known problem with implementations that generate
JAVA code is that you can only debug the generated JAVA code that
is usually quite different from the original program. Our XTRAITJ

Figure 1. Errors reported in the IDE.

Figure 2. Accessing to XTRAITJ method definition from JAVA
code.

implementation does not have this drawback: thanks to XBASE we
can debug the original XTRAITJ code. In Figure 3 we show a debug
session of a JAVA program that uses code generated by XTRAITJ:
we have set a break point on a XTRAITJ file, and when the JAVA
program hits the corresponding JAVA code the debugger automati-
cally switches to the original XTRAITJ code (see the file names in
the thread stack, the “Breakpoint” view and the “Variables” view).
Note that the debugger will automatically skip the additional for-
ward methods generated by our compiler. However, it is always
possible to switch between the generated JAVA code and XTRAITJ
code; when switching to generated JAVA code, the programmer can
debug also the additional forward methods.

We have customized the “Outline” view for the XTRAITJ ed-
itor: besides fields and method declarations, the view also has a
special nodes, called “requirements” and “provides”, respectively,
that show all the required fields and methods and provided methods
that come from used traits. This mechanism takes into considera-
tion possible rename operations. The “Outline” view is also syn-
chronized with the editor contents, so that it is updated on-the-fly.
Moreover, clicking on any node of the view automatically selects
the corresponding element in the editor. Finally, instantiated type
parameters are taken into consideration in the outline representa-
tion.

Figure 3. Debugging XTRAITJ code.

Figure 4. Outline view showing all the requirements.

Figure 4 shows this view in action with some examples. For
instance, for T2 it shows as requirements the field i (declared in
the used trait T4) and the method m (declared in the used trait
T3). In particular, the latter actually refers to the renamed method
mm, and clicking on the outline node for m will actually bring
the programmer to the definition of the original method mm in T3
(which is in a different file).

For classes, this special “requirements” node will also list all the
methods of the implemented interfaces of the class (see the class C
in Figure 4). Clicking on such nodes will open the corresponding
JAVA editor. Note that since the class in the example provides type
arguments for type parameters, the outline shows required methods
and provided methods that come from generic traits with type
parameters instantiated accordingly.

We believe this is an extremely useful feature, especially when
the uses or implements relations spawn several traits and inter-
faces, possibly stored in different files.

In this new version of XTRAITJ we also offer quickfixes to
automatically insert fields required by the used traits in a class; also

Figure 5. Quickfix for adding missing required fields.

in this case we take into consideration possible instantiated type
parameters. For example, let us remove the declaration of the field
li from the class C in Figure 4; An error will be reported about the
missing requirement, marking the trait expression that introduces
such requirement, and a quickfix is available to add the missing
required field (where the generic type is correctly instantiated) as
shown in Figure 5.

Currently, there is also refactoring support for names, including
names of methods, traits and classes, including generic type pa-
rameters renaming. This is the default renaming support provided
by XTEXT and XBASE and it works also across files. We are in-
vestigating about adding further refactoring mechanisms to extract
methods into separate traits (possibly by integrating such mecha-
nisms with the ones proposed in [12], see also Section 6).

5. Evaluation
The flattening principle sketched in Section 2 allows to describe
the semantics of traits, but it is not necessarily an effective im-
plementation technique. Implementing the flattening semantics di-
rectly would lead to a huge amount of duplicated code, increas-
ing the size of the final JAVA program. Moreover, this would break
modularity and traits could be hardly used to implement libraries
since the clients’ code would need to be regenerated. In particular,
if the body of a trait’s method is changed by the programmer, then
all the flattened classes that are using that specific method would
need to be regenerated (for instance, this is the approach of [49]).

Instead, our implementation is modular with this respect. In
fact, as hinted in Section 4.2, each method body is translated into
exactly one single JAVA method body. Even alteration operations
do not require to copy the original method body: an additional
adapter class is generated so that the generated JAVA methods
behave according to the semantics of the alteration operations.
This implies that our JAVA code generation is compositional in the
presence of alteration operations: we reuse the already generated
JAVA code and we delegate method invocation differently (through
an adapter). Note also that copying and modifying the body of a
method (i.e., an XBASE expression) of a XTRAITJ program would
not allow us to reuse all the automatic mechanisms of XBASE,
including the XBASE implementation of the JAVA type system.
Moreover, we would not be able to seamlessly reuse the automatic
integration in Eclipse provided by XBASE, including the debugging
mechanisms.

The translation strategy, which has been used since the begin-
ning of the implementation of XTRAITJ, has been adapted to the
addition of generics and annotations. As hinted in Section 4.3, the
most difficult part in adding generics to XTRAITJ has been to cor-
rectly bind generic type references to the type parameters. This
usually takes place automatically in languages that use XBASE, be-
cause each DSL element is mapped to a single JAVA model element
by the model inferrer. This is not the case in XTRAITJ (because
of traits methods delegation and alteration operations), so we had
to implement a custom scoping mechanism to bind generic types
correctly. This is a strict requirement to make XBASE type system
work correctly.

Finally, the generated JAVA code has no dependency on XTRA-
ITJ (indeed, we do not need any runtime library that is specific of

our traits): it only depends on XBASE library and Google Guava
library. These two libraries are less than 2 MB in size, so they can
be easily deployed together with the generated JAVA code. Thus the
generated JAVA code can run on any JAVA platform, and thanks to
the reduced size of the required JAVA libraries, it can be installed
on JAVA devices, such as, Android devices.

The only drawback of our translation based on object compo-
sition and method delegation is due to the overhead of the method
forwarding. However, in order to achieve the same flexibility sup-
ported by traits in a pure JAVA application the programmers usually
resort to design patterns based on object composition and delega-
tion (including techniques to simulate multiple inheritance, such as,
e.g., [18]). As future work we plan to investigate possible tweaks
to the code generation so that the generated JAVA code can be more
easily optimized by the JAVA compiler. To this aim, we will use
micro benchmarks to test the possible code generation strategies.

Summarizing, we believe that the properties of our implemen-
tation described above, namely, compositionality, modularity and
IDE tooling, compensate consistently the runtime overhead of
method forwarding. With this respect, also the implementation de-
scribed in [53] uses delegation to enjoy the mentioned advantages.

Finally, generics in XTRAITJ do not introduce any additional
overhead: our generics are translated exactly into JAVA generics,
thus they have the same performance as in a standard JAVA pro-
grams using generics. With this respect, according to the type era-
sure model [24], generic types are removed during the compilation
and are not present in the generated byte-code. The performance
will then be the same of a program using raw types.

6. Conclusions, related and future work
In this paper we presented the extended version of XTRAITJ with
full support for JAVA generics: traits can have type parameters just
like in JAVA. Furthermore, XTRAITJ now supports JAVA annota-
tions, so that it can integrate with frameworks like JUNIT 4. This
highly extended the interoperability of XTRAITJ with the JAVA
platform with respect to the previous version of XTRAITJ. In the
rest of this Section we will discuss some further related work and
hints possible future directions.

The literature on traits and JVM-compatible languages has been
partially quoted and compared through the paper. In Section 5 we
also compared our implementation strategy with other implementa-
tions of traits; of course we only considered implementations where
“trait” refers to the original formulation of traits [30], that is, we
cannot compare our implementation with languages where traits
have a different meaning (e.g., traits in SCALA [47] or traits in
C++). In the rest of this section we add further discussions and
comparisons.

In the original formulation of traits [30] the methods provided
by a trait can only access state by using accessor methods, which
become required methods of the trait. A possible way to overcome
this limitation is to make traits stateful (as proposed by Bergel et
al. [10] for SMALLTALK/SQUEAK) by adding private fields that can
be accessed from the clients possibly under a new name or merged
with other variables.

We believe that keeping traits stateless and introducing required
fields, as in the formulation of traits in a structurally typed setting
by Fisher and Reppy [32], provides a more lightweight way to
address the problem. Therefore, we adopted this solution in XTRA-
ITJ: required methods/fields have to be explicitly declared together
with their type. This explicit declaration of requirements allows
for a better IDE integration and provides the programmer with
better tooling experience. We decided to require to declare the
fields in the classes since, on the one hand, we believe that these
field declarations provide a better support for code documentation
and, on the other hand, the IDE support eliminates any burden

to the programmer by a quickfix to automatically generate the
declarations of all the fields required by the traits used by a class
(as shown in Figure 5, Section 4.4).

Some of the module composition operations present in Bracha’s
JIGSAW framework [22] have been adapted to traits. In particular,
an instantiation of the JIGSAW framework within a JAVA-like nom-
inal type system has been proposed by Lagorio et al. [39]. JIGSAW
models field and method renaming operations, which are present in
XTRAITJ and are not present in most formulations of traits. Method
renaming in the context of multiple class-based inheritance is also
present in Meyer’s EIFFEL language [44]. Method renaming for
traits has been introduced by Reppy and Turon [50].

Reppy and Turon [51] also proposed a variant of traits that can
be parameterized by member names (field and methods), types and
values. Thus, the programmer can write trait functions that can be
seen as code templates to be instantiated with different parameters.
It could be interesting to add to XTRAITJ a similar feature, which
enhances the code reuse already provided by traits. This will be the
subject of future work.

Reverse generics [7] is a general linguistic mechanism to de-
fine a generic type from a non-generic type: for a given set of
types, a generic is formed by unbinding static dependencies con-
tained in these types. In [16] we introduced parametric traits, that
is, traits that are parameterized by interface names and class names.
Parametric traits are applied to interface names and class names to
generate traits that can be assembled in other (possibly parametric)
traits or in classes. This mechanism provides both features similar
to trait functions and features similar to reverse generics. Mecha-
nisms like parametric traits and reverse generics could be partially
implemented in XTRAITJ, for instance, by introducing an alteration
operation to specify which types must become type parameter in
the new traits. However, we would not be able to abstract types
in method body expressions such as object instantiations: due to
the type erasure model [24], generic types cannot be instantiated
in JAVA. In C++ (using template generic programming) and in dy-
namically typed languages, adding such mechanisms is easier (see,
e.g., [8, 9]). Since XTRAITJ targets the JAVA platform, we have to
share its limitations with that respect.

Dynamic trait replacement [13, 53] is a programming language
feature for changing the objects’ behavior at runtime by replacing
some of the objects’ methods. In future work we would like to
integrate a form of dynamic trait replacement in XTRAITJ.

In [12], a tool is presented for identifying the methods in a JAVA
class hierarchy that could be good candidates to be refactored in
traits; this was an adaptation of the SMALLTALK analysis tool of
[40] to a JAVA setting. It will be interesting to investigate how to
apply this approach for porting and refactoring existing JAVA code
to XTRAITJ code, for instance, the JAVA stream library (as in the
context of SMALLTALK, [26]).

In [28, 29] a compositional proof systems for the verification
of pure traits is presented. We plan to extend the KeY system [6]
for deductive verification of JAVA programs to XTRAITJ by imple-
menting a proof system similar to the one proposed in [29].

We also plan to add method overloading for trait definitions in
future releases of XTRAITJ. In the presence of overloaded methods,
trait alteration operations could be extended in order to specify
the complete signature of methods to avoid ambiguities. Note that,
even though in the current version one cannot define overloaded
methods in a trait definition, it is still possible to invoke overloaded
methods of existing JAVA classes in XBASE expressions.

Acknowledgments
We thank the anonymous PPPJ’14 referees for insightful comments
and suggestions for improving the presentation.

References
[1] Google guice. http://code.google.com/p/google-guice.
[2] Xtext. http://www.eclipse.org/Xtext.
[3] D. Ancona, G. Lagorio, and E. Zucca. Jam—designing a Java exten-

sion with mixins. ACM TOPLAS, 25(5):641–712, September 2003.
[4] V. Batov. Java generics and C++ templates. C/C++ Users Journal,

22(7):16–21, 2004.
[5] K. Beck. Test Driven Development: By Example. Addison-Wesley,

2003.
[6] B. Beckert, R. Hähnle, and P. H. Schmitt, editors. Verification of

Object-Oriented Software: The KeY Approach, volume 4334 of LNCS.
Springer, 2007.

[7] A. Bergel and L. Bettini. Reverse Generics: Parametrization after the
Fact. In Software and Data Technologies, volume 50 of Communica-
tions in Computer and Information Science, pages 107–123. Springer,
2011.

[8] A. Bergel and L. Bettini. Generics and Reverse Generics for Pharo. In
ICSOFT, pages 363–372. SciTePress, 2012.

[9] A. Bergel and L. Bettini. Generic Programming in Pharo. In Software
and Data Technologies, volume 411 of Communications in Computer
and Information Science, pages 66–79. Springer, 2013.

[10] A. Bergel, S. Ducasse, O. Nierstrasz, and R. Wuyts. Stateful traits
and their formalization. Computer Languages, Systems & Structures,
34(2-3):83–108, 2008.

[11] L. Bettini. Implementing Domain-Specific Languages with Xtext and
Xtend. Packt Publishing, 2013.

[12] L. Bettini, V. Bono, and M. Naddeo. A trait based re-engineering
technique for Java hierarchies. In PPPJ, pages 149–158. ACM, 2008.

[13] L. Bettini, S. Capecchi, and F. Damiani. On flexible dynamic trait
replacement for Java-like languages. Science of Computer Program-
ming, 78(7):907–932, 2013.

[14] L. Bettini and F. Damiani. Pure trait-based programming on the Java
platform. In PPPJ, pages 67–78. ACM, 2013.

[15] L. Bettini, F. Damiani, K. Geilmann, and J. Schäfer. Combining traits
with boxes and ownership types in a Java-like setting. Science of
Computer Programming, 78(2):218–247, 2013.

[16] L. Bettini, F. Damiani, and I. Schaefer. Implementing
type-safe software product lines using parametric traits.
Science of Computer Programming, 2013. In press,
http://dx.doi.org/10.1016/j.scico.2013.07.016.

[17] L. Bettini, F. Damiani, I. Schaefer, and F. Strocco. TraitRecordJ: A
programming language with traits and records. Science of Computer
Programming, 78(5):521–541, 2013.

[18] L. Bettini, M. Loreti, and B. Venneri. On Multiple Inheritance in Java.
In Technology of Object-Oriented Languages, Systems and Architec-
tures, volume 732 of The Kluwer International Series in Engineering
and Computer Science, pages 1–15. Springer, 2003.

[19] V. Bono, F. Damiani, and E. Giachino. Separating Type, Behavior, and
State to Achieve Very Fine-grained Reuse. In Electronic proceedings
of FTfJP, 2007.

[20] V. Bono, F. Damiani, and E. Giachino. On Traits and Types in a Java-
like setting. In TCS (Track B), volume 273 of IFIP, pages 367–382.
Springer, 2008.

[21] V. Bono, E. Mensa, and M. Naddeo. Trait-oriented
programming in Java 8. In PPPJ. ACM, 2014.
http://dx.doi.org/10.1145/2647508.2647520.

[22] G. Bracha. The Programming Language JIGSAW: Mixins, Modularity
and Multiple Inheritance. PhD thesis, University of Utah, 1992.

[23] G. Bracha and W. Cook. Mixin-based inheritance. In OOPSLA,
volume 25(10), pages 303–311. ACM, 1990.

[24] G. Bracha, M. Odersky, D. Stoutamire, and P. Wadler. Making the
future safe for the past: Adding genericity to the Java programming
language. In OOPSLA, volume 33(10) of ACM SIGPLAN Notices,
pages 183–200, Oct. 1998.

[25] P. Canning, W. Cook, W. Hill, W. Olthoff, and J. C. Mitchell. F-
bounded Polymorphism for Object-oriented Programming. In FPCA,
pages 273–280. ACM, 1989.

[26] D. Cassou, S. Ducasse, and R. Wuyts. Traits at work: The design of a
new trait-based stream library. Comput. Lang. Syst. Struct., 35(1):2–
20, 2009.

[27] W. Cook, W. Hill, and P. Canning. Inheritance is not subtyping. In
POPL, pages 125–135. ACM, 1990.

[28] F. Damiani, J. Dovland, E. B. Johnsen, and I. Schaefer. Verifying
traits: A proof system for fine-grained reuse. In FTfJP, pages 8:1–8:6.
ACM, 2011.

[29] F. Damiani, J. Dovland, E. B. Johnsen, and I. Schaefer. Verifying traits:
an incremental proof system for fine-grained reuse. Formal Aspects of
Computing, 26(4):761–793, 2014.

[30] S. Ducasse, O. Nierstrasz, N. Schärli, R. Wuyts, and A. Black. Traits:
A mechanism for fine-grained reuse. ACM TOPLAS, 28(2):331–388,
2006.

[31] S. Efftinge, M. Eysholdt, J. Köhnlein, S. Zarnekow, R. von Mas-
sow, W. Hasselbring, and M. Hanus. Xbase: Implementing Domain-
Specific Languages for Java. In GPCE, pages 112–121. ACM, 2012.

[32] K. Fisher and J. Reppy. A typed calculus of traits. In FOOL, 2004.
[33] M. Flatt, S. Krishnamurthi, and M. Felleisen. Classes and mixins. In

POPL, pages 171–183. ACM, 1998.
[34] M. Fowler. Inversion of Control Contain-

ers and the Dependency Injection pattern.
http://www.martinfowler.com/articles/injection.html,
Jan. 2004.

[35] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns:
Elements of Reusable Object-Oriented Software. Addison-Wesley,
1995.

[36] D. Ghosh. Generics in Java and C++: a comparative model. ACM
SIGPLAN Notices, 39(5):40–47, May 2004.

[37] J. Hendler. Enhancement for multiple-inheritance. In Object-Oriented
Programming Workshop, pages 98–106. ACM, 1986.

[38] A. Igarashi, B. Pierce, and P. Wadler. Featherweight Java: A minimal
core calculus for Java and GJ. ACM TOPLAS, 23(3):396–450, 2001.

[39] G. Lagorio, M. Servetto, and E. Zucca. Featherweight Jigsaw - Re-
placing inheritance by composition in Java-like languages. Informa-
tion and Computation, 214(0):86 – 111, 2012.

[40] A. Lienhard, S. Ducasse, and G. Arévalo. Identifying traits with
formal concept analysis. In ASE, pages 66–75. IEEE, 2005.

[41] M. Limberghen and T. Mens. Encapsulation and composition as
orthogonal operators on mixins: A solution to multiple inheritance
problems. Object Oriented Systems, 3(1):1–30, 1996.

[42] L. Liquori and A. Spiwack. FeatherTrait: A Modest Extension of
Featherweight Java. ACM TOPLAS, 30(2):11:1–11:32, 2008.

[43] R. C. Martin. Agile Software Development: Principles, Patterns, and
Practices. Prentice Hall, 2003.

[44] B. Meyer. Object-Oriented Software Construction, 2nd Edition.
Prentice-Hall, 1997.

[45] E. R. Murphy-Hill, P. J. Quitslund, and A. P. Black. Removing
duplication from java.io: a case study using traits. In OOPSLA, pages
282–291. ACM, 2005.

[46] O. Nierstrasz, S. Ducasse, and N. Schärli. Flattening traits. JOT,
5(4):129–148, 2006.

[47] M. Odersky. The Scala Language Specification, version 2.4. Technical
report, Programming Methods Laboratory, EPFL, 2007.

[48] P. J. Quitslund. Java Traits — Improving Opportunities for Reuse.
Technical Report CSE-04-005, OGI School of Science & Engineering,
Beaverton, Oregon, USA, Sept. 2004.

[49] P. J. Quitslund, E. R. Murphy-Hill, and A. P. Black. Supporting Java
traits in Eclipse. In ETX, pages 37–41. ACM, 2004.

[50] J. Reppy and A. Turon. A Foundation for Trait-based Metaprogram-
ming. In FOOL/WOOD, 2006.

[51] J. Reppy and A. Turon. Metaprogramming with traits. In ECOOP,
volume 4609 of LNCS, pages 373–398. Springer, 2007.

[52] N. Schärli, S. Ducasse, O. Nierstrasz, and A. Black. Traits: Com-
posable units of behavior. In ECOOP, volume 2743 of LNCS, pages
248–274. Springer, 2003.

[53] C. Smith and S. Drossopoulou. Chai: Traits for Java-like languages.
In ECOOP, volume 3586 of LNCS, pages 453–478. Springer, 2005.

[54] A. Snyder. Encapsulation and inheritance in object-oriented program-
ming languages. In OOPSLA, volume 21(11), pages 38–45. ACM,
1986.

