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ABSTRACT 22 

Commonly the atmospheric pollution research is focussed on particulate indicators especially when 23 

mutagenicity was studied. On the other hand the volatile and semi-volatile compounds no adsorbed on to 24 

the particles can be genotoxic and mutagenic. Moreover some mutagenic compounds, such as polycyclic 25 

aromatic hydrocarbons, are present both in the particulate and in the gas-phase in according to chemical 26 

conditions. This work is focussed on the assessing of the total mutagenicity shifting the gas-phase and 27 

mailto:deborah.traversi@unito.it


particulate phase, during two seasons, in Turin. Two sampling sessions are conducted for total particulate 28 

matter and gas-phase pollutants. Moreover meteorological and usual air pollution monitoring data were 29 

collected at the same sampling station. The Salmonella assay using the strains TA98 and YG1021 was 30 

conducted on each organic extract. The mean level of total suspended particles, PM10 and PM2.5 were 31 

73.63 ± 26.94, 42.8526.75 and 31.55±26.35 µg/m3. The observed mutagenicity was PM induced YG1021 > 32 

PM induced TA98 > PM induced TA98+S9 >> non-particle induced YG1021 > non-particle induced TA98 > 33 

non-particle induced TA98+S9. The multivariate regression is significant when we consider air pollution and 34 

meteorological  indicators and chemical conditions as predictors. 35 

 36 

HIGHLIGHTS 37 

Both chemicals and meteo-chemical parameters can influence the mutagenicity of air pollution.  38 

The gas phase and particulate phase mutagenicity can be different and affected by season. 39 

The gas phase accounted for only 1% of the observed mutagenicity. 40 

The particulate mutagenicity is approximately 5-fold higher during winter. 41 

The contribution of the nitro-derived compounds seems to be crucial.  42 

 43 
1. Introduction 44 

Air pollution is one of the most important worldwide health concerns (WHO-Europe, 2013).  Particularly in 45 

the last 10 years, in both the US and Europe, new directives and regulations supporting more restrictive 46 

pollution limits were published (Krzyzanowski, 2008). However, the early effects of air pollution cannot be 47 

avoided, especially for the urban population (EEA, 2012). A recent Eurobarometer survey showed that 48 

European citizens are deeply concerned about the impact of air pollution and that more than 70% of the 49 

European population is  worried that air pollution and air quality is worsening over time(EU, 2013). The 50 

decision to designate 2013 as the Year of Air reflects both the economic seriousness of the problem but 51 

also the impacts on humans. Approximately 3 % of cardiopulmonary and 5 % of lung cancer deaths are 52 

attributable to particulate matter (PM) pollution worldwide (HEI, 2013), while the disease burden related 53 

specifically to PM2.5 pollution accounts for approximately 3.1% of the global disability-adjusted life years 54 



(Lim et al., 2012). 55 

The total suspended particulate (TSP) air pollution is widespread and consists of a mixture of solid and 56 

liquid particles suspended in the air. The physical and chemical characteristics of TSP vary by site. Common 57 

chemical constituents of PM include sulphates, nitrates, ammonium and other inorganic ions, but also 58 

include organic carbon, crustal material, particle-bound water, metals, aromatic hydrocarbons such as 59 

polycyclic hydrocarbons and their nitrated, oxidised, sulphated forms (Claxton et al., 2004; Breysse et al., 60 

2013). Especially in urban polluted locations, the secondary particulates formed from precursor gases are 61 

the prevalent toxic agents. Particle accumulation and coagulation reactions in the atmosphere produce a 62 

fine fraction of particulate matter (PM2.5) that often constitutes more than fifty percent of the TSP 63 

(Dimitriou and Kassomenos, 2013). The emitted chemicals, the dispersion conditions, and physical 64 

parameters such as humidity and temperature (Zhang et al., 2012) can all influence particle formation.  65 

A large number of studies provide evidence of a correlation between both for short term and long-term 66 

exposure to PM pollution and health effects such as morbidity and mortality from cardiovascular and 67 

respiratory diseases, as well as from lung cancer (Krzyzanowski, 2008). At the end of 2013, outdoor air 68 

pollution and its major component, outdoor particulate matter were classified as carcinogenic for humans 69 

(1 Group) (Loomis et al., 2013).   70 

Many mutagenic and genotoxic compounds are present in air pollution, and the effects are widely known 71 

and reviewed (de Kok et al., 2006; Claxton and Woodall, 2007a; Valavanidis et al., 2008; DeMarini, 2013).  72 

The finest air pollution fractions, PM10 (particles with a diameter of less than 10 µm) and PM2.5 (particles 73 

with a diameter of less than 2.5 µm) show greater genotoxicity (Claxton et al., 2004) , while the ultrafine 74 

particles (particles having a diameter of less than 0.1 µm) are the subject of in-depth analyses (Hoek et al., 75 

2010; Kovats et al., 2013). The studies conducted using in vivo and in vitro models show the induction of 76 

mutations and genotoxic effects. However, non-genotoxic effects also occur and various studies focused on 77 

the epigenetic effects of the ambient particles (Ji and Hershey, 2012). 78 

Among the typical air pollution chemicals, Polyciclic Aromatic Hydrocarbons PAHs have a relevant role in air 79 

pollution toxicity. These compounds are reactive in the atmosphere and primarily form  oxidised products, 80 

the most notable being oxy-derivatives (mostly quinones) and nitrated compounds (Kim et al., 2013). Some 81 



of these compounds, such as benzo(a)pyrene and 6-ditrochrysene and the 7,12-82 

dimethylbenz(a)anthracene, are also present in primary emissions. Benzo(a)pyrene is the reference 83 

compound for the carcinogenic relative potency factor, while others previously cite PAHs as having a 84 

carcinogenic factor of 10 and 64, respectively. Also among the secondary PAHs are compounds with high 85 

carcinogenic relative potency factors such as benz(j)aceanthryIene (60) and 1,6-dinitropyrene (10) (ATSDR, 86 

1995). The historic list of 16 USEPA priority PAHs is an important source of information, but was developed 87 

when knowledge of the relative toxicity of PAH congeners was more limited than at present. As such, it is 88 

useful as reference for monitoring but limited for the assessment of human health risks attributable to air 89 

PAH mixture exposition (Yang et al., 2007).  90 

Vapor–particle partitioning of mutagens can be quantified using the gas–particle-partitioning coefficient for 91 

each compound. This coefficient is influenced by both the adsorption and absorption processes and is 92 

strongly temperature dependent (Albinet et al., 2008). Moreover, volatile and semi-volatile organic 93 

compounds associated with particulate matter can be influenced by heterogeneous photochemical 94 

reactions in the atmosphere (Fraser et al., 2000; Xie et al., 2013). Our typical samplings were conducted 95 

using standard methods that are affected by relevant limits (Liu et al., 2007; Forbes et al., 2012).  96 

The aim of this work is to assess the mutagenicity of particulate and not-particulate air pollution and to 97 

determine the effects of seasonality and the contribution of nitro-compounds to the mutagenic effects in 98 

an urban environment. 99 

 100 

2. Materials and methods 101 

2.1 Sampling 102 

Sampling was performed from 20 November to 22 December 2009 for the winter period and from 4 May to 103 

4 June 2010 for the spring period at a meteorological–chemical station of the Environmental Protection 104 

Regional Agency (Piedmont A.R.P.A.) located at Torino, in the northwest of the Padana Plain, Italy. The 105 

sampling site, called Lingotto, was located outdoors in a small green area within an enclosed zone classified 106 

as urban background (ARPA Piemonte, 2010). Turin has 872,367 inhabitants  and a population density of 107 

approximately 7,000 inhabitants per km2; thus, the pressure on the territory that is associated with human 108 



activity is very high (ISTAT, 2012). Moreover, the climate and topographical characteristics of the area 109 

contribute to critical air pollution (Poncino et al., 2009; Eeftens et al., 2012). The Total Suspended Particles 110 

(TSP) were collected on glass micro-fibre filters (Type Fiberfilm T60A20, 150 mm, SKC, 863 Valley View Road 111 

Eighty Four, PA 15330, USA) and micro-pollutants were collected in Polyurethane Foam (PUF) Sorbent 112 

Tubes (SKC, 226-131 Valley View Road Eighty Four, PA 15330, USA) using an AirFlowPuf Sampler and 113 

conforming with the US EPA methods TO-4A, TO-9A, TO13A, ASTM D-6209 and ISO-12884, ISO-16362 114 

(Analitica Strumenti Samplers, via degli Abeti 144 61100 Pesaro, Italy).  115 

The TSP were collected on glass fibre filters, and the polyurethane foam (PUF) cartridge was placed in series 116 

after the glass fibre filter. The volatile compounds, which were not trapped on the filter, were retained in 117 

the PUF cartridge.  118 

The sampling flow was electronically controlled to be 250 L/min. Each sampling duration was controlled by 119 

a timer that was accurate to ± 15 min over a 48-hour sampling period. The exact flow rate was calculated 120 

daily and corrected for variations in atmospheric pressure and actual differential pressure across the filter. 121 

The filters were conditioned for 48 h and were weighed using an analytical balance (± 10 µg) before and 122 

after sampling to calculate the mass of the TSP trapped on the filter. The procedures were conducted 123 

according to the European Committee for Standardization. Additionally, , the PUF had been pre-cleaned by 124 

24 h Soxhlet extractions using acetone. 125 

 126 

2.2 Extraction and mutagenicity assays 127 

Each sample was extracted with acetone in a Soxhlet apparatus for a minimum of 80 cycles. The samples 128 

were dried in a Rotavapor instrument, and suspended in dimethyl sulfoxide (DMSO) to obtain an equivalent 129 

concentration of 0.1 m3 of sampled air per µl of solution. The mutagenicity assay was conducted as 130 

previously described (Maron and Ames, 1983; Traversi et al., 2009). Defined amounts of organic extract 131 

were tested to generate a dose–response curve (2, 5, 10, 20, 30 air equivalent m3 for the TSP extracts and 132 

10, 20,30, 50, 100 air equivalent m3 for the PUF extracts). The slope of the dose–response curve 133 

(revertants/m3) was calculated by the least squares linear regression beginning at the first linear portion of 134 

the dose–response curve (Traversi et al., 2011). All experiments were performed in triplicate using at least  135 



three doses. The results are expressed as net revertants per cubic metre (rev/m3) (the total revertants 136 

minus the spontaneous revertants) and were calculated using the dose–response curve (Cassoni et al., 137 

2004; Claxton et al., 2004). The mutagenic activity of the airborne particulate extracts was determined 138 

using the Salmonella typhimurium strain TA98, with and without S9 mix, as well as the YG1021 strain. 139 

YG1021 is a ‘classical’ nitroreductase-overproducing strain obtained by cloning the nitroreductase gene of 140 

S. typhimurium TA1538 into the pBR322 vector and introducing the recombinant plasmid into TA98 141 

(Josephy et al., 1997). YG1021 has a nitrofurazone reductase activity more than 50 times higher than the 142 

original TA98 strain, permitting the efficient detection of mutagenic nitroarenes. The mean number of 143 

spontaneous revertants, obtained during a 10 bioassay series, one every two samplings, was 16 ± 4 for 144 

TA98, 21 ± 1 for TA98+S9 and 23 ± 5 for YG1021. The genotype of each tester strain was routinely 145 

confirmed. In each assay session, positive and negative controls were included. Moreover, the known 146 

mutagen 2-nitrofluorene (1 µg/plate) was tested in each assay as a positive control for the strains TA98 and 147 

YG1021 while amminofluorene (1 µg/plate) was used as a positive control for the TA98 strain in presence of 148 

S9 mix. 149 

 150 

2.3 Chemicals and inhalable particles data 151 

 152 

Chemical data and inhalable particles data (PM10 and PM2.5) were extracted from a specialised database 153 

provided by the Regional System for the real-time monitoring of Air Quality, AriaWeb (ARPA Piemonte, 154 

2014). The data were obtained for the same day as our sampling and for the same sampling station. For 155 

example, the NOx data represent a monthly mean of hourly data collected using the standard monitoring 156 

method EN 14211:2005 (2008/50/EC, annex VI, section B). All the adopted methods conform to the 157 

directive and were validated before being published in the AriaWeb database (ARPA Piemonte, 2014). 158 

 159 
2.4 Statistics 160 

The seasons were designated as winter for the first sampling session (November and December) and as 161 

spring for the second sampling session (May and June). The statistical analyses were performed using the 162 



SPSS Package, version 21.0. In particular we applied:  (1) a log transformation of non-normally distributed 163 

data, (2) the Spearman rank-order correlation coefficient to assess relationships between variables, (3) a 164 

Wilcoxon-Mann- Whitney test to compare means. The mean differences and correlations were considered 165 

significant if p < 0.05. 166 

 167 

3. Results 168 

3.1 Gravimetric analysis 169 

The descriptive analysis of the collected data is shown in Table 1. The gravimetric data showed that, on 170 

average, meanly the TSP proportion in the samples was 58% PM10 and 43%  PM2.5. Moreover, during the 171 

high pollution period in winter, these proportions increased up to 70% and 61%, with a PM2.5/PM10 ratio 172 

equal to 0.87. Moreover, Figure 1 highlights the marked seasonal differences for all three particulate 173 

indicators, with the mean comparison between winter and spring means for TSP, PM10 and PM2.5 being 174 

significant (p<0.01). The mean reduction in TSP in the spring with respect to winter was 30%, with mean 175 

reductions of 68% for PM10 and 82% for PM2.5. The mean temperature differences between sampling 176 

seasons was significantly different by (p<0.01) with the mean winter temperature being 2.95 4.09 °C and 177 

the mean spring temperature being 16.55 4.20 °C. However neither the average humidity nor the wind 178 

speed were significantly different, with  0.73% humidity during the winter vs. 0.64% spring (p>0.05) and ,an 179 

average wind speed in both seasons of approximately 10 m/s (Table 1). 180 

 181 

3.2 Mutagenicity 182 

The mutagenicity tests show a significantly elevated of net revertants per unit of exposure (air equivalent 183 

m3) respect to the negative control. An elevated number of net revertants (250) was recorded at the 184 

highest test doses for the winter TSP extracts in the YG1021 strain, while the mutagenicity of the PUF 185 

extracts was markedly lower (Table 1). The PUF extracts contribute only about 2% to the total 186 

mutagenicity. As figure 2 also shows, the mutagenicity of the samples, expressed as net revertants, from 187 

higher to the lower was PM induced YG1021 > PM induced TA98 > PM induced TA98+S9 >> non-particle 188 

induced YG1021 > non-particle induced TA98 > non-particle induced TA98+S9. Moreover, the seasonal 189 



trend is clearly evident and significant only for particulate-induced mutagenicity (YG1021 p<0.01; TA98 190 

p<0.01; TA98+S9 p<0.01). The mutagenicity of the spring TSP samples is less than 10% of the mutagenicity 191 

recorded for the winter samples in all the strains. 192 

The higher mutagenicity of the winter particles was confirmed also adjusting the data for particles mass 193 

unit (Figure 3), highlighting the worse quality of the particles- in terms of mutagen presence - and not only 194 

the higher level of aero-dispersed pollution for each volume unit.  195 

Among the chemicals variability we observed a not so great changeability during the year for PAHs and 196 

metals, observing a difference due to seasonality. More variability is instead observable for NOx and ozone, 197 

however also in this case the levels are clearly affected by seasonality (with highest value recoding in winter 198 

with the ozone exception )(table 1). Table 2 showed the correlations between variables. Only the variables 199 

for which at least one correlation with mutagenicity is significant was included, the not particles induced 200 

mutagenicity was however included for its experimental origin, favoring the mutagenicity results 201 

comparison.  202 

As presented, the mutagenicity attributed to the non-particle phase was not influenced by the 203 

environmental temperature or wind speed and, furthermore, does not correlate with the mutagenicity of 204 

the particle phase. Additionally, the chemical parameters did not correlate with the minimal mutagenic 205 

effects of the non-particle phase (table 2).  206 

In contrast, the temperature and wind speed significantly inversely correlated with the TSP levels and to 207 

mutagenicity of this mixture. The TSP level correlated with mutagenicity and, in particular, this correlation 208 

showed a higher Spearman's rho for TA98 strain, with and without the addition of the S9 mixture. The 209 

results of the mutagenicity assays conducted using the TSP extracts all correlate with each other (Table 2).  210 

Among the chemical parameters, the TSP mutagenicity correlates with the presence of nitrogen oxides and, 211 

in particular, this relationship is more marked for the nitrogen monoxides. The ozone levels inversely and 212 

significantly correlate with the TSP mutagenicity. The cadmium and nickel levels significantly correlate with 213 

direct mutagenicity (i.e., without the introduction of the metabolic activation). The TSP mutagenicity 214 

correlates to the concentration of the finest fraction of the particulate matter and, in particular, there is a 215 

better correlation with the PM10 fraction in the TA98 strain with and without metabolic activation. A 216 



significant correlation is not observed between benzo(a)pyrene or benzo(a)antracene and mutagenicity but 217 

there was a high correlation between PAHs and with metals (0.929 p<0.01) due probably mainly to the 218 

same seasonality. 219 

Among the meteo climatic variables the temperature showed the high influence to the particulate pollution 220 

and associated mutagenicity, moreover this physical parameter is not significantly correlated to the wind 221 

that also showed an influence on the particulate pollution dispersion but not on the NOx and ozone levels. 222 

The humidity during the sampling showed a quite constant level so in this study we can't observe an 223 

influence on the pollution level.  224 

The NOx, in particular NO, among the chemicals correlated with particulate pollution and associated 225 

mutagenicity, moreover with PAHs, cadmium and nickel. This result was similar to those previously 226 

observed in other studies (Du Four et al., 2004; Du Four et al., 2005). 227 

 228 

4. Discussion 229 

In our study, the inhalable fraction and the high-risk inhalable fraction represented a very high proportion 230 

of the TSP, highlighting a human health hazard comparable to that estimated for urban sites. The observed 231 

pollution levels are significantly higher than both the WHO guidelines (Krzyzanowski, 2008) and the EU 232 

regulations 2008/50/CE. In addition, critical particle concentrations are present particularly during the 233 

winter and especially for PM2.5. Recently, the IARC classified outdoor pollution and particulate matter, as 234 

its major component, as carcinogenic for humans (Loomis et al., 2013). Consequently, reducing air pollution 235 

and particle matter to the lowest amount possible is becoming a marked priority. 236 

Particulate matter clearly contributed to the overall mutagenicity (Figure 2). This observation confirmed 237 

the evidence of other studies where PM total air toxicity and genotoxicity was higher than the gas phase 238 

fraction. In particular, PM1 was responsible for approximately 80% of the observed effects at various 239 

sampling localities (Novak et al., 2014), and the fine particles generally showed higher mutagenicity 240 

(Claxton et al., 2004; Claxton and Woodall, 2007b; Lemos et al., 2012). The gas phase mutagenicity was very 241 

low and often indeterminable, with the exception of particular sampling sites such as industrial sites (Du 242 

Four et al., 2005)  and exhaust emissions from gasoline- and diesel-powered passengers cars (Pohjola et al., 243 



2003a; Pohjola et al., 2003b). The contribution of the gas phase with respect to the particulate phase seems 244 

to be higher during summer and related to the major PAHs content (Du Four et al., 2004; Kennedy et al., 245 

2010). In the present study, the contribution of the gas phase with respect to the particulate phase is 246 

relative; in summer the particulate phase mutagenicity is reduced while the gas phase mutagenicity 247 

remains quite constant. It is supposable that this level of mutagenicity is not imputable to climatic or 248 

chemical stress condition and it indicates probably a background mutagenicity level hardly to avoid. 249 

The benzo(a)pyrene concentration was higher during the winter than summer and higher than the WHO 250 

guide line value of 0.12 ng/m3 (Krzyzanowski, 2008; WHO-Europe, 2013).  As widely observed, the PAHs are 251 

generally higher in the gas phase (Lemos et al., 2012), however, this fraction is less genotoxic and 252 

mutagenic, and thus PAH concentration explains only a small part of air pollution toxicity. Moreover, PAHs 253 

can react with nitrogen oxides, generating more genotoxic and mutagenic compounds (Albinet et al., 2008).  254 

The contribution of the nitro-derivate compounds to the overall mutagenicity, as assessed by comparing 255 

the number of Salmonella YG1021 net revertants to the strain without the modified nitro-reductase 256 

activity, was marked. The ratio of  the net revertants observed in the TA98 and YG1021 strains is 257 

approximately 1:2, during both summer and winter. This observation is widely confirmed by other studies 258 

(Ramos de Rainho et al.; Traversi et al., 2009). Moreover the direct mutagens action is higher than indirect 259 

mutagens as highlighted by the ratio of the net revertants observed in the TA98 and TA98+S9 that is 260 

approximately of 1:1.7. 261 

Air pollution and its major components have a marked seasonality, and the toxic content in the gas phase 262 

and particulate phase can vary based upon the meteo-climatic conditions (Albinet et al., 2008). In 263 

particular, more nitro-derived compounds can be present in the particulates during winter, thus enhancing 264 

the genotoxic and mutagenic properties.   265 

 266 

5. Conclusions 267 

By combining data on meteo-climatic conditions, various air pollution indicators and mutagenicity assays 268 

we produced an evaluation of particulate and non-particulate air pollution in Turin during different season.. 269 

We present the following results:  270 



 In the present study, the mutagenicity of the gas phase sampled by PUF method is practically 271 

negligible with respect to the mutagenicity of the particulate phase. The gas phase accounted for 272 

only 1% of the observed mutagenicity. 273 

 The mutagenicity of the non-particulate phase remained constant during the summer and winter, 274 

while the particulate mutagenicity is approximately 5-fold higher during winter when the finest 275 

fraction of the PM increases. 276 

 The contribution of the nitro-derived compounds seems to be crucial in Turin, in both winter and 277 

summer. 278 

 Both chemicals (such as NOx, metals and PAHs) and meteo-chemical parameters (such as 279 

temperature, wind speed and humidity) can influence the mutagenicity of particulate matter. 280 

Moreover, the total mutagenicity recorded in winter most likely results from the combination of 281 

not only additive but also synergistic effects among the components of the air pollution, conducing 282 

both to higher particulate level and to a higher content of mutagens in each unit particulate mass; 283 

 Although PUF sampling is a common approach used in gas phase studies, there were relevant 284 

uncertainties regarding the applicability to biological in vitro models. A crucial point is the 285 

necessary extraction procedure between the sampling and the in vitro test. It is not presumably 286 

able to avoid a partial loss of the volatile and semi-volatile compounds.This more research is 287 

necessary to understand this problem. 288 

Finally, the biological assays are relevant tools for the evaluation of the environmental and human health 289 

impact of air pollution. 290 
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8 List of abbreviations: 301 

PAHs  Polycyclic Aromatic Hydrocarbons 302 

PCR  Polymerase Chain Reaction 303 

TSP  Total Suspended Particles 304 

PM  Particulate matter 305 

PM10  Particulate matter with an aerodynamic diameter < 10 µm 306 

PM2.5  Particulate matter with an aerodynamic diameter < 2.5 µm 307 

 308 

Table legends: 309 

Table 1 -Descriptive analysis on 20 total measurements for each parameter are showed median and first 310 

and third quartiles . 311 

 312 

Table 2 -Spearman's correlation between the mutagenicity, gravimetric, chemical and meteorological 313 

variables 1 rho = -0.436, p=0.054 314 

 315 

Figure legends: 316 

Figure 1 - Mean and standard deviation of TSP, PM10 and PM2.5 levels recorded during the winter and 317 

spring sampling sessions. 318 

Figure 2 - Total mutagenicity, subdivided into gas phase and particulate phase, recorded for the winter and 319 

summer samples with metabolically different strains. 320 

Figure 3 - Net revertants expressed as unit mass of total suspended particulate for the different strain and 321 

the different seasons. 322 

 323 
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