
24 June 2024

AperTO - Archivio Istituzionale Open Access dell'Università di Torino

Original Citation:

EFFECTS OF APELIN ON THE CARDIOVASCULAR SYSTEM

Published version:

DOI:10.1007/s10741-015-9475-x

Terms of use:

Open Access

(Article begins on next page)

Anyone can freely access the full text of works made available as "Open Access". Works made available
under a Creative Commons license can be used according to the terms and conditions of said license. Use
of all other works requires consent of the right holder (author or publisher) if not exempted from copyright
protection by the applicable law.

Availability:

This is the author's manuscript

This version is available http://hdl.handle.net/2318/1508069 since 2017-07-04T10:29:21Z



This is an author version of the contribution published on:

Folino A, Montarolo PG, Samaja M, Rastaldo R
EFFECTS OF APELIN ON THE CARDIOVASCULAR SYSTEM

HEART FAILURE REVIEWS (9999)
DOI: 10.1007/s10741-015-9475-x

The definitive version is available at:
http://link.springer.com/content/pdf/10.1007/s10741-015-9475-x

http://link.springer.com/content/pdf/10.1007/s10741-015-9475-x


 

1 
 

Effects of apelin on the cardiovascular system 

 
Anna Folino

1
, Pier Giorgio Montarolo

1
, Michele Samaja

2
, Raffaella Rastaldo

3 

 
1
Department of Neuroscience, University of Turin, C.so Raffaello 30, I – 10125 Torino, Italy 

2
Department of Health Science, University of Milan – San Paolo, via di Rudinì 8, I - 20142 Milano, Italy 

3
Department of Clinical and Biological Sciences, University of Turin, Regione Gonzole 10, I – 10043 

Orbassano, Italy 

 

 

 

 

Corresponding author: 

Raffaella Rastaldo, PhD 

Department of Clinical and Biological Sciences 

University of Turin 

Regione Gonzole 10, 10043 Orbassano (TO) - Italy 

e-mail: raffaella.rastaldo@unito.it 

Phone number: +39 011 6705426 

Fax number: +39 011 9038639 

 

 

 

Abstract 
Apelin is an endogenous peptide acting on the APJ receptor. It consists of several isoforms characterised by 

different numbers of aminoacids. The number of aminoacids in the active isoforms range from 36 to 12. Apelin-

13 and, to a lesser extent, apelin-36 are  considered the most active isoforms with the greatest activity on the 

cardiovascular homeostasis. The effects normally exerted by the basal level of endogenous apelin, can be 

enhanced not only by its up-regulation, but may also by its exogenous administration. 

The present review considers the effects of apelin on various aspects of the cardiovascular function, such as 

cardiac development, vasomotor tone, angiogenesis, myocardial inotropy in healthy and failing hearts as well as 

the prevention of ischemia-reperfusion injury, cardiac fibrosis and remodeling. Also the biphasic changes of 

apelin level during the evolution of heart failure are considered. Although the positive inotropic effect exerted by 

apelin in normal and failing hearts would suggest the use of this peptide in the treatment of heart failure, the 

limited duration and extent of its effect do not support this possibility, unless a long lasting (6 hours) infusion is 

performed to overcome the limit of its short life. However, although the data on the characteristics of the 

inotropic activity do not provide a strong support for the treatment of active heart failure, apelin may be used in 

the prevention of heart failure because of its activity in limiting the consequences of myocardial ischemia such as 

infarct size and cardiac remodeling. 

 

Keywords 
Apelin/APJ system, heart failure, ischemia-reperfusion injury, contractility, cardiac protection, Renin-

angiotensin system 

mailto:raffaella.rastaldo@unito.it


 

2 
 

The apelin/APJ system 
Apelin 
In 1998 Tatemoto et al. discovered the endogenous peptide capable of binding the G protein-coupled receptor 

(GPCR) APJ [1,2], which at that time was considered an orphan receptor becaue its ligand was unknown. The 

just discovered ligand was called, apelin e.g APj Endogenous LIgaNd. Apelin is expressed in hearts, lungs, 

kidneys, liver, adipose tissue, gastrointestinal tract, brain, adrenal glands, endothelium, and human plasma. 

The gene of apelin is located on chromosome X [3] and encodes a 77 aminoacid sequence called pre-pro-apelin 

[4]. Upon cleavage by a family of endopeptidases, pre-pro-apelin generates several C-terminal fragments of 

various size, which are classified on the basis of the number of aminoacids. The active isoforms range from 36 to 

12 aminoacids. As fragments shorter than 12 aminoacids are biologically inactive, it appears evident that the C-

terminal 12 aminoacids are essential for receptor binding, whereas the N-terminal sequence modulates the 

interaction with the receptor [5]. 

At present it is recognized that, although different isoforms display similar functions, active isoforms differ in 

tissue distribution, potency and receptor binding affinity [6]. Apelin-13 and, to a lesser extent, apelin-36 have 

been considered the most active isoforms with the greatest activity on the cardiovascular apparatus [7,4]. 

Recently it has been demonstrated that, the predominant isoforms in the heart are apelin-13 and its post-

transcriptionally modified form, pyroglutamyl apelin-13 ((pyr)apelin-13), which is obtained from apelin-13 by 

enzymatic conversion of the N-terminal glutamate residue into pyroglutamate, while apelin-36 is predominant in 

lung, testis and uterus [6,8]. 

Immunocytochemistry analysis of human hearts revealed that apelin is expressed in cardiomyocytes and in the 

vascular and endocardial endothelium [9,10]. Sartans are a group of hypotensive drugs reported to increase the 

expression of apelin [11]. 

The heart, especially atria, and adipose tissue are the predominant sources of plasma apelin in humans [12,8,6]. 

Apelin-17 and (pyr)apelin-13 have been considered the major isoforms present in human and rat plasma [13,14]. 

A large variability in plasma apelin concentration has been attributed to low specificity of the analysis 

procedures [6]. Recently, mass spectrometry analysis revealed that (pyr)apelin-13 is the major isoform present in 

healthy human plasma, with concentrations ranging 7.7-23.3 pg/ml [6].  

Plasma half-life of apelin-13 and apelin-36 does not exceed 8 min [15]. The instability of apelin in plasma is 

attributed to its rapid degradation by endogenous circulating proteases [6]. Among the various isoforms, 

(pyr)apelin-13 is the most stable, perhaps because its cleavage is protected by the pyroglutamic acid residue 

located at the N-terminal [6]. 

 

The APJ receptor 
The gene of the apelin receptor, APJ, was discovered before its ligand in 1993 and was mapped to chromosome 

11 [1]. APJ is a 377 aminoacid Gi protein-coupled receptor with a 7 transmembrane domain, which was cloned 

from genomic human DNA [1]. The aminoacid sequences of APJ are well conserved in rats and humans [16]. 

Unlike its ligand, APJ occurs not only in human cardiomyocytes and endothelial cells, but also in vascular 

smooth muscle cells (VSMCs) [9]. At the subcellular level, APJ is localized in the T tubules and intercalated 

discs [17]. 

The availability of mice lacking either the ligand or the receptor helps to study the effects of alterations of the 

endogenous apelin-APJ signaling system. While apelin-deficient mice are viable, fertile and show normal 

development, APJ-deficient mice display cardiovascular development defects, suggesting the possibility of 

undiscovered APJ ligands or ligand-independent effects of APJ [18]. An example of such APJ ligand is the 

ELABELA hormone, which is involved in heart development [19,20] while a ligand-independent effect might 

consist in the initiation of cardiac hypertrophy in response to stretch [21]. 

 

General activity of the apelin-APJ system on cardiovascular homeostasis 
Since the early studies on its effects on cardiovascular activity, the acute administration of apelin has been 

reported to reduce the vasomotor tone with increases in heart rate and myocardial contractility with a trend 

towards an increase in preload recruitable stroke work [22-24]. Apelin-induced vasodilation leads to a reduction 

of mean filling pressure, which in turn causes a decrease of preload and afterload. The acute administration of 

apelin may affect the left ventricular performance in one of the following ways: a) reduction of blood pressure, 

stroke volume and cardiac output at unchanged dP/dT despite increased contractility and heart rate [24], or b) a 

significant increase in stroke volume, Pmax and dP/dT [25]. Moreover, the vasodilatation-dependent reduction of 

afterload can result in a reduction of cardiac work with increased cardiac efficiency. 

When apelin was infused chronically over two weeks, the changes in blood pressure and heart rate observed with 

acute administration did not occur, whereas the increase in contractility led to increased stroke volume and 

cardiac output [24]. The occurrence of myocardial hypertrophy was not induced by neither type of apelin 

administration. 
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Apelin/APJ system vs renin-angiotensin system (RAS) 
Note-worthy the aminoacidic compositions of pre-pro-apelin and APJ are similar to those of angiotensin (Ang) II 

and angiotensin II type 1 receptor (AT1R) respectively [3,1,2]. Although APJ shares a 40-50% identity with 

AT1R in the hydrophobic transmembrane region [1,2], the downstream effect of the two receptors is different. 

Ang II and apelin do not bind to APJ and AT1R respectively [1,2]. 

Angiotensin II is implicated in various cardiovascular diseases [26,27]. The apelin/APJ system acts as a counter-

regulator of the renin-angiotensin system (RAS), in which a central role is played by Ang II. Two signalling 

mechanisms are involved in this antagonism: 1) the interaction between AT1 and APJ modulates the function of 

these receptors [28], and 2) the negative regulation of RAS by angiotensin-converting enzyme 2 (ACE2), a 

homologue of angiotensin converting enzyme (ACE) [29,30]. [24,25].  

AT1Rs mediate major cardiovascular effects of Ang II, as induction of hypertension, myocardial hypertrophy 

and fibrosis. The binding of Ang II to its receptors is known to result in increased vasopressin secretion with 

relevant unwanted effects on the cardiovascular system [31]. Usually APJ and AT1R are co-expressed in various 

cardiovascular tissues [28]. Due to their co-expression, the two GPCRs may form an heterodimer which can be 

enhanced by apelin [32,28]. Apelin-13 binding to APJ forces allosteric formation of a heterodimer composed by 

APJ and AT1R in a dose-dependent manner. Upon formation of this heterodimer, the AT1R affinity for Ang II 

decreases markedly, thereby attenuating RAS. Interestingly, the reverse is not true, and AT1R binding to Ang II 

does not suppress the apelin-APJ axis. As a note of caution, the two techniques that have been used to assess this 

reciprocal effect, bioluminescence resonance energy transfer (BRET) and competitive binding assay, did not 

provide exactly convergent results, and this important point needs be further investigated by alternative, 

independent approaches [28]. By contrast, it has been proposed that inactivated APJ can form heterodimers with 

AT1 which suppresses RAS signalling. This inhibitory effect is reduced by the binding of apelin to APJ [33]. In 

addition to the modulation on AT1R signalling, apelin counteracts RAS by up-regulating ACE2 expression via 

APJ (Fig. 1). Unlike ACE, ACE2 is a negative regulator of RAS because it is responsible for the conversion of 

Ang II to Ang 1-7. The importance of apelin in ACE2 activation results from the observation that the latter is 

downregulated in apelin-deficient mice [30]. However, treatment with Ang 1-7 limits myocardial dysfunction, 

hypertrophy and fibrosis [30,34], as well as endothelial dysfunction [35]. Thus, it was thought that the axis 

apelin-ACE2-Ang 1-7 represents a signalling protective pathway and that angiotensin 1-7 does not simply 

indicate Ang II removal, but it also displays a therapeutic effect via its own G-protein coupled receptor, Mas, 

associated with cardiac protective responses [30]. 

ACE2 counteracts RAS also by transforming Ang I into Ang 1-9 by the hydrolysis of the carboxy terminal 

leucine [36,37] (Fig. 1). In turn, Ang 1-9 can be converted to Ang 1-7 by ACE [36]. Angiotensin 1-9 exerts 

beneficial effects on the heart, which consist in reduction of blood pressure, improvement of endothelial function 

and limitation of hypertrophy and fibrosis [38]. It has been suggested that these beneficial effects of Ang 1-9 can 

be achieved via angiotensin II type 2 receptor (AT2R), independently of its conversion to Ang 1-7 [38,39]. 

In addition to the favorable activity on cardiac dysfunction, ACE2 was reported to play a role in the hydrolysis 

of a large number of peptides, including apelin-13 and apelin-36, which are thus degraded to ineffective forms 

[40]. So far, ACE2 has been considered the only enzyme able to cleave the C-terminal residue [40]. However, 

plasma apelin instability has been attributed to its rapid degradation carried out by endogenous circulating 

proteases [6]. 

The antagonism of apelin towards RAS indicates that the former displays an important protective effect against 

cardiac remodelling after myocardial infarction (MI). As it will be discussed later in the present review, the 

treatment with apelin immediately after an ischemic insult can attenuate the injury during early reperfusion [41]. 

Thus, the fact that apelin can limit the immediate and delayed consequences of myocardial ischemia underscores 

its possible role the treatment of coronary artery disease. 

 

Regulation of cardiovascular development and repair 
The involvement of apelin in cardiac development was first identified in the frog [42]. Later on the effect of 

apelin on the differentiation of embryonic stem cells (ESCs) along cardiac lineage was studied in mice and 

humans [43]. More than one half of APJ-null mouse embryos die in utero due to cardiovascular developmental 

defects that range from impaired maturation of yolk sac and embryo vasculature to aberrantly formed right 

ventricles and defective atrio-ventricular cushion formation [44].It was also observed that apelin, if combined 

with mesodermal differentiation factors, not only increases the percentage of contractile embryonic bodies 

derived from ESCs, but also up-regulates various specific markers of differentiation into cardiomyocytes [43]. 

Apelin is also required for normal vascular development. In frogs and mice, APJ expression was detected in the 

endothelium of primary blood vessels and newly forming hearts [45-48]. Moreover during angiogenesis apelin is 

involved in the adaptation of blood vessel size to the tissue demand for oxygen and nutrients in mouse embryos. 

In mice, the formation of retinal vessels during the foetal period and the first two postnatal weeks is 

characterized by a transient up-regulation of apelin/APJ mRNAs in retinal endothelial cells [49,45,50]. This 
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intervention of the apelin/APJ system was confirmed in apelin-null mice, in which the impairment of retinal 

vascularization in the early postnatal period was detected [51]. 

In vitro studies confirmed the role of apelin in vascular development. Apelin promotes proliferation, migration 

and capillary-like formation of retinal endothelial RF/6A cell line with high expression of apelin and APJ 

transcripts [51]. Identical effects were also produced by apelin-13 in myocardial microvascular endothelial 

cells[52]. 

In addition to cardiovascular development, apelin contributes to the post-ischemic vascular regeneration. In 

mouse ischemic hind limbs, transgenic apelin overexpression together, with vascular endothelial growth factor 

(VEGF), promotes the development of relatively large non-leaky vessels. This does not necessarily mean that a 

synergy between apelin and VEGF is required for any apelin activity, because this peptide is known to prevent 

the pro-oedemigenic hyper-permeability by inhibiting VEGF effect [53]. On the other hand, a reduction in 

capillary density and vessel integrity was observed in the heart of apelin-knockout mice after MI [54]. 

 

Molecular mechanisms. Myocyte enhancer factor 2 (MEF2) plays a role in cardiac development [55,56] 

and activated by G13 protein [44]. While in mice apelin administration or APJ overexpression increase class II 

histone deacetylases (HDAC) phosphorylation and translocation from nucleus to cytoplasm, in APJ-null animals 

not only the response is abrogated, but the phosphorylation of HDAC is reduced even in baseline conditions. The 

response is also abrogated in human umbilical vein endothelial cell (HUVEC) by knockdown of G13 protein 

[44]. Taken together, these data indicate that the apelin/APJ system regulates cardiac development via a G13-

HDAC-MEF2 cascade. In zebrafish a role in cardiac development has also been attributed to ELABELA, the 

newly discovered hormone acting as a second ligand of APJ receptors [19,20]. 

Since apelin induces endothelial nitric oxide synthase (eNOS) phosphorylation in endothelial cells and nitric 

oxide (NO) participates to the process of angiogenesis [57,58], the role of apelin in vessel formation is expected 

to be mediated by NO. 

It was observed that apelin stimulates angiogenesis in myocardial microvascular endothelial cells via Thr-172 

phosphorylation of AMP-activated protein kinase (AMPK) and via Ser-1179 phosphorylation of eNOS [52]. The 

pro-angiogenic effect was abolished by compound C, inhibitor of AMPK, and LY294002, inhibitor of 

phosphoinositide 3-kinase (PI3K), indicating that apelin promotes angiogenesis through the AMPK and 

Akt/eNOS signaling pathways [52]. Interestingly, apelin induces proliferation in HUVEC only after the up-

regulation of APJ level by VEGF [59]. However, the pro-angiogenic effect of apelin is independent of growth 

factors [45,46]. 

 

Vasomotor tone 
Earlier studies on the cardiovascular activity of apelin revealed its vasodilator and hypotensive effects 

[3,2,60,15]. Initially, the intravenous injection of apelin in the rat at the dose of 1-2 g/300 g reduced systolic 

and diastolic blood pressure by 10-13% [3]. In another study in the rat, doses of 10 nmol/kg of apelin-12, apelin-

13 and apelin-36 given separately decreased arterial blood pressure by 26, 11 and 5 mmHg, respectively, i.e. 

inversely proportional to the molecular weight of the administered compounds [2]. In the rat, the hypotensive 

effect lasted only a few minutes (2 –3 min) [3,22]. In APJ-deficient mice, basal blood pressure was found to be 

equivalent to that of wild-type mice [60] suggesting, the presence of endogenous apelin plays a poor, if any, role 

in the regulation of basal blood pressure. Exogenous apelin, which transiently reduced blood pressure not only in 

wild type mice, but also in spontaneously hypertensive rats, was ineffective in APJ-deficient mice [60], so that 

the role of APJ in the hypotensive response was underlined. 

Hypotension is responsible for a reduction of the baroreceptor stimulation with decrease of the vagal and 

increase of the sympathetic tones. Tachycardia is a result of these changes in the autonomic activity. In the rat, 

blood pressure reduction is accompanied by a transient (3 - 4 min) increase in heart rate [3]. Such increase has 

been attributed to enhanced sympathetic discharge rather than to reduced vagal tone, which is low in this species. 

In fact, apelin injection was followed by a decrease in both arterial and venous filling pressures without changes 

in heart rate, if the sympathetic ganglia had previously been blocked with mecamylamine [23]. The reduction in 

the overall vascular filling pressure shows that apelin-induced vasodilatation is almost simultaneously extended 

to systemic arteries and veins. However, there is a limit to homogeneous distribution of the vasodilatation 

throughout the entire vascular system. In fact, intravenous bolus injections of apelin in the dog reduces pressure 

in the systemic circulation but not in the pulmonary vascular bed [61]. Hypotension is not the unique response to 

the administration of apelin in vivo. Intravenous injections of 20 and 50 nmol of (pyr)apelin-13 induces dose-

dependent increases in arterial pressure and heart rate in conscious rats [62]. 

The presence of endothelium seems to be necessary for the vasodilator effect of apelin. In fact, in human 

mammary arteries and saphenous veins, apelin reverses its effect into vasoconstriction after removal of the 

endothelium [63]. This latter effect can contribute to the hypertension observed in endothelial dysfunction 

[64,65]. However, the absence of vasoconstriction when the denuded rat portal vein was treated with the peptide 

is intriguing [66]. The discrepancy between the behaviors of portal and saphenous veins may be attributed to 
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differences in type of vessels and in species. Due to the dysfunctional endothelium and the marked increase of 

apelin in their plaques, the human isolated atherosclerotic coronary arteries easily undergo vasoconstriction [67]. 

 

Molecular mechanisms. The hypotensive effect of apelin is mediated by endothelium-derived NO. It was 

not observed in mice [60] and humans [15] after eNOS inhibition or in mice when it was injected in APJ-

deficient animals [60]. These findings confirm the intervention of APJ in the phosphorylation of eNOS and 

production of NO, the latter exerting its well known relaxing effect on the vascular musculature. In brief, after 

binding to APJ on endothelial cells, apelin induces phosphorylation of eNOS via PI3K/Akt activation [68]. The 

endothelium-derived NO diffuses into the VSMCs where it displays its well known vasodilator effect via cyclic 

guanosine monophosphate (cGMP)-protein kinase G (PKG) pathway. The consequent increase in cGMP level 

activates PKG which induces the re-uptake of calcium by the sarcoplasmic reticulum (SR) via 

sarco/endoplasmatic reticulum calcium ATPase (SERCA) activation. PKG also favors dephosphorylation of 

myosin light chains which is responsible for a reduction in number of the cross bridges [69-71]. 

In the absence of a functional endothelium, apelin binds to APJ of VSMCs causing their contraction. The 

pathway leading to apelin-induced constriction of denuded vessels was studied in rat VSMCs and in isolated 

thoracic aorta after endothelium removal [72]. The binding of apelin to APJ of VSMCs causes phospholipase C 

(PLC) activation with production of inositol 1,4,5 phosphate (IP3) and diacylglycerol (DAG). These mediators 

lead to contraction via an increase in intracellular Ca
2+

 concentration and a phosphorylation of myosin light 

chains (MLC) [72]. 

The increase in cellular calcium level is attributed to the opening of IP3 receptor-channels (IP3R) of SR and then 

to Ca
2+

-induced Ca
2+ 

release from ryanodine receptor-channels (RyR) [69]. Also DAG contributes to the increase 

Ca
2+

 level via protein kinase C (PKC) mediated activation of sarcolemmal Na
+
/H

+
 (NHE) and reverse mode 

Na
+
/Ca

2+ 
(NCH) exchangers [69,72]. As it was seen in VSMCs obtained from isolated rat middle cerebral 

arteries, Ca
2+

 concentration may also increase in response to an apelin-induced inhibition of Ca
2+-

activated K
+
 

channels and the consequent increase in the activity of voltage-dependent L-type Ca
2+ 

channels [73]. Finally, 

apelin also inhibits of MLC-phosphatase activity thus inducing a further increase in the phosphorylation of MLC 

[72]. 

 

Inotropic effect 
Apelin is reported to potentiate myocardial inotropy in isolated preparations and intact animals 

[74,24,8,25,17,75,41,69]. For this reason it has been suggested as a tool for the treatment of heart failure (HF) 

[76,70,24,67,77,78]. However, the results of various investigations arise some doubts about this proposal. 

In isolated perfused rat hearts, infusion of apelin-16 produced a progressive dose-dependent (from 1 pM to 10 

nM) increase in developed tension which reached its peak (69%) in 24 min [74]. On the contrary, in similar rat 

heart preparations, a 20 min apelin-13 infusion (500 nM) produced an immediate increase by about 18% in 

developed pressure, which was back to the control 3 min later only [41]. These data are consisted with what 

observed in trabeculae, where apelin-12 induced a transient (1 - 2 min) increase in developed force by about 

7,4% [79]. A short lasting inotropic effect was also seen in isolated adult rat cardiomyocytes, where the 

sarcomere shortening increased for 1 – 2 min only in response to apelin-16 superfusion (1-10 nM) and returned 

to the control before the superfusion was discontinued [17]. 

The different duration of the effect does not seem to be depend on the different isoforms, because (pyr)apelin-13, 

apelin-13 and apelin-36 show comparable potency and efficacy in inducing positive inotropic effect [8,75]. On 

the other hand the importance of different procedures of contractility assessment cannot be disregarded. 

The inotropic effect carried out by apelin is not always accompanied by similar haemodynamic effects. In 

anesthetized mice, increases in contractility were observed, either when 100 nM apelin was infused acutely via 

the internal jugular vein at 5 μl/min for 20 min, or when apelin was infused chronically at 2 mg/kg/day with a 

subcutaneous scruff minipump and hemodynamic measurements were performed after 7 and 14 days of 

treatment [24]. The inotropic effect was revealed by the changes in the slope and intercept of the end-systolic 

pressure-volume relationship after apelin administration. Interestingly, in these animals the acute apelin 

administration was not followed by increases in stroke volume, cardiac output and systolic pressure, i.e by the 

changes that one would expect because of the enhanced contractility [24]. The apparent contradiction between 

increased contractility and unchanged stroke volume and systolic pressure may be attributed to decreases in 

preload resulting from apelin-induced venous dilatation. It cannot be excluded that, in the absence of anesthesia 

which impairs the sympathetic tone, vasodilatation would have been replaced by vasoconstriction, paralleled by 

an increase in pressure, as reported by Kagiyama and his co-workers [62]. It is evident that the uncertainty of the 

hemodynamic changes compromises the possibility to treat heart failure with apelin.  

Unlike what obtained with acute administration, mice heart showed significant increases in cardiac output and 

circumferential shortening after 14 days of apelin chronic administration [24]. In spite of the long treatment with 

apelin, no cardiac hypertrophy was observed. These results of the chronic administration suggested the 

possibility of a therapeutic use of the peptide in the failing heart, which in fact was seen to exhibit improvements 
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of contractility in response to apelin infusion (0.01 g/min for 20 min) performed 6 weeks after ligation of the 

left descending coronary artery [25]. It may be argued that the reduction in filling pressure after acute 

administration was curtailed with time in chronically repeated infusions [74]. This hypothesis seems to be 

confirmed by experiments performed ex vivo or in vitro, i.e. in the absence of any variable distension force. In 

these experiments, force development increased after apelin in trabeculae of the failing right ventricle of the rat 

[79] and in cardiomyocytes from chronic post-ischemic rat heart [17]. It is note-worthy that in both preparations 

the inotropic effect was stronger in failing than in healthy hearts, so that various authors support the hypothesis 

that apelin should contribute to the treatment of patients with heart failure . 

 

Molecular mechanisms. Usually a positive inotropic effect is attributed to an increase in intracellular 

calcium level. Activations of L type Ca
2+

 current or of NHE and reverse mode NCE exchangers are considered 

responsible for such an increase [80-83,74]. However, the mode of action of apelin on myocardial calcium 

movement is a matter of debate. 

Szokodi and his coworkers demonstrated that apelin does not modulate L-type Ca
2+

 current in isolated adult rat 

cardiomyocytes. Since in isolated rat hearts the separated inhibition of PLC, PKC, NHE and reverse mode NCE 

limited the increase in myocardial inotropy, they attributed the improvement of contractility to the activation of 

these factors [74]. Thus, they proposed that DAG, obtained from phosphoinositide hydrolysis by PLC, is 

responsible for the activation of NHE via PKC. The resulting increases in intracellular Na
+
 concentration lead to 

an increase in intracellular Ca
2+

 level via the reverse mode of NCE [74] (Fig. 2). The involvement of NHE and 

NCE in the inotropic activity of apelin has been confirmed by Wang et al. [84] who also demonstrated that 

apelin increases the SERCA-regulated re-uptake of Ca
2+

 into the SR in a PKC-dependent manner, thus adding 

the lusitropic effect to the inotropic one. Independently of the way by which apelin induces the entrance of Ca
2+ 

into the cell, it can be argued that the initial increase in calcium level can also take place via the Ca
2+

-induced 

Ca
2+

 release through the opening of RyR of SR. Moreover, a release of Ca
2+

 from SR also results from the 

activation of IP3R by IP3, which results from phosphoinositide hydrolysis [69]. 

Since the apelin-induced increase in contractility was not totally abolished by the blockade of the two 

exchangers, the authors suggested the possibility that an increase in troponin C affinity for Ca
2+

 or in the cyclin 

rate of actomyosin cross-bridges could contribute to the inotropic effect [74] (Fig. 3). 

An increased myofilament sensitivity to Ca2+ in the absence of any change in Ca
2+

 level was later attributed to 

the alkalinization of sarcoplasm following the loss of H
+
 because of an increased NHE activity. This hypothesis 

found support when measurements of the sarcomere shortening in isolated cardiomyocytes showed that the 

positive inotropic effect was not accompanied by any increase in Ca
2+

 concentration [17,85]. 

Recently, Perjés et al. [75] demonstrated that the raises in myofilament Ca
2+

 sensitivity and cross-bridge kinetics 

is due to the phosphorylation of regulatory myosin light chain (RMLC) via myosin light chain kinase (MLCK) 

(Fig. 3). The inotropic response was suppressed by the inhibition of the parallel PKCε and mitogen-activated 

protein kinase kinase (MEK) – extracellular signal-regulated kinases 1/2 (ERK 1/2) pathways. Although cardiac 

MLCK and RMLC have been proposed as potential downstream targets of PKC , the real cascade leading to 

MLCK is still elusive. 

Finally, although low concentrations of nitric oxide can increase the force of contraction [86,87], NOS inhibition 

has not been seen to alter the apelin-induced increase in contractility [74]. 

 

Apelin in heart failure 
In HF, apelin and AJP expressions vary in a biphasic mode, i.e they are unchanged or upregulated if HF is 

compensated, while they are downregulated if HF is decompensated [77,70]. In particular, in the rat the elevation 

of apelin gene expression in vivo was seen to take place within 24 hours after MI, when an increased apelin 

release contributes to compensate the sudden HF [76]. Consistently, apelin deficiency in humans worsens the 

damage of ischemia-reperfusion (I/R), included extension of infarct size, related inflammation and mortality 

[54]. Taken together, these data indicate that, whereas apelin/APJ expression increases in response to 

pathological stimuli, its deficiency worsens the effects of these stimuli. 

Apelin production falls when HF becomes chronic or more severe [76]. An example of this fall is the reduction 

of the myocardial level of apelin observed in the dog with an advanced HF induced with microembolization of a 

coronary artery [78]. The biphasic changes in apelin release are in line with the general opinion that in the early 

stages of HF, factors activating the force of contraction, as e.g. enhanced sympathetic activity, can improve the 

cardiac function, while later they become progressively maladaptive and lead to a worsening of the cardiac 

conditions. 

In apparent contrast with the above results, in humans it was seen that left ventricular apelin mRNA did not 

decrease, but increased in the last stage of chronic HF secondary to coronary disease or idiopathic dilated 

cardiomyopathy [12]. Such increase was not observed in atria, which are the main source of cardiac-generated 

apelin in normal conditions and was accompanied by reduction in ventricular APJ mRNA level. Moreover, in 

spite of the elevated ventricular apelin expression, apelin-like immunoreactivity was remarkably reduced in 
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plasma. Thus, the overall scenario is in favor of a reduced rather than an increased apelin activity. In the absence 

of any change in apelin level, a reduction in density of APJ receptors was observed in another investigation on 

chronically failing human left ventricles [67]. Although the authors argued that this reduction might contribute to 

the contractile dysfunction, it may represent a protective limitation of the cardiac responsiveness to the inotropic 

effect of apelin. 

A decreased of apelin content in plasma, as well as in atrial and ventricular myocardium, may be obtained in rats 

with heart failure produced with repeated high doses of isoproterenol [88]. In this model, the heart failure is 

significantly improved by apelin administration.  

 

Molecular mechanisms. Myocardial ischemia by coronary disease, together with post-infarction 

remodelling, is considered the most frequent cause of HF [89,54]. The increase in apelin expression in response 

to acute hypoxia is mediated by hypoxia-inducible factor-1 (HIF-1) [76]. In fact, hypoxia has been found to be 

responsible for HIF-1 stabilization and nuclear translocation resulting in a 27-fold increase in apelin RNA level 

[76]. It may then be argued that also when a HF is the results of a chronic coronary artery disease, HIF-1 

mediates apelin production during the first phase of the failure. 

The mechanisms of the positive inotropic activity displayed by apelin in HF are considered to be the same that 

improve the contractility of normal hearts, via the intervention of NHE and NCE [17]. Moreover, also the 

antagonizing effect of apelin/APJ system on RAS might be a support to the beneficial effect. Conversely, in the 

late phase of failure an increased RAS activation would be responsible for the reduction of apelin expression 

[70]. 

 

Apelin in myocardial protection 
Protection against ischemia-reperfusion injury 
Heart may be protected against I/R injury by ischemic pre- (PreC) or postconditioning (PostC). While PreC is 

performed with brief (2 - 2.5 min) coronary occlusions 5 – 10 min before a heavy ischemic challenge, PostC is 

obtained with even shorter (seconds) occlusions, starting a few seconds after the end of the ischemia. The largest 

part of the reperfusion injury occurs in the first minutes after the end of the ischemia in the correspondence of 

ROS burst [90,91]. Consequently, the first minutes of reperfusion are a good window for the PostC 

interventions. However this is not a strict limit, because sometimes the infarct size may increase for 2-12 hours 

during reperfusion after ischemia in the rat heart [92]. 

In the isolated rat heart, the size of a MI caused by 35 min of occlusion of the left main coronary artery was 

significantly reduced if an 8 M exogenous apelin solution was infused for 20 min starting 5 min before the 

onset of reperfusion [93]. On the contrary, it remained unchanged if the infusion started 5 min before the onset of 

reperfusion and ended before removing the occlusion, suggesting that apelin mimics PostC rather than PreC. The 

hypothesis was confirmed by Rastaldo et al. [41], in Langendorff isolated rat heart preparation perfused with 0.5 

M apelin-13 buffer for 20 min before or after the end of a 30 min global ischemia. While no protection was 

seen when apelin was given before ischemia, significant reductions of infarct size and improvement of post-

ischemic mechanical recovery were obtained when apelin was given at the beginning of reperfusion. It is likely 

that the ineffectiveness of apelin before ischemia is due to its short half life [15] which does not allow the 

peptide to reach the level required for protection at the onset of reperfusion. 

The expression of endogenous apelin mRNA was significantly increased at the end of ischemia and returned to 

control value after 60 min of reperfusion [93]. By contrast, the expression of APJ mRNA was unchanged at the 

end of ischemia [41,93]. These data confirm that apelin mimics PostC rather than PreC and that an endogenous 

production of apelin during ischemia might represent a process of myocardial self-protection. The fact that the 

increased expression of apelin mRNA was no longer present after 60 min of reperfusion is not in contrast with 

this opinion, because it is accepted that usually most of I/R injury takes place during the first minutes after the 

end of ischemia. 

In mouse hearts, a reduction in IS occurred to a greater extent with apelin-13 and to a lesser extent with apelin-

36 [4]. A similar reduction was also seen in mouse in vivo with occlusion of the left descending coronary artery, 

and the administration of apelin-13 an apelin-36 [4]. In this model the administration of apelin-13 resulted in a 

transient initial well evident recovery of mean arterial pressure, which however did not exceed the value 

recorded before the onset of ischemia. Since the effect of apelin on the resistance and capacitance vessels is 

dilatory, the pressure increase should be solely attributed to the increase of cardiac performance. It is intriguing 

that such increase was not observed with apelin-36 [4]. The cardioprotective effect against I/R in in vivo rat 

model was also obtained by apelin-12 administration [94]. 

I/R-induced myocardial dysfunction consists in an increase of left ventricle diastolic pressure (i.e. contracture) 

accompanied by reduction of systolic and developed pressures. In isolated perfused rat hearts, Zeng et al. [95] 

observed that after 40 min of global ischemia and 30 min of reperfusion, the mechanical performance was highly 

ameliorated if 30 pM apelin was infused throughout the entire experimental period. 
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From the above data, apelin protection against I/R injury clearly consists in reduction of the infarct size and 

improvement of the post-ischemic mechanical recovery. However, it remains unclear whether the improved 

mechanical recovery is simply the consequence of the reduction of the infarct size or it is also due to the direct 

inotropic effect of apelin. In Langendorff rat heart preparations [41], the improvement of post-ischemic 

mechanical recovery took the developed pressure back to almost the value recorded before ischemia, where it 

remained throughout the entire period of reperfusion. Since when apelin was infusion before ischemia, only a 

slight and brief increase in developed pressure was obtained [41], the hypothesis that a direct inotropic effect of 

apelin contributed to post-ischemic mechanical recovery must be refused. 

 

Molecular mechanisms. Apelin protects the heart against I/R injury via either a NO-dependent or a NO-

independent pathway, which are both components of the Reperfusion Injury Salvage Kinase (RISK) cascade. 

NO-dependent pathway begins with the activation of PI3K-Akt system which is responsible for the activation of 

eNOS. In fact, in in vivo mice with LAD occlusion, the inhibition of PI3K with LY294002 abolished apelin-

induced reduction of the infarct size [4]. The role of PI3K was confirmed by the observation that the protection 

was accompanied by enhanced Akt phosphorylation in mice isolated hearts during reperfusion after global 

ischemia [96] and in neonatal rat cardiomyocytes during reoxygenation after hypoxia [95]. Moreover, the 

blockade of NOS prevented the protective effect of apelin-13 in the rat [41]. 

In a study no impairment of apelin-induced cardioprotection was observed in isolated rat hearts after inhibition 

of PI3K [93].This finding is consistent with the possibility that apelin leads to myocardial protection also via a 

NO-independent pathway. In fact, phosphorylation of ERK 1/2 and the effect of its blockade [4] suggest that a 

relevant NO-independent cascade elicited by G-protein activation is responsible for the apelin protective activity 

via the downstream regulation of Bax/Bad pro-apoptotic proteins [97]. Both these protective pathways prevent 

the opening of mitochondrial permeability transition pore (mPTP) which is considered the key factor of I/R 

injury. In contrast, no data are available on the role of the Survivor Activating Factor Enhancement (SAFE) 

pathway in apelin-induced myocardial protection.  

 

Protection against apoptosis 
Apoptosis, a complex process of programmed cell death, occurs in all multicellular organisms. Although still 

debated whether apoptosis represents a protective or an aggressive phenotype, it is likely that attenuation of 

apoptosis in organs with low regenerative potential, such as the myocardium, is protective. In I/R injury and in 

dilated cardiomyopathy, apoptosis may also be triggered by the accumulation of unfolded or misfolded proteins 

in the endoplasmic reticulum (ER), or ER stress [98,92]. 

Earlier observations obtained in mouse osteoblastic MC3T3-E1 cells show that apelin suppresses apoptosis 

induced by serum deprivation [99]. Later it was demonstrated that the anti-apoptotic effect of apelin concerns 

olso the cardiovascular system [92,95]. In in vivo rat hearts exposed to 30 min of ischemia followed by 

reperfusion, the activation of ER stress-dependent apoptosis was attenuated by the administration of 1 μg/kg 

apelin [92].Similar results were found in Langendorff isolated hearts of the same spieces. Although in 

reperfusion APJ is over-expressed at both mRNA and protein levels (by 7-fold and 35%) during I/R, pre-

administration of 30 pmol/L apelin reduces apoptosis thereby ameliorating heart function, in conjunction with 

reduced generation of reactive oxygen species [95]. 

Patients with pulmonary artery hypertension have lower levels of plasma apelin and decreased apelin expression 

in pulmonary endothelial cells [100]. These apelin-deficient cells are more prone to undergo apoptosis and to 

promote proliferation of pulmonary arterial smooth muscle cells. On the other side, apelin administration can 

reverse pulmonary artery hypertension in mice that show a reduced production of apelin [101]. Furthermore, 

apelin suppresses serum deprivation-induced apoptosis of human VSMCs [102] and of rat bone marrow-derived 

mesenchymal stem cells [103], the latter bearing great promise for ischemic tissue repair, despite their poor 

viability within ischemic tissues. 

Of interest, the apelin/APJ system has positive effects on the apoptotic potential in organs other than the 

cardiovascular system [104-108], further supporting the beneficial systemic effects of this drug. 

 

Molecular mechanisms. In general, the two main pathways of apoptosis regulation include targeting of 

mitochondria functionality (intrinsic pathway), and external signal transduction via adaptor proteins or increased 

intracellular calcium concentration (extrinsic pathway).  

In the latter pathway, PI3K/Akt stimulation plays a pivotal role in the beneficial activity of apelin against 

apoptosis as demonstrated by its impairment by PI3K inhibitor LY294002 [102,109]. Moreover, in mouse 

osteoblastic MC3T3-E1 cells the suppression of serum deprivation-induced apoptosis by apelin is also mediated 

by the activation of c-Jun N-terminal kinase (JNK) pathway [99]. In the case of mesenchymal stem cells, the 

protection from apoptosis is achieved by apelin via the usual PI3K/Akt signaling pathways coupled to the 

inhibition of the mitogen activated protein kinases (MAPK)/ERK 1/2 pathway [103]. 
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In rat hearts, ER stress-dependent apoptosis was attenuated by PI3K/Akt, AMPK and ERK. In particular, using 

specific inhibitors, it was demonstrated that PI3K/Akt and AMPK are reciprocally dependent for their activation 

and exert a stimulating effect on eNOS, while ERK did not show any interaction with the other signals 

suggesting to belong to a NO-independent pathway to apelin-induced protection [92]. It may then be argued that 

NO-dependent and NO-independent pathways concern not only the protection against I/R injury in general, but 

also in the specific outcome that is apoptosis. 

 

Protection against cardiac remodelling 
Cardiac fibrosis and remodelling lead HF to end-stage. The process requires the differentiation of cardiac 

fibroblastS into myofibroblasts and is mediated by transforming growth factor- (TGF-). Experiments were 

performed in vitro and in vivo [110]. In vitro it was demonstrated that pretreatment of mouse fibroblasts with 

apelin prevents TGF- from inducing both the expression of myofibroblast marker -smooth muscle actin (-

SMA) and collagen production [110]. In vivo, it was seen that in mouse remodelling and ventricular dysfunction 

are impaired either if apelin is given before or 2 weeks after aortic banding [110]. 

In high salt loaded Dahl salt-sensitive hypertensive rats, a 7 day intraperitoneal administration of (pyr)apelin-13 

at the dose of 200µg/kg/day suppressed the expression of inflammation factors, such as tumor necrosis factor-α 

and interleukin-1β protein [111], which can induce myocardial fibrosis and remodeling [112]. 

 

Molecular mechanisms. TGF- stimulates the differentiation of fibroblasts into myofibroblasts via the 

intervention of a sphingosine kinase 1 (Sphk 1). Thus, it has been proposed that the reduction of the activity of 

Sphk 1 is the starting point of apelin cascade in protecting the heart against fibrosis and remodelling. Once Sphk 

1 is inhibited, the absence of -SMA expression and of collagen production is consistent with the impossibility 

for fibroblasts to differentiate into myofibroblasts [110]. Moreover, in Dahl salt-sensitive hypertensive rats the 

up-regulation of ACE, AT1R and nuclear factor--B (NF-B) was inhibited by apelin-13 treatment [111]. These 

results confirm the hypothesis that RAS and NF-B can lead to cardiac fibrosis and remodelling [113-115]. 

 

Is apelin a therapeutic tool? 
As the inotropic effect of apelin is well evident in failing hearts, a potential role of exogenous apelin for the 

treatment of HF has been suggested [24,15,29,25,116]. Although based on consolidated opinions including the 

simultaneous reduction of afterload, this point needs careful considerations. 

A limitation to the use of apelin for pharmacological treatment of HF is the short (1 - 2 min) duration of its 

inotropic effect. The short-lasting effect also concerns vasodilatation, i.e. the reduction of afterload which 

otherwise should be expected to ameliorate cardiac efficiency. Thus, effective treatments would require chronic 

administration, consisting in repeated subcutaneous injections or prolonged infusions, because a peptide cannot 

be administered successfully via oral administration. However, the increase in cardiac index that was observed in 

humans with chronic heart failure throughout a six hours infusion of (pyr)apelin-13 suggests that at the moment 

APJ agonism may hold promise to complement the current medical therapies [116]. 

Moreover, in our experiments a modest increase in pressure suggests that apelin is not always one of the 

strongest inotropic compounds as sometimes it has been reported [74,41]. On the other hand, chronic apelin 

administration may be a key factor leading to tumorigenesis [117,118]. Independently of the duration and 

intensity of the effect on contractility, it must be kept in mind that at present the use of inotropic drugs is quite 

limited, because of their poor long term therapeutic effectiveness.  

Rather than contractility, the beneficial effect of apelin mainly concerns myocardial protection against I/R injury, 

post-ischemic remodeling and myocardial fibrosis. The limitation of I/R injury offers the chance to set up a 

pharmacological post-conditioning procedure by intracoronary injection of apelin during post-infarction 

angioplasty. Since I/R may result in a rapid irreversible deterioration of myocardial contractility, apelin 

administration may represent a valid upstream prevention of HF, independently of the short duration of the effect 

of apelin on myocardial contractility. 

Heart failure may be prevented by contrasting myocardial remodeling and fibrosis. The question then arises 

whether this prevention is produced not only by exogenous, but also by endogenous apelin. The production of 

endogenous apelin may be enhanced by sartans, a group of drugs which are used successfully against 

hypertensions [11]. With sartans the risk of an unwanted hypotensive effect must not be disregarded before the 

treatment is undertaken. Studies should be carried on to see whether a well modulated use of these drugs could 

prevent cardiac remodelling, fibrosis and apoptosis by a non-excessive increase of plasma and tissue apelin 

concentration. 

 

Conclusion 
In conclusion, while the chance to treat failing hearts with the inotropic activity of apelin is still doubtful, there is 

the possibility that apelin could curb the onset or progression of a postischemic heart failure. This prevention is 
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the result of the protection against I/R injury, apoptosis, fibrosis and remodelling. As a consequence, the use of 

apelin as exogenous pharmacological intervention appears a promising and worth pursuing preventing tool. 
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Figure captions 
Fig 1 Antagonism between Apelin/APJ system and renin-angiotensin system. ACE angiotensin converting 

enzyme; ACE 2 angiotensin converting enzyme 2; Ang Angiotensin 

 

Fig 2 Apelin-induced increased contractility via calcium-dependent mechanism. PLC phospholipase C; PIP2 

phosphoinositol biphosphate; DAG diacylglycerol; IP3 inositol triphosphate; PKC protein kinase C; NHE 

sodium-hydrogen exchanger; NCE sodium-calcium exchanger; IP3R  inositol triphosphate receptor; RyR 

Ryanodine receptor;  SR sarcoplasmic reticulum 

 

Fig 3 Apelin-induced increased contractility via calcium-independent mechanisms. PLC phospholipase C; PIP2 

phosphoinositol biphosphate; DAG diacylglycerol; IP3 inositol triphosphate; PKC protein kinase C; NHE 

sodium-hydrogen exchanger; MEK 1/2 mitogen-activated protein kinase kinase; ERK 1/2 extracellular signal-

regulated kinases 1/2; MLCK myosin light chain kinase; RMLC regulatory myosin light chain;  
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