
22 May 2024

AperTO - Archivio Istituzionale Open Access dell'Università di Torino

Original Citation:

Simple Countermeasures to Mitigate the Effect of Pollution Attack in Network Coding Based Peer-
to-Peer Live Streaming

Published version:

DOI:10.1109/TMM.2015.2402516

Terms of use:

Open Access

(Article begins on next page)

Anyone can freely access the full text of works made available as "Open Access". Works made available
under a Creative Commons license can be used according to the terms and conditions of said license. Use
of all other works requires consent of the right holder (author or publisher) if not exempted from copyright
protection by the applicable law.

Availability:

This is the author's manuscript

This version is available http://hdl.handle.net/2318/1507988 since 2016-06-13T11:34:47Z

This	copy	represents	the	peer	reviewed	and	accepted	version	of	paper:	
Attilio	Fiandrotti	;	Rossano	Gaeta	;	Marco	Grangetto	

	

"Simple	Countermeasures	to	Mitigate	the	Effect	of	Pollution	Attack	in	
Network	Coding-Based	Peer-to-Peer	Live	Streaming,"	published	in	
IEEE	Transactions	on	Multimedia		(Volume:17	,		Issue:	4),	2015.	
DOI:	10.1109/TMM.2015.2402516	
	
The	published	version	is	available	at		
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7038216&tag=1	
	
	
IEEE	Copyright.	This	material	is	presented	to	ensure	timely	dissemination	of	
scholarly	and	technical	work.	Copyright	and	all	rights	therein	are	retained	by	
authors	or	by	other	copyright	holders.	All	persons	copying	this	information	are	
expected	to	adhere	to	the	terms	and	constraints	invoked	by	each	author's	
copyright.	In	most	cases,	these	works	may	not	be	reposted	without	the	explicit	
permission	of	the	copyright	holder.	Personal	use	of	this	material	is	permitted.	
However,	permission	to	reprint/republish	this	material	for	advertising	or	
promotional	purposes	or	for	creating	new	collective	works	for	resale	or	
redistribution	to	servers	or	lists,	or	to	reuse	any	copyrighted	component	of	this	
work	in	other	works	must	be	obtained	from	the	IEEE.	

1

Simple Countermeasures to Mitigate the Effect of
Pollution Attack in Network Coding Based

Peer-to-Peer Live Streaming
Attilio Fiandrotti, Member, IEEE, Rossano Gaeta, and Marco Grangetto, Senior Member, IEEE,

Abstract—Network coding based peer-to-peer streaming repre-
sents an effective solution to aggregate user capacities and to in-
crease system throughput in live multimedia streaming. Nonethe-
less, such systems are vulnerable to pollution attacks where a
handful of malicious peers can disrupt the communication by
transmitting just a few bogus packets which are then recombined
and relayed by unaware honest nodes, further spreading the
pollution over the network. Whereas previous research focused
on malicious nodes identification schemes and pollution-resilient
coding, in this paper we show pollution countermeasures which
make a standard network coding scheme resilient to pollution
attacks. Thanks to a simple yet effective analytical model of
a reference node collecting packets by malicious and honest
neighbors, we demonstrate that i) packets received earlier are
less likely to be polluted and ii) short generations increase
the likelihood to recover a clean generation. Therefore, we
propose a recombination scheme where nodes draw packets to
be recombined according to their age in the input queue, paired
with a decoding scheme able to detect the reception of polluted
packets early in the decoding process and short generations.
The effectiveness of our approach is experimentally evaluated
in a real system we developed and deployed on hundreds to
thousands peers. Experimental evidence shows that, thanks to
our simple countermeasures, the effect of a pollution attack is
almost canceled and the video quality experienced by the peers
is comparable to pre-attack levels.

Index Terms—Network coding, peer to peer, pollution attack,
measurements, continuity index

I. INTRODUCTION

PEER-TO-PEER (P2P) video streaming represents a ma-
ture area of research with several successful examples to

date [1], [2]. The combination of P2P and Network Coding
(NC) has recently received a great deal of attention from the
research community as an effective mechanism to aggregate
user capacities and to increase system throughput [3], [4],
[5]. In NC-based architectures, the content is organized in
independently decodable data units (chunks or generations)
and each chunk is further partitioned in k blocks. The network
nodes create linear combinations of suck blocks and produce
coded packets that are transmitted to the network. The packets
can be spread in the overlay network using a push approach,

Copyright (c) 2014 IEEE. Personal use of this material is permitted.
However, permission to use this material for any other purposes must be
obtained from the IEEE by sending a request to pubs-permissions@ieee.org.

A.Fiandrotti is with Sisvel Technology, Via Castagnole 59, 10060, None
Torinese (TO), Italy (e-mail: attilio.fiandrotti@sisveltech.com).

R.Gaeta and M.Grangetto are with the Department of Computer Science,
Università di Torino, 10149 Torino, Italy (e-mail: rossano.gaeta@unito.it;
marco.grangetto@unito.it).

where at each transmission opportunity a new coded packet
is generated by a peer and forwarded to a neighbor. On the
receiver side, a chunk can be decoded as soon as enough coded
packets have been collected by solving the system of linear
equations corresponding to the collected packets.

Nonetheless, network coding systems are affected by a
major Achille’s heel: they are vulnerable to attacks carried
out by nodes that spread bogus data over the network with
teh goal of disrupting the communication. These actions are
commonly known as pollution attacks [6], [7] and the attackers
are termed as malicious nodes.

Several issues need to be addressed to design effective so-
lutions to pollution attack and the most part of the approaches
proposed in the literature propose a two-steps approach. First,
some pollution detection mechanism is introduced to allow
honest peers to detect an ongoing pollution attack and, if
possible, the source thereof. Second, a proper reaction (e.g.,
blacklisting) is undertaken after the presence or the source of
the attack has been identified [8], [9], [10], [11], [12]. Both
pollution detection and in particular malicious nodes identifi-
cation can be very complex tasks involving high computational
and/or communication overhead.

Our contribution

The key goal of this work is to exploit the degrees of
freedom available in standard random NC to design a media
streaming architecture that is inherently resilient to pollution
attacks. By comparison, most of the related literature focuses
either on identification and isolation of the malicious nodes or
on designing ad-hoc data verification techniques as discussed
in Section VII. To this end, the contributions of this work are
manifold:

• The main contribution is a novel packet recombination
strategy where the nodes draw the packets to recombine
among those in the input buffers with a probability that
grows with the age of the packet in the buffer. Our re-
combination scheme dramatically reduces the probability
that an honest node transmits a polluted packet, which is
further lowered by dividing the media stream in short gen-
erations. By comparison, in traditional NC every packets
are drawn for recombination with identical probability
and the media stream is subdivided in long generation
to maximize the code efficiency. To put up with the
somewhat lower code efficiency of our recombination
policy, we propose a simple heuristic which restores the

2

code efficiency to almost pre-attack levels and improves
the overall network utilization efficiency.

• Our findings are supported by an analytic model which
enables to understand how pollution propagates in a
random NC push-based P2P system as a function of
parameters such as generation size and time. Namely,
we show that the probability that a node forwards a
polluted packet to downstream peers is not constant,
rather it grows with time, which justifies out age-based
packet drawing policy. Also, we show that the probability
that a node recovers a clean generation depends on the
generation size, i.e. short generations are more likely to
enable successful generation recovery. While our model
relies on some simplifying assumptions, yet it represents
an adequate solution to qualitatively describe the packet
collection activity of a reference peer whose packets
providers can be either malicious or honest.

• Next, we present a probabilistic pollution detection mech-
anism which enables a node to autonomously detect the
presence of polluted packets in its input buffer even
if the node has not yet recovered the generation and
without the need of external keys or hashing functions.
We experimentally show that our pollution detection
scheme enables a node to detect pollution attacks earlier
than a deterministic scheme which relies on an external
verification server, further throttling the propagation of
pollution through the network.

• Finally, the performance of our resilient-by-design pol-
lution avoidance scheme is throughly evaluated on a
real, full-fledged, NC-based P2P video streaming proto-
col [13], [14] by streaming a live video sequence to one
thousand peers. Thanks to our realistic testbed, we are
able to assess not only the reduction in the propagated
pollution entailed by our strategy, but also the effect
thereof on the video quality as perceived by the user
in terms of continuity index, i.e., the fraction of video
frames correctly recovered.

The rest of this paper is organized as follows: in Section
II we overview the basics of multicast video distribution with
binary random network coding (NC); next in Section III we
illustrate a simple pollution attack model and we analytically
study the propagation of the polluted packets through the
network due to the recombinations at the nodes, showing
that packets received early by the nodes are less likely to
be polluted and small generations increase the probability
to recover clean generations at the nodes. In Section IV the
techniques that we propose to combat pollution are presented,
namely an algebraic detection mechanism based on Gaussian
Elimination and a pollution resistant NC coding strategy that
recombines with higher probability those packets that are less
likely to be polluted. In Section V we overview ToroStream,
a push-based protocol for P2P video distribution via NC that
we use for experimenting with our algorithms with thousands
of nodes in the following Section VI. The paper ends with
Section VIII drawing our conclusions and future research.
Finally please note that, to easy the reader, we collect in Tab. I
all the key notation used throughout the paper.

NC parameters
k, k′ Generation size, num. pkts required to decode (k′ ≥ k)
xi i-th data block

Fi = (yi, gi) Coded packets (payload, encoding vector)
c = (c1, . . . cR) Recombination vector

pr Prob. each packet in input buffer is drawn for recombination
mr Minimum rank to start recombining
ϵc, Code overhead, ϵc = (k′ − k)/k

Attack model
N ; Nh,Nm Tot. num. of nodes; Num. of honest, malicious nodes

ppoll Pollution probability of malicious nodes
rp Number of polluted packets received (rp ≤ k′)
ϵp, Pollution overhead, ϵp = rp/k

Analytical mode parameters
n Number of uploaders to reference node
x Number of malicious uploaders to reference node

P2P and experimental settings
Bv Test video bitrate
Ct Generation duration
tb Buffering time
Ns Maximum allowed neighborhood size

Bs, Bp Server, peer nodes bandwidth

TABLE I
KEY NOTATION USED IN THE PAPER.

II. BACKGROUND

In this section we first overview a typical push-based
NC scheme in an unstructured mesh network detailing the
operations at the network nodes. Next, we describe a sample
pollution attack model based on the injection of bogus coded
packets into the network and we exemplify the spreading of
the pollution through the network nodes.

A. Media Streaming with Network Coding

The source node holds a media content which is to be
distributed to a set of cooperating nodes which we assume
are arranged into an unstructured, non-acyclic, mesh network
and operate according to a random-push model. The video
is subdivided in chunks of data called generations that are
independently encoded and decoded at the network nodes so to
achieve finite playback delay. Each generation x is further sub-
divided into k blocks of symbols (x1, ..., xk) (simply “blocks”

in the following) of identical size, where k is the generation

size. Whereas a typical video sequence is subdivided in a
large number of generations, for the sake of simplicity in the
following we assume that the video sequence is composed by
just one generation. Periodically, each node in the network
including the source is given a transmission opportunity:
i.e., it is allowed to transmit one packet to the network.
Initially, only the source owns the original video content and
distributes it to the other nodes transmitting encoded packets
as follows. Let vector gi = (gi,1, ..., gi,k), gi,j ∈ GF (2) be
the encoding vector associated to the i-th coded packet, where
gi,j is selected such that P{gi,j = 1} = 1

2 ∀i. The source
produces a random linear combination on the original blocks
as yi =

∑k
j=1 gi,jxj , where the sum operator represents the

bit-wise XOR operator and yi is the i-th encoded payload. The
node forwards the encoded packet Fi = (yi, gi), that contains
the encoded payload yi along with the corresponding encoding
vector gi, to another node drawn at random in the network.

3

The nodes of the network receive encoded packets, store them
in an input buffer and transmit random linear combinations
thereof as follows at every transmission opportunity. Let us
assume that a node has received r packets (F1, ..., Fr): the
node is allowed to transmits a linear combination of the
payloads of the received packets; the m-th recombined packet
is computed as yrm =

∑r
j=1 cm,jyj , where cm,j ∈ GF (2)

and P{cm,j = 1} = pr = 1
2 , i.e. each received packet

is recombined with equal probability. It turns out that the
corresponding m-th encoding vectors is grm =

∑r
j=1 cm,jgj .

The result of the recombination is novel packet F r
m(yrm, grm)

which is transmitted to the outgoing link of the node. The
recombinations at the nodes increase the likelihood that the
transmitted packet is linearly independent from all the pack-
ets previously collected by the receiver, thus increasing the
network goodput. Each time a node receives a packet that
is linearly independent from the previously received packets
we say that the packet is innovative. We call the number
of linearly independent packets received at any time by a
node for the generation as the rank of the generation at the
node: once the rank is equal to k, we say that the generation
has full rank. At this point, the node solves the system of
linear equations corresponding to the received packets (e.g.,

via Gaussian elimination) and recovers the generation, i.e. the
original video content.
In practical NC applications, a receiver must however typically
collect k′ > k packets because not all received packets are
innovative due to the random combinations and forwarding.
The penalty ϵ = k′−k

k is usually termed as code overhead
and corresponds to the ratio of network bandwidth wasted
transmitting non innovative, hence useless, packets .

B. Pollution Attack Model

Let us assume that the overlay of network nodes is com-
posed by one source node and N peer nodes, where Nh nodes
are of the honest type and Nm are of the malicious type
(Nh +Nm = N , where Nm << Nh) as depicted in Figure 1.
Honest nodes recombine the received packets as described in
the previous section to allow as many other nodes as possible
to recover the generation. Malicious nodes disguise themselves
among the honest ones and attempt to disrupt the video
communication by randomly transmitting bogus coded data
to the other network nodes. At each transmission opportunity,
the malicious node draws a random variable ψ ∈ {0, 1} with
uniform probability so that P{ψ = 1} = ppoll. If ψ = 0, the
malicious node simply behaves as a honest one. Otherwise
if ψ = 1, the node generates a random encoding vector,
a random encoded payload and transmits the packet to the
network node: in this case, we say that the transmitted packet
is polluted. Network nodes store the received packets in an
input buffer without knowing if the packet is polluted or not,
as shown in Figure 1. Whenever a transmission opportunity
arises for a honest node, if any of the rp polluted packets in its
input buffer is drawn for recombination, then the transmitted
packet is polluted too and bogus data is propagated to the
other network nodes.
In a scenario involving pollution attacks, we define as pollution

Fig. 1. Toy network with a source and N=5 nodes where Nh=4 are honest
and Nm=1 (N3) is malicious. The generation is composed of k=4 blocks and
the nodes input buffers are represented at various decoding stages (polluted
packets are represented in dark gray).

overhead the ratio ϵp = rp
k

of network bandwidth wasted
transmitting packets that are polluted, hence useless. Along
with the previously defined code overhead, the pollution
overhead will be used in this work to evaluate resources
exploitation efficiency. In the example of Figure 1, node N3

is malicious and has transmitted one polluted packet to N4,
which will not be able to correctly recover the generation.
Then, N4 draws the polluted packet for recombination and
transmits one packet to N1: at this point also the input buffer
of N1 is polluted and the node will not be able to correctly
recover the generation.

III. POLLUTION EFFECTS MODEL

In this section, we develop a simple analytical model
to describe the behavior of a sample reference node that
collects packets from a set of uploaders and combines them
to forward a new packet to downstream nodes. We show
that the probability to correctly recover a generation increases
with small generations, whereas the probability of forwarding
a recombined polluted packet to downstream peers grows
with time: these key observations are the basis to devise
our proposed pollution-resilient packet recombination scheme
proposed in Sect. IV-B. Please note that we do not claim our
model yields accurate predictions on the effect of pollution
attacks on a real system. Indeed, the model is developed under
several simplifying assumptions such as i) it describes the
behavior of a randomly chosen (reference) peer in the overlay
network; ii) assumes that the overlay topology is an unstruc-
tured mesh where nodes all lay at the same hierarchical level
iii) packets transmission happen at discrete time slots termed
as a rounds; iv) during a round each uploader of the reference
peer delivers a coded block. Nevertheless, the model includes
all significant issues that determine the effect of polluting
packets (and the effect of recombining polluted packets) before
transmitting them to downstream peers as qualitatively (and,
in part, quantitatively) experimentally verified later on.

A. Modeling the Pollution Effects

To develop our model we consider a sample reference node
that receives encoded packets from n uploaders nodes and
forwards linear combinations thereof to other downstream

nodes as illustrated in Figure 2 (the reference node is depicted
in gray). We assume that x out of n uploaders are malicious
and purposely transmit bogus data as described in Sect. II-B.
To simplify the model derivation, we assume that time is

4

Fig. 2. Modeled scenario, where a reference node (middle of the picture,
gray) receives packets from a set of uploaders, and transmits recombinations
thereof to downstream nodes (malicious nodes are depicted in black).

discretized in rounds; during one round each of the n uploaders
delivers one packet to the reference node and the reference
node transmits one packet to one of the downstream nodes.
For the sake of simplicity, we assume that all packets received
by a node are innovative and the number of rounds required
to recover the generation is equal to ⌈ k

n
⌉+ 1. The number of

packets received by the reference node during the i-th round
(1 ≤ i ≤ ⌈ k

n
⌉+ 1) is denoted as R(i): under our assumptions

R(i) increases by n at each round, hence R(i) = i · n.

We denote as Pp(i, x, b) the probability that b out of the n
packets received at the i-th round are polluted when x out of n
uploaders are malicious. It is easy to show that this probability
follows a binomial distribution, i.e.,

Pp(i, x, b) =

(

ix

b

)

pbpoll(1− ppoll)
ix−b.

Please note that since in one round each uploader delivers
exactly one packet, the maximum number of polluted packets
that our reference node can collect is equal to ix.

During the i-th round, the reference node draws at random
a subset of the R(i) packets contained in its input buffer
and combines them to generate a new packet to forward to
downstream nodes. We compute the probability that the packet
recombined by the reference node during the i-th round is
polluted as

Prp(i, x) = 1−
ix
∑

b=0

Pp(i, x, b)(1− pr)
b. (1)

that is, one minus the probability the recombined packet is not
polluted (this probability is computed as the probability that
none of the polluted packets received by the reference node
has been selected for recombination).

We also assume the overlay network does not change with
time and it is randomly built. Under these assumptions, we
describe the probability that x out of n uploaders are malicious
as an hyper-geometric distribution, i.e.,

Pmn(N,Nm, n, x) =

(

Nm

x

)(

N−Nm

n−x

)

(

N
n

) , (2)

We can thus compute the probability that the packet recom-
bined by the reference node during the i-th round is polluted as
a weighted sum of(1), where the weights are the probabilities

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0 5 10 15 20 25

P g
p

Time

n=5
n=10
n=15

Fig. 3. Probability that the packet transmitted by the reference node during
the i-th round is polluted (Pgp) as a function of time (k=100).

that x out of n uploaders are malicious, i.e.,

Pgp(i, N,Nm, n) =
n
∑

x=1

Pmn(N,Nm, n, x)Prp(i, x).

Therefore, the probability that the reference node does not
draw for recombination one of the polluted packets in its input
buffer during any of the ⌈ k

n
⌉ + 1 rounds required to recover

the generation is equal to

Pfclean(k,N,Nm, n) =

⌈ k
n
⌉+1
∏

i=1

1− Pgp(i, N,Nm, n). (3)

Finally, the probability that the reference node is able to
recover a generation whose payload is not polluted is equal to

Prclean(k,N,Nm, n) =
n
∑

x=0

Pmn(N,Nm, n, x)Pp(⌈
k

n
⌉+1, x, 0).

(4)
The first observation we make is based on Figure 3, which

shows the probability that the packet recombined by the
reference node during the i-th round is polluted (Pgp) as a
function of the time (i.e., the round index i) for a simple
scenario like the one depicted in Figure 2 with N = 1000
nodes and Nm = 50 malicious nodes, where each packet
in the input buffer is recombined with probability pr = 0.5
and the probability that a malicious nodes transmits a polluted
packet is equal to ppoll = 0.1. We observe that the reference
node forwards a polluted packet to its downstream peers with a
probability that increases with time: that is, packets forwarded
later to downstream nodes are more likely to be polluted.
Therefore, downstream peers should draw for recombination
each packet received by the reference node with a probability
that is directly proportional with the age of the packet in
the buffer (i.e., packets received earlier should be drawn for
recombination with higher probability) rather than drawing
each packet with identical probability pr.

The second observation is that Equations (3) and (4) both
depend on one system parameter that can be controlled: the
generation size k. Figure 4 shows that small generations
increase the probability to recover a clean generation and
the probability of forwarding clean packets to downstream
nodes. Indeed, small generations reduce the overall number
of rounds required to recover a generation (please remind

5

 0

 0.2

 0.4

 0.6

 0.8

 1

 25 50 75 100

P r
cl

ea
n

Generation size k

Prclean, n=15
Pfclean, n=15
Prclean, n=5
Pfclean, n=5

Fig. 4. Probability that a node forwards a clean packet Pfclean and recovers
a clean generation Prclean as a function of generation size k.

that the number of rounds required by the reference node to
recover the generation was assumed to be equal to ⌈ k

n
⌉ + 1

rounds). The definition of Pfclean is a product of probabilities,
hence the lower the number of factors the higher the final
results. As for Prclean, we note that ∀x, Pp(⌈

k
n
⌉+ 1, x, 0) =

(1 − ppoll)(⌈
k
n
⌉+1)x that is a decreasing function of the first

argument that is equal to the overall number of rounds.
Short generations bring other advantages, such as reducing
the computational complexity of recovering the coded payload
[14] and enabling low-delay communications by reducing the
minimum required buffering time [15], whereas a failure to
timely recover a generation entails the loss of fewer video
frames. Note that, short generations also decrease the proba-
bility that received packets are innovative and may negatively
affect the code overhead ϵ. However, as we experimentally
demonstrate later on, small generations help reducing the pol-
lution overhead to the point where the total network overhead
is lower than for large generations. Also, in Sec. IV-B we
propose a simple heuristic that keeps the code overhead under
control by constraining the nodes to wait that a generation has
reached a minimum rank before they start to recombine and
relay the received packets.

Concluding, the analysis of the results produced by our
model suggest that:

• packets received earlier by a node are less likely to be
polluted than the following ones;

• the probability that a generation can be correctly recov-
ered increases as the generation size k decreases;

• the probability that a node transmits a polluted recom-
bined packet decreases as the generation size k decreases.

Such findings represent the cornerstones of the pollution-
resilient NC architecture described in the following section.

IV. PROPOSED ALGORITHMS

In this section, we first describe a pollution detection
scheme designed around On-the-Fly Gaussian elimination [16]
that allows a node to spot the presence of a polluted packet in
the input buffer even before the generation is recovered. Next,
we present a packet recombination scheme that minimizes the
likelihood that the packet transmitted by a node is polluted by
exploiting the knowledge unveiled by the model proposed in
Sect. III-A.

A. Pollution Detection and Decoding

A basic feature of a pollution resilient NC P2P streaming
application is the capability to detect that bogus data are
being spread by unknown malicious peers. Fortunately, we can
exploit the NC decoding procedure, along with the fact that
every node is likely to get some redundant (non innovative)
packets from its neighbors, to obtain a pollution detection
mechanism at generation-level. In other words, the algorithm
described in the following paragraph allows every node to
detect if a generation that is being decoded is under attack,
albeit it cannot trace the pollution source. We point out that
that no ancillary data or infrastructure for verification are
required and pollution detection is operated on the fly using
only the received coded packets. The algorithm operates in two
stages, detection and decoding, that are detailed and described
each in pseudo-code below.

The detection stage serves the purpose of revealing the
presence of a polluted packet among those received by the
node and detect whether received packets are innovative or
not. The detection stage is formalized as Algorithm 1 and it
is executed every time a new packet Fi = (yi, gi) is received
by the node. In the following to avoid cluttering the notation
we will drop the packet index using notation F = (y, g) to
refer a generic received packets. Each time a node receives
a packet, a copy of it is also stored in an input buffer for
further recombination as described later on in this section. The
NC decoding process [16] can be represented as a solution
to a system of k linear equations GX = Y , where G is a
k× k upper-triangular matrix that stores (linear combinations
of) the encoding vectors of the received packets, Y is the
k × 1 vector that stores the corresponding encoded payloads
y and X is the k × 1 vector that contains the symbols xi

to recover, which are initially unknown. In the following, we
use the notation Gi to indicate the i-th row of G and we
use the notation Gi,j to indicate the element of G at row i,
column j. When all the elements of Gi and Yi are equal to
zero, we say that the the i-th row of G and the i-th element
are empty and we write Gi = ∅. Let s be the index of the
leading one of g, i.e. the first non-zero element of g such that
gi = 0 ∀i < s: the maximum number of iterations of the while
cycle at line 2 of the algorithm is equal to s. Depending on
whether Gs = ∅, the algorithm operates as follows. If Gs is
empty, g is inserted in the s-th row of G, y is inserted in the s-
th position of Y and the algorithm ends reporting an innovative
packet was received (line 6). Otherwise, a comparison between
Gs and g is performed. If g = Gs, the received packet
P (g, y) and the pair (Gs, Ys) are expected to represent the
same combination of the input symbols, thus the encoded
payloads should match as well, i.e. it should be y = Ys.
This event occurs every time the packet being processed is
linearly dependent on the ones received previously and it is
likely to happen due to random coding, recombination and
forwarding that imply the collection of k′ > k coded packets
to complete decoding. Therefore using the non innovative
packet, a sanity check is performed comparing y with Ys: if
they differ, then one or more packets received so far in the
corresponding generation must be polluted and the algorithm

6

returns reporting the presence of at least one polluted packet in
the input buffer (line 9). Otherwise, if payloads are identical,
packet F is likely to be correct but it is not helpful to recover
the generation, so it is discarded and the algorithm returns
reporting the received packet is not innovative (line 11). If
otherwise g ̸= Gs, the algorithm performs a bitwise XOR
between g and Gs and between y and Ys (line 12): such
XOR has the effect to set to zero the s-th element of the
encoding vector, i.e. it sets gs = 0, and the while cycle iterates
unless any of the previously described termination is verified
or gi = 0, ∀i.

Algorithm 1 Pollution detection with Gaussian elimination

1: receive F = (y, g).
2: while true do

3: s← position of leading one of g.
4: if Gs = ∅ then
5: Gs ← g ; Ys ← y
6: end

7: else
8: if g = Gs then

9: if y ̸= Ys then
10: pollution detected; end;
11: else

12: useless packet; end
13: end if

14: else

15: g ← g ⊕Gs; y ← y ⊕ Ys

16: end if

17: end if
18: end while

The second stage, recovery, is executed when the rank of
G is equal to k, i.e. after k linearly independent packets
have been received. Recovering the generation simply entails
transforming the upper-triangular matrix G as arranged during
the detection stage to diagonal form by means of standard
backward-substitution. Algorithm 1 can be invoked each time
a packet is received at the node, either before or after the
generation has been decoded (due to the nature of push
networks, nodes are likely to receive encoded packets also
after they have recovered the generation). In the following,
we call early packets received before the generation has been
recovered; conversely, we call late packets received afterwards.
If the algorithm is invoked to process early packets, we say
that we have a case of early pollution detection; otherwise,
if the algorithm is invoked to process late packets, we talk
about late pollution detection. In this latter case, late packets
are exploited to double check whether any of the packets
received so far was polluted. Note that when Algorithm 1
returns a detected pollution flag, it is up to the node to decide
how to exploit such information, for example during packet
recombinations as described below.

B. Packet Recombination at the Network Nodes

In this section we propose a packet recombination scheme
that aims at reducing the probability that a packet forwarded

by a node is polluted by exploiting the finding that packets
received earlier are less likely to be polluted. Let us assume
that a node has received r packets at the moment it is
granted a transmission opportunity, and such packets are stored
in a FIFO buffer as {F1, . . . , Fi, . . . , Fr}, so that Fi was
received prior to packet Fi+1. Each i-th packet is drawn for
recombination according to packet recombination probability
pr(i, θ) that now we let depend on the packet index i; in
particular, we propose to use the following truncated negative
exponential density function

pr(i, θ) =
iα

∑θ
i=1 i

α
, (5)

where α is the parameter of the exponential and θ is the cutoff
parameter.

Now, the recombination vector c = (c1, . . . cr), ci ∈ {0, 1}
defined in Sect. II, is obtained by throwing ci as

ci =

{

1 if pr(i, θ) < ρ
0 otherwise

where ρ ∈ [0, 1] is drawn with uniform probability. The
encoding vector of the recombined packet is then computed
as gr =

∑r
i=1 cig

i, whereas the corresponding payload is
computed as yr =

∑r
i=1 ciy

i and finally packet F r = (yr, gr)
can be forwarded to the neighbors. Note that while the
proposed scheme exploits the finding that packets received
earlier are less likely to be polluted, we do not advocate that
it globally minimizes the probability to transmit a polluted
packet and we leave further improvements for future works.

Note that changing the recombination probability from a
completely random one (pr = 1/2) to the time dependent
function pr(i, θ) may impair the coding overhead ϵc defined
in Sect. II. In fact, drawing for recombination elder packets
with higher probability limits the set of received packets that
are recombined, decreasing the probability to create innovative
packets. To counter act this issue, we impose a minimum
number of linearly independent packets mr that a node must
have received for a generation before it is allowed to start
forward linear combinations thereof. At any time mr is equal
to the rank of matrix G in Algorithm 1 and allows us to put
a lower bound on the cardinality of the set of packets used to
generate novel recombinations.

V. THE TOROSTREAM P2P PROTOCOL

In this section we overview the key aspects of ToroStream,
a P2P protocol for live video streaming with NC that we use to
evaluate our algorithms for pollution-resilient NC; a detailed
description of the protocol can be found in our previous
works [13], [14], from which we borrow the terminology.
Whereas in this work we use ToroStream to evaluate our pro-
posed algorithms, in principle our algorithms can be applied
to any NC-based P2P push or pull protocol.

A. Topology Setup and Management

Peer nodes are arranged into an unstructured, non-acyclic,
mesh to minimize the topology management effort and in-
crease the resilience to network failures. A central tracker

7

keeps track of all the nodes in the network: whenever a node
wants to join the network, it contacts the tracker which replies
to the node with a list of nodes already in the network drawn
at random. After a handshake, two nodes become neighbors
and start to periodically exchange keepalive messages: if a
node does not receive keepalive messages from a neighbors for
too long, the neighborhood relationship is terminated with an
appropriate message. The maximum size of the neighborhood
of a node is upper bounded by Ns so to maintain the network
topology sparse and to minimize the related signaling and
management overhead. Also, periodically each node drops at
random one or more nodes from its neighborhood to refresh
the network topology.

B. Signaling Protocol

The server subdivides the video stream, which we assume
encoded at constant bit rate Bv , into a sequence of indepen-
dently recoverable generations of identical playout duration
Ct and approximately the same number k of blocks of size
Cs each. Every Ct seconds, the server parses one generation
of video from a video bitstream, subdivides the generation
in k blocks of symbols where the exact k depends on the
actual size of the video unit1 and distributes random linear
combinations thereof to all its neighbors. The generation
currently distributed by the server is called the server position

in the following. When a node joins the network, buffers tb
seconds of video first, which correspond to tb/Ct generations,
before playing out the generation with the earliest playout
deadline in the stream. The generation currently reproduced at
the node is called here the node playback position; generations
encompassed between the server position (included) and the
playout position of a node (excluded) form the decoding

region of the node. Each node lets know its neighbors which
generation within its own decoding region have already been
recovered and which have not to its neighbors appending to all
transmitted packets a vector of tb/Ct bits known as decoding

map which represents the decoding status of the generation
within the node decoding region.

C. Packet Scheduling and Pollution Avoidance Policy

The server and the nodes distribute encoded packets with
a random-push mechanism under a limited output bandwidth
constraint as follows. The server is allocated a maximum
output bandwidth Bs: periodically, the server transmits a
random linear combination of the blocks that compose the
generation at the server position in the stream, where the
transmission period is given by Bs/Ct. The network nodes
receive encoded packets which are processed for pollution
detection and decoded as described in the the previous section
and implemented as follows. Each time a node receives a
packet, it stores a copy thereof in a separate input buffer
for each generation in its decoding region. Next, the packet
is processed for pollution detection with Algorithm 1: if the
algorithm detects pollution, the corresponding generation is

1In motion compensated hybrid video coding a simple way to recognize
independently playable coding unit is always defined, and constitutes the so
called group of pictures (GOP).

flagged as polluted. The node keeps track of the status of
each generation within its own decoding region with a vector
of tb/Ct bits called pollution vector, where each position of
the vector is equal to one if any of the packets received for that
generation was detected as polluted, 0 otherwise. The pollution
vector also drives the packet recombination mechanism of the
network nodes as below. At each transmission opportunity, a
node draws at random a node among its neighbors, checks
the last decoding map received by that neighbor and performs
a binary AND operation between the neighbor decoding map
and its own pollution vector. If all elements of the resulting
vector are equal to 0, no generation is suitable for transmission
either because at least one of the packets in the corresponding
input buffer is polluted at the node or because the neighbor
has already recovered the generation. Otherwise, the node
draws the generation suitable for recombination that is closer
to the decoding deadline and recombines the received packet
in the corresponding input buffer according to the algorithm
described in the previous section and transmits the packet.

VI. EXPERIMENTS

In this section, we evaluate the pollution detection and
packet recombination schemes proposed in Section IV thorogh
the random-push P2P protocol described in the previous sec-
tion using a 64-cores server equipped with 128 GB of memory
which hosts thousands of peers enbaling packet losses free
experimentsing. We consider a network of N = 1000 nodes
with Nh=980 honest nodes and Nm=20 malicious nodes,
where the neighborhood of each node is restricted to Ns

= 25 nodes. A 300 seconds test sequence encoded at Cv

= 500 kbit/s is distributed by a source node whose output
bandwidth is equal to Bs = 20 Mbit/s, whereas the output
bandwidth of the peer nodes is constrained to Bp = 750 kbit/s.
Peers implement the pollution detections scheme described
in Section IV: whenever a polluted packet is detected, the
node stops transmitting packets for such generation to avoid
further spreading the pollution. All nodes enter the network
at the same time (t = 0 s) and leave the network at the
same time t = 300 s. Malicious nodes randomly alter the
payload of each transmitted packet as described in Section
II-B and with probability ppoll during the interval [90, 210]
s (attack interval), whereas they behave as honest nodes, i.e.
packets are altered with probability ppoll=0 for the rest of the
experiment. A generation is considered correctly recovered by
a peer node if the node could timely recover the generation
(i.e., if the node could receive at least k independent packets)
prior to its playout deadline and none of the received packets
is actually polluted. The quality of the video delivered to a
node is measured in terms of Continuity Index (CI), which is
defined as the fraction of generations that could be correctly
recovered prior to the respective playout deadlines.

A. Verifying the Pollution Model

First, we verify the pollution model proposed in II-B by
sampling the actual distribution of malicious nodes among a
node neighborhood. We experiment in the above described

8

scenario with N=1000 nodes, where each node has a neigh-
borhood composed of n=25 other peers. Figure 5 shows the
expected and actual distribution of the probability that x out
of n uploaders are malicious for different neighborhood sizes
Nm ∈ [10, 30, 50] nodes are of the malicious type. We clearly
see that probability that x out of n nodes are malicious follows
an hyper-geometric distribution, as modeled in Eq. 2.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5

P m
n

x, Nm=10

Mod.
Act

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5
x, Nm=30

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5
x, Nm=50

Fig. 5. Probability that x out of n nodes are malicious for Nm = 10 (left),
30 (center), 50 (right) nodes.

B. Effect of pollution attack on video quality

Then, we study the effect of a pollution attack for the
reference NC architecture described in Section II, where the
peers recombine each received packet with probability pr = 1

2 ,
malicious nodes alter the payload of transmitted packets with
probability ppoll=0.01 during the attack interval and the video
stream is subdivided in generations of k=50 blocks. In this
setup, the amount of packets purposely polluted by the mali-
cious nodes amounts to about 0.02% of the packets exchanged
in the network. Figure 6 shows the CI over time (each point
in the graph corresponds to one generation). During the time
interval [0, 90) no polluted packets are injected in the network
by the malicious nodes and so the CI is equal to 1, i.e. all
nodes decode the video without interruptions. At time t=90 s,
the 20 malicious nodes start injecting polluted packets for the
following 120 seconds: during this interval, the CI drops from
1 to about 0.1.Finally, at time t=210 s, malicious nodes cease
transmitting polluted packets and the average CI rises again
to 1 for the remaining 90 seconds of the experiment. The CI
averaged over the whole streaming session is equal to 0.628,
whereas the average CI during the attack interval is equal to
0.111, i.e. about 9 generations out of ten cannot be correctly
recovered due to the pollution attack. A few malicious nodes
are able to completely disrupt the communication by randomly
altering less than 1% of the overall network traffic, showing
the need for countermeasures to pollution attacks.

 0
 0.2
 0.4
 0.6
 0.8

 1

 50 100 150 200 250 300

Co
nt

in
ui

ty
 In

de
x

Time [s]

Attack starts

Attack ends

Fig. 6. The video quality at the nodes drops in the 90∼210 s interval due
to the polluted packets transmitted by the malicious nodes.

C. Effect of pollution detection scheme

First, we explore the effect of the pollution detection scheme
on the probability that a honest node transmits a polluted
packet further spreading the pollution in the network. For
this experiment, we consider the same reference packet re-
combination scheme as in the previous experiment and two
different schemes for pollution detection. The first scheme,
OFG, is our scheme described in Section IV-A where we
exploit the OFG algorithm to verify if received packets are
polluted even before the generation has not been recovered
yet. The second scheme, Checksum, is an ideal strategy where
the node recovers a generation, computes a checksum thereof
and compares it with a reference checksum stored on a trusted
server with unlimited bandwidth and zero latency. Whenever
pollution is detected for one generation, the nodes drop all
received packets and stop relaying packets for that generation.
Figure 7 shows the probability Ptp that the i-th packet trans-
mitted by a node is polluted. The checksum scheme guarantees
that a pollution attack is always detected at the moment a
generation is recovered; however nodes must first recover the
generation and only afterwards stop relaying polluted packets.
Conversely, our scheme provides no guarantee that a pollution
attack is detected, however it can potentially detect pollution
attacks and stop relying polluted packets earlier on. Therefore,
our OFG-based pollution detection is more effective that a
checksum server-based reference in reducing the probability
to relay polluted packets, plus nodes do not need to rely on a
centralized checksum server with all the related issues.
Moreover, we see that Ptp is not constant, instead it grows
over time with i as predicted by our model and as shown in
Figure 3, proving the qualitative correctness of the findings
yield by our time-slotted model.
This experiment shows that our OFG-based pollution detection
scheme reduces the probability that an honest node relays a
polluted packet, thus in all following experiments the nodes
always implement our OFG-based pollution detection strategy.

 0

 0.2

 0.4

 0.6

 0.8

 1

 5 10 15 20 25 30 35 40 45 50

P t
p

i-th transmitted packet

Checksum-based detection
OFG detection (Proposed)

Fig. 7. Probability Ptp that the i-th packet transmitted by a node is polluted
for different pollution detection strategies.

D. Effect of packet recombination strategy

Next, we study the probability that a node receives a pol-
luted packet as a function of the packet recombination strategy
at the nodes. The first recombination scheme we consider is

9

the same Reference strategy used in previous experiments.
The second scheme, Proposed, is our recombination scheme
described in Section IV, where each i-th packet in the input
buffer is drawn for recombination with a probability pr(i, θ)
that increases with the packet position i in the buffer, i.e.
with its age, as in Equation 5 (in our experiments, we set
α = 1). Unless stated in the following we use the proposed
recombination algorithm with mr = 1, i.e. we do not put a
constraint on the rank of the decoding matrix G. Figure 8
shows the probability Ptp that the i-th packet transmitted by
a node is polluted. With the reference packet recombination
strategy, the probability that a node transmits a polluted packet
quickly soars to about 0.8, i.e. almost 80% of the packets
in the network are polluted by the time the generation is
recovered. Note that malicious nodes alter only about 0.02% of
the overall number of packets transmitted in the network, that
is the reference strategy is responsible for an increase in the
pollution rate of about 3 orders of magnitude. Conversely, our
proposed recombination scheme enables a Ptp (about 0.12%)
which is two orders of magnitude lower than the reference
scheme as packets received earlier, which are less likely to be
polluted, are more likely to be drawn for recombination.

 0.0001

 0.001

 0.01

 0.1

 1

 0 10 20 30 40 50

P t
p

i-th transmitted packet

Reference recombination
Proposed recombination

Fig. 8. Probability Ptp that the i-th packet transmitted by a node is polluted
for different packet recombination strategies.

E. Effect of generation size

Next, in Figure 9 we evaluate the joint effect of the
packet recombinations scheme and generation size k on the
probability that an honest node transmits a polluted packet
Ptp and on the CI and the relationship between the two.
Independently from the considered recombination algorithm,
small k yield lower Ptp and thus higher CI as expected from
Equation 4. However, just reducing k is not sufficient to set off
the pollution effects, and our packet recombination strategy is
the key element in achieving near-optimal video quality. This
experiments clearly demonstrates the relationship between the
probability that a node transmits a polluted packet and the
probability that the node is able to recover the generation. In
the following experiments, we experiment with the pollution
attack model to assess the resilience of our scheme to an
increased activity of the the malicious nodes.

 0.001

 0.01

 0.1

 1

25 50 100

P g
p’

Generation Size k

Ref.
Prop.

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

25 50 100

Co
nt

in
ui

ty
 In

de
x

Generation Size k

Ref.
Prop.

Fig. 9. Probability to transmit a polluted packet and corresponding video
quality as a function of generation size k for different packet recombination
schemes.

F. Effect of packet pollution probability

Figure 10 shows the CI as a function of the probability
ppoll that a packet transmitted by a malicious node is and
for different packet recombination schemes and generation
sizes k ∈ {25, 50} (in all previous experiments we had
ppoll = 0.01). As ppoll increases, the CI drops to zero for
the reference scheme, independently from k (the larger k, the
sharper the drop however). Conversely, with our recombination
scheme the video quality degrades gracefully despite a tenfold
increase in the number of polluted packets transmitted to
the network by the malicious nodes. As expected, best video
quality is achieved when the proposed scheme is paired with
smaller generations, albeit the largest contribution to pollution
resilience is given by the our packet recombination algorithm.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.02 0.04 0.06 0.08 0.1

Co
nt

in
ui

ty
 In

de
x

Packet Pollution Probability ppoll

k=50, Ref.
k=50, Prop.
k=25, Ref.

k=25, Prop.

Fig. 10. Video quality as a function of malicious nodes packet pollution prob-
ability for different packet recombination schemes and values of generation
size k.

G. Effect of number of malicious nodes

In Figure 11, we investigate the relationship between video
quality and number of malicious nodes Nm present in the
network. As Nm increases, the video quality drops to zero with
the reference scheme, and reducing the generation size from
k = 50 to k = 25 only marginally improves the performance.
Conversely, our proposed scheme allows a graceful degrada-
tion of the video quality as the number of malicious nodes
in the network increases; moreover, small generations further
improve the video quality. Since the previous experiments
confirm that the proposed recombination scheme paired with

10

small generations yields best video quality, in the following we
mainly focus on such combination of experimental parameters.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100 120 140 160 180 200

Co
nt

in
ui

ty
 In

de
x

Number of malicious nodes Nm

k=50, Reference
k=50, Proposed

k=25, Reference
k=25, Proposed

Fig. 11. Video quality as a function of the number of malicious nodes in the
network for different packet recombination schemes and values of generation
size k.

H. Video Quality vs. Network Overhead Tradeoff

Having shown that our proposed recombination scheme
(with the help of small generations) sets off a pollution attack
effect to the point where the video can be recovered almost
seamless, now we focus on the impact of the recombination
scheme and generation size on the network overhead. We
recall that we define as code overhead ϵc the ratio of net-
work bandwidth wasted transmitting non innovative packets;
also the pollution overhead ϵp was defined as the ration of
network bandwidth wasted transmitting polluted packets: the
sum thereof is the total overhead, i.e. the overall ratio of
wasted network bandwidth. Figure 12 shows, from left to right,
the code, pollution and total overhead for three generation
sizes k and our packet recombination strategies plus the
reference scheme. As expected, short generations yield higher
code overhead, regardless of the recombination scheme (left
figure). However, short generations help reducing the pollution
overhead, plus our recombination scheme almost nullifies the
pollution overhead as the central figure shows. Therefore, as
the right figure demonstrates, our proposed strategy yields
a total overhead that is not higher than the corresponding
overhead for the reference strategy even when generations are
short, albeit it yields huge improvements in terms of video
quality.

 0
 50

 100
 150
 200
 250
 300
 350

25 50 100

O
ve

rh
ea

d
[k

bi
t/s

]

Generation size k

Ref.
Prop.

 0
 50

 100
 150
 200
 250
 300
 350

25 50 100
Generation size k

 0
 50

 100
 150
 200
 250
 300
 350

25 50 100
Generation size k

Fig. 12. Code ϵc (left), pollution ϵp (center) and total ϵc+ϵp(right) overhead
for the reference and proposed recombination strategy as a function of the
generation size k. Proposed strategy reduces total overhead for any k.

Next, we investigate the video quality vs network overhead
tradeoff as a function of two parameters of our packet recom-
bination strategy. In previous experiments, network nodes were
allowed to start forwarding linear combinations of the received
packets as soon as at least one packet was in the input buffer,
i.e. mr = 1: we now experiment with mr=2, i.e. nodes are
allowed to transmit packets for a generation only if at least
two linearly independent packets were received. Moreover, in
the previous experiments the α parameters in Eq. 5 which
controls the number of recombined packets for our proposed
strategy was set to 1.0, i.e. we had α=1.0: we now explore
how the α parameter affects the performance of our scheme.
Figure 13 shows the tradeoff between continuity index and
total overhead, for the case k=25 and for the case mr=1 (top)
and mr=2 (bottom).
As previously seen, the reference strategy yields the largest
pollution overhead, resulting in large total overhead and poor
CI. As α decreases from 1 to 0.5, more packets are recom-
bined, thus the probability to recombine innovative packets
increases and the code overhead drops while the CI is only
marginally affected. By comparing the top and bottom figures,
we see that if nodes wait to receive a few independent packet
before starting to relay, the code overhead drops independently
form the considered recombination strategy. In detail, this ex-
periments shows that by controlling the α and mr parameters,
we can further boost the performance of our strategy to achieve
nearly optimal video quality and half the network overhead of
the reference scheme.

Fig. 13. Tradeoff between video quality and network overhead for mr=1
(top) and mr=2 (bottom). For the proposed recombination strategies, three α
values are considered (default in previous experiments is α = 1).

VII. RELATED WORKS

As already pointed out in Sect. I, to the best of our
knowledge the present paper is the first to face the P2P
pollution problem from a novel point of view, namely building
a NC based P2P streaming application intrinsically resilient to
the attack. Therefore, the goal here has been to mitigate as far
as possible the effect of pollution, by leveraging on innovative

11

use of the the NC decoder for pollution detection and by
designing a novel pollution resistant recombination strategy.

Many research studies have proposed techniques to defend
peer-to-peer streaming systems from pollution attacks follow-
ing different strategies aiming at identifying malicious peers
in order to remove them from the network. Clearly, such
approaches are potentially the best solution to the the pollution
problem; nonetheless, malicious uploaders identification is
very complex issue in random push NC based applications and
the proposed techniques are usually limited by the number of
polluters they can face or in terms of added computational
complexity and/or communication overhead. In the following
we provide a quick review of the related studies limited to the
area of network coding.

Several efforts have been devoted to devise on-the-fly veri-
fication techniques carried out by participants [17], [18], [19],
[20], [21], [22], [23]. These works are based on either crypto-
graphic or algebraic approaches. The major drawback of these
elegant methods is the high computational costs for verification
and the communication overhead due to pre-distribution of
verification information. Pre-distribution of verification keys
is particularly critical in case of live streaming where novel
data are being forwarded at a high rate. Error correction is
another approach to deal with pollution attacks in network
coding based peer-to-peer streaming [24], [25], [26]; these
methods introduce coding redundancy to allow receivers to
correct errors but their effectiveness depends on the amount
of corrupted information.

In [9] a fully distributed detection algorithm based on a
stochastic approach is presented. The technique uses intersec-
tion operations to progressively isolate malicious peers in the
set of neighbors of a peer. The main drawback of the approach
is that it works only under the (unrealistic) assumption that the
neighbors remain the same and that each chunk is obtained
by a randomly chosen subset thereof. In [11], [12] malicious
nodes identification is treated as an statistical inference prob-
lem relaying on control information termed check created
by peers upon completing decoding of every chunk. Also
in this case the additional communication and computational
costs are needed. Moreover, as in all statistical approaches the
identification may fail leading to expungement of honest peers.

Finally, it is worth noticing that all previous approaches are
exposed to the so called sybil attack, where malicious nodes
try to escape identification by changing their identity at a pace
higher than the identification mechanism rate.

In the area of P2P file sharing, the injection of bogus data
by untrusted peers has been traditionally tackled using data
authentication. In particular, a security hash,e.g. SHA1, can be
computed for each data block in order to recognize malicious
modifications on the receiver side. Such approach must rely on
a trusted infrastructure and protocol to distribute hashes to all
peers in the network. Indeed, if the hashes distribution is not
secure, malicious nodes can recompute and update the hash
of a modified data to hide out. Whilst being a viable approach
for pull-based file sharing application such as BitTorrent, data
hashing can not extended to video streaming where real time
computation and distribution of the verification data cannot be
easily guaranteed.

VIII. CONCLUSIONS AND FUTURE WORK

In this paper we proposed simple countermeasures for
mitigating the effects of pollution attacks in NC-based video
streaming. First, we model the diffusion of the polluted packets
through the network due to the recombinations at the nodes:
our analysis suggest that packets received earleier by a node
are less likely to be polluted, while the chances that node
recovers a clean generation decrease with the generation size.
On the basis of such findings, we devise a packet recombi-
nation scheme where packets are drawn with a probability
that grows with the packet age in the nodes input queues.
Our experiments with P2P video streaming shows that, in
a traditional NC context, a handful of malicious nodes can
completely disrupt the video quality just by injecting a few
polluted packets in the network. Conversely, our proposed
packet recombination algorithm, paired with small generations,
makes the communication significantly robust to the activity
of malicious nodes, which need to inject many more polluted
packets in the network before the video quality strats to drop.
Our experiments also suggest that increased malicious nodes
activity is the premise for devising effective mechanisms for
detecting the malicious nodes and isolating them from the
network, which we leave as future work.

REFERENCES

[1] X. Zhang, J. Liu, B. Li, and T.S.P. Yum, “CoolStreaming/DONet: A
data-driven overlay network for efficient live media streaming,” in
proceedings of IEEE Infocom. Citeseer, 2005, vol. 3, pp. 13–17.

[2] G Huang, “PPLive: A practical P2P live system with huge amount of
users,” in Proceedings of the ACM SIGCOMM Workshop on Peer-to-
Peer Streaming and IPTV Workshop, 2007, pp. 22 – 28.

[3] M. Grangetto, R. Gaeta, and M. Sereno, “Rateless codes network coding
for simple and efficient P2P video streaming,” in IEEE International
Conference on Multimedia and Expo, 2009 (ICME 2009).

[4] M. Wang and B. Li, “Network coding in live peer-to-peer streaming,”
IEEE Transactions on Multimedia, vol. 9, no. 8, pp. 1554–1567, Dec
2007.

[5] S. Mirshokraie and M. Hefeeda, “Live peer-to-peer streaming with
scalable video coding and networking coding,” in Proceedings of the
First Annual ACM SIGMM Conference on Multimedia Systems 2010,
(MMSys ’10), pp. 123–132.

[6] P. Dhungel, X. Hei, K.W. Ross, and N. Saxena, “The pollution attack
in P2P live video streaming: measurement results and defenses,” in
Proceedings of the 2007 workshop on Peer-to-peer streaming and IP-
TV, P2P-TV ’07, 2007, pp. 323–328.

[7] J. Liang, R. Kumar, Y. Xi, and K.W. Ross, “Pollution in P2P file sharing
systems,” in IEEE INFOCOM 2005, march 2005, vol. 2, pp. 1174 –
1185.

[8] Q. Wang, L. Vu, K. Nahrstedt, and H. Khurana, “MIS: Malicious nodes
identification scheme in network-coding-based peer-to-peer streaming,”
in INFOCOM, 2010 Proceedings IEEE, march 2010, pp. 1 –5.

[9] Y. Li and J.C.S. Lui, “Stochastic analysis of a randomized detection
algorithm for pollution attack in P2P live streaming systems,” Perfor-
mance Evaluation, vol. 67, no. 11, pp. 1273 – 1288, 2010.

[10] X. Jin and S.H.G. Chan, “Detecting malicious nodes in peer-to-peer
streaming by peer-based monitoring,” ACM Trans. Multimedia Comput.
Commun. Appl., vol. 6, pp. 9:1–9:18, March 2010.

[11] R. Gaeta, M. Grangetto, and L. Bovio, “Dip: Distributed identification
of polluters in p2p live streaming,” ACM Transactions on Multimedia
Computing, Communications, and Applications (TOMCCAP), vol. 10,
no. 3, pp. 24, 2014.

[12] R. Gaeta and M. Grangetto, “Identification of malicious nodes in peer-
to-peer streaming: A belief propagation-based technique,” Parallel and
Distributed Systems, IEEE Transactions on, vol. 24, no. 10, pp. 1994–
2003, 2013.

12

[13] A. Fiandrotti, A. M. Sheikh, and E. Magli, “Towards a P2P videocon-
ferencing system based on low-delay network coding,” in Proceedings
of the 20th European Signal Processing Conference (EUSIPCO), 2012,
pp. 1529 –1533.

[14] A. Fiandrotti, V. Bioglio, M. Grangetto, R Gaeta, and E. Magli, “Band
codes for energy-efficient network coding with application to P2P mobile
streaming,” IEEE Transactions on Multimedia, vol. 16, no. 2, pp. 521
– 532, February 2014.

[15] A. Fiandrotti, A. M. Sheikh, and E. Magli, “Towards a p2p videoconfer-
encing system based on low-delay network coding,” in Signal Processing
Conference (EUSIPCO), 2012 Proceedings of the 20th European. IEEE,
2012, pp. 1529–1533.

[16] V. Bioglio, M. Grangetto, R. Gaeta, and M. Sereno, “On the fly gaussian
elimination for LT codes,” IEEE Communications Letters, vol. 13, no.
12, pp. 953–955, 2009.

[17] M. N. Krohn, M. J. Freedman, and D. Mazieres, “On-the-fly verification
of rateless erasure codes for efficient content distribution,” Security and
Privacy, IEEE Symposium on, 2004.

[18] C. Gkantsidis and P. Rodriguez, “Cooperative security for network
coding file distribution,” in IEEE INFOCOM, 2006.

[19] Q. Li, D.-M. Chiu, and J.C.S. Lui, “On the practical and security issues
of batch content distribution via network coding,” in Network Protocols,
2006. ICNP ’06. Proceedings of the 2006 14th IEEE International
Conference on, 2006.

[20] D.C. Kamal, D. Charles, K. Jain, and K. Lauter, “Signatures for
network coding,” in In Proceedings of the fortieth annual Conference
on Information Sciences and Systems, 2006, pp. 3–14.

[21] Z. Yu, Y. Wei, B. Ramkumar, and Y. Guan, “An efficient signature-
based scheme for securing network coding against pollution attacks,” in
INFOCOM 2008. The 27th Conference on Computer Communications.
IEEE, 2008.

[22] E. Kehdi and Baochun Li, “Null keys: Limiting malicious attacks via
null space properties of network coding,” in INFOCOM 2009, IEEE.

[23] Z. Yu, Y. Wei, B. Ramkumar, and Y. Guan, “An efficient scheme for
securing xor network coding against pollution attacks,” in INFOCOM
2009, IEEE.

[24] T. Ho, B. Leong, R. Koetter, M. Medard, M. Effros, and D.R. Karger,
“Byzantine modification detection in multicast networks with random
network coding,” Information Theory, IEEE Transactions on, vol. 54,
no. 6, pp. 2798 –2803, june 2008.

[25] S. Jaggi, M. Langberg, S. Katti, T. Ho, D. Katabi, M. Medard, and
M. Effros, “Resilient network coding in the presence of byzantine
adversaries,” Information Theory, IEEE Transactions on, vol. 54, no.
6, pp. 2596 –2603, june 2008.

[26] R. Koetter and F.R. Kschischang, “Coding for errors and erasures in
random network coding,” Information Theory, IEEE Transactions on,
vol. 54, no. 8, pp. 3579 –3591, august 2008.

Attilio Fiandrotti (M’12) received his M.Sc. and
Ph.D. degrees in Computer Science in 2005 and
2010 respectively from Politecnico di Torino. His
current research activities include multimedia clas-
sification, parallel architectures for signal recovery
in compressive sensing and network-coding based
video distribution. Since 2014, he is research engi-
neer at Sisvel Technology.

Rossano Gaeta received his Laurea and Ph.D. de-
grees in Computer Science from the Università di
Torino, Italy, in 1992 and 1997, respectively. He
is currently Associate Professor at the Computer
Science Department, Università di Torino. He has
been recipient of the Best Paper award at the 14-
th IEEE/ACM International Symposium on Mod-
eling, Analysis, and Simulation of Computer and
Telecommunication Systems (MASCOTS 2006) and
at the 26th International Symposium on Computer
Performance, Modeling, Measurements, and Eval-

uation (PERFORMANCE 2007). His current research interests include the
design and evaluation of peer-to-peer computing systems and the analysis of
compressive sensing and coding techniques in distributed applications.

Marco Grangetto (S’99—M’03—SM’09) received
his Electrical Engineering degree and Ph.D. degree
from the Politecnico di Torino, Italy, in 1999 and
2003, respectively. He is currently Associate Profes-
sor at the Computer Science Department, Università
di Torino. His research interests are in the fields
of multimedia signal processing and networking.
In particular, his expertise includes wavelets, image
and video coding, data compression, video error
concealment, error resilient video coding unequal
error protection, and joint source channel coding.

Prof. Grangetto was awarded the Premio Optime by Unione Industriale di
Torino in September 2000, and a Fulbright grant in 2001 for a research period
with the Department of Electrical and Computer Engineering, University
of California at San Diego. He has participated in the ISO standardization
activities on Part 11 of the JPEG 2000 standard. He has been a member
of the Technical Program Committee for several international conferences,
including the IEEE ICME, ICIP, ICASSP, and ISCAS.

