
01 May 2024

AperTO - Archivio Istituzionale Open Access dell'Università di Torino

Original Citation:

Robust plan execution via reconfiguration and replanning

Published version:

DOI:10.3233/AIC-140629

Terms of use:

Open Access

(Article begins on next page)

Anyone can freely access the full text of works made available as "Open Access". Works made available
under a Creative Commons license can be used according to the terms and conditions of said license. Use
of all other works requires consent of the right holder (author or publisher) if not exempted from copyright
protection by the applicable law.

Availability:

This is the author's manuscript

This version is available http://hdl.handle.net/2318/1507269 since 2015-08-17T08:05:02Z

Robust Plan Execution via Reconfiguration and

Replanning

Enrico Scala*, Roberto Micalizio**, Pietro Torasso**
Dipartimento di Informatica

Università di Torino
*enrico.scala@anu.edu.au

**{micalizio, torasso}@di.unito.it

August 5, 2015

Abstract

Acting in real world may be a difficult task for an agent, either software
or robotic, because unexpected contingencies may arise at any step of the
execution. Previous approaches to robust plan execution consider propo-
sitional goals to be achieved and time constraints to be satisfied. How-
ever, realistic plans must obey to constraints on continuous/consumable
resources, too.

To face the complexity in handling these resources, the paper proposes
the notion of Multi Modality Action (MMA). The model allows to explic-
itly express the multiple execution modalities in which a given action can
be executed; each execution modality models requirements/consequences
on the involved consumable resources when that modality is selected. Re-
lying on the MMA notion, the paper presents how the repair problem can
be seen as a problem of reconfiguring actions modalities, and how it can
be solved by exploiting a CSP encoding.

The MMAs are employed by a new continual planner, FLEX-RR,
which, exploiting the synergy from the reconfiguration and a numeric
planning mechanism can efficiently repair on the fly the plan keeping it
rather stable. An empirical analysis performed on three numeric planning
domains, confirms the large benefits of FLEX-RR in terms of competence,
efficiency and stability of the repaired plan.

1 Introduction

Real-world scenarios are in general weakly predictable and highly dynamic. This
means that unexpected contingencies may arise at any step of the execution. It
is not thus surprising that, as also recently stated in [15], the problem of robust
plan execution in real-world domains is a very challenging topic in AI planning,
necessary for implementing planning mechanisms in autonomous systems.

1

A first methodology to cope with the problem consists in anticipating, at
planning time, all the possible contingencies that might occur during the actual
execution of the plan. The result of the planning phase is therefore a conditional
plan [5, 18], i.e. a plan where alternative courses of actions are possible depend-
ing on certain conditions of the environment. During the execution phase, the
agent, guided by its sensing actions, is able to select a feasible branch of its plan
that leads to the goal. A similar methodology has been proposed in [6]; in this
case, conditional plans are built to guarantee that the agent satisfies temporal
constraints on the achievement of its goals.

These approaches are successful when it is possible to find a plan which
anticipates all the contingencies at planning time (i.e., off-line). When such
contingencies cannot be handled off-line, alternative on-line solutions are re-
quired. Many works [40, 9, 14, 11] have recently proposed to enhance robust
plan execution via plan repair techniques. Basically, these works suggest to stop
the plan execution as soon as some unexpected situation is encountered, and
then they attempt to repair the broken plan either via replanning from scratch
or via plan adaptation ([13]).

However, adapting a plan can be very hard in the general case ([32]), and
even undecidable when the domain involves resources modeled as numeric state
variables ([16]). To handle the repair problem in a more efficient fashion, this
paper addresses the robust execution from a different perspective: to limit as
much as possible the need of replanning, we propose a new characterization of
the repair given in terms of a reconfiguration.

Similarly to the numeric extension of PDDL ([10]), we start from the obser-
vation that real-world scenarios include both reusable and consumable resources.
Thus, a plan has not only to achieve a set of goals, but it has also to conform
to strict constraints on the amount of resources to be used by the agent. For
this reason, it is necessary to explicitly model the (expected) profile of resource
consumption during the execution of any action. We thus model resources as
numeric fluents, which can be explicitly mentioned in the preconditions and
effects of the action templates1.

We also observe that, in many real-world domains it is possible to identify
actions performing the same task (i.e., obtaining the same effects), but requiring
different configurations of the agent. These actions share the same qualitative
objectives, while they differ in the way they are performed. Typically, different
configurations have different resource profiles. We therefore propose to group
these subsets of similar actions by introducing the notion of multi-modality ac-
tion (MMA). An MMA represents in a compact form alternative ways, or alter-
native execution modalities, to accomplish a task. In planning terms, we would
say that all the execution modalities of a given MMA reach the same set of
propositional effects. However, since they are characterized by specific resource
consumption profiles, they differ in their numeric preconditions and effects.

From the MMA formulation we obtain theoretical and practical computa-

1Since version 2.1, PDDL allows the employment of numeric fluents in the definition of
action templates.

2

tional benefits; in fact, while replanning is in some case unavoidable, it can be
an excessive reaction in many situations as just reasoning over the action modal-
ities can be sufficient to overcome exceptions. Moreover, the reconfiguration of
the MMAs does not affect the causal structure of the plan. For this reason, if
the unexpected deviations can be handled with an alternative configuration of
action modalities, the plan remains quite stable. This is important when the
agent is situated in a multi-agent setting as humans and/or artificial agents have
provided mandatory expectations on the agent’s task.

Relying on the notion of MMAs, the paper proposes a system, called FLEX-
RR (FLexible EXecution via Reconfiguration and Replanning), which is an ex-
tension of the on-line approaches based on replanning. The approach is inspired
to the continual planning paradigm [2, 7] since it allows the agent to interleave
(re)planning and execution. FLEX-RR aims at limiting the replanner’s inter-
vention by singling out those situations which could efficiently be resolved via (a
simpler) reconfiguration phase. On the other hand, when plan reconfiguration
fails or is not sufficient, FLEX-RR starts a replanning task.

Since FLEX-RR encompasses both the reconfiguration task introduced in
this paper and a pure replanning approach, it can deal with those situations
solvable via replanning but not via reconfiguration. Thus, in the worst cases
FLEX-RR is comparable to replanning from scratch. In practice, the reconfigu-
ration can be sufficient to overcome resource consumption anomalies in several
cases, as we will discuss in the experimental section.

Section 2 introduces the main concepts at the basis of the FLEX-RR strat-
egy: the MMA model and the Dynamic Modality-Assignment Problem (DMAP),
which formalizes the reconfiguration problem. Section 3 presents the implemen-
tation of the FLEX-RR strategy. An important aspect addressed in this sec-
tion is the transformation of a DMAP into a Constraint Satisfaction Problem
(CSP), and its resolution via a module called ReCon (ReConfigurator). An ex-
tensive sets of experiments are reported in sections 5 and 6; firstly we compare
FLEX-RR with two alternative repair strategies: replanning from scratch and
LPG-ADAPT ([13]). Then, we analyze the behavior of FLEX-RR and we test
the scalability of the CSP solver in handling increasing DMAPs. Finally, we
discuss the related works in Section 8.

2 The Dynamic Modality-Assignment Problem
(DMAP)

This section formalizes the problem of reconfiguring a plan as a Dynamic Modality-
Assignment Problem (DMAP). Before presenting the DMAP and its properties,
however, we need to review some basic notions of planning from the point of
view of the Multi-Modality Action (MMA) model we propose.

3

2.1 Modeling the world state

Inspired by the PDDL formalism [10], we abstract the world as a finite set U
of physical objects present in the environment, and as properties and relations
among such objects. These properties and relations can be both qualitative and
quantitative, more formally:

Definition 1 (World Domain). The world domain is a triple < U,F,X >,
where U is the set of physical objects, F is the set of qualitative (i.e., proposi-
tional fluents) relations involving objects in U , and X is the set of quantitative
(i.e., numerical fluents 2) relations over U .

F and X define the domain in which qualitative and quantitative properties
can be stated. This means that the domains of F and X consist of all the
possible instantiations of relations w.r.t. the objects in U .

Given the domain defined above, a system state specifies the qualitative
and the quantitative properties of the objects in U in that state of the system,
formally:

Definition 2 (World State). A state S is a pair
< propF luents, numFluents >, where:
propF luents ⊆ F is the subset of propositional fluents that are true in this state,
and
numFluents is an assignment of real values to all the numeric fluents in X.

The fluents in F not mentioned in propF luents for a given state S are
considered false (Closed World Assumption) in S.

Note, moreover, that numFluents can be also seen as a total function
which maps each numeric fluent to a specific real value; for this reason, |X|
= |numFluents|.

To simplify the notation, in the following we will denote the propositional
and the numerical part of a state S by Sprop and Snum, respectively. Note that,
while the propositional fluents in Sprop give information about the relations
existing between domain objects (e.g. (ON A B)), the numeric fluents in Snum
refine the description of the objects with further properties. In particular, in
our discussion we exploit the notion of numeric fluent to model the amounts of
objects’ resources (e.g. (= (power r1) 100)).

In the rest of the paper, we will exemplify our approach by means of the
ZenoTravel domain: a logistic scenario used in the competitions for testing the
ability of planners in dealing with numerical fluents 3. The ZenoTravel domain
involves a set of planes in charge of transporting people among a given set of
different locations; action models make use of both propositional and numeric
fluents. For example, given one plane, two persons and two locations (i.e., U =
{p -plane, p1 p2 -person, a1 a2 -location}), a system state S as in Definition 2
for the ZenoTravel domain is:

2Numerical fluents are n-ary function symbols mapping n objects of a domain (or variables
when used in action schema) to a real number

3http://planning.cis.strath.ac.uk/competition/

4

Sprop: {(in p a1) (in p1 a1) (in p2 a2)}
Snum: {(= (fuel p) 100), (= (tot fuel used) 0),

(= (capacity p) 250)}

2.2 The Multi-Modality Action Model

Taking into account the notion of system state introduced above, we now discuss
how the system state evolves as an effect of the action application; in particular,
this subsection introduces the Multi-Modality Action model (MMA).

As anticipated in the introduction, execution modalities are intended to
point out the different ways in which the same action can be performed, e.g.,
using different devices and/or parameter configurations. The intuition is that
the expected results of an action can actually be obtained in many different ways
by setting how the action is configured. Obviously, different configurations have,
in general, different resources and time profiles. Therefore, it may be possible
that the execution of an action in a given configuration leads to a plan failure,
whereas the same action performed in another configuration does not.

The MMA model extends the PDDL action model by allowing to express,
within a single action schema, the different alternative modalities in which that
action can be performed.

More precisely, an MMA splits an action model into a qualitative and a
quantitative description. The qualitative description involves the propositional
behavior of an action model and is independent of the modalities. Whereas
the quantitative description involves the numeric fluents and is made dependent
on the modalities associated with the action. The idea is to model how the
selection of a specific modality causes variations (in numeric/metric terms) in
the resource profiles, especially for consumable resources4. Formally, we define
an MMA as follows.

Definition 3 (Multi-Modality Action). Given the world domain < U,F,X >,
a Multi-Modality Action (MMA) a is the tuple < propPre, propEff,mods >
where:

• propPre is a conjunction of propositions defined over F ; it describes the
applicability conditions, in propositional terms, for a.

• propEff is a conjunction of propositions defined over F , expressing the
effect of the application of a.

• mods is a collection of modalities. Each modality m defines a specific way
of performing a and is modeled as a pair < numPre, numEff > where:

– numPre: is a conjunction of comparisons that must be satisfied for
applying MMA a in a state S with modality m. Each comparison
in numPre is a triple < exp1, comp, exp2 > where exp1 and exp2

4To avoid confusion on the use of the term, with consumable we intend resources which
can be produced and consumed

5

are numeric expressions defined over real constants and over X, and
comp ∈ {<,≤,=,≥, >}

– numEff : is a conjunction of assigners which specifies how numeric
variables change by applying MMA a with modality m. Each assigner
is a triple < op, f, exp > where op ∈ {increase, decrease, assign},
f ∈ X and exp is a numeric expression involving real numbers and
fluents in X.

The numeric expressions we deal with are recursively defined as:

• a real number in < is an expression;

• a numeric fluent in X is an expression;

• given two expressions exp1 and exp2, then also exp1 op exp2 is an expres-
sion, where op belongs to {+,*,/,-}.

As many other representation formalisms handling numeric expressions (see
for instance [17] and [12]), also in our framework we limit ourselves to linear
expression, for two main reasons: (i) to comply w.r.t. state of the art numeric
planners, and (ii) for guaranteeing efficiency of the reconfiguration task, which
makes use of a CSP encoding (see Section 2.4 and Section 3).

Given the model defined in 3, an MMA to be executed in a state has to take
into account both of its propositional preconditions and the numeric constraints
associated with the modalities of execution. More formally:

Definition 4. [MMA Applicability] Given a state S, an MMA a is said to be
applicable in S iff:

1. Sprop ` a.propPre: a.propPre is supported by Sprop, and

2. there exists a modality m ∈ a.mods such that a(m).numPre, the numeric
conditions associated with modality m, are satisfied in Snum.

Note that, in general, an MMA a is applicable to a given a state S with
different modalities. In the following we will denote as emods(a, S) the subset
of modalities in a.mods that are enabled in S; namely, m ∈ emods(a, S) iff
m ∈ a.mods and a(m).numPre is satisfied in S. However, when a is actually
applied to S, just one selected modality m ∈ emods(a, S) is used to predict the
successor state S′.

Definition 5. [Successor State] Given a state S and an MMA a applicable in
S, the application of a to S with modality m ∈ emods(a, S) yields a successor
state S′ as follows

1. S′prop: S ∪ {propEff+(a) \ propEff−(a)}

2. S′num: Each numeric fluent of S is copied in S’; for each assigner in
numEff(m), the numeric fluent f appearing as second term is modified
according to op and exp. Note that exp is evaluated with reference to the
state S, and each numeric fluent involved in exp have a specific value in
S.

6

The transition is deterministic and the order in which numEff is considered
does not matter, since the evaluation of fluents in exp depends just on the state
in which the action is applied.

An important characteristic of the MMA definition given above is the neat
separation between the propositional and the numeric part. This separation al-
lows us to introduce the notion of propositional view of an MMA. More precisely,
given an MMA a, the propositional view of a, denoted as aprop, just refers to the
propositional segment of the MMA model. The propositional view is essential
when one wants to figure out what propositional atoms are reached by applying
a given MMA without considering how (i.e., without taking into account the
MMA modalities). For this reason, Definition 4 can be reconsidered under the
propositional view of MMAs. In fact, given an MMA a, it is possible to say
that a is just propositionally applicable to a state S, when its propositional view
aprop is applicable to Sprop, that is, when just condition 1 is taken into account.

Also the notion of successor state can be restated in terms of the propo-
sitional view of MMAs. Given an MMA a and a state S, the propositional
successor state S′prop is yielded by applying the propositional view of a to the
propositional portion of state S, namely Sprop. In other words, the propositional
successor state is obtained by restricting Definition 5 just to condition 1.

As we will see in the next section, the possibility of reasoning in such two
levels of abstraction, allows us to characterize the repair problem as a Dynamic
Modality Assignment Problem.

2.2.1 An example of Multi-Modality Action

From our point of view, the ZenoTravel domain is quite interesting since in the
original version of the model there are two actions (fly and zoom) that have
exactly the same propositional effects, but different numeric effects. Indeed, the
two actions have different impacts on the use of resources (in particular on the
numeric fluents fuel, total fuel used and time-spent5).

These two actions have different preconditions, but it is worth noting that
the propositional preconditions are exactly the same (the airplane must be in
the source airport) and the only differences in preconditions are the ones related
to numeric fluents. These two actions can be perfectly captured in our approach
with a single action fly with two modalities cruise and zoom. In particular,
the multi-modality action schema of fly, in a PDDL-like language, is shown in
Figure 1.

It is easy to see that the propositional preconditions and effects are shared
among all the modalities, while the preconditions and effects concerning numeric
fluents are specific for each modality.

To make the domain more challenging in the context of MMA, we added to

5Note that, as we will see in the next section, since we deal with sequential plans of actions,
we can handle the time spent by actions as a consumable (not renewable) resource. Therefore,
the time can be modeled as a numeric fluent and its meaning has not to be confused with the
notion of time-stamp in the context of temporal planning ([10]), or in planning via timelines
([4])

7

(:action fly

:parameters (?a - aircraft ?c1 ?c2 - city)

:modalities {cruise, zoom}

:precondition (located ?a ?c1)

:numPrecondition

(cruise:

(>= (fuel ?a) (* (distance ?c1 ?c2) (cruise-burn ?a)))

(zoom:

(>= (fuel ?a) (* (distance ?c1 ?c2) (zoom-burn ?a))))

:effect (and (not (located ?a ?c1))

(located ?a ?c2)))

:numEffect

(cruise:

(and(increase (total-fuel-used) (* (distance ?c1 ?c2) (cruise-burn ?a)))

(decrease (fuel ?a) (* (distance ?c1 ?c2) (cruise-burn ?a)))

(increase (time-spent) (/ (distance ?c1 ?c2) (cruise-speed ?a)))))

(zoom:

(and(increase (total-fuel-used) (* (distance ?c1 ?c2) (zoom-burn ?a)))

(decrease (fuel ?a) (* (distance ?c1 ?c2) (zoom-burn ?a)))

(increase (time-spent) (/ (distance ?c1 ?c2) (zoom-speed ?a)))))

Figure 1: Multi Modality Action template for the fly action in the ZenoTravel
domain.

the original ZenoTravel domain two modalities for the board and debark actions,
namely, normal and express which take different amounts of time (shorter for
express) and different costs (lower for normal).

2.3 The Multi-Modality Plan

We are now in the position for introducing the notions of multi-modality plan
and of multi-modality planning task.

Definition 6. Given the domain < U,F,X >, a Multi-Modality Planning Prob-
lem (MMPP) Π is a tuple < A, I,Gprop, Gnum > where:

• A is the set of possible MMA instances over
< U,F,X >; 6

• I ∈ 2F x <|X| is the initial state of the problem;

• Gprop is the propositional goal; i.e., a conjunction of propositions in F ;

• Gnum is the numerical goal; i.e., a conjunction of numerical constraints
over X.

6Since we are interested in plan execution, we consider in this formulation instantiated
actions only. However, our implementation supports action schema too. The extension is
straightforward.

8

Note that our notion of MMPP is similar to the Numerical Planning Problem
(NPP) proposed by Gerevini et al. [12], the main difference is that we adopt
actions with modalities rather than simple actions. It is easy to see, however,
that an MMPP can be translated into an NPP; it is sufficient to flatten each
MMA a in A by generating a set of corresponding simple actions am1, .., amn,
where each ami (i : 1..|a.mods|) models the behavior of a when the modality
mi ∈ a.mods is selected. Analogously, by exploiting the relation between a
flat action and the more abstract MMA model, we can perform the opposite
conversion: given a plan consisting of flat actions, we can build an MMA plan.
It is in fact sufficient to create, for each flat action a, a corresponding MMA a′

such that the execution modality of a′ is set to meet the numeric preconditions
and effects of a.

In the following definitions, we use the notation πi→j with i ≤ j to denote
the plan segment starting at the i-th action ai of the plan and ending at the
j-th action aj ; when the right bound is omitted (e.g. πi) the length of the
plan is assumed, that is πi is equal to πi→|π|. Moreover, S[π] denotes the state
produced by applying actions of the plan π starting from the state S. Note
that, since a plan segment is itself a plan, the notation S[πi→j] represents the
(intermediate) state S′ reached after the execution of the actions ai, .., aj from
the state S.

Definition 7. Given a MMPP Π=< A, I,Gprop, Gnum >,
the plan π = a0(m0),a1(m1),..,an−1(mn−1) is a solution for Π iff:

i. I[π] ` Gprop and

ii. I[π] satisfies Gnum and

iii. a0(m0) is applicable in I and each MMA ai+1(mi+1) is applicable in the
state I[π0→i] (with i : 0..n− 2).

In other words, a sequence π of MMAs (specified with their modalities) repre-
sents a solution for Π when the execution of π transforms the initial state I into
a final state I[π] such that: (i.) the propositional atoms in Gprop holds in I[π],
(ii.) the numerical constraints in Gnum are satisfied, and (iii.) each MMA ai+1

in the plan is applicable in the intermediate state obtained by applying the plan
segment π0→i to the initial state I.

Relying on the notion of propositional applicability of the MMAs, we can
also define a propositional solution for a MMPP as follows.

Definition 8. Given a MMPP Π=< A, I,Gprop, Gnum >, a plan π = a0,a1,..,an−1
is a propositional solution for Π iff:

i. I[π] ` Gprop and

ii. a0 is propositional applicable in I and each MMA ai is propositionally
applicable in the state I[π0→i].

This means that a plan π is a propositional solution for the problem Π if it
reaches the propositional goal Gprop in the abstracted propositional view.

9

2.4 The Dynamic Modality-Assignment Problem

As previously anticipated, the execution of a plan π in the real world can be
threatened by the occurrence of unexpected events such as variations in the
resource consumptions, or assumptions that, made at planning time, become
invalid at execution time. It is therefore essential to detect, while the plan is
still in progress, any unexpected deviation from the nominal expected behavior.

Given an MMPP Π=< A, I,Gprop, Gnum >, and a plan
π = {a0(m0),a1(m1),..,an−1(mn−1)} solving Π, let Si be the observed system
state obtained after the execution of the first i MMAs in π, and let πi be the
plan segment {ai(mi), ..an−1(mn−1)} still to be performed; we say that:

• π is valid at step i iff the plan segment πi is a solution for the MMPP
< A,Si, Gprop, Gnum >. Namely, the final state predicted by applying the
plan segment πi to Si satisfies both the propositional and numeric terms
of the plan goal;

• π is partially valid at step i, iff the plan segment πi is just a propositional
solution for the MMPP < A,Si, Gprop, Gnum >. Therefore, the plan seg-
ment πi just guarantees the reachability of the propositional goal Gprop,
but not of the numeric goal Gnum;

• otherwise, π is invalid at step i: the plan segment πi cannot be safely
applied to state Si since, for at least one MMA a ∈ πi, the propositional
preconditions of a will not be satisfied, and this would lead the system to
an undefined state.

During the execution of the plan, it is necessary to determine the status (i.e.,
either valid, partially valid, or invalid) just before starting the execution of each
MMA involved. For this purpose, we do not consider just the effects of the last
performed MMA, but we also verify whether the propositional goals Gprop and
the numeric ones Gnum can be satisfied in the final state reached by π. We do
this starting from the observed state Si of the world in order to capture both the
changes caused by the agent, and the changes caused by the possible occurrence
of exogenous events.

The assessment of the actual environment state after the execution of an
action is, in general, a complex problem since the environment is, in most cases,
not fully accessible, and only partial observations about the world are available.
The problem of plan execution in partially observable environments has been
dealt with in [27] [36]. In this paper, however, we assume that the observability
level is sufficient for measuring the effects of an action a(m) (i.e., applied with
modalitym), and for evaluating the applicability of the next action (i.e., whether
the propositional and numerical preconditions of the next action are satisfied).

In principle, whenever the plan π is no longer valid, a replanning mecha-
nism should be invoked in order to find an alternative way to reach the desired
goals. As we have seen, however, the clear distinction between the proposi-
tional and numerical aspects within an MMA allows us to distinguish between
a completely invalid plan (which is no longer executable because some of the

10

required propositional fluents are missing), and a partially valid plan which is
just propositionally consistent but not numerically.

The idea is that, while an invalid plan can only be repaired by means of
a (possibly expensive) replanning step, a partially valid plan can be repaired
more effectively by reconfiguring its MMAs. That is, we try to reuse the effort
made for the synthesis of π by adjusting the way in which the MMAs in π will
be performed. We therefore propose to repair a partially valid plan not via a
replanning step but via a reconfiguration phase, and to do this, we now formally
introduce the notion of Dynamic Modality-Assignment Problem (DMAP).

Definition 9 (The Dynamic Modality-Assignment Problem (DMAP)). Let π
= a0(m0), .., ai(mi), ..,
an−1(mn−1) be a solution for the MMPP Π =< A, I,Gprop, Gnum >, and let Si
be the last observed state of the environment (i.e., we are at the i-th execution
step).

The Dynamic Modality Assignment Problem Φ is a tuple
< π, i, Si, Gnum > such that:

• π is a plan whose first i MMAs have been already performed,

• π is partially valid at step i,

• Si is the observed status of the environment after the execution of MMA
ai−1,

• Gnum is the set of numeric constraints to be fulfilled.

Definition 10 (Solution of a DMAP). The solution (if any) of a DMAP is a
new plan
π′ = a0(m′0), .., ai(m

′
i), .., an−1(m′n−1) such that:

• for each MMA aj, 0 ≤ j < i, m′j = mj: the reconfiguration cannot change
the modality of an action that has already been performed;

• for at least one MMA aj, i ≤ j < n, m′j ∈ aj .mods differs from mj;

• Si[π′i] ` Gnum: the new assignment of modalities satisfies the numerical
portion of the goal.

It is worth noting that the solution π′ of a DMAP has the same sequence of
actions as π. The two plans, π and π′, just differ each other in the modalities
associated with the actions not yet performed. Note also that, since the input
plan is partially valid, the solution of a DMAP will differ from the original
setting of modalities at least for one of them.

Observing the DMAP definition, it is quite clear that the search space gen-
erated by the problem is exponential in the number of the MMAs still to be
executed. Given card(j) the number of modalities associated with the j-th ac-

tion and i the current step, the search space is hence
∏j<|π|
j>=i card(j), which is

of course bounded by M (|π|−i), where M is the cardinality of the larger set of

11

execution modalities through the DMAPs. As we will see in the experimental
phase, even if exponential, the search space can be efficiently handled by the
CSP solver employed in our system.

The problem is ‘dynamic’ as it can arise at any step of the plan execution,
and assignments made at given step could be reconsidered at a following one.

Having solved the DMAP we are sure that the new MMA plan is a valid
solution for the overall MMPP; that is:

Theorem 1. Let the plan π be partially valid at step i wrt the MMPP Π. If π′

is a solution for the DMAP Φ=< π, i, Si, Gnum > then π′ is valid at step i.

Proof. To show that π′ is valid we have to prove that Si[π
′
i] supports both Gnum

and Gprop. The former comes directly from the definition of a solution for the
DMAP, whereas the latter follows by the fact that π′ inherits the causal structure
of π (i.e., the qualitative/propositional part of the plan does not change when
computing the solution). For this reason π′ is computed from a partially valid
solution and hence Si[π

′
i] supports Gprop.

Theorem 1 assures us that solving a DMAP does restore the nominal plan
execution. The new plan π′, solution for a DMAP instance, is in fact a repaired
version of the original plan π.

It is easy to see that the solutions space of a DMAP is a subset of the
solutions space defined by MMPP. It is therefore easy to see that a solution for
the DMAP, if any, is also a solution for the MMPP. However, the opposite does
not hold, namely when the DMAP has no solution, the MMPP might instead
have a solution.

The following theorem shows that, when the DMAP fails, the solutions to
the new MMPP must differ from the original plan for at least one action.

Theorem 2. Let πi be a partially valid plan at step i, and let us assume that
the DMAP Φ=< π, i, Si, Gnum > has no solution. Let π′ be a solution for
the MMPP Π′=< A,Si, Gprop, Gnum >. Then π′ satisfies at least one of the
following statements:

• there is at least an MMA in π′ which does not belong to πi.

• there is at least an MMA in πi which does not belong to π′.

• the order of MMAs in π′ differs from πi, i.e. there are at least two actions
a and b where both a,b ∈ π′ and a,b ∈ πi such that if a ≺ b in π′ then b
≺ a in πi.

Proof. The proof proceeds by contradiction. Let us assume that the solution
found for Π′ is such that none of the three statements hold. If it is the case
the solution π′ will have exactly the same structure of πi in terms of MMAs
contained as it has no different action (first and second statements) and the
order is the same (third statement). It is easy to see hence that the only way
in which π′ differs from πi is in the modality assigned to each action.

12

Moreover, by definition of Π′ we know that if π′ is its solution, then Si[π
′]

supports both Gprop and Gnum. Of course, if π′ has the same structure of πi
it means that there will be an assignment of modality in πi such that Si[πi]
supports Gnum. On the other hand, by hypothesis, we know that the DMAP
does not found any assignment of actions modality for the piece of plan πi which
obviously is in contradiction with the fact that there is an assignment in πi such
that Si[πi] supports Gnum.

While theorem 1 states that in some situations a MMPP can be solved as a
DMAP, here Theorem 2 states that when a MMPP cannot be solved as a DMAP,
then a solution π′ for the MMPP at hand can be found only by changing the
structure of the original plan π; namely, by adding/removing MMAs by means
of a planning phase. This supports our intuition that, in order to keep the plan
as stable as possible, it is helpful to try resolving a DMAP first, and only when
this has no solution try replanning from scratch.
Solving a DMAP: Computational Complexity. Another reason to antic-
ipate the MMPP with the DMAP is that solving a DMAP is computationally
easier than solving a planning problem. To understand why, let us remember
that the classical planning fragment (i.e. STRIPS) is PSPACE-complete (see
[3]). Despite there is no complexity result (to the best of our knowledge) on the
numeric extension of the classical paradigm, the numeric planning is at least
as complex as a STRIPS. MMPP is representative of the numeric planning. In
other words, the complexity class of the decision problem NUM-PLAN-EX7,
referring to verify whether a given MMPP is satisfiable, includes PSPACE.

On the other hand, the DMAP characterization given in this section is less
complex. In fact it is easy to show that:

Theorem 3. Let ASSIGN-EX be the decision problem of determining whether
an instance of a DMAP is satisfiable, ASSIGN-EX is in NP.

The proof of the NP membership comes from the polynomial conversion
mechanism discussed in Appendix A, where we show that a given DMAP can
be transformed into a CSP, which is an NP-complete problem. That is to say,
ASSIGN-EX ∈ NP.

Given the proposition above we can also state that:

Corollary 4. If the hypothesis that PSPACE ⊃ NP holds, then Class(NUM-
PLAN-EX) ⊃ Class(ASSIGN-EX).

The important consequence of Corollary 4 is that solving a DMAP is simpler,
from a computational complexity point of view, than solving an MMPP. This
gives us a formal guarantee that, in the worst case, reconfiguring the modalities
of an MMA plan is simpler than replanning from scratch. This theoretical result
is also confirmed experimentally, as discussed in sections 5 and 6.

7Let us refer to such a class by means of Class(NUM-PLAN-EX)

13

3 FLexible EXecution via Reconfiguration and
Replanning (FLEX-RR)

So far, we have pointed out that a plan can be made partially valid or invalid
by unexpected contingencies occurring during the execution phase. We have
also suggested that, when the plan becomes partially valid, the agent can try to
solve a DMAP to reconfigure action modalities. On the other hand, when the
plan becomes invalid, the agent has to find a completely new course of actions
(i.e. replanning from scratch).

In this section, we present the FLexible EXecution via Reconfiguration and
Replanning (FLEX-RR) methodology, and discuss how it can be implemented
by exploiting CSP techniques ([37]).

Before that, we provide some hints on how a DMAP is translated into a CSP
(a more detailed discussion is reported in Appendix A).

3.1 CSP Variables and Constraints

In CSP-based classical planning [8, 22], the CSP representation requires two
sets of variables: one to model the actions, and the other to model the states
generated by the action execution. Analogously, also the encoding of a DMAP
into a CSP representation relies on two sets of variables:

i. MODs is the set of modality variables: the solution of a DMAP is in
fact an assignment of modalities to the plan actions, thus action variables
become modality variables;

i.i. NUMs is a set of state variables just encoding the numeric fluents of the
original DMAP problem, while propositional fluents are not considered.

As in CSP-based planning (based on a graphplan-like structure [1]), we du-
plicate the state variables as many times as there are “levels” in the plan π8.

To capture only those assignments of MODs which are consistent with the
actions and the problem at hand, each state level is logically bound with the
preconditions of the MMA belonging to that level l, and with the effects of the
MMA at level l−1. State variables at level 0 are set to represent the initial state
of the world, while variables at the last level (the level |π|) must be constrained
with the numeric part of the plan goal.

To limit the search space of the arising satisfiability problem, we consider
as decisional only the MODs variable. As matter of facts, the numeric pro-
file throughout the plan can be determined as the implication of the modality
selection.

For the sake of clarity, Figure 2 summarizes the variables and the constraints
involved in a plan of length n; in particular the figure describes:

8Of course, since we are not solving a planning problem, but a DMAP, we do not need the
step of graph expansion as the sequence of actions is already known.

14

Figure 2: A CSP representation for a generic MMA plan of length n in a problem
with z numeric fluents and k goal constraints.

• State Variables NUMs in the snapshot-layers. For each numeric fluent
Ni in X, a variable V ji (with j from 0 to |π|) is added in NUMs.

• Modality Variables MODs in the action layers. For each MMA ak be-
longing to the plan, a modality variable modk, taking values in mods(ak),
is included in MODs.

Intuitively, the superscript j of a variable V ji in NUMs represents the ex-
ecution step the variable refers to. Thus, all the numeric variables labeled as
0 represent the initial state; whereas variables labeled as 0 < j ≤ |π| repre-
sent (the numeric portion of) the state after the execution of action aj−1 with
modality modj−1.

3.2 FLEX-RR: Main loop

Having defined the operative way to handle the DMAP using a CSP encoding,
we can now introduce the continual planning approach the agent follows to
adaptively perform its plan.

Algorithm 1 sketches the main steps of such a control loop. The basic idea
is similar to the continual planning approach [2, 7] in the sense that, at each
execution step, the algorithm verifies whether the conditions to achieve the goal
are satisfied or not. As innovation w.r.t. traditional continual planning systems,
we distinguish between partially valid and invalid plans, thus we have different
strategies for the plan adaptation.

At the beginning, the algorithm initializes two important structures: the
CSPModel and the state S. The CSPModel involves all the variables and the
constraints for the current plan of actions. Initially it is built by considering the
MMPP Π at hand (see Appendix A). As we will see, during the execution of
plan π, solving the problem Π, the CSPModel will be modified by adding and
deleting constraints, or by asserting new information coming from the system.
The state S is initialized according to the initial state I of the problem; also

15

Input: I, G, π
Output: Success or Failure

1 CSPModel=build-CSPModel(I, G, π)
2 i=0
3 S=I
4 while i < |π| do
5 senseAndUpdate(i,S,CSPModel)
6 plan-status = propagate(S, G,π)
7 if plan-status is valid then
8 ai = getActionAt(π, i)
9 execute(ai)

10 i++

11 else if plan-status is invalid then
12 π = Replan(S,G)
13 CSPModel = buildCSPModel(S, G, π)
14 i = 0

15 else if plan-status is partially-valid then
16 π = ReCon(CSPModel, i, π)
17 if π = ∅ then
18 π = Replan(S,G)
19 CSPModel = buildCSPModel(S, G, π)
20 i = 0

21 if S ` G then
22 return Success

23 else
24 return Failure

Algorithm 1: FLEX-RR

this structure (S) will be updated during the plan execution by the acquisition
of information from the environment.

The algorithm iterates over the plan actions as long as there is at least one
action to execute. The algorithm returns either Success or Failure depending on
whether the status S reached after the execution of π satisfies or not the goal
G. The iteration may be also interrupted when the replan mechanism is not
able to find a solution. In that case the replan returns a plan of size 0, so the
while condition is not satisfied and a Failure is returned.

At each iteration, the algorithm observes and updates the world state S
(the senseAndUpdate function). Accordingly, also the CSPModel structure is
updated at this step with new observed information; in this way, the CSP repre-
sentation includes all the relevant pieces of information for solving a new DMAP
whenever it arises. After the observations gathering, the algorithm assesses the
state of the plan π, i.e. it evaluates whether the plan is still valid or not. To

16

Input: i, S, CSPModel
Output: updated S and CSPModel
Obs = <SenseWorld>
S = updateStatus(S,Obs)
if i = 0 then

addConstraint(CSPModel, V 0 = S)

else
addConstraint(CSPModel, modi=exec)
addConstraint(CSPModel, (modi = exec) → (V i+1 = S))

Algorithm 2: SenseAndUpdate

accomplish this step, function propagate is invoked to estimate the impact of
the updated state S into the planning problem Π. Intuitively, the propagation
verifies whether the goal G can be achieved from state S by performing all the
remaining actions in πi without any change in their modalities. In the positive
case, the plan is valid and its next action ai is selected for the execution with the
modality it is currently associated with. Otherwise, the plan is either invalid or
partially-valid9.

In case the plan is invalid, a replanner is invoked to build a new plan from
the current state S to the goal state G10. Note that, when a new plan π is
returned, this plan substitutes the old one, so the execution restarts from the
first action of the new π. For this reason, both the counter i and the model
CSPModel need to be re-initialized.

In case the plan is partially valid, we have detected a DMAP problem, and
FLEX-RR tries to solve it by invoking the reconfiguration module (ReCon). Re-
Con finds (if exists) an alternative assignment of the modalities to the actions
still to be performed. Note that, since the DMAP problem might not have solu-
tions, ReCon could return an empty plan; thus, also in this case, the algorithm
will invoke a replanner to resolve the impasse.

The next two algorithms explain in detail: (i) how the CSP model is updated
along the plan execution, and (ii) how the CSP solver is invoked.

3.3 Updating the state and the CSP model

Algorithm 2, SenseAndUpdate, takes in input the index i of the last performed
action, the current state S of the world, and the CSP model to update.

First of all, new observations Obs, collected from the environment, are used
to update the state S. Then, the algorithm updates the CSP model depending

9Of course, it is important to note that the propagation machinery must take care also
of the precondition all along the plan being executed. The mechanism can be improved by
exploiting the numeric kernel notion defined in [38]

10To allow the interaction between our software module with a generic PDDL numeric
planning (Metric-FF, [17] in our case), we apply the conversion mechanisms sketched in Section
2. When the planner is invoked, each MMA model is flattened to the traditional PDDL model;
these models are therefore used by the planner. Then, once the plan is computed, the PDDL
actions of the plan are newly transformed into MMAs.

17

Input: π, CSPModel, Gnum
Output: reconfigured π or ∅
Solution = CSP-solver(CSPModel)
if Solution = null then

return ∅
else

reconfigurePlan(Solution, π)
return π

Algorithm 3: ReCon

on the fact that it is the first step (i.e., i equals 0) or a subsequent one. At
the first step of execution, the CSP model is updated by imposing that each
numeric variable in V 0 assumes the value of the corresponding numeric fluent in
S, where V 0 is the subset of numeric variables within the CSP model associated
with the level 0. This allows the approach to deal with an initial world state
that is different from the assumed one.

In any other execution step (i.e., i > 0), the CSP model is modified by
changing the modality of the last performed action, ai, to exec. This special
modality has two important roles. First, when an action has modality exec, it
cannot be considered during the resolution of a given DMAP as its modality
cannot be changed any more. Second, when action ai has modality exec, the
variables in V i+1 are no longer constrained. The constraints are in fact defined
according to the modalities specified in the MMA model of ai, and exec is
not among them. This allows us to assert within CSPModel any observations
coming from the real world even though they are completely unexpected (i.e.,
not foreseen by any modality associated with ai). Note that in this way we
do not need to re-build the CSP model from scratch, but simply adjust the
same model progressively at each execution step. When a new DMAP occurs,
the CSP model already encodes all the information required for the DMAP
resolution.

3.4 Reconfiguring the plan with ReCon

Algorithm 3 shows the high-level steps of the ReCon module. In particular,
ReCon has to solve a DMAP problem, and takes in input the plan π to be
repaired and the CSP model which, as said above, already encodes all the pieces
of information relevant for the solution of the DMAP. A solution consists in an
assignment of modalities to the modality-variables that are not set to exec (i.e.
the modality-variables for the actions not yet performed).

ReCon tries to solve a DMAP by means of a CSP solver. If the CSP-solver
finds a solution, this is extracted and used to reconfigure the plan π which
is therefore returned to FLEX-RR. In other words, each action ai still to be
performed is assigned the modality selected by the CSP-solver (see function
reconfigurePlan in Algorithm 3). On the other hand, when the CSP-solver does
not find any solution, ReCon returns an empty plan.

18

3.5 An example of how FLEX-RR intervenes

To exemplify how FLEX-RR is able to monitor the execution of a plan and
to repair it in case the plan is no more valid, let us consider a simple planning
problem from the ZenoTravel domain. Our problem P involves 7 entities, among
which: three persons (P1,P2 and P3), four airports (A0, A1, A2, A3) and one
airplane F1. The location of the persons and of the airplane in the initial state
is represented by means of the following propositional fluents:

(in P1 A1) (in P2 A1) (in F1 A1) (in P3 A2)

whereas the resources (modeled as numeric fluents) have in the initial state the
following assignments:

(= (time-spent) 0)
(= (fuel) 8000)
(= (total-fuel-used) 0)

The goal has both a propositional and a numeric part:

propositional: {(in P2 A2), (in P1 A3), (in P3 A3)}

numeric: {time-spent< 21000, total-fuel-used < 10000,
(fuel F1) > 0 }

Let us suppose that the following plan π has been provided as a solution for
the planning problem above.

0: board_P1_F1(normal)

1: board_P2_F1(normal)

2: fly_F1_A1_A2(cruise)

3: debark_P2_F1(normal)

4: board_P3_F1(normal)

5: fly_F1_A2_A3(zoom)

6: debark_P1_F1(normal)

7: debark_P3_F1(normal)

Before starting the execution, FLEX-RR builds the CSPModel structure for
the plan at hand. In this specific case, since the plan involves 8 actions (with
indexes 0 thru 7), CSPModel contains 9 levels of (numeric) state variables
(from 0 to 8). The state variables in level 0 represent the initial state of the
world, while the state variables in level 8 represent the state reached after the
execution of the plan. Of course, the numeric goals have to be satisfied by these
latest variables.

Let us suppose that the execution of the first two actions in the plan does not
raise any problem. However, after the execution of action fly_F1_A1_A2(cruise)

(index 2), the flight F1 has reached airport A2, but it has consumed a greater
amount of fuel and time than expected. As a consequence, the resulting execu-
tion state S3 is different from the predicted one.

19

FLEX-RR invokes the propagation mechanism to assess whether the final
state will satisfy the goal constraints despite this unexpected situation. Let us
assume that the propagation step highlights that the fuel will assume a negative
value, which of course is not consistent with our numeric goals. However, the
propositional goals will be achieved the same in the final state S8. This means
that, after the execution of fly_F1_A1_A2(exec), the plan is partially valid.
Thus, FLEX-RR tries to repair the plan via ReCon instead of invoking the
replanner.

ReCon has to solve a new DMAP by finding a new assignment of modalities
to the actions not yet executed. For instance, it finds the following reconfigured
plan:

0: board_P1_F1(exec)

1: board_P2_F1(exec)

2: fly_F1_A1_A2(exec)

3: debark_P2_F1(normal)

4: board_P3_F1(normal)

5: fly_F1_A2_A3(cruise)

6: debark_P1_F1(express)

7: debark_P3_F1(express)

It is easy to see that the modality of fly_F1_A2_A3 has been changed from
zoom to cruise in order to reduce the fuel consumption, so that the constraint
on fuel is no more violated (see e.g., the MMA model in Figure 1). However, to
compensate the delay caused by such a change, also the modality of the actions
debark_P1_F1 and debark_P3_F1 have been changed from normal to express,
so that also the constraint on time is satisfied. Of course, the actions marked
as exec are not addressed by ReCon.

After these changes, the plan is again valid, and its execution can resume
from the current state S3.

It is worth noting that the new allocation of modalities produces a new plan
π′ which is very close to the original plan π. In Section 4, we will discuss the
importance of keeping a repaired plan as stable as possible (i.e., as close to the
original plan as possible), and how the stability can be measured.

In the previous example, FLEX-RR has been able to find a solution by means
of ReCon without the need of replanning. This is not always the case. Let us
suppose that the execution of fly_F1_A1_A2 (in zoom modality), is affected by
a very large deviation in the fuel consumption.

Also in this case the plan is partially valid, and therefore ReCon is invoked
for solving a DMAP. However, since the deviation on the fuel is significant, it
is no possible to restore the validity of the plan via a simple reconfiguration.
Thus, ReCon fails and FLEX-RR invokes the replanner. The new planning task
consists in finding a plan that, starting from the current state S3, achieves the
same set of propositional and numeric goals. In this case the replanner finds a
solution:

0: board_P1_F1(exec)

20

1: board_P2_F1(exec)

2: fly_F1_A1_A2(exec)

--replan--

0: debark_P2_F1(express)

1: board_P3_F1(express)

2: refuel_F1_A2

3: fly_F1_A2_A3(zoom)

4: debark_P1_F1(express)

5: debark_P3_F1(express)

Note that the new plan segment has substituted the original plan. In particu-
lar, thanks to the introduction of a refuel action refuel_F1_A2, the new plan
achieves the goals satisfying the constraints on resources. Having the new plan,
FLEX-RR starts to execute it. In this case, however, FLEX-RR has to re-
initialize its structures by resetting the action index i and by building a new
CSP model.

Finally, it is worth noting that also the replanner may fail as not all the
anomalous situations encountered during the execution are repairable. More
important, in many real-world scenarios, the agent must react to unexpected
situations in a short amount of time. That is, FLEX-RR has to find a solution
within a given threshold; otherwise, the plan goals must be revised and a new
plan must be synthesized.

4 Measuring the Stability of the Plan

In the previous section we have seen that in FLEX-RR both the ReCon and
Replanning mechanisms can be invoked for repairing the current plan from a
failure. One relevant question concerns how different the new plan is from the
old (failed) plan. Obviously, the repair process must have produced a new
plan that differs, even just slightly, from the old plan in order to overcome
the impasse. However, not all the changes induced by the repair process have
the same weight. Intuitively, changing just a modality in one MMA should be
considered as a “minor change”, while the substitution of an MMA with another
one should be consider as more intrusive. When the new plan is substantially
different from the one synthesized off-line, the behavior of the agent becomes
difficult to predict for an external observer, as for instance a human supervisor.
As matter of facts, artificial agents (e.g. robotic systems) or humans may have
expectations over the agent’s tasks, which may not be explicit in the action
models. For this reason, there is an interest to have the repaired plan with the
minimum amount of changes: this is particularly true in domains where the
agent has to cooperate with others agents (both artificial or human) in order to
achieve a global common goal. In fact, a relevant change in the services (and/or
in the order) provided by an agent to other agents could cause a major reshaping
in the plans also of other agents in order to continue to be able to achieve the
common goal.

21

A first answer to the question is provided by Theorem 2, which guarantees
that if Replanning finds a repair plan after ReCon has failed, then the new repair
plan cannot have the same causal structure of the old one (i.e. at least an action
has to be added or deleted, or the order of the actions has to be changed).

This result is relevant since it provides the basis for stating that the repair
plans obtained via ReCon are more stable, since they preserve the causal struc-
ture of the original plan. However, in FLEX-RR both replanning and Recon
are invoked and it would also be useful to evaluate whether the insertion or
deletion of a single action in the new plan has a more negative impact on the
plan stability than the change of the modalities in many actions (as may happen
as the result of ReCon).

To provide a formal basis for such an analysis, we propose a measure of the
stability of a repaired plan, based on the notion of distance between two plans
(i.e., the original and the repaired plans11).

4.1 Stability

Our stability measure relies on the distance D(π′, π) between the new (repaired)
plan π′ and the original plan π. Such a measure is inspired to the well-known
Levenshtein’s string distance [21]. We compute such a distance as the mini-
mum cost for transforming π′ into π, where a transformation is a sequence of
operations, each of which has a positive cost. The operations we consider are:

• inserting (add) and removing (del) an action in π′, with cost α

• replacing (remod) the modality of an action in π′, with cost γ

• swap (swp) the order of two consecutive actions in π′, with cost θ

It is reasonable to assume that γ � α < θ < 2 ∗α; that is, changing a modality
is less expensive than inserting/removing an action, that in turns is cheaper
than swapping two actions. Of course, swapping two consecutive actions is
less expensive than adding and removing an action. Thus, the transformation
τ [π′, π], transforming π′ into π, involves addsτ of insert operations, delsτ delete
operations, remodsτ replace modality operations, and swpsτ swap operations.
The cost of τ is therefore computed as:

cost(τ [π′, π]) = α ∗ addsτ + α ∗ delsτ + γ ∗ remodsτ + θ ∗ swpsτ

Let T be set of all the possible transformations of π′ into π, the distance D[π′, π]
between the two plans is the cost of the cheapest transformation in T :

D[π′, π] = minτ∈T cost(τ [π′, π])

The computation of D[π′, π] can be done in an efficient way by adopting a
dynamic programming procedure, similar to the one proposed by Levenshtein,

11Other stability measures have been reported in literature, none of them unfortunately
takes into account actions with different modality of execution ([9],[11],[33])

22

that allows us to find the minimal distance without computing the set T first12.
Having this notion of distance between plans, we can define the stability of π′

w.r.t. π. Intuitively, the stability has to be maximum when no change happens,
i.e. π′ equals π, and minimum when the two plans are completely different.

stability(π′, π) = cost(τtrv [π′,π])−D[π′,π]
cost(τtrv [π′,π])

where cost(τtrv[π
′, π]) is the reference cost of the trivial transformation, τtrv,

which first removes all the actions in π′, and then inserts all the actions in π to
π′.

The stability measure defined by the above equation ranges from 0 to 1. In
particular, when D[π′, π] is close to the cost of τtrv, this suggests that the new
plan π′ is substantially different from the original one, and hence we compute
a low grade of stability (close to zero). On the other hand, when D[π′, π] is
significantly lower than the cost of τtrv, the two plans π and π′ are very similar,
and we compute a high grade of stability (close to one).

4.2 Computing the plan stability: A simple example

Let us consider again our running example, and compute the stability of the
repaired plans inferred by FLEX-RR (Figure 3) and by REPLAN (Figure 4), in
the two situations described in Section 3.5.

ORIGINAL:

debark_P2_F1(normal)

board_P3_F1(normal)

fly_F1_A2_A3(zoom)

debark_P1_F1(normal)

debark_P3_F1(normal)

REPAIRED:

debark_P2_F1(normal)

board_P3_F1(normal)

fly_F1_A2_A3(cruise)

debark_P1_F1(express)

debark_P3_F1(express)

Figure 3: FLEX-RR

ORIGINAL:

debark_P2_F1(normal)

board_P3_F1(normal)

fly_F1_A2_A3(zoom)

debark_P1_F1(normal)

debark_P3_F1(normal)

REPAIRED:

debark_P2_F1(express)

board_P3_F1(express)

refuel_F1_A3(default)

fly_F1_A2_A3(zoom)

debark_P1_F1(express)

debark_P3_F1(express)

Figure 4: REPLAN

Given that α (the insertion/deletion cost) equals to 5, γ (modality replace-
ment cost) to 1 while θ (the swap cost) is set to 6, we have that:

12The complete procedure is described in [39]

23

• FLEX-RR: the trivial transformation costs 50 (five deletes and five adds
are involved), while the distance between the original and the repaired
plans is 3 (3 changes of modalities), and hence the stability grade is 0.94,
meaning that the two plans are very close to each other.

• REPLAN: the trivial transformation costs 55 (five deletes and six adds
are involved), the distance between the original and the repaired plan is
9 (the add of a refuel action and 4 changes of modalities) and hence the
stability grade is 0.83.

This means that the plan repaired via replanning is less stable than the plan
repaired via ReCon.

5 Experimental Results

To evaluate the performance of FLEX-RR, and in particular the contribution
given by the reconfiguration mechanism, we compared FLEX-RR with two archi-
tectural variants: FLEX-REPLAN and FLEX-LPG-ADAPT. FLEX-REPLAN
differs from FLEX-RR in that it invokes a replanner not only when the plan πi is
invalid, but also when the plan is partially valid ; substantially FLEX-REPLAN
is a pure continual planner that ignores the characterization of the plan given in
form of MMAs; instead of considering the space of modalities, FLEX-REPLAN
adopts a strategy based on a replanning completely from scratch in each case
(i.e. as if it was a new MMPP). Whereas, FLEX-LPG-ADAPT substitutes the
replanning from scratch mechanism with the plan-adaptation strategy presented
in [9]. It is worth noting that, at best of our knowledge, LPG-ADAPT is the
only plan adaptation system which is currently able to deal with numeric fluents
during the adaptation task.

The three architectures have been assessed with respect to three parameters:

• Competence: the capability of a strategy of finding a repair plan when the
original plan becomes partially valid during the execution. In particular,
we measure the competence as the rate of successes in recovery from the
unexpected contingency. In our experiments we allotted the various ar-
chitectures 240 seconds of CPU time, which is a threshold within which a
solution must be provided. In the case of FLEX-RR, we set the time for
ReCon module up to 1

10 of the total computational time budget. One or-
der of magnitude of difference has been considered for limiting the impact
of ReCon, hence leaving a reasonable amount of time for a possible replan-
ning, which, as it has been seen in section 2.4, has a larger search space
to explore13. Therefore, ReCon is allowed to find a solution in 24 sec-
onds, after which FLEX-RR switches to Replan14. Note that, since both

13Further experiments have been run for different ratios or by allotting different amount of
CPU time. These experimental results (see http://www.di.unito.it/˜scala/software) show a
general trend very similar to the one we will deeply discuss in this section.

14When Recon proves that a DMAP has no solution in less than 24 seconds, the time not
used by ReCon is given to Replan.

24

FLEX-REPLAN and FLEX-LPG-ADAPT are allowed to search over all
the possible actions combinations (and over all their possible configura-
tions), they are in principle more competent than ReCon. However, since
a solution must be found within the threshold of 240 seconds, the actual
competence depends on the ability of solving the problem in a timely
fashion. In particular, given Theorem 3, we expect that in several cases
FLEX-RR can take a great benefit from the ReCon mechanism.

• Efficiency: we compare the CPU time of the three architectures. In prin-
ciple, we will expect that the computational effort will be lower when the
cases are solved via reconfiguration, as the search space generated by the
DMAP is much more limited.

• Stability: we are interested in understanding how the systems impact the
structure of the plan to be repaired. In the following experiments we used
the same setting of weights reported in 4.2. Relying on Theorem 2, we
expect that, when the plan is repaired by ReCon, we will keep the plan
quite stable, since the causal structure remains unchanged. When the
contingency is solved via Replan, we expect a stability reduction since
actions can be added/removed freely and also their order can be changed.
On the other hand, since LPG-ADAPT is built with the concept of sta-
bility in mind, we expect that FLEX-LPG-ADAPT turns out to be quite
competitive in this perspective.

Tests were conducted in three numeric domains, extended to support actions
given in form of MMA. That is:

• ZenoTravel

• DriverLog

• Planetary Rover

The first two domains are from the Third International Planning Compe-
tition15; they have initially been introduced to challenge planners in handling
numeric fluents. The third domain has been introduced in our recent works on
intelligent supervision of space exploration missions [26, 29], while its complete
model definition is reported in [39].

For each domain we generated a set of problems varying the number of
objects to be considered. For a given problem we generated a plan whose exe-
cution is handled by means of a software simulator. Here, numeric fluents used
to model time and consumable resources have been noised in order to repro-
duce unexpected contingencies. More precisely, the simulation of the deviations
on the expected state of the system is obtained by altering the impact of each
action executed. In this way, we collected a series of situations where the plan
became partially valid at least once during its simulated execution.

15http://planning.cis.strath.ac.uk/competition/

25

Each parameter (competence, efficiency and stability) has been measured
w.r.t. four degrees of noise. The first degree alters the resource consumption
of 25% more than expected, the second of 35%, the third of 50%, and the last
one of 75%. We aim at understanding how the noise impacts the performance.
Intuitively we expect that, as long as the noise increases, the chance of finding
a solution decreases, especially for ReCon. Thus the noise degree could have an
impact both on the competence and on the stability16.

For all the domains tested, cases have been split in two classes of difficulty,
each determined by the strictness of the constraints. The idea is to assess the
behavior of the system w.r.t. the combination of the difficulty of the problem
and the amount of noise injected.

In our experiments we have not taken into account situations in which the
plan became invalid, since we were interested in evaluating the ability of FLEX-
RR in repairing partially valid plans, i.e. when the reconfiguration can be ex-
ploited.

5.1 Software and Hardware Setup

FLEX-RR has been developed in Java; it receives in input the domain, the
problem and (optionally) the plan description written in an extended version
of PDDL 2.1 level 2, which incorporates the notion of modalities. FLEX-RR
exploits and extends a PDDL Java Library, namely PPMaJaL17.

As a CSP solver we used Choco 2.1.418 which is able to efficiently handle
complex constraints on a very large set of variables. As a planner we used
Metric-FF [17], which supports the expressiveness of PDDL 2 level 2, by con-
verting the MMAs in PDDL 2.1 actions, as explained in [39].

FLEX-REPLAN and FLEX-LPG-ADAPT inherit the same Java implemen-
tation of FLEX-RR, and they exploit, respectively, Metric-FF (in a similar way
to FLEX-RR) and the Lpg-Adapt system developed for OAKPlan [13]. Lpg-
Adapt is used as a black box and, to activate the adaptation capability given the
encountered discrepancy, we invoke the system by setting as input the remaining
set of flattened PDDL 2.1 actions to be executed.

Experiments ran on a 2.53GHz Intel(R) Core(TM)2 Duo processor with 4
GB (under the operating system: Ubuntu 10.04).

5.2 Experiments in the DriverLog domain

For the DriverLog domain, we collected an amount of 1442 cases, equally sub-
divided into easy and hard cases. Our domain definition differs from the one of
the planning competition in that we have two modalities for loading packages

16However, as studied in [30], one of the main factors impacting the performance of numeric
planning is the strictness of the constraints. This means that, an increase of the noise impacts
not only ReCon, but also Replan and LPG-Adapt because the numeric problem to be solved
becomes more complex (see [17],[12]).

17http://www.di.unito.it/˜scala/software
18Choco is a java library for constraint satisfaction problems (CSP) and constraint pro-

gramming (CP). Visit http://choco.emn.fr for any further information, or see [31]

26

(i.e., normal and fast), and two modalities for driving trucks (again, normal and
fast). Intuitively, an action performed in normal mode is cheaper in terms of
resource consumption, but slow. Whereas an action performed in fast mode is
more expensive but faster.

The generated problems vary on the number of packages, locations and
trucks to consider. The difficulty of a problem is determined by the involved
constraints. More precisely, the problems in the easy set have just a constraint
on the total time of plan execution, while problems in the hard set have a further
constraint on the maximum amount of power spent. The length of the produced
plans ranges from 14 to 90 MMAs.

Competence. The histograms of Figure 5 reports the competence of the
three tested systems. The performances have been measured by considering
the percentage of cases solved by a system within the deadline of 240 seconds.
The cases are organized according to the degree of injected noise, and to their
complexity (i.e., easy or hard).

Figure 5: DriverLog Domain: Competence for easy (left) and hard cases (right).

By observing Figure 5, it is quite clear that FLEX-RR outperformed both
FLEX-REPLAN and FLEX-LPG-ADAPT in all the given scenarios. In the easy
set, FLEX-RR was able to repair the plan in almost all the considered cases; a
little decrease of the performance (96,17 %) is observable just for the highest
degree of noise.

Regarding the easy cases, also FLEX-LPG-ADAPT turned out to be quite
good. The competence ranges from 92% to 96% in the first three degrees of noise;
only when the noise degree is 75%, FLEX-LPG-ADAPT is not comparable with
FLEX-RR (79,23% vs 96,17%).

As refers to FLEX-REPLAN, it is evident that its performance is quite
negative. In fact, just in the first two degrees of noise, FLEX-REPLAN repairs
more than 70% of the cases.

Considering the hard cases, the gain between the performance of FLEX-
RR and the other two systems becomes more evident; in particular, for noise
degree 35%, FLEX-LPG-ADAPT is almost 30% less competent than FLEX-RR,
whereas FLEX-REPLAN is more than 60% less competent than FLEX-RR.

FLEX-RR is therefore the most competent in the DriverLog domain. FLEX-
LPG-ADAPT performed better than REPLAN, but it is not competitive with

27

FLEX-RR, in particular for the hard cases set.
Stability. Figure 6 shows the average stability. The set of cases considered

by this evaluation refers to those cases which have been solved by all the sys-
tems. As reported in Section 4, the stability ranges from 0 to 1, where 1 is the
maximum score and the 0 value stands for a repaired plan that is completely
different from the original plan. As for the competence, we studied the stability
by considering separately the two sets of easy and hard cases, and the different
degrees of noise.

Figure 6: DriverLog Domain: Stability for easy (left) and hard cases (right).

Results in Figure 6 show the efficacy of FLEX-RR in keeping the repaired
plan stable. FLEX-LPG-ADAPT preserves to some extent the structure of the
previous plan, and is more effective than FLEX-REPLAN.

FLEX-RR reaches a stability rate above 0.9 in almost all the scenarios,
except that in the hard cases with noise degrees 35% and 75%. As we will
discuss in the next section, this result is due to the contribution of the replanning
mechanism in the FLEX-RR resolution task.

Efficiency. This evaluation analyzes the CPU time spent by the system in
providing an answer, which may be either a positive one (a solution has been
found) or a negative one (there is no solution for the problem at hand).

As known in the planning community (see for instance [23]), in most cases
the distribution of CPU times cannot be synthesized in few parameters. For
this reason, we describe the distribution by reporting the percentage of cases
that have been handled in a given interval of time. We have introduced 6 time
intervals which partition the interval 0 - 240 sec, plus an additional interval for
capturing the timeout of the system. The time has been measured in millisec-
onds.

The results are in Table 7, which consists of three sub-tables, one for each
system. Each row in the table reports the percentage of cases “with answer” in
the time intervals above plus the timeout, discriminating between the easy and
hard cases, and among the different degrees of noise. To ease the readability of
the table, color shades from grey (low percentage) to orange (high percentage)
are used to highlight the intervals where most of the cases are answered.

By observing the results, we can see that FLEX-RR solved the majority of
the easy cases in the first interval of time. This means that the system has

28

Figure 7: DriverLog Domain: Efficiency for easy (left) and hard cases (right).

provided an answer in less the 100 msec. Whereas FLEX-REPLAN and FLEX-
LPG-ADAPT, in most of the cases, required significantly longer. Both systems
suffered from the increasing of the noise, and even for the lowest degree of noise
(25%), both FLEX-REPLAN and FLEX-LPG-ADAPT needed often more than
5 seconds. By observing the timeout columns we can understand the reason
of the low competence of FLEX-REPLAN. In fact, even for the 25% of noise,
FLEX-REPLAN did not provided an answer for the 24% of the tested cases.

In the hard setting, the FLEX-RR efficiency remained rather good; most of
the tested cases have been solved in less than 1 second for all the noise degrees,
making exception for the highest degree where, in the 31,15% of the cases,
FLEX-RR reached a timeout.

Proportionally to the increase of the noise, FLEX-LPG-ADAPT became
more and more time demanding, ending with 49% of timeout in the 75% setting.
FLEX-REPLAN performed even worse reaching the timeout in more than the
65% of the cases in all the four degrees of noise.

5.3 Experiments in the ZenoTravel domain

In our version of the ZenoTravel domain we have two modalities of execution
for the board and the debark, and two modalities for the fly (as in the original
ZenoTravel formulation). Besides the standard behavior, the board and the de-
bark have a second execution modality called ”express”. The standard modality
is cheaper but slower, while the express modality is more expensive but faster.
The fly action is already described in Section 2.2.1.

We collected 1036 test cases (518 hard and 518 easy). The generated prob-
lems vary from each other on the number of passengers and locations; whereas
the difference between the easy cases and the hard ones relies on the num-
ber of constraints encoded in the final goal. In particular, the easier cases are
constrained in terms of total-time-spent while the harder ones add a (further)
constraint on the total amount of fuel to be used. Plans involve up to 57 MMAs.

The total number of cases is obtained by running a given problem and plan
over the four amounts of noise.

Competence. Figure 8 shows the competence of the systems.
By observing the histogram, for both the easy cases and the hard ones,

FLEX-RR has been more competent than both FLEX-REPLAN and FLEX-

29

Figure 8: ZenoTravel Domain: Competence for easy (left) and hard cases (right).

LPG-ADAPT. In particular, for the easy cases, the amount of cases solved with
success ranges from 62% to 87% for FLEX-RR, whereas between 57% to 77%
for FLEX-REPLAN, and 42% to 61% for FLEX-LPG-ADAPT. For the hard
cases the advantage of FLEX-RR w.r.t. FLEX-REPLAN increases for the first
three degrees of noise; we can observe in fact a gap around the 15%.

As expected, the competence of the tested systems decreases as long as the
noise increases.

It is interesting to see that in the last degree of noise FLEX-RR performs
as FLEX-REPLAN. As we will see in the next Section, in this domain (in the
75% noise setting, hard cases) most of the merit in FLEX-RR is due to the
replanning strategy.

Stability. Figure 9 reports the stability measured in the cases solved suc-
cessfully by all the systems tested. Results proves the ability of FLEX-RR in
keeping the structure of the plan quite stable, however the system that pro-
duced more stable plans in this setting was FLEX-LPG-ADAPT. Of course, the
comparison takes into account only a portion of the cases, because in several
cases FLEX-LPG-ADAPT reached the timeout.

Observing the competence and the stability results, it is worth noting that
FLEX-LPG-ADAPT is able to solve a case, in particular, for those situations
in which the solution is quite close to the starting plan. On the other hand,
when the solution is rather distant to the original plan, the performance of
FLEX-LPG-ADAPT tends to decrease.

Figure 9: ZenoTravel Domain: Stability for easy (left) and hard cases (right).

As expected, FLEX-REPLAN often finds solutions that are quite different

30

from the original plan.
Generally, the histogram reveals the (quite obvious) relation between stabil-

ity and noise. That is, as long as the noise increases, the structure of the plan
cannot be preserved, and even FLEX-RR produces less stable repaired plans.
This is evident especially in the highest degree of noise, where the stability of
FLEX-RR is very close to the stability of FLEX-REPLAN.

Efficiency. In Table 10 we can see the cpu time spent by the architectures
to handle the partial validity of the plan over all the noises considered.

In each degree of noise, the distribution of cases solved by FLEX-RR (making
exception for the first interval of the time with noise degree 25%, where in the
56% of cases have an answer in less than 100s) has been rather uniform. Of
course, the population shifts to the right of the table accordingly to the increase
of the noise.

Concerning the increase of timeout situations, a similar trend can be found
in the behavior of FLEX-REPLAN. In fact the timeouts grow from 16% to
31%. As a difference between the two strategies, we noticed that, when FLEX-
REPLAN can solve the task, the resolution process is very fast. Otherwise,
FLEX-REPLAN does not provide an answer within the time threshold.

As far as FLEX-LPG-ADAPT is concerned, the low level of competence
that we measured before can be explained by the significant number of timeouts
reported in Table 10, especially for the hard cases.

Figure 10: ZenoTravel Domain: Efficiency for easy (left) and hard cases (right).

5.4 Experiments in the PlanetaryRover domain

In our version of the PlanetaryRover domain, presented in [25], the most of the
MMAs has two or three execution modalities.

In total, we generated 906 test cases: 403 easy cases and 403 hard cases.
Problems vary on the number of locations to be visited and the number of
pictures to be taken. The hardness of the problem is controlled by the number
of constraints specified in the goal set. In particular the easy case constrains
the total time and the power of the rover, while a hard case specifies a further
constraints on the communication cost of the mission. In particular, as we will
see, this last constraint makes the problem very hard for a generative approach.

The plans involve up to 34 MMAs.

31

Competence. Figure 11 shows the competence of the three architectures
in the easy and the hard cases. FLEX-RR has outperformed the other systems
for all the degrees of noise. In all the noise degrees of the hard cases, FLEX-
RR has a competence ranging from 84% to 95%; whereas, FLEX-LPG-ADAPT
and (still worse) FLEX-REPLAN have very poor performances. In particular
FLEX-REPLAN never reaches the 16% of successes (this happens only for the
25% of noise), and FLEX-LPG-ADAPT remains around the 30% of successes;
just with the noise degree of 35% the LPG-ADAPT based architecture overcame
the 40% of successes.

Figure 11: Planetary Rover Domain: Competence for easy (left) and hard cases
(right).

Stability. The stability of the plans repaired by the systems is reported
in Figure 12. Also in this domain FLEX-REPLAN and FLEX-LPG-ADAPT
are not comparable with FLEX-RR, which outperforms the other two systems.
The plans produced by FLEX-RR have always a stability rate above 0.9 in
every noise degree and both for the easy and the hard cases. Unexpectedly, the
plans produced by FLEX-REPLAN are more stable than the plans produced
by FLEX-LPG-ADAPT.

Figure 12: Planetary Rover Domain: Stability for easy (left) and hard cases
(right).

Efficiency. Similarly to the previous domain, the efficiency results are
measured by Table 13. The most of the cases solved by FLEX-RR has been
faced in less than 100 msec, for the easy cases, and 1 sec for the hard cases.

32

FLEX-REPLAN performed quite well in the easy cases, but not so well in the
hard cases, see the high number of timeouts. Therefore, also in terms of effi-
ciency, neither FLEX-REPLAN or FLEX-LPG-ADAPT has been competitive
with FLEX-RR.

Figure 13: PlanetaryRover Domain: Efficiency for easy (left) and hard cases
(right).

6 Experimental Results: in-depth analysis of FLEX-
RR

While in the previous section we have shown the practical benefits of the FLEX-
RR system w.r.t. other configurations, in this section we will focus our attention
just on the FLEX-RR architecture. In particular, the next two paragraphs
discuss: (i) how the FLEX-RR behaves internally and (ii) how the length of
the plan impacts the performance of FLEX-RR, and in particular of its internal
module ReCon. The aim is to provide an in-depth analysis of FLEX-RR to
single out strengths and possible weaknesses.

6.1 FLEX-RR internal behavior

Analyzing the FLEX-RR strategy reported in algorithm 1, we can see that, while
the recovery of an invalid plan can be attempted just via a replanning phase (or
via an external plan-adaption tool), the task of repairing a partially valid plan
could involve either just a reconfiguration step (when ReCon finds a solution),
or the combination of reconfiguration plus replanning (when ReCon fails). As
we have seen, this synergy is beneficial in terms of competence, efficiency and
stability of the repaired plans.

However, an important question concerns the relative merit of ReCon and
Replan in determining the final outcome of FLEX-RR.

In particular the Recon (and Replan) outcome can be:

• Solved: the DMAP (or the MMPP) has been solved and a solution is
provided

• No Sol: the DMAP (or the MMPP) was proven to be unsolvable

33

ReCon RePlan FLEX-RR result
Solved – Success
No Sol Solved Success

Timeout Solved Success
No Sol No Sol Failure

Timeout No Sol Failure
No Sol Timeout Failure

Timeout Timeout Failure

Table 1: FLEX-RR Success and Failure situations

• Timeout: ReCon (or Replan) did not provide any answer given the time
deadline

Therefore we can have 7 possible configurations, each of which corresponds
to a Success or a Failure of FLEX-RR. These configurations are summarized in
table 1.

By considering all the possible outcomes of Recon and Replan, Figure 14
shows how the cases have been handled respectively for the easy and the hard
cases of the ZenoTravel domain, over all the degree of noise considered (25%,
35%, 50%, 75%). The set of cases analyzed is the same used in the efficiency
setting (see Section 5).

As expected, the percentage of cases solved just by ReCon decreases as the
noise increases. This percentage ranges from 26% to 57% in the easy cases, and
from 6% to 39% in the hard cases (this last data explains why the FLEX-RR and
FLEX-REPLAN have almost the same competence for the 75% noise setting in
the hard class, see Section 5). Of course, the case for which ReCon fails (both
for No Sol and timeout) are redistributed in the remaining 6 situations. It is
worth noting to see that many of them are actually covered by the Replanning
system, so the FLEX-RR final outcome is anyway a Success. For instance, in
the easy setting, we can see that the percentage of cases for which ReCon proves
the unsolvability of the DMAP and the Replan finds a solution increases from
20% to 24%, and, similarly in the hard cases such a range is on the average
17%.

The Figure 14 makes evident that the key for the success of FLEX-RR is
the synergy between RecOn and Replanning. Of course such a hybrid behavior
comes to a price, which is highlighted by the union of the situations where the
ReCon fails and the Replan is successful. It is worth noting that the overhead
in CPU time payed by FLEX-RR in such a case is quite modest, since it does
not impact neither the overall competence and the efficiency w.r.t. the other
configurations (see figure 8 in Section 5). In particular, each case solved by
FLEX-REPLAN has been solved by FLEX-RR as well.

Another interesting aspect arising from these results is that, for several cases
where FLEX-RR did not provided any solution due to the reaching of the time
deadline, ReCon was however able to prove the absence of an alternative re-

34

configuration of modalities. This is made evident by looking at the percentage
of cases relative to the combination ”Recon No sol” and ”Replan Timeout”.
While a system equipped just with the Replan capability would have been not
informative at all.

Figures 15 and 16 report the result of the in-depth analysis of FLEX-RR
in the domain of DriverLog domain and the PlanetaryRover one respectively.
Not so many comments are necessary since in these domains most of the merit
is of ReCon, in that in just few cases FLEX-RR had to use the replanning
mechanism. It can be observed that in domain DriverLog, hard cases (Figure
16), there is a relevant number of cases for which ReCon outcome was No Sol
and the Replanning ended with a timeout, this shows that ReCon is quicker in
detecting unsolvable cases than Replan.

We have also analyzed possible causes why the behavior of FLEX-RR in the
ZenoTravel domain is somewhat different with respect to the other two domains.
One distinctive feature of the ZenoTravel domain concerns the presence of the
refuel action which can renew the consumable resource fuel when the airplane
is at a given airport. The presence of a refuel is a very powerful tool for a
”generative” approach (as the ones based on a plan adaptation), while it is
completely useless for ReCon since it cannot alter the causal structure of the
plan. It may be hence the case that, while ReCon spends time in searching
for a new configuration of the action modalities, the insertion of a refuel action
could be sufficient to repair the plan. This is probably the cause of several
situations where ReCon ended with a timeout followed by the success of the
Replan. Nevertheless, we also observed that, when the goal involves a constraint
on the maximum amount of fuel that can be altogether consumed (e.g., because
of the plan has to preserve a bound on the cost of the mission), the refuel action
is no longer crucial to repair the plan. This is showed by the decrease of ”Recon
Timeout”+”RePlan Solved” situations in Figure 14, where the hard cases are
considered.

Figure 14: ZenoTravel Domain: In-Depth Analysis

35

Figure 15: PlanetaryRover Domain: In-Depth Analysis

Figure 16: DriverLog Domain: In-Depth Analysis

6.2 Scalability

One of the factors which can represent a barrier for the performance of the
reconfiguration is obviously the number of the actions in the plan. Actually, in
Section 2 we have seen that the search space of a DMAP is exponential in the
number of MMA involved in the reconfiguration. Therefore, the actual critical
factor is not the length of the plan per se, but the length of the DMAP. So it is
important to analyze at what extent the CSP is able to deal with (very) large
search space when the length of the DMAP increases.

To measure such a parameter, we grouped the test cases of the previous
section w.r.t. the number of the actions the DMAP consists of, and with respect
to six intervals of time (0-100 msec, 101-1000 msec, 1000-5000 msec, 5000-
24000 msec, timeout). Figure 17, 19 and 18 summarizes the results obtained
in the three domains under examination. The cases are grouped in subsets
of DMAPs of a given length (0-10 actions, 10-20 actions and so forth). This
analysis measures hence just the reconfiguration, and the results refers to both
the cases solved successfully by ReCon and the cases for which ReCon proved

36

the unsolvability of the DMAP.

Figure 17: ZenoTravel Domain: Scalability

Figure 18: PlanetaryRover Domain: Scalability

Figure 19: DriverLog Domain: Scalability

It is evident that in the DriverLog and PlanetaryRover domains ReCon
performs quite well, even for DMAPs involving a large number of MMAs. More
precisely, in DriverLog the efficiency of ReCon decreases just for the interval
60-70 actions where the 19% of cases required a CPU time between 1-5 secs. In
the PlanetaryRover domain the majority of the cases required no more than 1
sec, and this is true for cases involving up to 40 actions. In the last subset of
cases (40-50 actions), the performance remained quite good (in fact the 65% of

37

cases were solved in less than 100 msec), however a significant number of tests
exceeded the time deadline (13%). ReCon behaves differently in the ZenoTravel
domain. In fact, for short DMAPs (up to 10 actions) most of the cases are solved
in less than 100 msec (i.e., 77% of cases). As expected, the ability of ReCon
in solving DMAPs reduces as long as DMAPs get longer. In particular, when
DMAPs involve more than 20 actions, the number of timeouts becomes relevant.
These results motivate the behavior of FLEX-RR showed in the previous section.
In fact it has to take advantage of both ReCon and Replan. Whenever a plan is
repairable by means of a reconfiguration of action modalities, FLEX-RR exploits
ReCon to efficiently find such a new configuration. On the other hand, when
a plan cannot be repaired by changing action modalities, FLEX-RR quickly
switches to Replan, which can exploit all the power of a generative planning
approach. Note that the quickness in the switch from ReCon to Replan is
guaranteed by the fact that either ReCon proves that the DMAP is not solvable,
or ReCon consumes all its 24 seconds, which can be considered an acceptable
amount of overhead at this level of abstraction for most real-world applications.

7 Extending the MMA model

The MMA model reported so far has been formulated by assuming that (at this
planning level) it is reasonable to abstract the behavior of the agent into two
distinct levels: the higher describing what the agent does, and the other express-
ing the ”way” in which each action of the plan is executed. This distinction has
been reflected in a clear division between the propositional/qualitative schema
of the top level and the numeric part referred to the execution modality level.

However, by observing the framework and the CSP computational model
reported in Appendix A, it is easy to see that this restriction can be easily
relaxed. In some scenarios in fact one would like to constrain the applicability
of an execution modality not only to the availability of resources, but also to
particular contextual conditions. While some of contextual conditions can be
naturally expressed using the same numeric formalism (e.g., the movement of
a vehicle is allowed only when the snow does not trespass the 20 cm), others
could be much more naturally represented with qualitative constraints, i.e. with
propositional constraints (e.g., the vehicle has to be provided with snow chains
to follow this road in that execution modality).

To this end it suffices to extend the definition 3. In particular each modal-
ity model should be modified with the tuple < propPre, numPre, numEff >,
where numPre and numEff remains unchanged w.r.t. the previous formula-
tion, while, given a state S, propPre represents a conjunction of propositions
that must be satisfied for applying MMA a in a state S with modality m.

The CSP extension at the basis of FLEX-RR is also straightforward; it suf-
fices in fact adding a further constraint (for each modality containing also at
least a propositional precondition) all along the (affected) snapshots represent-
ing the possible trajectories of states (i.e., the ones prior to the action execution);
in addition, the CSP snapshots have to be enriched with the relevant atoms, to

38

understand whether the modality precondition is satisfied. It is important to re-
member that the CSP handled online has to intercept all the (relevant) changes
in the environment, even if they are uncontrollable or completely unexpected.

It is worth noting that the extension inherits most of the theoretical prop-
erties provided so far, so we expect that the competence, the stability and the
efficiency will not be compromised.

8 Related Works

The work presented in this paper adopts an action-centered philosophy (in line
with PDDL, [10]), differently from a timeline based one ([4],[28]). For this
reason, our related works discussion will focus mainly on the relevant literature
in this field of research. In particular, three topics are relevant for FLEX-RR:
plan repair, CSP-based planning, and plan stability. In the following, we present
some reference works in these areas and compare them with our approach.

Plan repair strategies have recently been studied in a number of works (see
e.g., [40, 9, 14, 11]).

van der Krogt et al. [40] suggest that plan repair can be seen as a two-
step procedure. First, the broken plan is unrefined by removing the actions
causing plan flaws. Second, the resulting plan is repaired via a refinement step
(see [19]) that adds actions to fill the gaps left during the previous phase. The
proposed algorithm looks for a solution in the space of possible plans. In case
the refinement step does not find a solution, a backtracking occurs and the
unrefinement procedure is invoked again.

In [14], Gerevini et al. consider a planning graph structure, and assume that
flaws affect different steps of a given plan. The proposed repair strategy solves
separately each flaw: first it individuates the relevant plan “window”, i.e., the
portion of the plan containing the flaw, and then it considers the window as an
independent planning task. If the planning task has no solution, the window is
enlarged to include one more actions, and the process is repeated. In the worst
case, all plan is included within a repair window, and the strategy behaves as a
replanning from scratch procedure.

Garrido et al. [11] propose a mechanism to select between repair and replan-
ning. In fact, they heuristically estimate the cost of plan repair (i.e., building
just a bridge plan) and replanning from scratch (i.e., building the whole plan to
reach the goals), and then solve the least expensive planning task .

The approaches mentioned so far represent a significant step ahead in un-
derstanding how plan adaptation can be applied in practice to the plan repair
problem, despite contrasting complexity results on the topic ([32]). However,
they present limitations when plan repair is to be performed on-line and has to
take into account consumable resources and limited amount of time. In fact they
are mainly designed for the classical/propositional fragment (making exception
for [11] which considers the temporal planning too), and do not provide any
theoretical bound on the plan repair task to be faced. Our FLEX-RR method-
ology overcomes these limitations, both theoretically, by providing a plan repair

39

formulation given in terms of reconfiguration which is computationally simpler
than a replanning approach, and practically by providing an effective architec-
ture which combines competence and efficiency in a unified framework.

Another recent work strictly related to the plan repair problem is [24]. This
work, however, is mainly focused on the problem of diagnosing the anomalous
execution of a plan. In particular, the diagnosis identifies the root causes for
an action failure. These causes are subsequently used to drive a replanning
mechanism, based on a conformant planner, aimed at repairing the plan. The
main disadvantage of this approach is that the conformant planning phase could
be very expensive. The approach could therefore exploit FLEX-RR to repair a
plan, at least in same cases, via reconfiguration rather than via replanning.

It must be noticed that, while the approaches mentioned so far do not con-
sider resources, other works ([20, 34, 35, 6]) focus on the temporal dimension.
In these works, the notion of robust execution is close to the idea of flexible
schedule. The rationale is that, if an agent can arrange its tasks along the time,
then the actual execution of the plan is less prone to be affect by unexpected
situations. Thus, these works are mainly focused on finding a schedule of the
plan actions that guarantees some flexibility to the agent. The problem solved
by these works is therefore slightly different from ours. In fact, while they are
off-line (i.e., the schedule is synthesized before the plan execution phase), our
work is on-line (i.e., a DMAP occurs when the plan execution is in progress).
In addition, they are mainly focused on time delays, whereas we deal with ex-
ceptions that could threaten any consumable resource, included the time.

The work by Coles [5] is another example of off-line approach in which the
planning phase tries to anticipate alternative scenarios that might occur at
execution time. The result of this planning phase is a branched plan, where
each branch “opportunistically” reaches a rewarded goal. It is interesting to note
that new plan branches are created depending on the amount of agent’s resource,
which are modeled as numeric fluents as in our case. As said above, however, our
methodology is on-line and it has not to rely on scenarios anticipated off-line.

FLEX-RR relies on a CSP solver for resolving the DMAPs that possibly arise
during the execution. This requires us to transform the planning domain under
consideration into an appropriate CSP model. The work done in the planning
community for solving classical planning problems via CSPs (see e.g., [22, 8])
has provided us a solid base for developing our translation schema. In the CSP
planning encoding, variables represent actions and facts, while constraints are
intended to allow only sequences of actions that are valid with respect to the
domain and problem specification.

In our case, however, the CSP model is slightly different. Our formulation
focuses in fact on the relation between action modalities and resource profiles.
Resources are modeled as real variables, which can interact with one another
according to the action models (e.g., the power spent by a communication de-
pends on the amount of memory to be transmitted, which in turn depends on
the performed sensing actions). It is hence evident that, while our transforma-
tion inherits the logical framework of the classical CSP-based planning, a pure
propositional conversion is not sufficient to capture our representation.

40

Finally, in our approach we have also taken into account the notion of plan
stability. This important feature has already been considered in previous works.
In particular, the work by Fox et al. [9] introduces a measure of the plan stability
in terms of common actions. As in our case, the metric is based on the notion
of distance between two plans: given two plans π and π′ the distance is given
by the sum of the number of actions that are in π but not in π′ and the number
of the actions that are in π′ but not in π, over the total number of actions. The
same distance is also used in [33] for finding diverse plans. In this paper we
have proposed an alternative measure of the plan stability which, besides the
common actions, also accounts for the order with which the actions appear and
their similarities (where the similarity is captured by the relation between the
MMA and the modalities it encompasses). The new metric we propose in fact
considers swap of actions as well as replacement of modalities. Meaning that
when the order of the actions is significant, our measure is more accurate than
the stability proposed in [9], even without the notion of MMA. In [33] there
are actually other distance measures upon which the concept of stability can
be built. They consider causal relations as well as state trajectories. Causal
relations however do not capture change of modalities. As refers the distance
based on the state trajectories

It would be interesting to evaluate how the distance based on state trajec-
tories applies to our framework, but it should be refined to deal with states
involving numeric fluents, which are crucial in our approach.

Recently, LPG-ADAPT, which is the system developed for [9], has been
extended for supporting numeric fluents ([13]). LPG-ADAPT is designed to
work in an off-line context, but can be exploited in a continual planning loop
as well. For this reason, we integrated the LPG-ADAPT for an alternative
configuration of FLEX-RR that we have called FLEX-LPG-ADAPT. Such a
configuration substitutes the reconfiguration and the replanning step via the
adaptation mechanism presented in LPG-ADAPT. However, as we have seen
in the experimental section, in dealing with unexpected resources consumption,
this architecture has not been competitive with FLEX-RR due to the lack of
knowledge on the MMAs structure. Of course, when the plan to be repaired
needs a major revision, FLEX-RR can be easily extended to invoke, at least in
some case, the LPG-ADAPT system instead of the replanning from scratch.

9 Conclusions

This paper has addressed the problem of robust plan execution for planning
tasks involving (complex) constraints on a number of resources. In coping with
this problem, we have considered that the agent (i.e., the plan executor) might
require not only reusable resources, but also limited, consumable ones; in our
approach, in line with action-centered formalisms, we modeled such reusable
and consumable resources as numeric fluents. To the best of our knowledge,
previous approaches to robust plan execution that explicitly deal with resources
are mainly off-line (e.g., [20, 34, 35, 6, 5]). On-line methods (e.g., [40, 9, 14,

41

11, 24]), instead, are mostly focused on the achievement of the (propositional)
plan goals by interleaving plan execution and (re)planning.

The basic contribution of this paper is the notion of a Multi Modality Ac-
tion, an extension to the PDDL formalism allowing to encode in the same model
of the action the several execution modalities in which such an action can be
carried out. Each execution modality models requirements and consequences of
executing the action in that execution modality w.r.t. a given set of resources.
While all modalities of a given action achieve the same propositional effects, a
given modality models ”how” these effects can be achieved. According to the
Ghallab et al.’s terminology [15], modalities are intended to point out the al-
ternative operational model their selection implies. The underlying hierarchical
relation defined by the MMA model is an attempt to bridge the gap between
the descriptive nature of the PDDL language and the operational representation
leading the execution of lower level actions 19.

The combination of these two levels of representations allows a new (non-
trivial) characterization of the repair problem, formalized as Dynamic Modality
Assignment Problem (DMAP). The DMAP is the reconfiguration task of a given
plan of actions expressed in terms of MMAs. This formulation has interesting
theoretical properties that provides, on the one hand, a guarantee on the compu-
tational complexity bound limiting the reconfiguration in the NP class (while a
replanning task is at least as difficult as a planning problem, which is PSPACE-
Complete, see [32],[3]), and on the other hand, a kind of repair that keeps rather
stable the causal structure of the plan. This last property is important espe-
cially when the agent has to cooperate with others. High levels of stability, in
fact, guarantee that the agent will provide the other agents with the services
they are waiting for.

Relying on the MMAs notion and the DMAP formulation, the paper pre-
sented the FLEX-RR architecture, which is a continual planner exploiting the
synergy of the reconfiguration (i.e. the DMAP) and of a replanning strategy.
The objective is to address unexpected variations in the consumption of re-
sources by trying first of all to reconfigure the plan actions, and just in case,
when the reconfiguration fails, substituting a plan segment with a new one syn-
thesized on-the-fly.

The advantages of FLEX-RR are easy to see. First of all, when the reconfig-
uration succeeds, the agent is able to provide a solution in a very efficient way
and the structure of the original plan is preserved within the repaired one. On
the other hand, when the deviations on the nominal behavior becomes promi-
nent, the agent can exploit the maximum flexibility provided by a generative
approach which can add, remove and change the order of the next actions to
execute.

FLEX-RR encodes the DMAP as a CSP, and the replanning by means of
a numeric PDDL planner. The CSP solver has been used to ensure to find
an alternative allocations of modalities that respects the constraints all along

19For details on how modalities can be used for controlling the actual execution see also
[26].

42

the plan to be executed, while the numerical planner is aimed at finding a new
course of actions given the current observed state and the goal of the planning
problem at hand.

To evaluate the benefits of the approach, FLEX-RR has been thoroughly
experimented in three planning domains, extension of classical numerical do-
mains from the International Planning Competition. The results confirmed the
theoretical advantages provided by the DMAP characterization: in repairing
partial valid plans, FLEX-RR is more efficient than both a replanning mech-
anism and the plan-adaptation strategy of LPG-ADAPT [13]; moreover the
FLEX-RR repair process keeps the structure of the plan rather stable. More
important, given that we used CPU time deadline on the repair resolution task,
we measured that FLEX-RR outperformed the other systems even in terms
of competence; the gaps on the competence results are very significant in the
majority of the (hard) case scenarios.

In future developments of the framework, we will investigate the problem of
finding a modality assignment that optimizes a given objective function, such as
the maximization of the plan stability or of the resource usage. Also in this case,
our hypothesis is that the optimized reconfiguration problem could be easier to
solve than replanning optimized w.r.t. a given metric that, as pointed out in
[16, 10], is undecidable without any restriction on the planning language.

Another direction of our research is to integrate the feedback of the reconfig-
uration towards the replanning in a more powerful way. Knowing that ReCon
was not able to find a solution in the space of modalities, could in fact be very
helpful to control the search strategy of the replanner since some branches of
the search space could be discarded.

Acknowledgments

We would like to thank the anonymous reviewers for the comments that helped
to improve the quality of the paper, the Choco’s team for making freely avail-
able the CSP solver, Joerg Hoffman for the Metric-FF planning system as well
as Alfonso Gerevini, Alessandro Saetti and Ivan Serina for the LPG-ADAPT
system.

A CSP Transformation

A.1 CSP Constraints Formulation

Section 3.1 introduced the variables of the CSP formulation for the DMAP
problem, and some clue concerning the constraints which has to be built around
the variables of our problem. However, the formulation of the preconditions and
of the effects in the action model can be complex and may involve many numeric
fluents interacting among each other. For this reason, in this appendix we will
describe how the constraints binding the variables in MODs and NUMs are
built. Let us remember the reader that this step is mandatory for guaranteeing

43

to obtain only assignments of modalities that are consistent with the model of
actions and the problem at hand.

Init and Goal Status Constraints

First of all, let us see how the initial and the goal states of a DMAP can be
represented in terms of variables and constraints within a CSP. In fact, the
first and the last snapshots of our CSP representation must be constrained in
order to be consistent with the initial and the goal states, respectively, of the
DMAP formulation. The initial setup of the CSP formulation translate a specific
formulation of the DMAP, i.e. Π =< π, 0, In, Gnum >.

1. Initial State Constraints. For each numFluents in In of the form Ni = val,
the corresponding CSP variable V 0

i ∈ NUMs is constrained to assume the
value val 20:

∀ Ni = val ∈ In, CSP.addConstraint(V
0
i = val)

where val is a constant in <.

2. Goal Constraints. For each comparison of Gnum, which has the form C :<
exp, comp, exp′ >, where exp and exp′ are linear expressions mentioning
numeric fluents in X, and comp belongs to {<,≤,=,≥, >}, we create a
corresponding comparison mentioning the variables in NUMs at step n,
where n = |π|:

forall the C ∈ Gnum do
CSPExp ← Subst(C.exp,X, V n)
CSPExp’ ← Subst(C.exp′, X, V n)
CSP.addConstr(CSPExp,C.comp,CSPExp′)

In the transformation reported above, the procedure Subst substitutes the
variables present in the goals definition with the variables of the last snapshot
of the CSP Model. The result is a CSP expression expressing how the variables
of the CSP Model have to be related each other.

Precondition Constraints

As anticipated in section 2.3, an MMA a is said to be applicable in a given state
S with modality m only when the numeric preconditions associated with m are
satisfied (assuming that the propositional preconditions are satisfied too) in S.
To encode the applicability condition within the CSP model, we have to bind
each MMA ai with the CSP variables in V i; that is, state variables encoding
the state in which action ai has to be executed. Therefore, for each MMA ai in

44

for i = 0→ |π − 1| do
forall the m in ai.Mods do

forall the C ∈ numPre(m) do
CSPExp := Subst(C.exp,X, V i)
CSPExp’ := Subst(C.exp′, X, V i)
CSP.addConstr((modi = m)→
(CSPExp,C.comp,CSPExp′))

the plan, we add within the CSP model the applicability constraints as follows:

Namely, for each modality m associated with ai, we consider every compar-
ison C in numPre(m), and translate it into a new expression in terms of CSP
variables in V i similarly to what we have shown for the translation of the goal
constraints. The new expression is therefore added to the CSP model.

Effects and Frame Constraints

The execution of an action changes the system state according to its model. In
general, however, just a portion of the system state is actually modified by the
action; all the numeric fluents that are not directly mentioned in the effects of
an MMA are assumed to persist (Frame Axiom).

Therefore, within our CSP model we have to add constraints modeling the
transition of each numeric fluent from a snapshot i to a snapshot i+1, taking
into account whether the numeric fluent is mentioned within direct effects of
the i-th MMA action or not.

• Affected Numeric Fluents: for each i-th action in the plan, the selec-
tion of the modi variable binds the i-th snapshot with the i+ 1 one. More
precisely the constraints to be added are:

for i = 0→ |π − 1| do
forall the E ∈ numEff(modi) do

CSPExp := Subst(E.exp,X, V i)
CSP.addConstraint((modi = k)→ (V i+1

E.nfluent, E.op, CSPExp))

• Not Affected Numeric Fluents:

To facilitate the comprehension we will introduce a small example. Let us
imagine to be in the position of building the constraints binding the effects of
the fly action of the ZenoTravel in the modality cruise.

20Note that, an in initial state is a complete state, meaning that there is no numeric fluent
with an undefined value

45

for i = 0→ |π − 1| do
forall the fluent /∈ affected(modi) do

CSP.addConstraint(V ifluent = V i+1
fluent)

The CSP representation will contain 4 numeric variables, i.e. {Vt f u, Vfuel, Vt s, Vcapacity},
whereas distance, consumption and the speed are modeled as constant (there is
no action affecting them).

By recalling the model of the action reported in Figure 1, we know that the
action affects total-fuel-used (t f u), fuel and time-spent (t s) leaving persistent
the others numeric fluents of the domain.

Here the constraints resulting for the i-th fly(cruise) action which is the one
that models the plane moving from A to B:

(modfly = cruise) → (V i+1
fuel = V ifuel -

distance(A,B) * avg cruise cons)
(modfly = cruise) → (V i+1

t f u = V it f u +
distance(A,B) * avg cruise cons)
(modfly = cruise) → (V i+1

t s = V it s +
distance(A,B) * avg cruise speed)
(modfly = cruise) → (V i+1

capacity = V icapacity)

References

[1] A. L. Blum and L. Furst. Fast planning through planning graph analysis.
Artificial Intelligence, 90(1-2):281–300, 1997.

[2] M. Brenner and B. Nebel. Continual planning and acting in dynamic mul-
tiagent environments. Journal of Autonomous Agents and Multiagent Sys-
tems, 19(3):297–331, 2009.

[3] T. Bylander. The computational complexity of propositional strips plan-
ning. Artificial Intelligence, 69(1-2):165–204, 1994.

[4] A. Cesta and S. Fratini. The timeline representation framework as a plan-
ning and scheduling software development environment. In The 28th Work-
shop of the UK PLANNING AND SCHEDULING, 2009.

[5] A. J. Coles. Opportunistic branched plans to maximise utility in the pres-
ence of resource uncertainty. In European Conference on Artificial Intelli-
gence (ECAI), pages 252–257, 2012.

[6] P. R. Conrad and B. C. Williams. Drake: An efficient executive for tem-
poral plans with choice. Journal of Artificial Intelligence Research (JAIR),
42:607–659, 2011.

46

[7] M. E. desJardins, E. H. Durfee, C. L. Ortiz, and M. J. Wolverton. A Survey
of Research in Distributed, Continual Planning. AI Magazine, 20(4), 1999.

[8] M. B. Do and S. Kambhampati. Solving planning-graph by compiling it
into csp. In Conference on Artificial Intelligence Planning Systems (AIPS),
pages 82–91, 2000.

[9] M. Fox, A. Gerevini, D. Long, and I. Serina. Plan stability: Replanning
versus plan repair. In International Conference on Automated Planning
and Scheduling (ICAPS), pages 212–221, 2006.

[10] M. Fox and D. Long. Pddl2.1: An extension to pddl for expressing tempo-
ral planning domains. Journal of Artificial Intelligence Research (JAIR),
20:61–124, 2003.

[11] A. Garrido, C. Guzman, and E. Onaindia. Anytime plan-adaptation for
continuous planning. In PlanSIG, 2010.

[12] A. Gerevini, A. Saetti, and I. Serina. An approach to efficient planning with
numerical fluents and multi-criteria plan quality. Artificial Intelligence,
172(8-9):899–944, May 2008.

[13] A. Gerevini, A. Saetti, and I. Serina. Case-based planning for problems with
real-valued fluents: Kernel functions for effective plan retrieval. In European
Conference on Artificial Intelligence (ECAI), pages 348–353, 2012.

[14] A. Gerevini and I. Serina. Efficient plan adaptation through replanning
windows and heuristic goals. Fundamenta Informaticae, 102(3-4):287–323,
2010.

[15] M. Ghallab, D. Nau, and P. Traverso. The actor’s view of automated
planning and acting: A position paper. Artificial Intelligence, 208(0):1 –
17, 2014.

[16] M. Helmert. Decidability and undecidability results for planning with nu-
merical state variables. In Conference on Artificial Intelligence Planning
Systems (AIPS), pages 44–53, 2002.

[17] J. Hoffmann. The metric-FF planning system: Translating ”ignoring delete
lists” to numeric state variables. Journal of Artificial Intelligence Research
(JAIR), 20:291–341, 2003.

[18] J. Hoffmann and R. I. Brafman. Contingent planning via heuristic forward
search witn implicit belief states. In International Conference on Automated
Planning and Scheduling (ICAPS), pages 71–80, 2005.

[19] S. Kambhampati. Refinement planning as a unifying framework for plan
synthesis. AI Magazine, 18(2):67–97, 1997.

47

[20] J. Kvarnström, F. Heintz, and P. Doherty. A temporal logic-based plan-
ning and execution monitoring system. In International Conference on
Automated Planning and Scheduling (ICAPS), pages 198–205, 2008.

[21] V. I. Levenshtein. Binary codes capable of correcting deletions, insertions
and reversals. Soviet Physics Doklady, 10(8):707–710, February 1966.

[22] A. Lopez and F. Bacchus. Generalizing graphplan by formulating plan-
ning as a csp. In International Joint Conference on Artificial Intelligence
(IJCAI), pages 954–960, 2003.

[23] C. L. López, S. J. Celorrio, and M. Helmert. Automating the evaluation of
planning systems. AI Commun., 26(4):331–354, 2013.

[24] R. Micalizio. Action failure recovery via model-based diagnosis and con-
formant planning. Computational Intelligence, page to appear, 2012.

[25] R. Micalizio, E. Scala, and P. Torasso. Intelligent supervision for robust
plan execution. In AI*IA 2011: Artificial Intelligence Around Man and
Beyond, volume 6934 of LNCS, pages 151–163. 2011.

[26] R. Micalizio, E. Scala, and P. Torasso. Towards robust execution of mission
plans for planetary rovers. Acta Futura, 5:53–63, 2012.

[27] R. Micalizio and P. Torasso. Monitoring the execution of a multi-agent plan:
Dealing with partial observability. In European Conference on Artificial
Intelligence (ECAI), pages 408–412, 2008.

[28] N. Muscettola. Hsts: Integrating planning and scheduling. Technical Re-
port CMU-RI-TR-93-05, Robotics Institute, Pittsburgh, PA, March 1993.

[29] I. Musso, R. Micalizio, and E. Scala et al. Communication scheduling and
plans revision for planetary rovers. In International Symposium on Artifi-
cial Intelligence, Robotics and Automation in Space (i-SAIRAS), 2010.

[30] H. Nakhost, J. Hoffmann, and M. Müller. Resource-constrained planning:
A monte carlo random walk approach. In International Conference on
Automated Planning and Scheduling (ICAPS), 2012.

[31] J. Narendra, G. Rochart, and X. Lorca. Choco: an open source java con-
straint programming library. In CPAIOR’08 Workshop on Open-Source
Software for Integer and Contraint Programming (OSSICP’08), pages 1–
10, 2008.

[32] B. Nebel and J. Koehler. Plan reuse versus plan generation: A theoretical
and empirical analysis. Artificial Intelligence, 76(1-2):427–454, 1995.

[33] T. A. Nguyen, M. Do, A. E. Gerevini, I. Serina, B. Srivastava, and S. Kamb-
hampati. Generating diverse plans to handle unknown and partially known
user preferences. Artificial Intelligence, 190:1–31, October 2012.

48

[34] N. Policella, A. Cesta, A. Oddi, and S. Smith. From precedence constraint
posting to partial order schedules: A CSP approach to robust scheduling.
AI Communications, 20(3):163–180, August 2007.

[35] N. Policella, A. Cesta, A. Oddi, and S. Smith. Solve-and-robustify. Journal
of Scheduling, 12:299–314, 2009.

[36] N. Roos and C. Witteveen. Diagnosis of plan execution and the executing
agent. In Lecture Notes in Artificial Intelligence (LNAI, pages 357–366,
2005.

[37] F. Rossi, P. V. Beek, and T. Walsh. Handbook of Constraint Programming
(Foundations of Artificial Intelligence). Elsevier Science Inc., New York,
NY, USA, 2006.

[38] E. Scala. Numeric kernel for reasoning about plans involving numeric flu-
ents. In AI*IA 2013: Advances in Artificial Intelligence, volume 8249 of
LNCS, pages 263–275. 2013.

[39] E. Scala. Reconfiguration and Replanning for robust Execution of Plans
Involving Continous and Consumable Resources. PhD thesis, Department
of Computer Science - Turin, 2013.

[40] R. van der Krogt and M. de Weerdt. Plan repair as an extension of plan-
ning. In International Conference on Automated Planning and Scheduling
(ICAPS), pages 161–170, 2005.

49

