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Abstract 

Objective. To analyze the frequency and clinical characteristics of ALS patients with intermediate-

length (CAG) expansion (encoding 27-33 glutamines, polyQ) in the ATXN2 gene, in a population-

based cohort of Italian ALS patients (discovery cohort), and to replicate the findings in an 

independent cohort of consecutive patients from an ALS tertiary center (validation cohort). 

Methods. PolyQ repeats were assessed in 672 ALS patients incident in Piemonte and Valle d’Aosta 

regions, Italy, in the 2007-2012 period (discovery cohort); controls were 509 neurologically healthy 

age- and gender-matched subjects resident in the study area. The validation cohort included 661 

ALS patients consecutively seen between 2001 and 2013 in the ALS Clinic Center of the Catholic 

University in Rome, Italy. 

Results. In the discovery cohort the frequency of  ≥31 polyQ ATNX2 repeats was significantly more 

common in ALS cases (19 patients vs. 1 control,  p=0.0001; odds ratio 14.8, 95% confidence 

interval, 1.9-110.8). Patients with an increased number of polyQ repeats had a shorter survival than 

those with <31 repeats (median survival, polyQ ≥31, 1.8 years, interquartile range [IQR] 1.3-2.2; 

polyQ <31, 2.7 years, IQR 1.6-5.1) (p=0.001). An increased number of polyQ repeats remained 

independently significant also at multivariable analysis. In the validation cohort, patients with ≥31 

polyQ repeats had a shorter survival than those with <31 repeats (median survival, polyQ ≥31, 2.0 

years, IQR 1.5-3.4; polyQ <31, 3.2 years, IQR 2.0-6.4; p=0.007).  

Conclusions. ATXN2 polyQ intermediate-length repeat is a modifier of ALS survival. Disease-

modifying therapies targeted to ATXN2 represent a promising therapeutic approach for ALS. 

 

Keywords: Amyotrophic Lateral Sclerosis; Ataxin2 gene; prognosis; phenotype 
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Amyotrophic lateral sclerosis (ALS) is characterized by a progressive degeneration of upper and 

lower motor neurons, leading to loss of motor function and, eventually, to complete palsy of limb 

muscles, loss of speech and swallowing, and respiratory failure, usually within 2 to 3 years after 

onset. Several prognostic factors are known in ALS, in particular age at onset, bulbar onset, 

diagnostic delay, and cognitive impairment.   

With the exception of riluzole, which slightly increases survival, no disease-modifying drug is 

available. The cause of ALS is still unknown, but at least 20 genes have been related to the disease; 

the most common in Caucasian populations are C9ORF72, SOD1, TARDBP and FUS, which are 

present in about 10% of patients. In 2010, an intermediate-length (CAG) expansion (encoding 27-

33 glutamines, polyQ) in the ataxin 2 (ATXN2) gene, already known as the cause of spinocerebellar 

ataxia type 2 (SCA2),1,2,3 was reported to be associated to an increased risk of developing ALS.4 

The association was subsequently confirmed in clinically-based series,5-16 but the clinical 

characteristics of patients with this expansion still remain to be fully investigated.  

The aim of this paper was to analyze the frequency of intermediate polyQ expansion in the ATXN2 

gene in a population-based cohort of ALS patients, with an in-depth assessment of their clinical and 

prognostic characteristics. The study findings would then be replicated in an independent 

replication cohort of consecutive patients from an ALS tertiary center.  

 

Methods 

Discovery cohort. The study population included all ALS cases diagnosed in Piemonte and Valle 

d’Aosta, Italy, during the 6-year period January 1 2007, to December 30 2012. ALS cases were 

recruited through the PARALS, a prospective epidemiologic register involving all the neurologic 

departments of the two regions of northern Italy. Epidemiologic data regarding the 1995–2004 

period have been published elsewhere.17 Both familial and apparently sporadic ALS patients were 
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included in the present study. The diagnosis of ALS was based on El Escorial revised criteria.18 

Patients with definite, probable, and probable laboratory-supported ALS were included in the 

register. Controls were (1) 395 regionally matched unrelated Italian subjects, mainly blood donors, 

already reported in a previous paper;6 (2) 114 matched subjects identified through the patients’ 

general practitioners (population-based controls). The two series of controls were similar for 

demographic characteristics and had a substantially similar frequency of ATXN2 intermediate 

polyQ expansions (0.4% and 0.3%, respectively).  

Validation cohort. This cohort included 661 patients consecutively admitted between January 2001 

and December 2013 to the ALS Clinic Center of the Catholic University in Rome, Italy. All patients 

were resident in the central or southern regions of Italy. Diagnostic criteria were identical to those 

of the discovery cohort. Data on 528 of the patients were already reported in a study on genetics of 

ALS patients.19  

Genetic analysis. Genomic DNA was isolated from peripheral blood lymphocytes using a standard 

protocol. The ATXN-2 CAG repeat in exon 1 (Ref Seq NM_002973.3) was amplified using a 

fluorescent primer and sized by capillary electrophoresis on an ABI 3130 genetic analyzer (Applied 

Biosystem, Foster City, CA, USA).20 As reported in recent guidelines for molecular genetic testing 

of SCA,21 capillary electrophoresis is the preferred method . This method allows to size alleles 

accurately and to resolve alleles one triplet apart in size. As a quality control, 20 samples have been 

genotyped in the different laboratories that performed the molecular genetic testing for the present 

study. The comparison of the results showed a consistent allele assignment for all the samples.  

Receiver operating characteristics (ROC) analysis showed that a cutoff ≥31 polyQ repeats in 

ATXN2 had the greatest sensitivity and specificity for discriminating ALS patients versus controls. 

However, also data related to a repeat size 27-30 were assessed.  
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All ALS cases of both cohorts were also tested for SOD1 (all exons), TARDBP (exon 6), FUS 

(exons 14 and 15), ANG and C9ORF72 using the methodology described elsewhere.19,22 Familial 

ALS patients were also tested for OPTN (exons 5, 9, 12 and 14). 

Statistical methods. Two-tailed Fisher’s exact test was used to evaluate the genetic association 

between ATXN2 polyQ repeat size and ALS. Survival was calculated from onset to death, 

tracheostomy or censoring date (December 31, 2013), using the Kaplan-Meier method, and 

compared with the log-rank test. No patients were lost to follow-up. Multivariable analysis was 

performed with the Cox proportional hazards model (stepwise backward) with a retention criterion 

of p<0.1. Significance level was set at p<0.05. Data were processed using SPSS statistical package 

version 21 (IBM Corporation, Chicago, IL, USA).  

Ethical approval. The study was approved by the ethical committees of the participating centers. 

All patients and controls signed a written informed consent. Databases were treated with due 

respect for Italian privacy regulations. 

 

Results 

Discovery cohort 

Out of a total of 869 ALS cases incident in the period January 1st 2007 to December 31st 2012, 672 

(77.3%) patients were included in the study and tested for DNA. Data on 28 of them had already 

been reported in a previous paper.6 Of the 197 patients not included in the study, 59 did not give 

their consent for genetic analysis, 60 died before blood sampling and 78 were found only through 

secondary sources and were therefore not tested for DNA. The patients not included in the genetic 

analysis had an older mean age at onset (67.9 [SD 10.7] vs. 65.6 [SD 10.8] years, p<0.02), but their 

site of onset and clinical phenotype were similar (data not shown). A total of 71 (10.6%) patients 
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carried a mutation of one of the ALS-related genes (C9ORF72=43; SOD1=15; TARDBP=10; FUS 

=2; OPTN=1).  

ATXN2 polyQ repeat size at risk. The size of the ATXN2 repeats in ALS patients compared to the 

control group is reported in Figure 1. The more common alleles (22 and 23) were identified in 

98.9% of controls’ chromosomes and 95.9% of cases’ chromosomes. ATXN2 repeats ≤30 were 

similarly distributed between ALS cases and controls, while those ≥31 were significantly more 

common in cases (19 cases and 1 control,  p=0.0001); the odds ratio for ALS of having ≥31 repeats 

was 14.8 (95% confidence interval, 1.9-110.8) (Figure 1, insert). The second allele in patients with 

≥27 repeats was 22 in all but one case, who had 29/24.  

Clinical characteristics of patients according to ATXN2 polyQ repeat size. Demographic and 

clinical characteristics of patients with ATXN2 polyQ repeats ≥31 vs. patients with polyQ repeats  

<31 are presented in Table 1. No significant differences were found in gender, age at onset, and 

presence of co-morbid FTD. Conversely, bulbar onset was present in only one case with ATXN2 

polyQ repeats ≥31 (~5%) versus about one third of patients with polyQ repeats <31 (p=0.0001). No 

patients with ATXN2 polyQ repeats ≥31 had a positive family history for ALS or FTD. Of the 71 

patients carrying a known genetic mutation, 69 were homozygous (22-22 repeats), one p.D90N 

SOD1 patient had 22-24 repeats and one C9ORF72 patient had 22-27 repeats. Clinical 

characteristics of ALS patients with ≥31 polyQ repeats of the ATXN2 gene are detailed in Table e-

1. The single patient carrying 39 polyQ repeats had features of both ALS and SCA. She developed 

gait ataxia at the age of 55 and spinal ALS 12 years later; her mother was also affected by SCA. She 

underwent percutaneous endoscopic gastrostomy 12 months after the onset of ALS and died of 

respiratory failure at age 69.  

Patients with ≥31 polyQ repeats had a shorter median survival than those with <31 repeats (1.8 

years, interquartile range [IQR] 1.3-2.2 vs. 2.7 years, IQR 1.6-5.1; p=0.001) (Figure 2A). An 

increased number of polyQ repeats remained independently significant also at multivariable 
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analysis (Table 2). A second analysis was performed assessing separately the survival of patients 

with 27-30 polyQ repeats: this group had an intermediate survival time between those with ≥31 and 

those with <27 polyQ repeats, indicating a possible dose-response relationship (Figure 2C).  

Replication cohort 

Clinical and demographic characteristics of the 661 ALS patients included in this cohort are 

reported in Table 1. All were tested for ALS genes and 80 (12.1%) carried a mutation of one of the 

ALS-related genes (C9ORF72=34; SOD1=20; TARDBP=13; ANG=5, FUS=4; OPTN=3; VCP=1). 

Most of these cases were reported in a previous paper.19 The more common alleles (22 and 23) were 

identified in 95.8% of chromosomes (Figure e-1). Sixteen cases had ≥31ATXN2 polyQ repeats. The 

second allele in patients with ≥27 repeats was 22 in all cases.  

Of the 80 patients carrying a known genetic mutation, 63 were homozygous (22-22 repeats); one 

C9ORF72 patient and one p.I380V TARDBP patient had 19-22 repeats; two C9ORF72 patients had 

21-22 repeats; 3 C9ORF72 patients, one p.R521C FUS patient, one p.D11Y SOD1 patient and one 

p.S134N SOD1 patient had 22-23 repeats; one heterozygous D90A SOD1 patient had 22-26 repeats; 

one p.N87K ANG patient had 22-27 repeats; one p.G93D SOD1 patient had 22-28 repeats; two 

C9ORF72 patients had 22-29 repeats; and one p.N390S TARDBP patient had 22-30 repeats.  

Out of the 16 patients with ≥31ATXN2 polyQ repeats, 2 had a bulbar onset and 2 had a positive 

family history for ALS or FTD (Table e-1). Cognitive impairment was not systematically assessed 

in patients of this series. Patients with ≥31polyQ repeats had a shorter median survival than those 

with <31 repeats (2.0 years, IQR 1.5-3.4 vs. 3.2 years, IQR 2.0-6.4; p=0.007) (Figure 2B). 

Multivariable analysis confirmed that ≥31polyQ repeats was an independent  prognostic factor (data 

not shown). Also in this cohort, patients with 27-30 polyQ repeats had an intermediate survival time 

between those with ≥31 and those with <27 polyQ repeats, indicating a possible dose-response 

relationship (Figure 2D).  
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Discussion 

In this population-based study, which included ~80% of ALS patients incident in Piemonte/Valle 

d’Aosta over a 6-year period, we found that ≥31 polyQ repeats in the ATXN2 gene represents a risk 

factor for ALS, with an odds ratio of 14.8. All but one patient with intermediate-length polyQ 

repeats had a spinal onset and all the patients who were positive for mutations of ALS-related genes 

had normal size polyQ repeats. To the best of our knowledge, the effect of an increased number of 

polyQ repeats in ALS outcome has never been studied. In our series, the presence of ≥31 polyQ 

repeats reduced the median survival by ~1 year, patients with 27-31 repeats showing an 

intermediate survival time between that of those with ≥31 and those with <27 polyQ repeats, and 

this effect persisted after adjusting for other known prognostic factors at multivariable analysis. 

These survival data were confirmed in a validation cohort of 661 consecutive patients from a 

referral ALS center in central Italy. 

The correlation between ATXN2 intermediate polyQ repeats and a shorter survival, observed in both 

our series, is further supported by finding that almost all patients in both series have a spinal onset. 

In fact, spinal onset is considered a positive prognostic factor in ALS,23 and therefore these patients 

were expected to have a better prognosis.    

Besides the correlation with spinal onset, ATXN2 intermediate polyQ repeats in both our series did 

not influence the age at onset of ALS, differently from the original observation of a lower age at 

onset observed in the first report of ATXN2 in ALS,4 but  in keeping with all subsequent papers5-16 

In the last few years several papers have highlighted the phenotypic variability of ALS, 

characterized by a wide range of age at onset, different clinical phenotypes, variable involvement of 

upper and lower motor neuron signs, possible impairment of cognitive function, and an extremely 

variable length of survival.22-24 An increased understanding of the genetic background of ALS has 
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partly clarified its pathogenetic mechanisms, but has provided few clues about its clinical 

heterogeneity, with the possible exception of the frequent cognitive involvement in patients with 

C9ORF72 mutations and the young age at onset and severe course of most patients carrying FUS 

mutations. The search for genes modulating the clinical expression of ALS has produced few, albeit 

interesting, findings. For example, polymorphisms of Unc-13 homolog A (UNC13A)25,26 and Non-

Imprinted in Prader–Willi/Angelman syndrome 1 (NI-PA1)27 have been associated to a shorter 

survival, while a locus on 1p34.128 has been associated to a younger age at onset. In our population-

based series we found that intermediate-length polyQ repeats in the ATXN2 gene are a strong 

modifier of ALS outcome in an Italian subgroup, reducing survival by one year, without modifying 

age at onset. This finding was replicated in an independent validation cohort from an ALS tertiary 

center. In addition, ALS patients carrying ≥31 polyQ repeats had more frequently a spinal onset. A 

meta-analysis of published case series (Table 3) revealed that 70 (88.6%) cases had a spinal onset, 

significantly more than the expected 65%.29 

The mechanism underlying the increased risk due to an intermediate-length polyQ repeat in the 

ATXN2 gene in ALS is still unclear. It was initially hypothesized that ATXN2 intermediate-length 

polyQ repeats interact with TDP-43 augmenting its toxicity4 or increase the translocation of TDP-

43 and mutant FUS to the cytoplasm enhancing their pathogenicity.30,31 More recent studies found 

that ATXN2 intermediate-length polyQ repeats may interact with the NADPH oxidase enzyme, 

increasing ROS production, and may also interfere with RNA metabolism, sequestering essential 

RNA-binding proteins.32   

≥31 polyQ repeats in the ATNX2 gene have also been identified in patients with FTD (4/641, 

0.6%),33 but in no patients in a small series of subjects with FTD-ALS.15 In our discovery cohort, 

behavioral FTD was found in two patients (10.5%) with ≥31 polyQ repeats, compared to 76 patients 

(12.4%) with <31 repeats (p=n.s.), confirming that cognitive impairment can be present also in 

association to intermediate-length polyQ repeat expansions in ALS, but the frequency is similar to 
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that found in general in ALS.24,34 Due to incomplete cognitive testing in part of our patients, we 

could not include in the multivariable analysis intermediate forms of cognitive impairment, in 

particular isolate dysexecutive function.24,34 

A meta-analysis of the published literature (Table 3) provides some clues regarding a possible 

different frequency of polyQ expansions, in particular a north-to-south increasing trend, ranging 

from <1% in patients of northern European ancestry7,8,12,15  to ~2% in French/French Canadian5 and 

~2.5% in Italian patients.6,10,11,13 In Turkish14 and in Chinese,9,16 the frequency of patients with ≥31 

polyQ repeats is ~1%. These ethnic differences in polyQ repeats parallel the different frequencies of 

other ALS genes, such as the north-to-south decreasing gradient of C9ORF72 in Europe35 or the 

rarity of SOD1 mutations in Irish36 and Dutch37 compared to Scandinavian patients.38 Interestingly, 

a north-to-south increasing gradient of the frequency of full-length polyQ repeats of the ATXN2 

gene has been also described in SCA2.39  

A recent multicenter paper performed on an US population has assessed polyQ intermediate repeats 

of ATXN2 in a series of 331 patients carrying a C9ORF72 expansion compared to 376 control 

subjects and found the ATXN2 expansion was more significantly frequent in C9ORF72 mutation 

carriers with ALS or ALS-FTD phenotype but not in those with pure FTD phenotype.40 Combining 

our series, out of 79 ALS patients with C9ORF72 mutation, 3 (3.8%) had ≥ 27 polyQ repeats, not 

significantly different from patients not carrying the C9ORF72 mutation (7.4%) or controls (1.6%). 

This finding reinforce the differential characteristics of ATXN2 in population with different ethnic 

background.    

A strength of our discovery cohort is that it includes ~80% of patients diagnosed in Piemonte/Valle 

d’Aosta in the 2007-2011 period. Moreover, all patients were prospectively followed and none was 

lost. Finally, all patients were assessed for major ALS genes (C9ORF72, SOD1, TARDBP, FUS, 

ANG and OPTN). The validation cohort included a large series of ALS patients consecutively seen 
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in an ALS referral center, and, although not population-based, it is fairly representative of the ALS 

population.   

We found that an ATXN2 intermediate-length polyQ repeat is a significant risk factor for ALS, is 

correlated to a spinal phenotype and associated to shorter survival. Disease-modifying therapies 

targeted to ATXN2 represent a promising therapeutic approach for a devastating disease such as 

ALS; possible strategies may be the use of antisense oligonucleotides, transcription activator-like 

effector nucleases, and clustered regularly interspaced short palindromic repeats.32  
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Table 1. Demographic and clinical characteristics of patients according to ATXN2 repeat size 

Factor 
Discovery cohort Validation cohort 

<31 (n=653) ≥31 (n=19) p <31 (n=645) ≥31 (n=16) p 

Age at onset (years, SD) 65.5 (10.8) 68.8 (8.1) 0.19 60.6 (12.1) 62.2 (10.4) 0.61 

Gender, female (%) 300 (45.9%) 8 (42.1%) 0.92 274 (42.5%) 6 (37.5%) 0.45 

Site of onset, bulbar (%) 217  (33.2%) 1 (5.3%) 0.005 167 (25.9%) 2 (12.5%) 0.18 

Positive family history for 

ALS or FTD 

59 (9.0%) 0 0.17 64 (9.9%) 2 (12.5%) 0.74 
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Table 2. Cox Multivariable analysis 

Factor Level Hazard ratio p 

Age at onset 20-49 1 

0.0001 

 50-59 1.49 (0.90-2.33) 

 60-69 1.90 (1.23-2.90) 

 70-79 2.38 (1.54-3.67) 

 80-99 4.00 (2.39-6.72) 

    

Site of onset Spinal 1 
0.0001 

 Bulbar 1.55 (1.25-1.90) 

    

ATXN2 polyQ repeats <31 1 
0.0001 

 ≥31 2.79 (1.67-4.64) 
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Table 3. Frequency, odds ratio and clinical presentation of patients with ≥31 CAG repeats in the ATXN2 gene 

Reference N. of 

ALS 

cases 

N. of 

expanded 

cases (≥31) 

% of 

expanded 

cases 

N. of 

controls 

N. of 

expanded 

controls  

(≥31) 

Odds ratio 

(95% c.i.) 

N. of 

spinal 

onset 

N. of 

bulbar 

onset 

Ethnic origin 

North European 

[9] 1294 13 1.00 679 0 6.9 (0.9-52.8) NS NS Mostly north European 

[7] 1948 10§ 0.51 2002 2 5.2 (1.1-23.6) 9 1 Dutch/Flemish Belgian 

[12] 559 4 0.72 1369 2 5.0 (0.9-26.9) NS NS German 

[15] 72 1 1.39 810 1 11.4 (0.7-184.1) NS NS Flemish  Belgian 

North European 3873 28 0.72 4860 5 7.1 (2.7-18.3) 9 1  

French/French Canadian 

[6] 556 11  1.98 471 1 9.8 (1.2-73.7) 8+ 0 French/French Canadian  

French 556 11 1.98 471 1 9.8 (1.2-73.7) 8 0  

South European 

[4] # 232 # 7 # 3.02 395 # 0 # 12.3 (1.5-100.5) 6 # 1 # Northern Italian 
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[24] 418 13 3.11 296 1 9.5 (1.2-72.8) 10 3 Southern Italian  

[11] 801 15 1.87 551 1 10.5 (1.4 -79.7) NS NS Northern Italian 

[10] 247 5 2.02 356 2 3.7 (0.7-19.0) NS NS Northern Italian 

Present paper – 

discovery cohort 

672 19 2.83 509 1 14.8 (1.9-110.8) 18 1 Northern Italian 

Present paper – 

validation cohort 

661 16 2.42 - - - 14 2 Central Italian 

South European 3014 73 2.47 1712 5 8.5 (3.9-21.1) 48 7  

Turkish 

[14] 236 4 1.69 420 0 7.2 (0.8-65-2) 2 2** Turkish 

Turkish 236 4 1.69 420 0 7.2 (0.8-65-2) 2 2  

Chinese 

[9] 345 4 1.16 350 0 4.1 (0.5-36.9) NS NS Chinese 

[16] 1067 17 1.59 506 0 8.2 (1.1-61.7) 13* 1 Chinese 

Chinese 1412 21 1.49 856 0 12.9 (1.7-96.5) 13 1  

Overall 
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Overall 9640 147 1.52 14908 20 11.5 (7.2-18.4) 80 11  

+unknown in 1 case; # cases and controls also included in the present paper are excluded from the total count; *unknown in 3 cases; **1 mixed 

(spinal and bulbar); §≥32 repeats; NS: not stated 
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Figure legends 

Figure 1. Discovery cohort. The distribution of ATXN-2 polyQ repeat lengths in ALS and control 

cases. In the insert, data concerning cases and controls with ≥27 repeats are magnified. PolyQ 

lengths ≥31 are significantly more frequent in ALS cases (p=0.0001) (blue, ALS patients; red, 

controls).  

Figure 2. Kaplan-Meier survival estimates from onset to death/tracheostomy. A. Discovery cohort. 

Blue line, <31 polyQ repeats; green line, ≥31 polyQ repeats. p=0.0001. B. Validation cohort. Blue 

line, <31 polyQ repeats; green line, ≥31 polyQ repeats. p=0.009. C. Discovery cohort. Kaplan-

Meier survival estimation from onset to death/tracheostomy. Blue line, <27 polyQ repeats; red line, 

27-30 polyQ repeats green line, ≥31 polyQ repeats. p=0.0001. D. Validation cohort. Kaplan-Meier 

survival estimation from onset to death/tracheostomy. Blue line, <27 polyQ repeats; red line, 27-30 

polyQ repeats green line, ≥31 polyQ repeats. p=0.003. 
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Figure 1 
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Figure 2 

 


