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Embodiment, Modalities and Mathematical Affordances 

 

No ideas 

but in things 

– William Carlos Williams 

  

 Mathematics is often considered to be a subject far removed from the mundane; 

Gregory Bateson called it a “rigorous fantasy…forever isolated by its axioms and 

definitions from the possibility of making an indicative statement about the real world” 

(Bateson, 2000, p. 428).  The purpose of this chapter is to consider the nature of 

mathematics from an embodied perspective, in which mathematical ideas are assumed to 

be like other human conceptions, in that they emerge from the interaction between an 

individual and the world and among individuals through time.  An additional aim is to 

examine how mathematical ideas are constructed and expressed, again working from an 

embodied perspective.  Our thesis is that, far from being a lifeless abstraction, 

mathematics is a human cultural creation grounded in physical experience and expressed 

through multiple semiotic and bodily-based modalities.  In this chapter, we examine the 

terms embodiment and multimodality as applied to mathematical thinking, and we 

analyze the affordances and constraints offered by different modalities in doing 

mathematics.   

 Attention to the role of the body in mathematics is consistent with the expanding 

scope of inquiry within the field of mathematics education, which initially investigated 



 

 

mathematics learning more or less at a distance, via surveys and written examinations, 

but later gathered data directly from individual learners (Kilpatrick, 1992).  In recent 

decades, mathematics education experienced a "turn to the social" (Lerman, 2000), in 

which socio-cultural factors, including interaction and discourse, were acknowledged as 

essential.  This was followed by a nascent "turn to the body" (Lakoff & Núñez, 2000), in 

which mathematical ideas, like other forms of cognition, are viewed as the product of 

embodied human existence (Johnson, 2007; Lakoff & Johnson, 1999).   

 From the perspective of embodiment, although mathematics may be socially 

constructed, this construction is not arbitrary or unconstrained, but rather is rooted in and 

shaped by the body (Núñez, Edwards, & Matos, 1999).  The doing and communicating of 

mathematics is never a purely intellectual activity; it involves a wide range of bodily 

actions, from committing inscriptions to paper or typing equations into a computer, to 

speaking, listening, gesturing and gazing.  Each of these different modalities offers a 

different set of potentialities to the person who is doing mathematics.  Thus, the focus of 

this chapter is on the nature of embodiment and multimodality in mathematics, and how 

embodied resources can contribute to mathematical practice. 

Embodied Mathematics 

 The idea that mathematical knowledge arises from experience in the physical 

world is not new.  More than three decades ago, the mathematician and physicist Dirk Jan 

Struik (1986) distinguished between the symbolic forms of mathematics and its origins in 

“the world of experience:” 

Its abstract symbolism can blind us to the relationship it carries to the world of 

experience.  Mathematics, born to this world, practised by members of this world 



 

 

with minds reflecting this world, must capture certain aspects of it—e.g., a 

“number,” expressing correspondences between sets of different objects; or a 

“line,” as the abstract of a rope, a particular type of edge, lane or way.  The 

theorem you discover has not been hauled out of a chimerical world of ideas, but 

is a refined expression of a physical, biological, or societal property. (p. 286) 

Yet, to many immersed in the layers of abstractions of mathematics, it may seem to be 

the least likely domain to claim a connection to the physical world, much less to the 

human body.  After all, David Hilbert famously pointed out the abstract nature of 

mathematics when he said, "One must be able to say at all times – instead of points, 

straight lines, and planes – tables, chairs, and beer mugs" (Hilbert, cited in Reid, 1996, p. 

57), implying that the “objects” of mathematics are but placeholders within an essential 

structure of logical relationships.  In asking how an abstract mathematics is connected to 

the body, however, we may be posing the question the wrong way around.  If we begin 

our analysis with the body instead of with the domain of mathematics, the question then 

becomes:  What kind of mathematics can human beings create, with the kind of bodies, 

minds and brains that we possess?1 In a sense, we already have the answer:  It is the 

mathematics that we, as a species, have created (Lakoff & Núñez, 2000).  But rather than 

starting with the finished (cultural) product and seeking bodily roots, it may be more 

helpful to begin with the body and trace a possible path whereby abstractions like 

mathematics can emerge. 

                                                 
1 This, of course, echoes Warren McCullough’s question in his article “What is a number, 

that a man may know it, and a man, that he may know a number” (General Semantics 

Bulletin Nos. 26 and 27 (1961), 7-18), without, in our case, objectifying number. 



 

 

 Nemirovsky (2003) states that, “mathematical abstractions grow to a large extent 

out of bodily activities having the potential to refer to things and events as well as to be 

self-referential” (p. 103).  Thus, the essential starting place for understanding cognition is 

in its relationship to the body.  An important point to remember is that both evolutionarily 

and developmentally, the mind has evolved to control the body, within specific and ever 

changing external circumstances.  It did not evolve primarily in order to process symbols 

or engage in purely intellectual thought.  Clark (2001) contrasts a view of the mind as a 

processor of symbols (common in “first generation” cognitive science, Gallese & Lakoff, 

2005) with a contemporary embodied view: 

In place of the intellectual engine cogitating in a realm of detailed inner models, 

we confront the embodied, embedded agent acting as an equal partner in adaptive 

responses which draw on the resources of mind, body, and world…The idea here 

is that the brain should not be seen primarily as a locus of inner descriptions of 

external states of affairs; rather, it should be seen as a locus of inner structures 

that act as operators upon the world via their role in determining actions.  (Clark, 

2001, p. 47) 

In other words, the mind is first a controller of bodily action.  Whatever else it may be is 

built on that foundation.  Since bodily action often involves the manipulation of objects 

in the world, including, importantly, the control and manipulation of one’s own body, this 

experience constitutes a universal source domain for constructing many kinds of 

understandings, including mathematical ones.  The significance of our experiences with 

objects as a source domain for mathematical understandings will be discussed next. 

Physical Objects and Mathematical Objects 



 

 

 Our initial human experiences, both developmentally and evolutionarily, are with 

physical objects rather than symbols.  That is, for an infant (or a human being before 

language was “invented”), interaction with the world does not take place through formal, 

conventional symbols, but through things.  The emergence of language and symbols, in 

the individual and the species, occurs only after a sustained period of contact with objects 

via physical actions.  Thus, the “primal” knowledge we gain when we learn to physically 

manipulate objects is available to all human beings (including practitioners of 

mathematics) as they engage with less concrete entities.  Although experience with 

objects as a source domain in mathematics may be difficult to discern, precisely because 

such experience is so ubiquitous, an examination of mathematics discourse and texts 

reveals its influence.  When a teacher tells a student to “carry the 1” or to “integrate the 

function,” he or she is implicitly assuming that the student can think about a number or a 

function as a “thing” that can be acted on.  Even as researchers, we tend to talk about 

mathematical “entities” or “objects,” which, from the point of view of formal 

mathematics is inappropriate, since these “entities” are explicitly stated to be non-

corporeal and their characteristics are based solely on logical properties and definitions 

rather than worldly attributes.  Font and his colleagues discuss the differences between 

physical objects, which are ostensive (i.e., to which one can point, Quine, 1950), and 

mathematical objects, which are not (Font, Godino, Planas, & Acevedo, 2010):  

In mathematical discourse it is considered, whether explicitly or implicitly, that 

mathematical objects exist in a special way (non-ostensive, virtual, ideal, mental, 

abstract, general, etc., depending on the theoretical perspective) that is different 

from the way in which physical objects exist, and which particularly differs from 



 

 

the material symbols that represent them…speaking about the existence of 

mathematical objects, as objects that exist in a form that is different from that of 

their material symbols, is essentially a metaphorical question.  (p. 15) 

Font and his colleagues (Font et al, 2009, 2010) spell out the manner in which teachers, 

learners and mathematicians talk about and “manipulate” non-ostensive mathematical 

entities as if they were things.  This occurs through a metaphor or conceptual mapping 

between the source domain of physical objects and the target domain of mathematical 

entities, a mapping that projects the inferential structure of the source domain onto the 

target domain (Lakoff, 1992).  Thus, we are able to talk about an entire range of 

mathematical “entities” (e.g., sums, integrals, groups) as if they were objects with 

independent existence (rather than socially-shared labels for mentally-constructed 

patterns and structures). 

 Font and colleagues (Font et al., 2009) call this mapping the “Object Metaphor” 

or the “mathematical entities as physical objects” metaphor (p. 15).  Note that this is an 

unconscious conceptual metaphor (or a single scope blend, see Fauconnier & Turner, 

2002).  Undertaking what they call “mathematical idea analysis,” Lakoff and Núñez 

(2000) have identified a wide range of such metaphors within mathematical discourse.  

Not only does the object metaphor show itself in speech and written text, but is also 

found in gesture and imagery.  When discussing various mathematical entities, we may 

point to locations in gesture space, or delineate regions on a piece of paper, actions which 

would not make sense unless we were thinking of these entities as ostensive objects.  The 

object metaphor is a foundational metaphor in mathematical thought and activity, and its 



 

 

pervasiveness (yet “invisibility”) provides an important example of the way that physical 

embodiment is deeply woven into mathematics. 

 Thus, from the perspective of embodiment, our interactions with the world 

involving physical objects provide the input space or source domain for the kind of non-

physical entities we later “create” by proposing and accepting shared definitions in 

mathematics.  Another expression of the object metaphor can be found in the often-

studied cognitive transformation of mathematical actions or processes into so-called 

“objects” (e.g., Dubinsky & Harel, 1992; Sfard, 1994; Tall, Thomas, Davis, Gray, & 

Simpson, 2000).  Just as in the physical world, we might engage in an action or process 

called “walking,” and later talk about going for a “walk” (where “a walk” is now 

considered a “thing” rather than an action), in mathematics, many mathematical concepts 

are first experienced as processes, and later referenced as objects.  For example, students 

learn first to solve a problem (a process), but later can step back to consider whether their 

solution (an entity) is optimal.  Algebra students first engage in plotting and connecting 

points on a grid, and later think of the outcome of these processes as an object, a 

mathematical function.  This is a very important conceptual capability when doing 

mathematics; without it, we would find it difficult to abstract or generalize, to use 

“compressed” versions of processes as inputs in building new mathematical entities and 

patterns (Fauconnier & Turner, 2002).  We would argue that the fundamental metaphor 

of “mathematical entities as physical objects” makes possible the intellectual work that 

allows us to transform mathematical processes into objects. 

Symbols and Inscriptions 



 

 

 Algebra, and its use of non-numerical symbols, is based on a common linguistic 

mechanism, which Lakoff and Núñez (2000) call the Fundamental Metonymy of 

Algebra.  Metonymy refers to the ability to use a specific part or aspect of a referent to 

stand for the whole, as when we say, “the White House” when we actually mean the U.S. 

president.  The Fundamental Metonymy of Algebra is defined as a “metonymic 

mechanism that makes the discipline of algebra possible, by allowing us to reason about 

numbers or other entities without knowing which particular entities we are talking about” 

(p. 75).  Utilizing this linguistic mechanism, a letter or phrase can stand for an unknown 

or a range of possible values (e.g., the values that make the equation “x + y = 12” true; 

the set of natural numbers).  Building on the fundamental metonymy that letters can stand 

for numerical values, the metaphor “mathematical symbols are physical objects” makes it 

possible to manipulate and “move” mathematical symbols as if they were physical 

objects.  Of course, there are more constraints on the manipulation of mathematical 

symbols (and what they stand for) than there are on physical objects, because of the 

formal definitional nature of mathematical entities.  However, this metaphor can help us 

understand a relatively common type of error in learning algebra, which occurs when the 

definitional constraints are ignored in favor of the more flexible affordances of physical 

objects, leading to “symbol-pushing” (e.g., Arcavi, 1994; Kieran, 1992; Matz, 1980). 

 Written (or displayed) mathematical symbols are an example of external 

inscriptions, without which mathematical actions and results would be ephemeral and 

easily forgotten.  We use the term “inscription” to refer to an external “representation,” 

whether symbolic or imagistic, which is non-ephemeral and therefore amenable to 

reflection, review and revision.  The invention of mathematical symbols is one example 



 

 

of the development of external representational scaffolding, which includes the range of 

methods humans have created to keep track of thoughts and prior actions (including 

language, imagery, and concrete artifacts).  Yet the use of external structure to keep track 

of or “represent” thought is not a simple unidirectional process.  That is, representations 

do not simply “carry” meanings from one person to another, or from the mind to the 

external world, as if they were “conduits” of information (Edwards, 1995; Lakoff, 1992; 

Reddy, 1979).  Instead, inscriptions are important elements in a process of feedback and 

feedforward, in which the very act of creating external representations can change what it 

is one is trying to represent (e.g., Clark, 2001).   

 Mathematics is clearly a domain in which the use of external scaffolding, in the 

form of conventional symbols as well as both conventional and idiosyncratic graphical 

inscriptions, has contributed in vital ways to the evolution of the domain (Cajori, 1993).  

Hutchins would call these inscriptions “material anchors” (Hutchins, 2005), and, again, 

from an embodied perspective, inscriptions do not simply “represent” an internal 

collection of pre-existing thoughts.  Instead, mathematical arguments and ideas are 

developed through the iterative practice of recording, manipulating, considering, erasing 

and re-writing symbols, while using the record created with symbols to test and refine the 

ideas themselves.  Clark (2001) describes this affordance of writing in the more general 

case of creating “text:”  

By writing down our ideas, we generate a trace in a format that opens up a range 

of new possibilities.  We can then inspect and reinspect the same ideas […].  We 

can hold the original ideas steady so that we may judge them, and safely 

experiment with subtle alterations.  We can store them in ways that allow us to 



 

 

compare and combine them with other complexes of ideas in ways that would 

quickly defeat the unaugmented imagination.  In these ways […], the real 

properties of physical text transform the space of possible thoughts.  (p. 208) 

Clark (2001) goes on to discuss how written language and symbols make possible what 

he calls “second-order cognitive dynamics,” the ability to think about our own thinking, 

including, “coming to see why we reached a particular conclusion by appreciating the 

logical transitions in our own thought” (pp. 208-9), an essential aspect of mathematical 

reasoning.  Clark describes the way that viewing thoughts as objects makes possible 

metacognitive processes:  

As soon as we formulate a thought in words (or on paper), it becomes an object 

for ourselves and others.  As an object, it is the kind of thing that we can have 

thoughts about […] The process of linguistic formulation thus creates the stable 

structure to which subsequent thinkings attach.  (Clark, 2001, p. 209) 

 Thus, the fact that human minds are, fundamentally, embodied controllers of 

action, and that, at the same time, we exist in a cultural world that offers scaffolding for 

actions and thoughts, provides a starting point in considering the particular modalities 

utilized in thinking and doing mathematics. 

Meanings for Multimodality 

 The term “multimodality” has been used in many different fields and analytic 

contexts, ranging from the study of communication to examinations of neurological 

processes.  From the discussion below, it should be apparent that the meanings used in 

these different fields of study are not mutually exclusive, but intersect and complement 



 

 

each other.  We will briefly discuss these usages and conclude by stating how we use the 

term in analyzing mathematical thinking. 

Sensory Modalities 

 Aristotle is held to have distinguished five senses, and these are often considered 

to be the primary sensory modalities (or channels): sight, hearing, touch, taste, and smell.  

According to contemporary physiologists, there are five characteristics that define a 

sensory modality (Kling & Riggs, 1971): 

They have (1) markedly different receptive organs that (2) respond to 

characteristic stimuli.  Each set of receptive organs has its (3) own nerve that goes 

to a (4) different part of the brain, and the (5) sensations are different.  (p. 118, 

emphasis in original) 

Based on the criteria above, four additional sensory modalities have been identified 

beyond those specified by Aristotle; they are: kinesthesia (joint sense), vestibular sense 

(balance as signaled by the inner ear), temperature sense, and pain.  These four are called 

“somatosensory” modalities.   

 Clearly, sensory modalities make up an important element of learning, whether of 

mathematics or other subjects, for it is only via the senses that a learner has access to 

either direct experience or culturally transmitted knowledge.  Although sight and hearing 

are the most important modalities used in formal schooling, other sensory modalities may 

provide unconscious grounding for understanding fields like mathematics.  For example, 

the sense of balance provided by one’s vestibular sense can provide the foundation for 

understanding the algebraic process of “balancing” an equation, among other 

mathematical concepts (Johnson, 1987; Núñez, Edwards, & Matos, 1999), and the 



 

 

experience of touch underlies the comprehension of the “behavior” of a function near an 

asymptote. 

Neural Multimodality 

 Vittorio Gallese, a neuroscientist, and George Lakoff, a linguist, utilize the term 

“multimodality” in specific way in their model of how concepts are created in the brain.  

This model offers an alternative to the information-processing stance toward cognition, in 

which it is held that perception, thought, and motor action are three separate brain 

processes (Barsalou, 2008).  In the information-processing model, the perceptual system 

first takes in outside stimuli, which are then processed in an “association area” in the 

cortex.  The cortex subsequently directs action through the premotor and motor cortices, 

resulting in a possible action in response to the stimulus.  In contrast, Gallese and Lakoff 

(2005) propose an interactionist theory built on recent discoveries that, in addition to 

action-only or perception-only neurons, there are neuron assemblages in the premotor and 

parietal areas that do two things at once: respond to sensory input and initiate or simulate 

action.  One particular neuron of this kind is called a “mirror neuron,” which act in the 

following way (Gallese & Lakoff, 2005): 

[M]irror neurons […] discharge when the subject (a monkey in the classical 

experiments) performs various types of hand actions that are goal-related and also 

when the subject observes another individual performing similar kinds of actions.  

(p. 460) 

In other words, certain neurons are activated not only by particular actions, but also by 

seeing such actions performed by others. 



 

 

 It is this linkage of perception and action that Gallese and Lakoff (2005) 

characterize as “multimodality” at the neuronal level.  They also note that the entire 

sensory-motor system, as well as language itself, is multimodal: 

…circuitry across brain regions links modalities, infusing each with properties of 

others.  The sensory-motor system of the brain is thus “multimodal” rather than 

modular.  Accordingly, language is inherently multimodal in this sense, that is, it 

uses many modalities linked together—sight, hearing, touch, motor actions, and 

so on.  Language exploits the pre-existing multimodal character of the sensory-

motor system.  If this is true, it follows that there is no single “module” for 

language—and that human language makes use of mechanisms also present in 

nonhuman primates.  (p. 456) 

Based on this conception of multimodality, Gallese and Lakoff (2005) propose a 

redefinition of the notion of  “concept,” one quite different from that found in classical 

cognitive science.  In “first generation” cognitive science, the definition of a concept is 

based on a set of necessary and sufficient conditions, and concepts are seen as “modality-

neutral and symbolic” (p. 466).  However, according to Gallese and Lakoff, concepts are 

embodied: they arise as a consequence of human action or internal simulation of such 

action, through the formation of clusters of functional neurons within larger structures 

they call schemas.  For Gallese and Lakoff (2005), these schemas are unlike the purely 

internal schemas described by Piaget or information processing psychology:  

Schemas are interactional, arising from (1) the nature of our bodies, (2) the nature 

of our brains, and (3) the nature of our social and physical interactions in the 



 

 

world.  Schemas are therefore not purely internal, nor are they purely 

representations of external reality.  (p. 466) 

This description of schemas as interactional, as well as the work on neural multimodality, 

offers a biologically grounded basis for a theory of embodied mathematics.  Although it 

may not be on the immediate horizon, it is reasonable to foresee the eventual 

identification of neurally based schemas and concepts for specific mathematical ideas. 

Semiotic Multimodality 

 In recent decades, linguists, semioticians, and other scholars interested in 

discourse have drawn attention to the fact that communication occurs in ways that go 

beyond oral speech and written language, introducing the notion of semiotic 

multimodality.  For example, Kress (2001b) describes multimodality as “the idea that 

communication and representation always draw on a multiplicity of semiotic modes of 

which language may be one” (p. 67-68).  Researchers in mathematics education have also 

fruitfully utilized a semiotic approach in the examination of the multiple means of 

expression found in mathematical practice, including spoken words, mathematical 

symbols, and various kinds of imagery, including gesture (e.g., Arzarello, Paola, Robutti, 

& Sabena, 2009; Arzarello & Robutti, 2010; Radford, 2009, 2011). 

 Among the primary semiotic modes discussed by Kress and others (e.g., Bateman, 

2009; Norris, 2004) are language, imagery and sound.  With the evolution of the 

discipline, semioticians now also look at more complex and broad-ranging modes, 

including music, theater, color, clothing, and even furniture layout (see Kress & Van 

Leeuwen, 2002).  From this perspective, virtually any means that humans use to express 

or organize themselves can be seen as a semiotic mode: 



 

 

I use the term “mode” for the culturally and socially produced resources for 

representation and “medium” as the term for the culturally produced means for 

distribution of these representations-as-meanings, that is, as messages.  These 

technologies—those of representation, the modes and those of dissemination, the 

media—are always both independent of and interdependent with each other. 

(Kress, 2005, p. 6-7) 

Two aspects of the definitions above should be noted: Kress restricts modes (which we 

take as a synonym for modalities) to resources that are “culturally and socially 

produced.” He also distinguishes between modes (for representation) and media (as 

methods of dissemination).  This distinction is further clarified when he states: 

Media are the material resources used in the production of semiotic products and 

events, including both the tools and the materials used (e.g., the musical 

instrument and air; the chisel and the block of wood).  They usually are specially 

produced for this purpose, not only in culture (ink, paint, cameras, computers), 

but also in nature (our vocal apparatus).  (Kress, 2001a, p. 22) 

Within this framework, Kress does not explicitly discuss the sources of the meanings or 

messages that are being represented or disseminated; yet his language suggests a conduit 

metaphor of representation (Lakoff, 1992; Reddy, 1979).  In such a metaphor, an idea or 

message originates (presumably in abstract form) in the subject’s mind, and then is 

expressed or transferred via one or more semiotic modes (language, imagery, sound, 

etc.).  These modes, in turn, are made concrete via particular material media.  For 

example, the (abstract) mode of language can be delivered through the spoken word, in 

writing or type on paper, via characters on a computer screen, and so on. 



 

 

 The metaphor of communication or representation as conduit and the 

conceptualization of modes as purely social or cultural resources reveal important 

differences with the theory of embodied cognition.  According to this theory, ideas do not 

originate as abstractions that are made concrete through particular media.  Instead, the 

generation of ideas and concepts is intimately linked to motor action, as well as simulated 

or imagined motor action, as discussed by Gallese and Lakoff (2005).  Ideas are 

embodied from the start, based on individual experience and human physical capabilities.  

In addition, from an embodied perspective, modes are not restricted to “culturally and 

socially produced resources” (Kress, 2005, p. 6) – instead, the body itself offers 

numerous resources for creating and expressing meanings, including gesture, bodily 

stance and movement, gaze, rhythm, and prosody in speech. 

 In order to incorporate these additional means for making and expressing ideas, 

we would like to propose a theoretical framework for multimodality that integrates the 

body and that looks more closely at how concepts originate in the embodied mind. 

An Expanded View of Modalities 

  From the perspective of embodied cognition, bodily resources are vital in the 

production of meanings, not just in communicating them (Barsalou, 2008; Clark, 2001; 

Gallese & Lakoff, 2005; Goodwin, 2003; Johnson, 2007; Lakoff & Johnson, 1999; 

McNeill, 1992).  This is true within mathematics no less than within any other domain.  

A student who painstakingly plots the points of a function for the first time and connects 

them into a (more or less) smooth curve is not simply expressing concepts that already 

exist, conveyed via the medium of pencil and paper.  His or her physical engagement 

with the graph paper and pencil, and the iterative action of consulting a table of values, 



 

 

locating and plotting those values, we would argue, are essential aspects of the 

construction of the concept of a graph of a function.  Later work with graphs may include 

other modalities, perhaps entering equations into a computer, or the intentional 

production of gestures (see Gerofsky, 2010).  The body is thus not simply a medium, but 

an important resource in the construction and communication of meaning.  It is also, 

clearly, a vital element in receiving meanings generated by others, via the sensory 

modalities. 

 Thus, we propose a broader definition for modality that encompasses and goes 

beyond the traditional notion of semiotic mode.  Within this expanded perspective, we 

see modalities as the entire range of cultural, social and bodily resources available for 

receiving, creating, and expressing meaning.  In addition to sensory modalities, which 

receive information, this category would also include motor modalities, such as gesture, 

bodily stance, touch and so on – essentially anything that humans can do with their 

bodies to communicate or construct ideas.  Along with Kress, we also see the body as a 

medium for the expression of ideas; however, we see it not simply a medium but also a 

primary modality for thought.   

 Our framework also includes a category for the expressive products created by 

humans through the use of language, imagery, bodily motion or any other modality.  By 

“expressive product,” we refer to the physical “traces”, whether permanent or ephemeral, 

of people’s actions.  These may take the form of writing and other inscriptions, 

utterances, song, dance, computer imagery, physical constructions or any other 

observable production.  Expressive products are sometimes called “representations;” 

however, this term has often been used to imply the existence of an abstract internal 



 

 

meaning that is simply mapped onto an external representational system.  Since we do 

not adopt this perspective, we have chosen to use the term “expressive product” rather 

than “representation.”  

 Table 1 presents an outline of this four-category framework for understanding 

multimodality.  The categories include bodily modalities (both sensory channels and 

motor actions), semiotic modes, material media, and concrete expressive products.   

Table 1.   

A Framework for Multimodality 

Bodily modalities Semiotic modes 

Sensory Sensory and motor 

- Sight, hearing, touch, vestibular, etc. - Language  
 - Mathematical symbols 
Motor 

- Motor actions in general 
- Musical notation 
- Other formal notation systems 

- Gesture - Visual imagery (external) 
- Gaze - Sound 
- Head movement - Clothing, architecture, dance, colors, etc. 
- Full body movement - Any cultural system for making meaning 

- Bodily stance  
- Manipulation of artifacts   
- Prosody, rhythm, etc.  
  
Material media Expressive products 

Bodily based Bodily based 
- Voice - Speech, song, chant 
- Hands - Sign language, gestures 
- Body  - Dance, marching, posing, etc. 
  

External to body External to body 

Inscriptions: 
- Paper & pencil - Written words, books, musical scores, etc. 
- Blackboard 
- Computer screen 
- Other electronic devices 

- Written math symbols, graphs, visuals 
- Text messages, web pages, computer games 
Other products: 

- Paint, clay, stone, etc. - Paintings, pottery, sculpture, buildings, etc. 
- Math manipulatives, blocks, etc.   
- Musical instruments 

- A configuration of cubes, rods, blocks, etc. 
- Instrumental music 

  



 

 

 

 Often, we find that research in mathematics education attends to only one or 

perhaps two of these modalities, which is understandable given the richness of each mode 

of expression.  However, all four of the categories in Table 1 tend to be involved in living 

acts of communication or cognition.  If we examine the semiotic mode of language, for 

example, it might take the form of oral speaking.  Speech, seen both as a motor action 

and an expressive product, is mediated via air moving through the lungs, larynx and 

mouth.  It requires the motor activity of these bodily parts, as well as the use of the 

sensory channel of hearing.  Although the paradigmatic situation for speech involves a 

speaker and interlocutor in physical proximity, oral speech might also be transmitted via 

a different medium, such as a telephone or radio. 

 As a second case of the use of language as a semiotic mode, we can consider 

signed communication by the Deaf.  A deaf person might not use oral speech for 

communication; instead, she might express herself, for example, in American Sign 

Language.  This form of language uses a different medium from oral speech, specifically, 

the hands, head, face, and body.  It also utilizes a different sensory channel, sight.  Thus, 

sign is a different expressive product from oral speech, employing different modalities.  

Yet, at a higher level of abstraction, both products (oral speech and signing) are seen as 

language, a culturally based semiotic mode, developed and shared within specific 

communities.   

 In the realm of mathematics, an analysis utilizing the categories in Table 1 would 

suggest, for example, that “doing geometry” is a very different experience, conceptually, 

for a learner who is working with pencil and paper versus a dynamic geometry tool 



 

 

instantiated on a computer.  Indeed, a robust line of research has investigated the nature 

of students’ experiences with computer-based dynamic geometry systems, examining 

how such systems afford different experiences from those afforded by paper and pencil 

(e.g., Lehrer & Chazan, 1998; Laborde, 1995; Mariotti, 2000; Moreno-Armella, Hegedus, 

& Kaput, 2008).  Further examples of the impact of modality are found in this volume. 

For example, the experiences of blind learners exploring the geometric concepts of area 

and volume would, of necessity, differ from those of learners with sight (Healy & 

Fernandes, this volume), and people interacting verbally while imagining a 3-dimensional 

geometric situation would enact still other modalities of expression (Moore-Russo & 

Viglietti, this volume). 

 We have created this framework for multimodality not solely for the sake of 

systematicity, but also to bring attention to elements of the process of making meaning 

that may be overlooked during research on mathematical practice.  The field of education 

has moved beyond a simplistic model of teaching as the transmission of information, but 

it is still in the process of elaborating the complex means through which knowledge is 

constructed.  We would argue that this process involves not just “interior” cogitation and 

“external” representations, but a nuanced interaction of the body with shared social and 

cultural resources. 

Affordances of Modalities 

This brings us to the question of what these different modalities make possible; 

that is, what are their affordances (Gibson, 1979)?  Norman, following Gibson, defines 

affordances as “the actionable properties between the world and an actor” (Norman, 

1999, p. 39).  A more detailed definition is offered by Rizzo (2006): 



 

 

Affordances are opportunities for actions available in the environments for 

individuals with proper sensory-motor abilities. They do not belong to the 

environment neither to the individual, but to their relationships. Affordances are 

emergent phenomena between distribution of energy in the environment and 

potential agents’ behavior … (p. 239) 

For example, a horizontal surface affords sitting (or eating, or writing, depending on the 

height and surface smoothness), and a teapot with a handle affords easy pouring of 

liquids, assuming an agent capable of the given motor actions.  A computer-based 

dynamic geometry package offers different affordances to the learner than do graph paper 

and pencil, among which is the capability to “drag” and continuously transform an image 

of a geometric object (e.g., Laborde, 1995).   

It is reasonable to assume that different modalities have developed at least in part 

because they have different affordances; in other words, the characteristics of each 

modality bring into play different possibilities for action and communication.  In this 

section, we will examine the affordances, constraints, and complementarities among 

different modalities and expressive products, particularly those involved in doing 

mathematics. 

Gesture and Speech 

 A particularly clear case of the complementary affordances of modalities can be 

found in examining oral speech and gesture.  Kendon, citing the Oxford English 

Dictionary, says gesture “refers to ‘a movement of the body or of any part of it’ that is 

‘expressive of thought or feeling’” (1997, p. 109).  McNeill (1992) was one of the first 

researchers to point out the complementary nature of speech and gesture, proposing that,  



 

 

Speech and gesture are elements of a single integrated process of utterance 

formation in which there is a synthesis of opposite modes of thought — global-

synthetic and instantaneous imagery with linearly-segmented temporally extended 

verbalization.  Utterances and thoughts realized in them are both imagery and 

language.  (p. 35)  

He also points out the way in which “each modality performs its own functions, the two 

modalities mutually supporting one another” (p 6).  This is in contrast to a view of 

gesture as epiphenomenal, a simple illustration of what is being expressed through 

speech.  A growing body of research has shown that gesturing has a much more 

significant role in reasoning, problem solving, and cognitive development than merely 

reinforcing speech (e.g., Alibali, Kita, & Young, 2000; Alibali, Spencer, Knox, & Kita, 

2011; Arzarello, Paola, Robutti, & Sabena, 2009; Edwards, 2009; Gerofsky, 2010; 

Goldin-Meadow, 2003; Robutti, 2006; Roth, 2001). 

 Goodwin (2003) also notes the complementarity of speech and gesture, stating 

that speech is not simply a more “evolved” form of communication than gesture: 

[T]he way in which the structure of gesture differs markedly from language might 

reflect not the development of a new, more complex system from a simpler one, 

but instead a process of progressive differentiation within a larger set of 

interacting systems in which gesture is organized precisely to provide participants 

with resources that complement, and thus differ significantly from those afforded 

by language.  (p. 23) 

 The potential for speech and gesture to convey different meanings has been 

examined experimentally by Goldin-Meadow and her colleagues (e.g., Goldin-Meadow, 



 

 

2003, 2006; Goldin-Meadow, Kim, & Singer, 1999; Özçaliskan & Goldin-Meadow, 

2009).  Following McNeill (1992), Goldin-Meadow (2006) describes the different 

affordances of speech and gesture: 

Speech conveys meaning discretely, relying on codified words and grammatical 

devices.  Gesture that accompanies speech conveys meaning holistically, relying 

on visual and mimetic imagery.  Because gesture and speech employ such 

different forms of representation, the two modalities rarely contribute identical 

information to a message.  (p. 36) 

When different information is conveyed simultaneously by speech and gesture, Goldin-

Meadow (2003) refers to this as a gesture-speech “mismatch.”  Research has shown that 

such mismatches (or non-redundancies) can signal a readiness to learn or an imminent 

cognitive transition.  In these cases, a learner’s gestures can express a change in 

understanding that has not yet been expressed in his or her speech; this phenomenon has 

been demonstrated in arithmetic, language-learning, science, and the development of 

Piagetian conservations (Alibali, Church, Kita, & Hostetter, this volume; Goldin-

Meadow, 2003, 2006; Goldin-Meadow, Levine, & Jacobs, this volume; Özçaliskan & 

Goldin-Meadow, 2009; Roth, 2001). 

Affordances of Modalities for Mathematics 

 The different affordances of gesture and speech in teaching, learning, and doing 

mathematics have been investigated in this volume and elsewhere (e.g., Alibali, Spencer, 

Knox, & Kita, 2011; Arzarello, Paola, Robutti, & Sabena, 2009; Edwards, 2008, 2009; 

Ferrara, 2006; Gerofsky, 2010; Goldin-Meadow, Kim, & Singer, 1999; Nemirovsky, 

2003; Núñez, 2009; Radford, 2009; Robutti, 2006; Roth, 2001; Valenzeno, Alibali, & 



 

 

Klatzky, 2003). We now turn to a range of additional modalities and expressive products 

that are commonly used in mathematics, with the goal of highlighting their important 

affordances and constraints. The current analysis considers the following characteristics, 

drawn from prior research on gesture and speech (McNeill, 1992; Goldin-Meadow, 

2006): 

 Permanence:  Does the modality result in an ephemeral or more permanent 

expressive product or representation? 

 Temporality: Is the modality or expression linear (where the message emerges 

sequentially in time), as in speech?  Or is the expressive product perceived as a 

global whole (holistically or nonsequentially), as with gesture or inscribed 

imagery? 

 Structure: Is the expression analytic, that is, made up of meaningful sub-units?  Or 

is it a synthetic, non-decomposable whole? 

Table 2 presents a set of modalities and expressive products that are commonly utilized in 

doing, teaching, and learning mathematics, as well as a brief summary of the affordances 

and other important characteristics of each:  

Table 2.   

Affordances of Modalities/Expressive Products for Mathematics 

Modality or Mode  

 Expressive Product Characteristics/Affordances 

L
an

gu
ag

e 

• Speech Ephemeral, linear, analytic (composed of 
meaningful sub-units).  Prosody, rhythm 
and volume can give emphasis. 

• Written text Permanent, linear, analytic (composed of 
meaningful sub-units). 

F
or

m
al

  
N

ot
at

io
ns

 

• Written mathematical symbols Permanent, generally linear, generally 
synthetic (although some symbols have 
meaningful sub-units).  Compressions of 



 

 

more complex/abstract ideas utilizing 
metonymy. 

V
is

ua
l 

Im
ag

er
y 

 
• Static graphs 
• e.g., using Cartesian coordinates: 
an important conventional blend 

Permanent.  Global/holistic.  Analytic – 
by convention, the parts are meaningful.   

• Static geometric diagrams Permanent.  Global (or holistic).  
Analytic.  Iconic to elements of physical 
world, but intended to “point to” ideal 
forms. 

• Static conventional mathematical 
diagrams (other than graphs and 
geometric diagrams; e.g., Venn 
diagrams) 

Permanent.  Generally global/holistic.  
Have some characteristics of drawings 
and some of symbols.  Non-arbitrary.  
Can be synthetic or analytic. 

• Marks drawn to highlight, 
emphasize or direct attention 

Often spontaneous, can be permanent or 
ephemeral.  Global/holistic.  Synthetic. 

V
is

ua
l 

Im
ag

er
y 

an
d/

or
 F

or
m

al
 

N
ot

at
io

ns
 

• Computer/calculator-based 
mathematics systems 
• Dynamic geometry systems, 
function graphers, etc. 
      

Same characteristics as the components 
(mathematical symbols, graphs, etc.).  
However, the system affords 
instantaneous feedback and iterative 
exploration.  Interaction via mouse & 
keyboard, or finger & touchscreen. 

M
ot

or
 A

ct
io

ns
 

• Gestures with empty hands Ephemeral, global, synthetic. 
• Gestures holding artifact (pen, 
pointer etc.) 

Affords more precise boundaries and 
point locations when gesturing. 

• Gesture involving an object in 
environment (table surface or edge, 
etc.) 

The affordances of the object can be 
incorporated into the meaning of the 
gesture.  

• Other bodily actions/postures/gaze Ephemeral, global, synthetic.  Each with 
own particular affordances. 

 

Discussion 

 As we have seen, the term “multimodality” is itself polysemous: it has been used 

to refer to the range of sensory channels in the human organism, to the linkage of action 

and perception at the neural level, and to the use of multiple means of expression or 

representation, from formal systems such as speech to spontaneous and idiosyncratic 

bodily gestures. Given the rich collection of modalities and expressive products related to 

mathematics, we hope that an analysis such as the one presented here will encourage 



 

 

researchers and teachers alike to attend to the various affordances of different modalities. 

In fact, there is a small but growing body of research that supports the efficacy of 

appropriate gesturing, by teachers and learners, in mathematics instruction (e.g., 

Gerofsky, 2010; Goldin-Meadow, Kim, & Singer, 1999; Valenzeno, Alibali, & Klatzky, 

2003).  Similarly, designers of computer-based learning environments for mathematics 

have long discussed the power of multiple representations (graphs, symbols, tables, 

words, etc.); the perspective presented here on complementary affordances has the 

potential to both explain the synergy among representations and to inspire designs that 

incorporate modalities that might have been overlooked. 

 Yet a closer look at embodiment and multimodality in mathematics perhaps raises 

more questions than it answers, at the level of both beginning and advanced mathematics. 

A common approach to mathematics teaching at the elementary school level includes the 

use of concrete physical materials, or manipulatives. These materials, by design, offer 

certain affordances and constraints to the learner, and it is assumed that using them is an 

important component in the construction of new mathematical concepts. But how does 

this happen? How do physical actions with blocks or tiles provide grounding for 

understanding the mathematical concept and the conventional language and symbols 

associated with it? Does this embodied interaction with concrete materials persist as part 

of the student’s mathematical knowledge? There are suggestions that such actions are re-

externalized and expressed later through gesture (see for example, Edwards, 2009); what 

other functions do gestures perform? What about more advanced mathematical ideas 

which are not obviously grounded in physical action? How are the various modalities 

utilized in learning and doing mathematics at the secondary and university levels? Some 



 

 

of these questions are addressed in the current volume, but a full understanding of 

embodiment and multimodality in mathematics will require further sustained inquiry. 

  Embodied experience may be an essential component of knowledge, but it does 

not always support mathematical understanding (for example, see Nuñéz, Edwards, & 

Matos, 1999). Additional research is needed into how embodiment may constrain or limit 

understanding of formal mathematics; after all, the requirements of the discipline for 

consistency and universality have resulted in structures that do not correspond neatly to 

everyday experience.  Yet we would argue that the entire range of modalities, including 

those which are bodily-based, are essential to learning, teaching and practicing 

mathematics. Exploring embodiment and multimodality in diverse mathematical 

contexts, we believe, can only strengthen our understanding of mathematics education. 
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