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Gibbs-type random probability measures and the exchangeable random partitions they induce represent
the subject of a rich and active literature. They provide a probabilistic framework for a wide range of
theoretical and applied problems that are typically referred to as species sampling problems. In this paper,
we consider the class of looking-backward species sampling problems introduced in Lijoi et al. (Ann. Appl.
Probab. 18 (2008) 1519–1547) in Bayesian nonparametrics. Specifically, given some information on the
random partition induced by an initial sample from a Gibbs-type random probability measure, we study the
conditional distributions of statistics related to the old species, namely those species detected in the initial
sample and possibly re-observed in an additional sample. The proposed results contribute to the analysis
of conditional properties of Gibbs-type exchangeable random partitions, so far focused mainly on statistics
related to those species generated by the additional sample and not already detected in the initial sample.

Keywords: Bayesian nonparametrics; conditional random partitions; Ewens–Pitman sampling model;
Gibbs-type exchangeable random partitions; looking-backward probabilities; species diversity; species
sampling problems

1. Introduction

Let X be a complete and separable metric space equipped with the Borel σ -algebra X , and let
(Xi)i≥1 be an exchangeable sequence of X-valued random variables defined on some probability
space (�,F ,P). According to the celebrated de Finetti’s representation theorem there exists a
random probability measure P̃ on X such that, conditionally on P̃ , the random variables (Xi)i≥1

are independent and identically distributed according to P̃ , that is,

Xi |P̃ i.i.d.∼ P̃ ,

P̃ ∼ �.

The distribution � is commonly known as the de Finetti probability measure of (Xi)i≥1 and it
takes on the interpretation of the prior distribution in Bayesian nonparametrics. In the present
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paper, we consider almost surely discrete random probability measures, namely P̃ is such that
�[P̃ ∈ D] = 1, where D stands for the set of discrete probability measures on (X,X ).

If P̃ is discrete almost surely, we expect ties in a sample (X1, . . . ,Xn) from P̃ ; that
is, we expect Kn ≤ n distinct observations with frequencies Nn = (N1, . . . ,NKn) satisfying∑

1≤i≤Kn
Ni = n. Accordingly, the sample induces a random partition of the set {1, . . . , n}, in the

sense that any index i �= j belongs to the same partition set if and only if Xi = Xj . We denote by

p
(n)
j (n1, . . . , nj ) the symmetric function corresponding to the probability of any particular parti-

tion of {1, . . . , n} having j distinct blocks with frequencies (n1, . . . , nj ). This function is known
as the exchangeable partition probability function (EPPF), a concept introduced in [17] as a de-
velopment of earlier results in [12]. The EPPF can be specified for every n ≥ 1 and 1 ≤ j ≤ n

either via the exchangeable sequence (Xi)i≥1 or by defining a random partition of N. In the
latter case, the distribution of the random partition must satisfy certain consistency conditions
and a symmetry property that guarantees exchangeability. See [19] and references therein for a
comprehensive account on EPPFs.

Exchangeable random partitions play an important role in a variety of research areas. In pop-
ulation genetics, models for exchangeable random partitions are useful for describing the con-
figurations of a sample of genes into a number of distinct allelic types. See [6] and references
therein. In machine learning, probabilistic models for linguistic applications are often based on
clustering structures for collections of words in documents. See, for example, [22] and [21] for
a review. In Bayesian nonparametrics, exchangeable random partitions are commonly employed
at the latent level of complex hierarchical mixture models. See [15] and references therein for
a review. Other areas of application include storage problems, excursion theory, combinatorics,
number theory and statistical physics. Broadly speaking, exchangeable random partitions and
their associated EPPFs provide a flexible probabilistic framework for a wide range of theoretical
and applied problems that are typically referred to as species sampling problems, namely prob-
lems concerning a population composed of individuals belonging to different species. Indeed,
the number of partition blocks Kn take on the interpretation of the number of distinct species in
the sample (X1, . . . ,Xn) and the Ni ’s are the corresponding species frequencies. Given the rele-
vance and intuitiveness of such a framework, throughout the paper we will resort to the species
metaphor.

The main object of our investigation is the class of Gibbs-type exchangeable random parti-
tions. These are random partitions which arise by sampling from a random probability mea-
sure, say of Gibbs-type, here denoted by P̃G. See [18] for details. Introduced in [10] these
exchangeable random partitions represent the subject of a rich and active literature. A recent
development, first proposed in [16], is the study of their conditional properties. This study con-
sists in evaluating, conditional on some information about the random partition induced by
an initial sample (X1, . . . ,Xn) from P̃G, the distribution of certain statistics of an additional
sample (Xn+1, . . . ,Xn+m). In particular, in [16] the main focus is on the conditional distribu-
tions of statistics related to the new species, namely those species generated by the additional
sample and not coinciding with species already detected in the initial sample. A representa-
tive example is given by the distribution of the number of new distinct species generated by
(Xn+1, . . . ,Xn+m), conditional on the information of both the number of distinct species in
(X1, . . . ,Xn) and their corresponding frequencies. See [8] for a generalization to the number
of new distinct species with a certain frequency of interest. As shown in [8,13] and [16] these
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conditional distributions have direct applications in Bayesian nonparametric analysis of species
sampling problems arising in ecology and genomics. We refer to [3,4,7] and [11] for other contri-
butions at the interface between Bayesian nonparametrics and Gibbs-type exchangeable random
partitions.

Many problems in the conditional analysis of Gibbs-type exchangeable random partitions re-
main unresolved. For instance, [16] pointed out the practical interest in the conditional distribu-
tions of statistics related to the old species, namely those species detected in the initial sample
and possibly re-observed in the additional sample. Two illustrative examples are given in Propo-
sition 4 of [16] and in Theorem 3 of [8]. In general the class of species sampling problems
concerning old species has been referred to as looking-backward and it represent the focus of the
present paper. We study two novel, and practically applicable, looking-backward species sam-
pling problems. In particular, we derive

(i) the conditional distribution of the number of old distinct species re-observed in (Xn+1, . . . ,

Xn+m), given complete or incomplete information on the random partition induced by
(X1, . . . ,Xn);

(ii) the conditional distribution of the number of old distinct species re-observed with a spe-
cific frequency of interest in (Xn+1, . . . ,Xn+m), given complete or incomplete informa-
tion on the random partition induced by (X1, . . . ,Xn).

Specifically, by complete information we refer jointly to the number of distinct species in
(X1, . . . ,Xn) and their frequencies, whereas by incomplete information we refer solely to the
number of distinct species in (X1, . . . ,Xn). Besides the sets of complete and incomplete infor-
mation, we also consider almost-complete information. This information refers jointly to the
number of distinct species in (X1, . . . ,Xn) and a subset of their corresponding frequencies.

The present paper broadens the scope of previous literature on conditional distributions for
Gibbs-type exchangeable random partitions, by investigating in depth some statistics related to
old species. In the framework of Gibbs-type exchangeable random partitions, looking-backward
problems create a distinction between conditioning on complete, incomplete and almost complete
information, which to the best of our knowledge has not been dealt with explicitly in previous
studies. We expect the results introduced here to have an impact in the analysis of Bayesian non-
parametric models for species sampling problems, which have acquired increasingly complex
forms in recent years to meet the demands of scientific applications. The paper is structured as
follows. Section 2 recalls the definition of Gibbs-type exchangeable random partition and intro-
duces preliminary results relevant to the analysis of their conditional structure. Section 3 deals
with the looking-backward species sampling problems (i) and (ii) in the general case of Gibbs-
type exchangeable random partitions and in the special case of the celebrated Ewens–Pitman
sampling model. The context of almost-complete information is also dealt with in Section 3.
Section 4 contains some numerical illustrations of the present results. Proofs are deferred to the
Appendix.

2. Preliminaries and main definitions

Gibbs-type exchangeable random partitions were introduced in [10] and further investigated in
[18]. This class of exchangeable random partitions is characterized by an EPPF with a product
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form, a feature which is crucial for mathematical tractability and, in particular, facilitates intu-
ition. Let Dn,j = {(n1, . . . , nj ) : ni ≥ 1 and

∑j

i=1 ni = n} be the set of the partitions of n ≥ 1
into j ≤ n positive integers. Moreover, for any x > 0 and any positive integer n, we denote by
(x)n↑1 and (x)n↓1 the rising factorials and falling factorials, respectively.

Definition 2.1. Let (Xi)i≥1 be an exchangeable sequence directed by P̃G. Then, the exchange-
able random partition induced by (Xi)i≥1 is said of Gibbs-type and it is characterized by an
EPPF of the form

p
(n)
j (n1, . . . , nj ) = Vn,j

j∏
i=1

(1 − σ)(ni−1)↑1, (2.1)

for σ < 1 and nonnegative weights (Vn,j )j≤n,n≥1 satisfying the recursion Vn,j = Vn+1,j+1 +
(n − jσ )Vn+1,j , with V1,1 = 1.

Gibbs-type exchangeable random partitions are completely specified by the parameter σ < 1
and the collection of weights (Vn,j )j≤n,n≥1 satisfying a backward recursion. Note that Defini-
tion 2.1 also provides the distribution of the number Kn of distinct species in a sample of size n

from P̃G, that is,

P[Kn = j ] = Vn,j

C (n, j ;σ)

σ j
, (2.2)

with C (n, j ;σ) being the so-called generalized factorial coefficient. We refer to [2] for de-
tails. The next example recalls the Ewens–Pitman sampling model, a noteworthy example of
Gibbs-type exchangeable random partition introduced in [17] and generalizing the celebrated
Ewens sampling model in [5]. See [1] and references therein for a comprehensive account on
the Ewens sampling model. Another notable Gibbs-type exchangeable random partition, still
related to the Ewens–Pitman sampling model, has been recently introduced and investigated
in [9].

Example 2.1. For any σ ∈ (0,1) and θ > −σ , the Ewens–Pitman sampling model is a Gibbs-
type exchangeable random partition with weights (Vn,j )j≤n,n≥1 of the following form

Vn,j =
∏j−1

i=0 (θ + iσ )

(θ)n↑1
. (2.3)

The Ewens sampling model with parameter θ > 0 is recovered from the Ewens–Pitman sam-
pling model by letting σ → 0. See, for example, [17] and [20] for details and further develop-
ments.

The recursion in Definition 2.1, for a fixed σ , cannot be solved in a unique way. The solutions
form a convex set where each element is the distribution of an exchangeable random partition.
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Theorem 12 in [10] describes the extreme points of such a convex set. For any n ≥ 1 let

cn(σ ) =
⎧⎨
⎩

1 if σ ∈ (−∞,0),

log(n) if σ = 0,

nσ if σ ∈ (0,1).

For every Gibbs-type exchangeable random partition there exists a positive and almost surely
finite random variable Sσ such that

Kn

cn(σ )

a.s.−→ Sσ ,

as n → +∞, and such that a Gibbs-type exchangeable random partition is a unique mixture
over κ of extreme exchangeable random partitions for which Sσ = κ almost surely. For σ ∈
(−∞,0) the extremes are Ewens–Pitman sampling models with parameter (σ,−σκ); for σ = 0
the extremes are Ewens sampling models with parameter κ ≥ 0; for σ ∈ (0,1) the Ewens–Piman
sampling models are not extremes. See Section 6.1 in [18] for details on Sσ .

A generalization of Definition 2.1 has been recently introduced in [16] to study conditional
properties of Gibbs-type exchangeable random partitions. To recall this generalization a few
quantities, analogous to those describing the random partition induced by an initial sample
(X1, . . . ,Xn) from P̃G, need to be introduced. Let X∗

1, . . . ,X∗
Kn

be the labels identifying the
Kn distinct species detected in the initial sample and, for any m > 1, define

L(n)
m =

m∑
i=1

Kn∏
j=1

1{X∗
j }C (Xn+i ) (2.4)

as the number of observations in an additional sample (Xn+1, . . . ,Xn+m) not coinciding with
any of the Kn distinct species. Denote by K

(n)
m the number of new distinct species generated

by these L
(n)
m observations and by X∗

Kn+1, . . . ,X
∗
Kn+K

(n)
m

their corresponding identifying labels.

Therefore,

M
L

(n)
m

= (M1, . . . ,MK
(n)
m

),

with

Mi =
m∑

j=1

1{X∗
Kn+i }(Xn+j ) (2.5)

for i = 1, . . . ,K
(n)
m , are the frequencies of the new K

(n)
m distinct species detected among the L

(n)
m

observations of the additional sample. Analogously,

S
m−L

(n)
m

= (S1, . . . , SKn),
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with

Si =
m∑

j=1

1{X∗
i }(Xn+j ), (2.6)

corresponds to number of observations, among the m − L
(n)
m observations of the additional sam-

ple, coinciding with the ith distinct old species detected in the initial sample, for i = 1, . . . ,Kn.
As pointed out in [13], from a Bayesian nonparametric perspective the joint conditional distribu-
tion of the random variables (2.4), (2.5), (2.6) and K

(n)
m , given (X1, . . . ,Xn), can be interpreted as

the posterior counterpart of the EPPF (2.1). This then provides a natural framework for Bayesian
nonparametric analysis of species sampling problem.

In [16], the main focus is on conditional distributions of statistics related to the new species
generated by (Xn+1, . . . ,Xn+m). For instance, by suitably marginalizing the joint conditional
distribution of the random variables (2.4), (2.5), (2.6) and K

(n)
m , given (X1, . . . ,Xn), one obtains

the conditional distribution of the number of new distinct species, namely

P
[
K(n)

m = k|Kn = j,Nn = n
] = Vn+m,j+k

Vn,j

C (m, k;σ,−n + jσ )

σ k
(2.7)

with C (n, j ;σ,ρ) being the so-called noncentral generalized factorial coefficient. We refer to [2]
for details. Accordingly, the Bayesian nonparametric estimator, under quadratic loss function, of
the number of new distinct species generated by the additional sample coincides with

K(n)
m = E

[
K(n)

m |Kn = j,Nn = n
] = E

[
K(n)

m |Kn = j
]
. (2.8)

We refer to [3,13,14] and [16] for applications of (2.7) and (2.8), under the choice of Vn,j in
(2.3), to Bayesian nonparametric inference for species variety in genetic experiments. As a gen-
eralization of (2.7), Theorem 3 in [8] provides the conditional distribution, given (X1, . . . ,Xn),
of

Kn∑
i=1

1{Ni+Si=l} +
K

(n)
m∑

i=1

1{Mi=l}, (2.9)

for any l = 1, . . . , n + m. In words, (2.9) corresponds to the number of distinct species with
frequency l generated by (Xn+1, . . . ,Xn+m). The conditional expected value of (2.9), given
(X1, . . . ,Xn), provides the Bayesian nonparametric estimator, under quadratic loss function, of
the number of distinct species with frequency l generated by the additional sample.

3. Two looking-backward probabilities

Before presenting our results, it is worth stating the fundamental difference between looking-
backward species sampling problems and the species sampling problems investigated in [16].
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A common feature of the conditional distributions introduced in [16] is their independence from
the information on the frequencies Nn induced by the initial sample (X1, . . . ,Xn). As a repre-
sentative example, note that the distribution (2.7) satisfies the following identity

P
[
K(n)

m = k|Kn = j,Nn = n
] = P

[
K(n)

m = k|Kn = j
]
.

Such a property of independence characterizes all the statistics concerning the new species
in the additional sample (Xn+1, . . . ,Xn+m). Indeed, since (2.6) does not contain any in-
formation on new species, the conditional distributions of these statistics can be obtained
from the joint conditional distribution of the random variables (2.4), (2.5) and K

(n)
m , given

(X1, . . . ,Xn). In Proposition 1 of [13], this joint conditional distribution is shown to be inde-
pendent of Nn. Hence, Kn is a sufficient statistic for the species sampling problems discussed
in [16].

Differently, the conditional distributions of statistics concerning old species depend on the
information of both the number Kn of distinct species and the corresponding frequencies Nn.
This is to say that, letting T

(n)
m be a statistic related to old species, in most cases, one obtains

P
[
T (n)

m ∈ ·|Kn = j,Nn = n
] �= P

[
T (n)

m ∈ ·|Kn = j
]
. (3.1)

As an example, the distribution of (2.9) satisfies (3.1). See Theorem 3 of [8] for details. See
also Proposition 4 in [16] for another example. According to (3.1), the analysis of the looking-
backward species sampling problems naturally leads to consider at least two sets of information
on the random partition induced by (X1, . . . ,Xn): (i) a complete information, namely Kn and
Nn; (ii) an incomplete information, namely Kn. We also consider almost-complete information,
namely Kn and a subset of Nn. In the next subsections, we present and discuss the results of
our paper. We focus on deriving the conditional distributions of two looking-backward statistics,
given complete or incomplete information. This will be the subject of Section 3.1 and Section 3.2.
The conditional distributions of these two statistics given almost-complete information can be
derived through similar arguments applied when conditioning on incomplete information. This
will be discussed in Section 3.3.

3.1. Probabilities of re-observing old species

In this section, we consider the distribution of the number of old distinct species that are re-
observed in (Xn+1, . . . ,Xn+m), conditional on complete and incomplete information on the ran-
dom partition induced by (X1, . . . ,Xn). Formally, in the context of complete information, we are
interested in the random variable R

(n,j,n)
m which is defined in distribution as

P
[
R

(n,j,n)
m = x

] = P

[
Kn∑
i=1

1{Si>0} = x

∣∣∣Kn = j,Nn = n

]
. (3.2)
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In the context of incomplete information, we are interested in the random variable R̃
(n,j)
m which

is defined in distribution as

P
[
R

(n,j)
m = x

] = P

[
Kn∑
i=1

1{Si>0} = x

∣∣∣Kn = j

]
. (3.3)

In the next theorem, we derive the factorial moments of the random variables in (3.2) and (3.3).
By means of Theorem 1 in [8], we obtain (3.4). Accordingly, (3.5) follows from (3.4) by suitably
marginalizing the frequencies Nn. These moments then lead to the corresponding distributions
by means of standard arguments involving probability generating functions.

Theorem 1. Let (Xi)i≥1 be an exchangeable sequence directed by P̃G. Then, for any integer
r ≥ 1 one has

E
[(

R
(n,j,n)
m

)
r↓1

]

= r!
r∑

v=0

(
j − v

r − v

)
(−1)v (3.4)

×
∑

{c1,...,cv}∈Cj,v

m∑
k=0

Vn+m,j+k

Vn,j

C (m, k;σ,−n + ∑v
i=1 nci

+ (j − v)σ )

σ k

and

E
[(

R
(n,j)
m

)
r↓1

]

= r!
C (n, j ;σ)

r∑
v=0

(
j − v

r − v

)
(−1)v

n−(j−v)∑
s=v

(
n

s

)
C (s, v;σ)C (n − s, j − v;σ) (3.5)

×
m∑

k=0

Vn+m,j+k

Vn,j

C (m, k;σ,−n + s + (j − v)σ )

σ k
,

where Cj,v denotes the set of the v-combinations (without repetitions) of the elements {1, . . . , j}.

The distributions of R
(n,j,n)
m and R

(n,j)
m are interpretable as the posterior distributions of the

number of old distinct species that are re-observed in (Xn+1, . . . ,Xn+m) given, respectively,
complete and incomplete information on the random partition induced by (X1, . . . ,Xn). Ac-
cordingly, the Bayesian nonparametric estimators, under a quadratic loss function, coincide with
the expected values of the random variables R

(n,j,n)
m and R

(n,j)
m . An expression for these Bayesian

nonparametric estimators, denoted by R(n,j,n)
m = E[R(n,j,n)

m ] and R(n,j)
m = E[R(n,j)

m ], is presented
in the next corollary. See Proposition 1 and Proposition 2 for an expression of these estimators
under the Ewens–Pitman sampling model.
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Corollary 3.1. The Bayesian nonparametric estimator of the number of old distinct species that
are re-observed in an additional sample of size m, given complete information on (X1, . . . ,Xn),
coincides with

R(n,j,n)
m = j −

n∑
i=1

mi

m∑
k=0

Vn+m,j+k

Vn,j

C (m, k;σ,−n + i + (j − 1)σ )

σ k
.

Moreover, given incomplete information on (X1, . . . ,Xn), the Bayesian nonparametric estimator
coincides with

R(n,j)
m = j − 1

C (n, j ;σ)

n−(j−1)∑
s=1

(
n

s

)
C (s,1;σ)C (n − s, j − 1;σ)

×
m∑

k=0

Vn+m,j+k

Vn,j

C (m, k;σ,−n + s + (j − 1)σ )

σ k
.

Here mi ≥ 0 denotes the number of distinct species observed in the initial sample with fre-
quency i.

The distributions of R
(n,j,n)
m and R

(n,j)
m , under the Ewens–Pitman sampling model, are speci-

fied in the next propositions. We devote special attention to the Ewens–Pitman sampling model
because it has proven suitable for inference in species sampling problems, particularly in ge-
nomics. See, for example, [13] and [8] for details. The corresponding results for the Ewens
sampling model can be recovered by letting σ → 0 and applying equation 2.63 in [2].

Proposition 1. Under the Ewens–Pitman sampling model, the distribution of R
(n,j,n)
m coincides

with

P
[
R

(n,j,n)
m = x

]

= 1

(θ + n)m↑1
(−1)j

j∑
v=j−x

(
v

j − x

)
(−1)v+x (3.6)

×
∑

{c1,...,cv}∈Cj,v

(
θ + n −

v∑
i=1

nci
+ σv

)
m↑1

and

R(n,j,n)
m = j − 1

(θ + n)m↑1

n∑
i=1

mi(θ + n − i + σ)m↑1. (3.7)

The random variable R
(n,j,n)
m assigns positive probability to any integer value x such that 0 ≤

x ≤ min(j,m).
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Proposition 2. Under the Ewens–Pitman sampling model, the distribution of R
(n,j)
m coincides

with

P
[
R

(n,j)
m = x

]

= 1

C (n, j ;σ)(θ + n)m↑1
(−1)j

j∑
v=j−x

(
v

j − x

)
(−1)v+x (3.8)

×
n−(j−v)∑

s=v

(
n

s

)
(θ + n − s + vσ)m↑1C (s, v;σ)C (n − s, j − v;σ)

and

R(n,j)
m = j − 1

C (n, j ;σ)(θ + n)m↑1
(3.9)

×
n−(j−1)∑

s=1

(
n

s

)
(θ + n − s + σ)m↑1C (s,1;σ)C (n − s, j − 1;σ).

The random variable R
(n,j)
m assigns positive probability to any integer value x such that 0 ≤ x ≤

min(j,m).

3.2. Probabilities of re-observing old species with a certain frequency

In this section, we consider the distribution of the number of old distinct species that are re-
observed in (Xn+1, . . . ,Xn+m) with frequency 0 ≤ l ≤ m, conditional on complete and incom-
plete information on the random partition induced by the initial observed sample (X1, . . . ,Xn).
Note that the case l = 0 is of particular interest, representing the number of old distinct species
that are not re-observed in the additional sample. Formally, in the context of complete in-
formation, we are interested in the random variable R

(n,j,n)
l,m which is defined in distribution

as

P
[
R

(n,j,n)
l,m = x

] = P

[
Kn∑
i=1

1{Si=l} = x

∣∣∣Kn = j,Nn = n

]
. (3.10)

In the context of incomplete information, we are interested in the random variable R
(n,j)
l,m which

is defined in distribution as

P
[
R

(n,j)
l,m = x

] = P

[
Kn∑
i=1

1{Si=l} = x

∣∣∣Kn = j

]
. (3.11)

In the next theorem, we derive the factorial moments of the random variables in (3.10)
and (3.11). The factorial moment (3.12) is obtained by a direct application of Theorem 1
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in [8]. With regards to the factorial moment (3.13), this is obtained from (3.12) by suit-
ably marginalizing the frequencies Nn. Again, these factorial moments lead to the corre-
sponding distributions by means of standard arguments involving probability generating func-
tions.

Theorem 2. Let (Xi)i≥1 be an exchangeable sequence directed by P̃G. Then, for any 0 ≤ l ≤ m

and any integer r ≥ 1 one has

E
[(

R
(n,j,n)
l,m

)
r↓1

]

= r!
(

m

l, . . . , l,m − rl

) ∑
{c1,...,cr }∈Cj,r

r∏
i=1

(nci
− σ)l↑1 (3.12)

×
m∑

k=0

Vn+m,j+k

Vn,j

C (m − rl, k;σ,−n + ∑r
i=1 nci

+ (j − r)σ )

σ k

and

E
[(

R
(n,j)
l,m

)
r↓1

]
= r!

C (n, j ;σ)

(
m

l, . . . , l,m − rl

)(−σ(1 − σ)(l−1)↑1
)r

(3.13)

×
n−(j−r)∑

s=r

(
n

s

)
C (s, r;σ − l)C (n − s, j − r;σ)

×
m∑

k=0

Vn+m,j+k

Vn,j

C (m − rl, k;σ,−n + s + (j − r)σ )

σ k
,

where Cj,r denotes the set of the r-combinations (without repetitions) of the elements {1, . . . , j}.

Again, the distributions of R
(n,j,n)
l,m and R

(n,j)
l,m are interpretable as the posterior distributions

of the number of old distinct species that are re-observed in (Xn+1, . . . ,Xn+m) with frequency
0 ≤ l ≤ m given, respectively, complete and incomplete information on the random partition
induced by (X1, . . . ,Xn). The corresponding Bayesian nonparametric estimators, denoted by
R(n,j,n)

l,m = E[R(n,j,n)
l,m ] and R(n,j)

l,m = E[R(n,j)
l,m ], are specified in the next corollary. See Proposi-

tion 3 and Proposition 4 for an expression for these estimators under the Ewens–Pitman sampling
model.

Corollary 3.2. The Bayesian nonparametric estimator of the number of old distinct species that
are re-observed, with frequency 0 ≤ l ≤ m, in an additional sample of size m, given complete
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information on (X1, . . . ,Xn), coincides with

R(n,j,n)
l,m =

(
m

l

) n∑
i=1

mi(i − σ)l↑1

×
m∑

k=0

Vn+m,j+k

Vn,j

C (m − l, k;σ,−n + i + (j − 1)σ )

σ k
.

Moreover, given incomplete information on (X1, . . . ,Xn) the Bayesian nonparametric estimator
coincides with

R(n,j)
l,m = 1

C (n, j ;σ)

(
m

l

)(−σ(1 − σ)(l−1)↑1
)

×
n−(j−1)∑

s=1

(
n

s

)
C (s,1;σ − l)C (n − s, j − 1;σ)

×
m∑

k=0

Vn+m,j+k

Vn,j

C (m − l, k;σ,−n + s + (j − 1)σ )

σ k
.

Here mi ≥ 0 denotes the number of distinct species observed in the initial sample with fre-
quency i.

Finally, the distributions of R
(n,j,n)
m and R

(n,j)
m , under the Ewens–Pitman sampling model, are

specified in the next propositions.

Proposition 3. Under the Ewens–Pitman sampling model, for any 0 ≤ l ≤ m, the distribution of
R

(n,j,n)
l,m coincides with

P
[
R

(n,j,n)
l,m = x

]
= 1

(θ + n)m↑1

m∑
y=x

(
y

y − x

)
(−1)y−x (3.14)

×
(

m

l, . . . , l,m − yl

) ∑
{c1,...,cy }∈Cj,y

y∏
i=1

(nci
− σ)l↑1

(
θ + n −

y∑
i=1

nci
+ σy

)
(m−yl)↑1

and

R(n,j,n)
l,m = 1

(θ + n)m↑1

(
m

l

) n∑
i=1

mi(i − σ)l↑1(θ + n − i + σ)(m−l)↑1. (3.15)

The random variable R
(n,j,n)
l,m assigns positive probability to any integer value x such that 0 ≤

x ≤ min(j,m).
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Proposition 4. Under the Ewens–Pitman sampling model, for any 0 ≤ l ≤ m, the distribution of
R

(n,j)
l,m coincides with

P
[
R

(n,j)
l,m = x

]
= 1

C (n, j ;σ)(θ + n)m↑1

m∑
y=x

(
y

y − x

)
(−1)y−x

(3.16)

×
(

m

l, . . . , l,m − yl

)(−σ(1 − σ)(l−1)↑1
)y

×
n−(j−y)∑

s=y

(
n

s

)
(θ + n − s + σy)(m−yl)↑1C (s, y;σ − l)C (n − s, j − y;σ)

and

R(n,j)
l,m = 1

C (n, j ;σ)(θ + n)m↑1

(
m

l

)(−σ(1 − σ)(l−1)↑1
)

(3.17)

×
n−(j−1)∑

s=1

(
n

s

)
(θ + n − s + σ)(m−l)↑1C (s,1;σ − l)C (n − s, j − 1;σ).

The random variable R
(n,j)
l,m assigns positive probability to any integer value x such that 0 ≤ x ≤

min(j,m).

3.3. Conditioning on almost-complete information

We now consider the distribution of the number of old distinct species that are re-observed
in the additional sample (Xn+1, . . . ,Xn+m), conditional on almost-complete information. This
looking-backward species sampling problem can be seen as a generalization of the problems
discussed above. For any integer p ∈ {1, . . . ,Kn} let τ = {τ1, . . . , τp} be a collection of integers
such that 1 ≤ τ1 < · · · < τp ≤ Kn and define the subset of p frequencies Nτ,n = (Nτ1 , . . . ,Nτp ).

In the context of almost-complete information, we are interested in the random variables R
(n,j,nτ )
m

and R
(n,j,nτ )
l,m which are defined in distribution as

P
[
R

(n,j,nτ )
m = x

] = P

[
Kn∑
i=1

1{Si>0} = x

∣∣∣Kn = j,Nτ,n = nτ

]
(3.18)

and

P
[
R

(n,j,nτ )
l,m = x

] = P

[
Kn∑
i=1

1{Si=l} = x

∣∣∣Kn = j,Nτ,n = nτ

]
. (3.19)
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The following lemma is fundamental in determining the factorial moments of the random vari-
ables introduced in (3.18) and (3.19) and, accordingly, to derive the corresponding distributions.

Lemma 3.1. Let (Xi)i≥1 be an exchangeable sequence directed by a Gibbs-type random
probability measure P̃G. For any integer p ∈ {1, . . . ,Kn}, denote by ν = {ν1, . . . , νKn−p} the
complement set of τ with 1 ≤ ν1 < · · · < νKn−p ≤ Kn and define the subset of frequencies
Nν,n := (Nν1, . . . ,NνKn−p

). Then

P[Nν,n = nν |Kn = j,Nτ,n = nτ ]
(3.20)

= σ j−p

C (n − ∑p

i=1 nτi
, j − p;σ)

1

(j − p)!
(

n − ∑p

i=1 nτi

nν1, . . . , nνj−p

) j−p∏
i=1

(1 − σ)(nνi
−1)↑1.

The random variable Nν,n = nν |(Kn = j,Nτ,n = nτ ) assigns positive probability to the set
Dn−∑p

i=1 nτi
,j−p .

The factorial moments of R
(n,j,nτ )
m and R

(n,j,nτ )
l,m are derived by means of Lemma 3.1 and along

lines similar to the proof of Theorem 1 and Theorem 2, respectively. In particular, with regard to
the factorial moments of the random variables in (3.18), one has

E
[(

R(n)
m

)
r↓1|Kn = j,Nτ,n = nτ

]

= r!
C (n − ∑p

i=1 nτi
, j − p;σ)

r∑
v1=0

r∑
v2=0

(−1)v1+v2

(
j − v1 − v2

r − v1 − v2

)

×
∑

{d1,...,dv1 }∈Cp,v1

n−∑p
i=1 nτi

−(j−p−v2)∑
s=v2

(
n − ∑p

i=1 nτi

s

)
(3.21)

× C (s, v2;σ)C

(
n −

p∑
i=1

nτi
− s, j − p − v2;σ

)

×
m∑

k=0

Vn+m,j+k

Vn,j

C (m, k;σ,−n + ∑v1
i=1 nτdi

+ (j − v1 − v2)σ + s)

σ k
.

We point out that (3.21) is a generalization of both the results stated in Theorem 1. Indeed, by
setting τ = j in (3.21) one obtains (3.5), whereas by setting p = j in (3.21) one obtains (3.4).
With regard to the factorial moments of the random variables in (3.19), one has

E
[(

R
(n)
l,m

)
r↓1|Kn = j,Nτ,n = nτ

]

= r!
C (n − ∑p

i=1 nτi
, j − p;σ)

(
m

l, . . . , l,m − rl

) r∑
v=0

(−σ(1 − σ)(l−1)↑1
)r−v
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×
∑

{d1,...,dv}∈Cp,v

v∏
i=1

(nτdi
− σ)l↑1

(3.22)

×
n−∑p

i=1 nτi
−(j−p−(r−v))∑

s=r−v

(
n − ∑p

i=1 nτi

s

)

× C (s, r − v;σ − l)C

(
n −

p∑
i=1

nτi
− s, j − p − (r − v);σ

)

×
m∑

k=0

Vn+m,j+k

Vn,j

C (m − rl, k;σ,−n + ∑v
i=1 nτdi

+ s + (j − r)σ )

σ k
.

Note that (3.22) includes as special cases both the results stated in Theorem 2. Indeed, by setting
τ = j in (3.22) one obtains (3.13), whereas by setting p = j in (3.22) one obtains (3.12).

4. Numerical illustrations

We can now apply the derived conditional results which are interpretable, from a Bayesian non-
parametric standpoint, as estimators or predictions. The range of problems to be addressed can
be delineated using the following hypothetical setting. A nineteenth century naturalist samples
a number of marine species in an expedition to a remote island, reporting in his notebook the
number of distinct species sampled and their frequencies. We are interested in estimating the
abundance of a particular species observed at that point in time. If all the data in the note-
book are available, the looking-backward estimators of Theorems 1 and 2 which condition on
complete information can be applied to solve this problem. Now suppose that certain criti-
cal pages of the notebook are missing, and the only datum available is the number of distinct
species in a sample of known size. This corresponds to the setting of incomplete informa-
tion.

In a general application, the species could be words in a text, mutations of a gene in a pop-
ulation, or the names of newborns in a year. The availability of complete or incomplete infor-
mation could be determined by constraints of the experimental method used or, in the case of
a meta-analysis, restrictions of access to data. For example, techniques routinely used in biol-
ogy provide indications about presence or absence of a particular species, say a particular bac-
terium or a genetic mutation of interest, but are not suitable for measuring the relative species
abundance. The experimental techniques, in these cases, produce datasets with partial informa-
tion.

We illustrate an application of the derived looking-backward estimators in a simulation study.
Two thousand samples were simulated from the Ewens–Pitman sampling model with θ = 100
and σ = 0.5. The top row of panels in Figure 1 show the conditional expectations of the num-
ber of re-observed species in an additional experiment with sample sizes ranging from 0 to
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Figure 1. Estimators for the number of old and new distinct species observed as a function of the size m

of the additional sample. An initial sample of n = 2000 steps was drawn from the Ewens–Pitman sampling
model with θ = 100 and σ = 0.5. The top panels show estimators for the number of old species under

complete information, R(2000,j,n)
m , and incomplete information, R̃(2000,j)

m . The bottom panels show the

estimator K(2000)
m for the number of new species. The panels on the left show estimators computed under

θ = 100 and allowing σ to vary. The panels on the right show estimators computed under σ = 0.5 and
allowing θ to vary.

4000. These two panels display discrepancies of the estimates under complete versus partial
information and illustrate sensitivity to the choice of the parameters θ and σ . The estimates
were computed across a range of possible prior parameters, including the true data distribu-
tion. Interestingly, the divergence between the two estimators depends more heavily on σ and
is minimized when the parameter match those of the true data distribution. We refer to [13]
for detailed arguments on practical selection of the prior parameters in this model. The sec-
ond row of panels, in contrast, displays estimates for the number of new species in the ad-
ditional sample. In this case the estimates are identical under complete and partial informa-
tion.

Figure 2 considers simulated data that have not been sampled from the Ewens–Pitman sam-
pling model. Here, the sample was generated from a Zeta distribution, whose power law behavior
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Figure 2. Estimators for the number of old distinct species observed as a function of the size m of the addi-
tional sample. An initial sample of n = 2000 steps was drawn from a zeta distribution with scale parameter
1.3. Each panel shows estimators computed with a fixed θ and allowing σ to vary. The black line in each
figure shows the expected number of old distinct species in the sampling model.

is common in applications, and analyses were still performed using the Ewens–Pitman sampling
model. Looking-backward estimators under complete and incomplete information are displayed
for several prior parameters values. These are consistent with the relationship between the choice
of the model parameters and the resulting conditional expectations shown in Figure 1. Figure 2
also displays (black line) the conditional expectations under the true zeta sampling model, as-
sumed unknown to the investigator.

The simulations in Figure 1 were iterated, generating 1000 independent datasets of size n =
2000 from the Ewens–Pitman sampling model with θ = 100 and σ = 0.5. Figure 3 shows the
distribution of the estimator for the number of distinct old species re-observed in an additional
sample of size 500. The blue and red histograms correspond to the estimator under complete and
incomplete information, respectively. As expected, the estimators have the same mean but the
estimator fit to complete information has slightly higher variance.
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Figure 3. Histograms of the estimators for the number of old species under complete information,

R(2000,j,n)
500 , and incomplete information, R̃(2000,j)

500 . To construct the histograms, these estimators were
computed conditional on 1000 independent initial samples of length n = 2000 each, which were drawn
from the Ewens–Pitman sampling model with θ = 100 and σ = 0.5.

Appendix

A.1. Proofs of the results in Section 3.1

Proof of Theorem 1. With regard to the r th factorial moment of R
(n,j,n)
m , this is obtained by a

direct application of Theorem 1 in [8]. Indeed, by means of the Vandermonde’s identity one has

(
R

(n,j,n)
m

)
r↓1 =

r∑
v=0

(
r

v

)
(−1)v(j − v)(r−v)↓1

(
R

(n,j,n)

0,m

)
v↓1. (A.1)

Theorem 1 in [8] then leads to (3.4) by taking the expected value of both sides of (A.1). This
completes the first part of the proof. With regard to r th factorial moment of the random variable
R

(n,j)
m , by combining (3.4) with the distributions displayed in (2.1) and (2.2), we write

E
[(

R
(n,j)
m

)
r↓1

]

= σ j

C (n, j ;σ)

r∑
v=0

(
r

v

)
(−1)v(j − v)(r−v)↓1 (A.2)
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× 1

j !
∑

(n1,...,nj )∈Dn,j

(
n

n1, . . . , nj

) j∏
i=1

(1 − σ)(ni−1)↑1

× v!
∑

{c1,...,cv}∈Cj,v

m∑
k=0

Vn+m,j+k

Vn,j

C (m, k;σ,−n + ∑v
i=1 nci

+ (j − v)σ )

σ k

and prove that it coincides with (3.5). The proof is mainly devoted to solve the sums over the
indexes n1, . . . , nj and c1, . . . , cv . Once these sums are solved, then (3.5) follows by some al-
gebra involving factorial numbers and noncentral generalized factorial coefficients. By means of
equation 2.61 in [2], and using the fact that Cj,v has cardinality

(
j
v

)
, from (A.2) one has

E
[(

R
(n,j)
m

)
r↓1

]

= σ j

C (n, j ;σ)

m∑
k=0

Vn+m,j+k

Vn,j

1

σk

r∑
v=0

(
r

v

)
(−1)v(j − v)(r−v)↓1

×
n−j+1∑
s1=1

n−j+1−(s1−1)∑
s2=1

· · ·
n−j+1−∑v−1

i=1 (si−1)∑
sv=1

(
n

s1, . . . , sv, n − ∑v
i=1 si

)
(A.3)

×
v∏

i=1

(1 − σ)(si−1)↑1

× 1

σ j−v
C

(
m,k;σ,−n +

v∑
i=1

si + (j − v)σ

)
C

(
n −

v∑
i=1

si , j − v;σ
)

.

In order to solve the nested sums over the indexes s1, . . . , sv in (A.3), we first deal with the sum
over the index sv and then we introduce a suitable recursive argument for solving the remaining
sums over the indexes s1, . . . , sv−1. First, recall that for any x ≥ 0 and 0 ≤ y ≤ x, for any a > 0,
b > 0, c > 0 and for any real number d one has the following identity

(
y + c

y

)
C (x, y + c;d, a + b) =

x−c∑
j=y

(
x

j

)
C (j, y;d, a)C (x − j, c;d, b). (A.4)

See Chapter 2 of [2] for details. Then, let us consider the sum over the index sv in (A.3), that is,

n−j+1−∑v−1
i=1 (si−1)∑

sv=1

(
n

s1, . . . , sv, n − ∑v
i=1 si

) v∏
i=1

(1 − σ)(si−1)↑1

× 1

σ j−v
C

(
m,k;σ,−n +

v∑
i=1

si + (j − v)σ

)
C

(
n −

v∑
i=1

si , j − v;σ
)
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= 1

σ j−v

(
n

s1, . . . , sv−1, n − ∑v−1
i=1 si

) v−1∏
i=1

(1 − σ)(si−1)↑1

×
n−j+1−∑v−1

i=1 (si−1)∑
sv=1

(
n − ∑v−1

i=1 si

sv

)
(1 − σ)(sv−1)↑1

× C

(
m,k;σ,−n +

v−1∑
i=1

si + sv + (j − v)σ

)
C

(
n −

v−1∑
i=1

si − sv, j − v;σ
)

.

By a direct application of (A.4) to the coefficients C (m, k;σ,−n + ∑v
i=1 si + (j − v)σ ) and

C (n − ∑v
i=1 si, j − v;σ) we can write the last expression in the following expanded form

1

σ j−v

(
n

s1, . . . , sv−1, n − ∑v−1
i=1 si

) v−1∏
i=1

(1 − σ)(si−1)↑1

×
m∑

t=k

(
m

t

)
C (t, k;σ)

n−∑v−1
i=1 si−1∑

l=j−v

(
n − ∑v−1

i=1 si

l

)
C

(
l, j − v;σ,−(j − v)σ

)

×
n−l−∑v−1

i=1 si∑
sv=1

(
n − l − ∑v−1

i=1 si

sv

)
(1 − σ)(sv−1)↑1

×
(

n −
v−1∑
i=1

si − sv − (j − v)σ

)
(m−t)↑1

(−(j − v)σ
)
(n−l−∑v−1

i=1 si−sv)↑1

(by the Vandermonde’s identity to expand (n − ∑v−1
i=1 si − sv − (j − v)σ )(m−t)↑1)

= 1

σ j−v

(
n

s1, . . . , sv−1, n − ∑v−1
i=1 si

) v−1∏
i=1

(1 − σ)(si−1)↑1

×
m∑

t=k

(
m

t

)
C (t, k;σ)

m−t∑
h=0

(
m − t

h

)(−(j − v)σ
)
h↑1

×
n−∑v−1

i=1 si−1∑
l=j−v

(
n − ∑v−1

i=1 si

l

)
(l)(m−t−h)↑1C

(
l, j − v;σ,−(j − v)σ

)

×
n−l−∑v−1

i=1 si∑
sv=1

(
n − l − ∑v−1

i=1 si

sv

)
(1 − σ)(sv−1)↑1

(−(j − v)σ + h
)
(n−l−∑v−1

i=1 si−sv)↑1
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(by Equation 2.56 in [2] to solve the sum over the index sv)

= 1

σ j−v

(
n

s1, . . . , sv−1, n − ∑v−1
i=1 si

) v−1∏
i=1

(1 − σ)(si−1)↑1

×
m∑

t=k

(
m

t

)
C (t, k;σ)

m−t∑
h=0

(
m − t

h

)(−(j − v)σ
)
h↑1

×
n−∑v−1

i=1 si−1∑
l=j−v

(
n − ∑v−1

i=1 si

l

)
(l)(m−t−h)↑1C

(
l, j − v;σ,−(j − v)σ

)

× 1

σ
C

(
n − l −

v−1∑
i=1

si,1;σ, (j − v)σ − h

)

providing the solution for the innermost nested sum over the index sv . Therefore, according to
the last identity, the r th factorial moment of R

(n,j)
m has the following reduced expression

E
[(

R
(n,j)
m

)
r↓1

]

= σ j

C (n, j ;σ)

m∑
k=0

Vn+m,j+k

Vn,j

1

σk

r∑
v=0

(
r

v

)
(−1)v(j − v)(r−v)↓1

×
n−j+1∑
s1=1

n−j+1−(s1−1)∑
s2=1

· · ·
n−j+1−∑v−2

i=1 (si−1)∑
sv−1=1

(
n

s1, . . . , sv−1, n − ∑v−1
i=1 si

)

×
v−1∏
i=1

(1 − σ)(si−1)↑1 (A.5)

×
m∑

t=k

(
m

t

)
C (t, k;σ)

m−t∑
h=0

(
m − t

h

)(−(j − v)σ
)
h↑1

×
n−∑v−1

i=1 si−1∑
l=j−v

(
n − ∑v−1

i=1 si

l

)
(l)(m−t−h)↑1C

(
l, j − v;σ,−(j − v)σ

)

× 1

σ j−v+1
C

(
n − l −

v−1∑
i=1

si ,1;σ, (j − v)σ − h

)
.

Starting from (A.5) we can now introduce a recursive argument to solve the remaining nested
sums over the indexes s1, . . . , sv−1. In particular, consider the sum over the index sv−1,
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that is,

n−j+1−∑v−2
i=1 (si−1)∑

sv−1=1

(
n

s1, . . . , sv−1, n − ∑v−1
i=1 si

) v−1∏
i=1

(1 − σ)(si−1)↑1

×
m∑

t=k

(
m

t

)
C (t, k;σ)

m−t∑
h=0

(
m − t

h

)(−(j − v)σ
)
h↑1

(A.6)

×
n−∑v−1

i=1 si−1∑
l=j−v

(
n − ∑v−1

i=1 si

l

)
(l)(m−t−h)↑1C

(
l, j − v;σ,−(j − v)σ

)

× 1

σ j−v+1
C

(
n − l −

v−1∑
i=1

si,1;σ, (j − v)σ − h

)

which can be written as

1

σ j−v+1

(
n

s1, . . . , sv−2, n − ∑2
i=1 si

) v−2∏
i=1

(1 − σ)(si−1)↑1

×
m∑

t=k

(
m

t

)
C (t, k;σ)

m−t∑
h=0

(
m − t

h

)(−(j − v)σ
)
h↑1

×
n−∑v−2

i=1 si−1∑
l=j−v+1

(l − 1)(m−t−h)↑1C
(
l − 1, j − v;σ,−(j − v)σ

)

×
n−l−∑v−2

i=1 si∑
sv−1=1

(
n − ∑v−2

i=1 si

sv−1

)(
n − ∑v−2

i=1 si − sv−1

l − 1

)

× (1 − σ)(sv−1−1)↑1C

(
n − l + 1 −

v−2∑
i=1

si − sv−1,1;σ, (j − v)σ − h

)

(by (A.4) to expand C (n − l − ∑v−2
i=1 si − sv−1 + 1,1;σ, (j − v)σ − h))

= 1

σ j−v+1

(
n

s1, . . . , sv−2, n − ∑2
i=1 si

) v−2∏
i=1

(1 − σ)(si−1)↑1

×
m∑

t=k

(
m

t

)
C (t, k;σ)

m−t∑
h=0

(
m − t

h

)(−(j − v)σ
)
h↑1
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×
n−∑v−2

i=1 si−1∑
l=j−v+1

(l − 1)(m−t−h)↑1C
(
l − 1, j − v;σ,−(j − v)σ

)

×
n−l−∑v−2

i=1 si∑
z=1

(
n − ∑v−2

i=1 si

l − 1, z, n − l + 1 − z − ∑v−2
i=1 si

)
C (z,1;σ)

×
n−l+1−z−∑v−2

i=1 si∑
sv−1=1

(
n − l + 1 − z − ∑v−2

i=1 si

sv−1

)

× (1 − σ)(sv−1−1)↑1
(−(j − v)σ + h

)
(n−l+1−z−∑v−2

i=1 si−sv−1)↑1

(by equation 2.56 in [2] to solve the sum over the index sv−1)

= 1

σ j−v+1

(
n

s1, . . . , sv−2, n − ∑2
i=1 si

) v−2∏
i=1

(1 − σ)(si−1)↑1

×
m∑

t=k

(
m

t

)
C (t, k;σ)

m−t∑
h=0

(
m − t

h

)(−(j − v)σ
)
h↑1

×
n−∑v−2

i=1 si−1∑
l=j−v+1

(l − 1)(m−t−h)↑1C
(
l − 1, j − v;σ,−(j − v)σ

)

×
n−l−∑v−2

i=1 si∑
z=1

(
n − ∑v−2

i=1 si

l − 1, z, n − l + 1 − z − ∑v−2
i=1 si

)
C (z,1;σ)

× 1

σ
C

(
n − l + 1 − z −

v−2∑
i=1

si ,1;σ, (j − v)σ − h

)

(by (A.4) to solve the sum over the index z)

=
(

2

1

)(
n

s1, . . . , sv−2, n − ∑2
i=1 si

) v−2∏
i=1

(1 − σ)(si−1)↑1

×
m∑

t=k

(
m

t

)
C (t, k;σ)

m−t∑
h=0

(
m − t

h

)(−(j − v)σ
)
h↑1



24 S. Bacallado, S. Favaro and L. Trippa

×
n−∑v−2

i=1 si∑
l=j−v

(
n − ∑v−2

i=1 si

l

)
(l)(m−t−h)↑1C

(
l, j − v;σ,−(j − v)σ

)

× 1

σ j−v+2
C

(
n − l −

v−2∑
i=1

si ,2;σ, (j − v)σ − h

)
.

Note that the resulting expression has the same structure of the summand in (A.6). This fact
suggests the possibility of repeating the above arguments to each of the remaining nested sums
over the indexes sv−2, . . . , s1, respectively. In particular, after a repeated application of these
arguments we can write the r th factorial moment of R

(n,j)
m as follows

E
[(

R
(n,j)
m

)
r↓1

]

= σ j

C (n, j ;σ)

m∑
k=0

Vn+m,j+k

Vn,j

1

σk
r!

r∑
v=0

(
j − v

r − v

)
(−1)v

(A.7)

×
m∑

t=k

(
m

t

)
C (t, k;σ)

m−t∑
h=0

(
m − t

h

)(−(j − v)σ
)
h↑1

× 1

σ j

n−v∑
l=j−v

(
n

l

)
(l)(m−t−h)↑1C

(
l, j − v;σ,−(j − v)σ

)
C

(
n − l, v;σ, (j − v)σ − h

)
.

Finally, a direct application of (A.4) to expand C (n − l, v;σ, (j − v)σ − h) we can write (A.7)
as

E
[(

R
(n,j)
m

)
r↓1

]

= σ j

C (n, j ;σ)

m∑
k=0

Vn+m,j+k

Vn,j

1

σk
r!

r∑
v=0

(
j − v

r − v

)
(−1)v

1

σ j

n−(j−v)∑
s=v

(
n

s

)
C (s, v;σ)

×
m∑

t=k

(
m

t

)
C (t, k;σ)

m−t∑
h=0

(
m − t

h

)(−(j − v)σ
)
h↑1

×
n−s∑

l=j−v

(
n − s

s

)
(l)(m−t−h)↑1

(−(j − v)σ + h
)
(n−s−l)↑1C

(
l, j − v;σ,−(j − v)σ

)

which leads to (3.5) by means of (A.4) and some standard algebra involving factorial num-
bers and noncentral generalized factorial coefficients. This completes the second part of the
proof. �
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Proof of Proposition 1. By combining the r th factorial moment of R
(n,j,n)
m in Theorem 1 with

Vn,j displayed in (2.3) one has

E
[(

R
(n,j,n)
m

)
r↓1

]

= r!
(θ + n)m↑1

r∑
v=0

(
j − v

r − v

)
(−1)v

×
∑

{c1,...,cv}∈Cj,v

m∑
k=0

(
θ

σ
+ j

)
k↑1

C

(
m,k;σ,−n +

v∑
i=1

nci
+ (j − v)σ

)
(A.8)

= r!
(θ + n)m↑1

r∑
v=0

(
j − v

r − v

)
(−1)v

×
∑

{c1,...,cv}∈Cj,v

(
θ + n −

v∑
i=1

nci
+ σv

)
m↑1

,

where the last identity follows from equation 2.49 in [2]. Accordingly, (3.7) follows from (A.8)
by setting r = 1. Regarding (3.6), an inversion of the generating function for the r th factorial
moment in (A.8) leads to

P
[
R

(n,j,n)
m = x

]
= 1

(θ + n)m↑1

∑
y≥0

1

x!
dx

dtx
(t − 1)x+y

∣∣∣∣
t=0

(A.9)

×
x+y∑
v=0

(
j − v

x + y − v

)
(−1)v

∑
{c1,...,cv}∈Cj,v

(
θ + n −

v∑
i=1

nci
+ σv

)
m↑1

,

where

dx

dtx
(t − 1)x+y

∣∣∣∣
t=0

= (−1)y(x + y)x↓1.

The proof is then completed by means of standard algebra involving factorial numbers and bi-
nomial coefficients. Specifically, since

(
j−v

x+y−v

) = 0 for any y > j − x then (A.9) can be written
as

P
[
R

(n,j,n)
m = x

]

= 1

(θ + n)m↑1

j∑
y=0

(−1)y−x

(
y

y − x

) y∑
v=0

(−1)v
(

j − v

y − v

)
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×
∑

{c1,...,cv}∈Cj,v

(
θ + n −

v∑
i=1

nci
+ σv

)
m↑1

= 1

(θ + n)m↑1
(−1)x

j∑
v=0

j−v∑
y=0

(−1)y
(

j − v

y

)(
y + v

x

)

×
∑

{c1,...,cv}∈Cj,v

(
θ + n −

v∑
i=1

nci
+ σv

)
m↑1

= 1

(θ + n)m↑1
(−1)x

j∑
v=0

(−1)j−v

(
v

x − j + v

)

×
∑

{c1,...,cv}∈Cj,v

(
θ + n −

v∑
i=1

nci
+ σv

)
m↑1

which leads to (3.6) by means of standard algebraic manipulations involving factorial numbers. �

Proof of Proposition 2. A combination of the r th factorial moment of R
(n,j)
m in Theorem 1 with

Vn,j displayed in (2.3) leads to

E
[(

R
(n,j)
m

)
r↓1

]

= r!
C (n, j ;σ)(θ + n)m↑1

r∑
v=0

(
j − v

r − v

)
(−1)v

×
n−(j−v)∑

s=v

(
n

s

)
C (s, v;σ)C (n − s, j − v;σ)

(A.10)

×
m∑

k=0

(
θ

σ
+ j

)
k↑1

C
(
m,k;σ,−n + s + (j − v)σ

)

= r!
C (n, j ;σ)(θ + n)m↑1

r∑
v=0

(
j − v

r − v

)
(−1)v

×
n−(j−v)∑

s=v

(
n

s

)
(θ + n − s + vσ)m↑1C (s, v;σ)C (n − s, j − v;σ),

where the last identity follows from equation 2.49 in [2]. Accordingly, (3.9) follows from (A.10)
by setting r = 1. Regarding (3.8), an inversion of the generating function for the r th factorial



Looking-backward probabilities 27

moment in (A.10) leads to

P
[
R

(n,j)
m = x

]
= 1

C (n, j ;σ)(θ + n)m↑1

∑
y≥0

1

x!
dx

dtx
(t − 1)x+y

∣∣∣∣
t=0

(A.11)

×
x+y∑
v=0

(
j − v

x + y − v

)
(−1)v

×
n−(j−v)∑

s=v

(
n

s

)
(θ + n − s + vσ)m↑1C (s, v;σ)C (n − s, j − v;σ),

where

dx

dtx
(t − 1)x+y

∣∣∣∣
t=0

= (−1)y(x + y)x↓1.

The proof is then completed by means of standard algebra involving factorial numbers and bino-
mial coefficients. Specifically, since

(
j−v

x+y−v

) = 0 for any y > j − x then (A.11) can be written
as

P
[
R

(n,j)
m = x

]
= 1

C (n, j ;σ)(θ + n)m↑1

j∑
y=0

(−1)y−x

(
y

y − x

) y∑
v=0

(
j − v

y − v

)
(−1)v

×
n−(j−v)∑

s=v

(
n

s

)
(θ + n − s + vσ)m↑1C (s, v;σ)C (n − s, j − v;σ)

= 1

C (n, j ;σ)(θ + n)m↑1
(−1)x

j∑
v=0

j−v∑
y=0

(−1)y
(

j − v

y

)(
y + v

x

)

×
n−(j−v)∑

s=v

(
n

s

)
(θ + n − s + vσ)m↑1C (s, v;σ)C (n − s, j − v;σ)

= 1

C (n, j ;σ)(θ + n)m↑1
(−1)x

j∑
v=0

(−1)j−v

(
v

x − j + v

)

×
n−(j−v)∑

s=v

(
n

s

)
(θ + n − s + vσ)m↑1C (s, v;σ)C (n − s, j − v;σ)

which leads to (3.8) by means of standard algebraic manipulations involving factorial num-
bers. �
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A.2. Proofs of the results in Section 3.2

Proof of Theorem 2. With regard to the r th factorial moment of R
(n,j,n)
l,m , this is obtained by

a direct application of Theorem 1 in [8]. This completes the first part of the proof. With regard
the r th factorial moment of R

(n,j)
l,m , this is obtained by combining (3.12) with the distributions

displayed in (2.1) and (2.2). Specifically, we can write the following expression

E
[(

R
(n,j)
l,m

)
r↓1

]
= σ j

C (n, j ;σ)
r!

(
m

l, . . . , l,m − rl

)

× 1

j !
∑

(n1,...,nj )∈Dn,j

(
n

n1, . . . , nj

) j∏
i=1

(1 − σ)(ni−1)↑1 (A.12)

×
∑

{c1,...,cr }∈Cj,r

r∏
i=1

(nci
− σ)l↑1

×
m∑

k=0

Vn+m,j+k

Vn,j

C (m − rl, k;σ,−n + ∑r
i=1 nci

+ (j − r)σ )

σ k

and prove that it coincides with (3.13). As in Theorem 1 the main issue consists in solving the
sums over the collection of indexes n1, . . . , nj and c1, . . . , cr . First, by means of equation 2.61
in [2] and using the fact that Cj,r has cardinality

(
j
r

)
, from (A.12) one has

E
[(

R
(n,j)
l,m

)
r↓1

]

= σ j

C (n, j ;σ)

(
m

l, . . . , l,m − rl

) m∑
k=0

Vn+m,j+k

Vn,j

1

σk

×
n−j+1∑
s1=1

n−j+1−(s1−1)∑
s2=1

· · ·
n−j+1−∑r−1

i=1 (si−1)∑
sr=1

(
n

s1, . . . , sr , n − ∑r
i=1 si

)
(A.13)

×
r∏

i=1

(1 − σ)(si−1)↑1(si − σ)l↑1

× 1

σ j−r
C

(
m − rl, k;σ,−n +

r∑
i=1

si + (j − r)σ

)
C

(
n −

r∑
i=1

si , j − r;σ
)

.

As in the proof of Theorem 1, in order to solve the nested sums over the indexes s1, . . . , sr in
(A.3) we first deal with the sum over the index sr . Recall that for any x ≥ 0 and 0 ≤ y ≤ x, for
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any a > 0, b > 0, c > 0 and for any real number d one has the following identity

(
y + c

y

)
C (x, y + c;d, a + b) =

x−c∑
j=y

(
x

j

)
C (j, y;d, a)C (x − j, c;d, b). (A.14)

See Chapter 2 of [2] for details. Then, let us consider the sum over the index sr in (A.13), that is,

n−j+1−∑r−1
r=1(si−1)∑

sr=1

(
n

s1, . . . , sr , n − ∑r
i=1 si

) r∏
i=1

(1 − σ)(si−1)↑1(si − σ)l↑1

× 1

σ j−r
C

(
m − rl, k;σ,−n +

r∑
i=1

si + (j − r)σ

)
C

(
n −

r∑
i=1

si, j − r;σ
)

=
(

n

s1, . . . , sr−1, n − ∑r−1
i=1 si

) r−1∏
i=1

(1 − σ)(si−1)↑1(si − σ)l↑1

×
n−j+1−∑r−1

i=1 (si−1)∑
sr=1

(
n − ∑r−1

i=1 si

sr

)
(1 − σ)(sr−1)↑1(sr − σ)l↑1

× 1

σ j−r
C

(
m − rl, k;σ,−n +

r−1∑
i=1

si + sr + (j − r)σ

)
C

(
n −

r−1∑
i=1

si + sr , j − r;σ
)

.

By a direct application of (A.14) to the coefficients C (m − rl, k;σ,−n + ∑r
i=1 si + (j − r)σ )

and C (n − ∑r
i=1 si , j − r;σ) we can write the last expression in the following expanded form

1

σ j−r

(
n

s1, . . . , sr−1, n − ∑r−1
i=1 si

) r−1∏
i=1

(1 − σ)(si−1)↑1(si − σ)l↑1

×
m−rl∑
t=k

(
m − rl

t

)
C (t, k;σ)

n−∑r−1
i=1 si−1∑

z=j−r

(
n − ∑r−1

i=1 si

z

)
C

(
z, j − r;σ,−(j − r)σ

)

×
n−z−∑r−1

i=1 si∑
sr=1

(
n − z − ∑r−1

i=1 si

sr

)
(1 − σ)(sr−1)↑1(sr − σ)l↑1

×
(

n −
r−1∑
i=1

si − sr − (j − r)σ

)
(m−rl−t)↑1

(−(j − r)σ
)
(n−z−∑r−1

i=1 si−sr )↑1
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(by the Vandermonde’s identity to expand (n − ∑r−1
i=1 si − sr − (j − r)σ )(m−rl−t)↑1)

= 1

σ j−r

(
n

s1, . . . , sr−1, n − ∑r−1
i=1 si

) r−1∏
i=1

(1 − σ)(si−1)↑1(si − σ)l↑1

×
m−rl∑
t=k

(
m − rl

t

)
C (t, k;σ)

m−rl−t∑
h=0

(
m − rl − t

h

)(−(j − r)σ
)
h↑1

×
n−∑r−1

i=1 si−1∑
z=j−r

(
n − ∑r−1

i=1 si

z

)
(z)(m−rl−t−h)↑1C

(
z, j − r;σ,−(j − r)σ

)

× (1 − σ)(l−1)↑1

n−z−∑r−1
i=1 si∑

sr=1

(
n − z − ∑r−1

i=1 si

sr

)

× (l − σ)sr↑1
(−(j − r)σ + h

)
(n−z−∑r−1

i=1 si−sr )↑1

(by equation 2.60 in [2] to solve the sum over the index sr )

= 1

σ j−r

(
n

s1, . . . , sr−1, n − ∑r−1
i=1 si

) r−1∏
i=1

(1 − σ)(si−1)↑1(si − σ)l↑1

×
m−rl∑
t=k

(
m − rl

t

)
C (t, k;σ)

m−rl−t∑
h=0

(
m − rl − t

h

)(−(j − r)σ
)
h↑1

×
n−∑r−1

i=1 si−1∑
z=j−r

(
n − ∑r−1

i=1 si

z

)
(z)(m−rl−t−h)↑1C

(
z, j − r;σ,−(j − r)σ

)

× (1 − σ)(l−1)↑1(−1)C

(
n − z −

r−1∑
i=1

si;1;σ − l, (j − r)σ − h

)

providing the solution for the innermost nested sum over the index sr . Therefore, according to the
last identity, the r th factorial moment of R

(n,j)
l,m in (A.13) has the following reduced expression

E
[(

R
(n,j)
l,m

)
r↓1

]

= σ j

C (n, j ;σ)

(
m

l, . . . , l,m − rl

) m∑
k=0

Vn+m,j+k

Vn,j

1

σk
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×
n−j+1∑
s1=1

n−j+1−(s1−1)∑
s2=1

· · ·
n−j+1−∑r−2

i=1 (si−1)∑
sr−1=1

(
n

s1, . . . , sr−1, n − ∑r−1
i=1 si

)

×
r−1∏
i=1

(1 − σ)(si−1)↑1(si − σ)l↑1 (A.15)

×
m−rl∑
t=k

(
m − rl

t

)
C (t, k;σ)

m−rl−t∑
h=0

(
m − rl − t

h

)(−(j − r)σ
)
h↑1

×
n−∑r−1

i=1 si−1∑
z=j−r

(
n − ∑r−1

i=1 si

z

)
(z)m−rl−t−hC

(
z, j − r;σ,−(j − r)σ

)

× 1

σ j−r
(1 − σ)(l−1)↑1(−1)C

(
n − z −

r−1∑
i=1

si;1;σ − l, (j − r)σ − h

)
.

Starting from (A.15) we can now repeatedly apply equation 2.60 in [2] to solve the remaining
sums over the indexes s1, . . . , sr−1, respectively, starting from the index sr−1 and proceeding
backward to the index s1. As an example, consider the sum over the index sr−1, that is,

n−j+1−∑r−2
i=1 (si−1)∑

sr−1=1

(
n

s1, . . . , sr−1, n − ∑r−1
i=1 si

) r−s∏
i=1

(1 − σ)(si−1)↑1(si − σ)l↑1

×
m−rl∑
t=k

(
m − rl

t

)
C (t, k;σ)

m−rl−t∑
h=0

(
m − rl − t

h

)(−(j − r)σ
)
h↑1

(A.16)

×
n−∑r−1

i=1 si−1∑
z=j−r

(
n − ∑r−1

i=1 si

z

)
(z)(m−rl−t−h)↑1C

(
z, j − r;σ,−(j − r)σ

)

× 1

σ j−r
(1 − σ)(l−1)↑1(−1)C

(
n − z −

r−1∑
i=1

si;1;σ − l, (j − r)σ − h

)

which can be written as

1

σ j−r

(
n

s1, . . . , sr−2, n − ∑r−2
i=1 si

) r−2∏
i=1

(1 − σ)(si−1)↑1(si − σ)l↑1

×
m−rl∑
t=k

(
m − rl

t

)
C (t, k;σ)

m−rl−t∑
h=0

(
m − rl − t

h

)(−(j − r)σ
)
h↑1
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×
n−∑r−2

i=1 si−1∑
z=j−r+1

(
n − ∑r−2

i=1 si

z − 1

)
(z − 1)(m−rl−t−h)↑1C

(
z − 1, j − r;σ,−(j − r)σ

)

× (
(1 − σ)(l−1)↑1

)2
(−1)

n−z−∑r−2
i=1 si∑

sr−1=1

(
n − z + 1 − ∑r−2

i=1 si

sr−1

)

× (l − σ)sr−1↑1C

(
n − z + 1 −

r−2∑
i=1

si − sr−1,1;σ − l, (j − r)σ − h

)

(by equation 2.60 in [2] to solve the sum over the index sr−1)

=
(

n

s1, . . . , sr−2, n − ∑r−2
i=1 si

) r−2∏
i=1

(1 − σ)(si−1)↑1(si − σ)l↑1

×
m−rl∑
t=k

(
m − rl

t

)
C (t, k;σ)

m−rl−t∑
h=0

(
m − rl − t

h

)(−(j − r)σ
)
h↑1

×
n−∑r−2

i=1 si−1∑
z=j−r+1

(
n − ∑r−2

i=1 si

z − 1

)
(z − 1)(m−rl−t−h)↑1C

(
z − 1, j − r;σ,−(j − r)σ

)

× 1

σ j−r

(
(1 − σ)(l−1)↑1

)22!(−1)2C

(
n − z + 1 −

r−2∑
i=1

si ,2;σ − l, (j − r)σ − h

)
.

The resulting expression has the same structure of the summand in (A.16). This fact suggests the
possibility of repeating exactly the above arguments to each of the remaining nested sum over the
indexes sr−2, . . . , s1, respectively. In particular, after a repeated application of these arguments
we can write the r th factorial moment of R

(n,j)
l,m in (A.15) as

E
[(

R
(n,j)
l,m

)
r↓1

]

= σ j

C (n, j ;σ)

(
m

l, . . . , l,m − rl

)
r! (−(1 − σ)l−1)

r

σ j−r

m∑
k=0

Vn+m,j+k

Vn,j

1

σk

(A.17)

×
m−rl∑
t=k

(
m − rl

t

)
C (t, k;σ)

m−rl−t∑
h=0

(
m − rl − t

h

)(−(j − r)σ
)
h↑1

×
n−r∑

z=j−r

(
n

z

)
(z)(m−rl−t−h)↑1C

(
z, j − r;σ,−(j − r)σ

)
C

(
n − z, r;σ − l, (j − r)σ − h

)
.
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Finally, by applying (A.14) to expand C (n − z, r;σ − l, (j − r)σ − h) in (A.17), we can write
(A.17) as

E
[(

R
(n,j)
l,m

)
r↓1

]

= σ j

C (n, j ;σ)

(
m

l, . . . , l,m − rl

)
r! (−(1 − σ)l−1)

r

σ j−r

m∑
k=0

Vn+m,j+k

Vn,j

1

σk

×
n−(j−r)∑

s=r

(
n

s

)
C (s, r;σ − l)

m−rl∑
t=k

(
m − rl

t

)

× C (t, k;σ)

m−rl−t∑
h=0

(
m − rl − t

h

)(−(j − r)σ
)
h↑1

×
n−s∑

z=j−r

(
n − s

z

)
(z)(m−rl−t−h)↑1

(−(j − r)σ + h
)
(n−s−z)↑1

× C
(
z, j − r;σ,−(j − r)σ

)
which leads to (3.13) by means on (A.14) and some standard algebra involving factorial numbers
and noncentral generalized factorial coefficients. This completes the second part of the proof. �

Proof of Proposition 3. By combining the r th factorial moment of R
(n,j,n)
l,m in Theorem 2 with

Vn,j displayed in (2.3) one has

E
[(

R
(n,j,n)
l,m

)
r↓1

]
= r!

(θ + n)m↑1

(
m

l, . . . , l,m − rl

)

×
∑

{c1,...,cr }∈Cj,r

r∏
i=1

(nci
− σ)l↑1

(A.18)

×
m∑

k=0

(
θ

σ
+ j

)
k↑1

C

(
m − rl, k;σ,−n +

r∑
i=1

nci
+ (j − r)σ

)

= r!
(θ + n)m↑1

(
m

l, . . . , l,m − rl

)

×
∑

{c1,...,cr }∈Cj,r

r∏
i=1

(nci
− σ)l↑1

(
θ + n −

r∑
i=1

nci
+ σr

)
(m−rl)↑1

,
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where the last identity follows equation 2.49 in [2]. Accordingly, (3.15) follows from (A.18) by
setting r = 1. With regard to (3.15), an inversion of the generating function for the r th factorial
moment in (A.18) leads to

P
[
R

(n,j,n)
l,m = x

]
= 1

(θ + n)m↑1

∑
y≥0

1

x!
dx

dtx
(t − 1)x+y

∣∣∣∣
t=0

(
m

l, . . . , l,m − (x + y)l

)
(A.19)

×
∑

{c1,...,cx+y }∈Cj,x+y

x+y∏
i=1

(nci
− σ)l↑1

(
θ + n −

x+y∑
i=1

nci
+ σ(x + y)

)
(m−(x+y)l)↑1

,

where

dx

dtx
(t − 1)x+y

∣∣∣∣
t=0

= (−1)y(x + y)x↓1.

Then (3.14) follows from (A.19) by means of standard algebra involving factorial numbers and
binomial coefficients. �

Proof of Proposition 4. A combination of the r th factorial moment of R
(n,j)
l,m in Theorem 2 with

Vn,j displayed in (2.3) leads to

E
[(

R
(n,j)
l,m

)
r↓1

]
= 1

C (n, j ;σ)(θ + n)m↑1

(
m

l, . . . , l,m − rl

)
r!(−σ(1 − σ)(l−1)↑1

)r

×
n−(j−r)∑

s=r

(
n

s

)
C (s, r;σ − l)C (n − s, j − r;σ)

×
m∑

k=0

(
θ

σ
+ j

)
k↑1

C
(
m − rl, k;σ,−n + s + (j − r)σ

)
(A.20)

= 1

C (n, j ;σ)(θ + n)m↑1

(
m

l, . . . , l,m − rl

)
r!(−σ(1 − σ)(l−1)↑1

)r

×
n−(j−r)∑

s=r

(
n

s

)
(θ + n − s + σr)(m−rl)↑1

C (s, r;σ − l)C (n − s, j − r;σ),

where the last identity follows from equation 2.49 in [2]. Accordingly, (3.17) follows from (A.20)
by setting r = 1. With regard to (3.16), an inversion of the generating function for the r th factorial
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moment in (A.20) leads to

P
[
R

(n,j)
l,m = x

]
= 1

C (n, j ;σ)(θ + n)m↑1

∑
y≥0

1

x!
dr

dtx
(t − 1)x+y

∣∣∣∣
t=0

×
(

m

l, . . . , l,m − (x + y)l

)(−σ(1 − σ)(l−1)↑1
)(x+y) (A.21)

×
n−(j−x−y)∑

s=x+y

(
n

s

)(
θ + n − s + σ(x + y)

)
(m−(x+y)l)↑1

× C (s, x + y;σ − l)C
(
n − s, j − (x + y);σ )

,

where

dx

dtx
(t − 1)x+y

∣∣∣∣
t=0

= (−1)y(x + y)x↓1.

Then (3.16) follows from (A.21) by means of standard algebra involving factorial numbers and
binomial coefficients. �

A.3. Proofs of the results in Section 3.3

Proof of Lemma 3.1. By suitably marginalizing the EPPF in (2.1) one obtains the distribution
of (Kn,Nτ ), that is the main ingredient for determining (3.20). Specifically, one has

P[Kn = j,Nτ,n = nτ ]

= Vn,j

(j − p)!
j !

(
n

nτ1, . . . , nτp , n − ∑p

i=1 nτi

) p∏
i=1

(1 − σ)(nτi
−1)↑1

× 1

(j − p)!
∑

(nν1 ,...,nνj−p
)∈D

n−∑p
i=1 nτi

,j−p

(
n − ∑p

i=1 nτi

nν1, . . . , nνj−p

)

(A.22)

×
(j−p)∏
i=1

(1 − σ)(nνi
−1)↑1

= Vn,j

(j − p)!
j !

(
n

nτ1, . . . , nτp , n − ∑p

i=1 nτi

) p∏
i=1

(1 − σ)(nτi
−1)↑1

× C (n − ∑p

i=1 nτi
, j − p;σ)

σ j−p
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where the last identity is obtained by a direct application of equation 2.61 in [2]. The proof is
completed by taking the ratio between the distributions displayed in (2.1) and (A.22). �
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