
01 June 2024

AperTO - Archivio Istituzionale Open Access dell'Università di Torino

Original Citation:

Local Search Metaheuristics for the Critical Node Problem

Published version:

DOI:10.1002/net.21671

Terms of use:

Open Access

(Article begins on next page)

Anyone can freely access the full text of works made available as "Open Access". Works made available
under a Creative Commons license can be used according to the terms and conditions of said license. Use
of all other works requires consent of the right holder (author or publisher) if not exempted from copyright
protection by the applicable law.

Availability:

This is the author's manuscript

This version is available http://hdl.handle.net/2318/1509060 since 2016-11-14T17:36:08Z

This is an author version of the contribution published on:

R. Aringhieri, A. Grosso, P. Hosteins, and R. Scatamacchia.

Local Search Metaheuristics for the Critical Node Problem.

Networks, 67(3):209–221, 2016. Advance online publication 19 February
2016.

DOI: 10.1002/net.21671

The definitive version is available at:

http://onlinelibrary.wiley.com/doi/10.1002/net.21671/abstract

http://onlinelibrary.wiley.com/doi/10.1002/net.21671/abstract

Local Search Metaheuristics for the Critical Node Problem ∗

Roberto Aringhieri, Andrea Grosso, Pierre Hosteins

Dipartimento di Informatica
Università degli Studi di Torino, Italy

{andrea.grosso, roberto.aringhieri, pierre.hosteins}@unito.it

Rosario Scatamacchia

Dipartimento di Automatica e Informatica
Politecnico di Torino, Italy

rosario.scatamacchia@polito.it

December 1, 2015

Abstract

We present two metaheuristics for the Critical Node Problem, i.e., the maximal frag-
mentation of a graph through the deletion of k nodes. The two metaheuristics are based
on the Iterated Local Search and Variable Neighbourhood Search frameworks. Their main
characteristic is to exploit two smart and computationally efficient neighbourhoods which we
show can be implemented far more efficiently than the the classical neighbourhood based on
the exchange of any two nodes in the graph, and which we prove is equivalent to the classical
neighbourhood in the sense that it yields the same set of neighbours. Solutions to improve
the overall running time without deteriorating the quality of the solution computed are also
illustrated. The results of the proposed metaheuristics outperform those currently available
in literature.
Keywords: Critical Node Problem, Graph Fragmentation, Metaheuristics

1 Introduction

Given an undirected graph G(V,E) and an integer K, the Critical Node Problem (CNP) consists
in finding a subset of K nodes S ⊆ V , such that the number of node pairs still connected in the
induced subgraph G[V \ S]

f(S) = |{i, j ∈ V \ S : i and j are connected by a path in G[V \ S]}| (1)

is as small as possible.
To the authors’ knowledge, the problem can be traced back to the so-called network inter-

diction problems studied by Wollmer [33] and later Wood [34]. Although these seminal papers
focused on arc deletion, recently attention has centered more on node deletion. This is also due
to the renewed emphasis on security-related research which has called attention to network inter-
diction problems [1] and to works related to the assessment of the robustness of communication
networks [12, 13].

∗Work supported by a Google Focused Grant on Mathematical Programming, project “Exact and Heuristic
Algorithms for Detecting Critical Nodes in Graphs”

1

Further applications of CNP arise in different contexts. Borgatti [7] studies the CNP in
the context of detecting so-called “key players” in a social network; Arulselvan et al. [5] and
Ventresca [28] emphasize contagion control via vaccination of a limited number of individuals,
where the nodes of the graph represent potentially infected individuals and the edges represent
contacts occurring between them.

The CNP is known to be NP-complete [5], although polynomially solvable on trees [10] and
other specially structured graphs [3, 25]. For a broad literature review, including problems with
different graph fragmentation metrics, we refer to comprehensive references given in other works,
for example [25, 26].

In this paper, we present two metaheuristics for the CNP based on Iterated Local Search
(ILS) [23] and Variable Neighbourhood Search (VNS) [19, 20]. The main contribution of this
paper concerns the development of two smart and computational efficient neighbourhoods which
are also proved to be equivalent to the classical but computationally complex neighbourhood
exchange of two nodes u and v in such a way that u ∈ S and v ∈ V \ S. This allows the
development of two metaheuristics for the CNP which significantly improve the best known
solutions available in the literature. Further, solutions to improve the overall running time
without deteriorating the solution quality are also illustrated.

The paper is organized as follows. Section 2 reports a detailed analysis of the algorithm
competitors available in literature. Section 3 describes the two efficient neighbourhood explo-
rations. Section 4 depicts the two metaheuristics proposed for solving CNP and also describes
the methods adopted to improve the overall running time while maintaining solution quality.
Section 5 discusses the computational results of the proposed algorithm on benchmark instances
and compares them with those obtained by the state of the art algorithms for the CNP. Finally,
conclusions are provided in Section 6.

2 Existing algorithms

From a practical point of view, the CNP on general graphs has been tackled by Arulselvan et
al. [5] by proposing a MILP model and a heuristic approach based on a greedy heuristic coupled
with a successive local search phase. Sophisticated metaheuristics – namely population-based
incremental learning and simulated annealing – are studied and experimentally compared by
Ventresca [28]. The latter work also presents a set of benchmark instances available online
that we will use in order to compare our algorithms. All the algorithms presented here have
been explicitly developed for the version of the CNP considered here, i.e., the minimization of
pair-wise connectivity (number of node pairs still connected).

2.1 Population Based Incremental Learning and Simulated Annealing

In [28], a Population Based Incremental Learning (PBIL) and a Simulated Annealing (SA) algo-
rithms have been proposed together with the first set of benchmark instances publicly available.
A probability matrix M is used to model the probability distribution over the possible values
for each element of the solution. At each iteration t, Mt is used to generate a sample H of h
solutions. The best solution in H is then compared with the current best B found and, in the
case of improvement, B is updated. Finally, the matrix Mt is updated using the best current
solution B and then a mutation operator introduces some diversification. Algorithm 1 reports
the pseudo-code of PBIL.

SA is a standard implementation of the well-known algorithm performing a Monte-Carlo-like
exploration of the solution space with a varying temperature parameter updated at each step of

2

Algorithm 1: PBIL
Data: graph G, K, ω, α, mutation parameters (β,γ);
Result: B

1 Initialize M0;
2 for t = 1 to ω do
3 H ←− generateSamples(h,Mt−1);
4 if f(bestSol(H)) < f(B) then B ←− bestSol(H);
5 ;
6 Mt ←− (1− α)Mt−1 + αB;
7 Mt ←− mutate(β, γ,Mt);

the search.
According to [28], computational results concerning solution quality are clearly in favour of

the PBIL algorithm over its SA counterpart. On the contrary, SA found solutions faster than
PBIL.

2.2 Algorithms based on Depth First Search

The algorithms reported in Section 2.1 are typically quite slow. Faster algorithms are developed
in [14] based on a Depth First Search [27] (DFS) which exploits local properties of nodes in V .

The local properties considered are the degree of a node u ∈ V and the fact that a node
u ∈ V is an articulation point – a node whose removal results in splitting the graph into two or
more connected components – or has edges that act as (local) bridges.

The algorithms developed in [14] compute a ranking of the nodes in V based on a numerical
function which combines the nodes’ local properties whose coefficients are tuned by statistical
experiments on a large set of graphs.

Among the methods tested, the best performing algorithm is the DFSH−Post whose main
characteristic is to have a post-processing procedure after the ranking determined by the DFS.
The post-processing procedure consists in deselecting those nodes v ∈ S (the set of deleted
nodes) such that the ratio between the number of neighbours belonging to S and the degree of
the node is greater than a given threshold. The rationale here is to identify such nodes having
the majority of their neighbours already deleted whose replacement by other nodes could be
more beneficial to the graph disconnection.

DFSH−Post has very short running time, less than 0.06 seconds on all benchmark instances
introduced in [28].

2.3 Combined greedy approaches

Combined greedy approaches are proposed in [2]. The basic idea is to alternate two simple
greedy rules for determining a feasible solution. The first rule removes a node u ∈ V from S,
that is

Greedy rule 1: S′ = S \ {u} s.t. u = arg min{f(S \ {u})− f(S)}. (2)

The second rule adds a node u ∈ V to S, that is

Greedy rule 2: S′ = S ∪ {u} s.t. u = arg max{f(S)− f(S ∪ {u})}. (3)

Simple greedy algorithms can be derived exploiting the two rules. In [5], an initial solution
S is obtained by determining a vertex cover on G and then, if |S| > K, nodes are deleted from

3

S using greedy rule 1. On the contrary, a greedy heuristic can be obtained starting from S = ∅
and then adding nodes to S using greedy rule 2. Algorithm 2 depicts the pseudo-code of the
greedy adopting rule 1.

The procedure VertexCover is a modified version of the greedy heuristic which selects the
node with highest degree, adds it to the cover, deletes all adjacent edges, and then repeats until
the graph is empty (see, e.g., [24]). Our modifications are concerned with an initial shuffling
of the nodes in such a way to consider them in random order instead of by decreasing order of
node degree, and a pre-processing phase to take out the nodes of degree 1.

Algorithm 2: Greedy1
Data: graph G, K
Result: S∗

1 S ←− VertexCover(G);
2 while |S| > K do
3 u←− arg min{f(S \ {u})− f(S)};
4 S ←− S \ {u};
5 S∗ := S;

The idea is to combine these two rules, applying them in sequence so as to introduce an
exploration around the feasible solutions with |S| = K and have a chance to get out of local
minima. Among many others discussed in [2], two algorithms Greedy3d and Greedy4d have
been selected for the quality of their solutions. The pseudo-code for Greedy3d is reported in
Algorithm 3: lines 3–6 and 8–12 represent the application of the greedy rule 1 and 2, respectively,
breaking ties randomly. A pseudo-code for Greedy4d is very similar: it starts from the full graph
G, and the greedy rule 2 precedes the greedy rule 1. These two algorithms sequentially delete
and add more nodes to S (up to ∆K) for ` times in order to perturb a feasible solution with
K nodes. When the best solution is not improved after generating I feasible solutions, both
algorithms restart the search from the vertex cover (Greedy3d) or from the full graph (Greedy4d).

Algorithm 3: Greedy3d
Data: Graph: G, K, ∆K , `, I;
Result: S∗

1 n←− 0; S ←− VertexCover(G); count←− 0;
2 repeat
3 while |S| > K −∆K do
4 u←− arg min{f(S \ {u})− f(S)}; S ←− S \ {u};
5 if |S| = K then
6 if f(S) ≤ f(S∗) then S∗ ←− S; count←− 0; ;
7 else count←− count+ 1;;

8 n←− n+ 1;
9 while |S| < K + ∆K do

10 u←− arg max{f(S)− f(S ∪ {u})}; S ←− S ∪ {u};
11 if |S| = K then
12 if f(S) ≤ f(S∗) then S∗ ←− S; count←− 0; ;
13 else count←− count+ 1;;

14 n←− n+ 1;
15 if count = I then S ←− VertexCover(G); count←− 0;
16 ;

17 until n > `;

4

2.4 Exact algorithms

CNP can be modelled as a maximization problem, as reported in [11], with binary variables
x = (xi : i ∈ V) where xi = 1 iff node i ∈ V is deleted, and y = (yij : i, j ∈ V, i < j) where
yij = 1 iff the node pair {i, j} is disconnected in the residual graph G[V \ S].

maximize z =
∑

i,j∈V :i<j

yij

subject to
∑

i∈V
xi ≤ K

(x,y) ∈ X
xi ∈ {0, 1} i ∈ V
yij ∈ {0, 1} i, j ∈ V, i < j.

The polytope X links the values of x and y accordingly with the above specification. Note that
the objective function can be easily transformed to match function f(S) defined in (1), that is

f(S) = |V |(|V |−1)
2 −∑i<j yij .

The branch and cut algorithm presented in [11] is based on a formulation that – although
potentially exponential in size – does not overwhelm the solver:

X =
{
x,y

∣∣∣
∑

r∈V (P) xr ≥ yij for each P ∈ P(i, j), i, j ∈ V, i < j
}

(4)

where P(i, j) is the set of paths linking i to j in G and V (P) is the set of nodes in path P .
Constraints (4) state that a pair of nodes i and j can be disconnected only if, for any path
P linking i and j, a node r belonging to P is deleted from the graph. Constraints (4) can be
separated by solving shortest-path problems. We note that an interesting model requiring only
O(|V |2) constraints has been recently proposed by Veremyev et al. [30].

3 Neighbourhoods

In order to build efficient metaheuristics based on a local search mechanism, we need to devise
efficient local search strategies.

Given a solution S, the value f(S) can be computed through a modified version of the
algorithm computing the connected components of a graph (see, e.g., [21]) requiring O(|V |+|E|).
Hereafter, we refer to this algorithm as Connect as in [21]. A new solution S′ can be obtained
from S exchanging a pair of nodes u ∈ S and v ∈ V \S. The value f(S′) of such a new solution
can not be computed by updating the value f(S) (as usually done in a Local Search framework)
but requires a computation from scratch, applying again the above algorithm. This fact poses a
challenge regarding the computational efficiency of any neighbourhood exploration for the CNP.

After discussing the classical neighbourhood exploration N0, we will present two efficient
neighbourhoods N1 and N2. We will also show that the three neighbourhoods select the same
move leading to the same next incumbent solution, in the case where no ties must be broken.

Neighbourhood N0. As discussed above, a classical way to get a new solution S′ from S is
to exchange a node u ∈ S with another node v ∈ V \ S (2-node-exchange). Its main drawback
lies in its computational complexity: actually, a complete neighbourhood evaluation is required
to select all the nodes u ∈ S, with |S| = K, pair them with all the nodes v ∈ V \S and compute
the new objective function using Connect. The total complexity of this operation is therefore

5

O(K(|V | −K)(|V |+ |E|)). This can be very time consuming, with a complexity growing in the
worst case with the cube of the number of vertices, that is O(|V |3).

Neighbourhood N1. For a given u ∈ S, we can directly determine the node v′ ∈ V \ S that
disconnects the graph as much as possible, i.e., such that v′ = arg max{f(S)−f((S\{u})∪{v′})}.
This can be done by reintroducing u in the graph (S = S \ {u}) and performing a modified
Connect (with complexity O(|V | + |E|)) that will track all the articulation points and the
possible impact of each node if removed from the graph (ties are broken randomly).

In other words, the best exchange with a node u ∈ S is found avoiding the explicit evaluation
of the objective function for all pairs (u, v), with v ∈ V \S. Since all the nodes u ∈ S have to be
considered, the computational complexity of the N1 exploration is then O(K(|V |+ |E|), which
is less than the one of N0. In addition, the worst case complexity is reduced to O(|V |2).

Neighbourhood N2. We consider an approach complementary to the one discussed for neigh-
bourhood N1, i.e., for a given node v ∈ V \ S we identify the node u′ = arg min{f((S ∪ {v}) \
{u′})− f(S)}. This can be computed in two steps. In the first step, Connect computes the new
connected components in G without node v in O(|V |+ |E|). Then, we evaluate the ensemble of
each node in S with the components in the graph by exploiting the information computed by
Connect. In particular, we can compute the value f((S ∪{v})\{u}) for each u ∈ S in O(D(G))
at most, where D(G) is the maximum degree of a node in G, thus finding u′ in O(K ×D(G))
at most. Therefore, since all the nodes in V \ S have to be evaluated, the total complexity of
N2 is bounded by O((|V | −K)(|V |+ |E|+K ×D(G))).

We remark that the functions determining v′ in N1 and u′ in N2 are respectively the greedy
rules 2 and 1 defined by the equations (3) and (2).

Theorem 1. Starting from the same current incumbent S, each of the neighbourhoods N0, N1

and N2 selects the same move (u∗, v∗) – with u∗ ∈ S and v∗ ∈ V \ S – yielding the same next
incumbent S∗, in the case where no ties must be broken.

Proof. In order to avoid the selection of different moves due to breaking ties, let us suppose
there exists one and only one best possible move (u∗, v∗) for a given current incumbent S.

By definition N0 will identify such a best move since it tests all possible pairs of nodes (u, v)
with u ∈ S and v ∈ V \ S.

Let us now consider N1. First we consider a generic move (u, v) in such a way that u 6= u∗.
By construction, this move leads to an incumbent S′ such that f(S∗) < f(S′). On the contrary,
if u = u∗ let us suppose the algorithm extracts a move (u∗, v) where v 6= v∗ leading to a solution
S′ such that f(S′) < f(S∗). This is equivalent to saying that the algorithm – which evaluates
the impact of all possible nodes v ∈ (V \ S)∪ {u} – finds a pair (u∗, v) with higher impact than
(u∗, v∗), which is a contradiction. Therefore, N1 extracts the best possible move (u∗, v∗).

Similar reasoning proves that N2 will also select (u∗, v∗).

An illustrative example. Let us consider the graph in Figure 1. Assume that nodes 1 and
2 have been removed. The surviving connections are three, namely the ones between the nodes
3-4, 3-5, 4-5. If we look for an exchange disconnecting the graph as fully as possible, it is easy
to see that the insertion of node 1 and the removal of node 3 is uniquely the best move, leaving
just nodes 4 and 5 still connected.

N0 finds the best move after evaluating all the possible exchanges. N1 evaluates first the
insertion in the graph of node 1 that leads to the removal of node 3. Then it considers the

6

Figure 1: Example of neighbourhoods N0, N1 and N2.

insertion of node 2 and removes node 3 again. Finally, N1 chooses the swap (1, 3) since (2, 3)
results in a graph with two connections (nodes 2− 6, 4− 5).

N2 evaluates the deletion of nodes 3, 4, 5 and the consequent insertion of nodes 11, while the
removal of node 6 leads to its reinsertion. N2 then chooses the exchange producing the highest
impact, that is again (1, 3). Therefore all the exploration methods yield the same best move as
Theorem 1 states.

4 Local Search Metaheuristics

This Section presents the two metaheuristics proposed for solving CNP. We describe the general
framework for the proposed algorithms in order to highlight their main components. First we
discuss the Local Search engine (sect. 4) which is used in both algorithms depicted in Sections 4.1
and 4.2. Finally, we briefly introduce all the algorithm variants tested in Section 5.

We discuss the common Local Search engine which is then exploited within the ILS and VNS
framework making use of the neighbourhoods proposed in Section 3.

A priori, the neighbourhoods are designed using a best improvement strategy. However, even
though N1 and N2 are more efficient than N0 from a complexity point of view, dealing with large
instances might require an additional gain in computational efficiency. Therefore, we propose an
alternative search strategy in order to improve the total running time of the algorithms, without
impairing the quality of the solution provided.

1Notice that as far as the removal of nodes 4 and 5 is concerned, their reinsertion in the graph or the insertion
of node 1 produces the same impact on the graph (three surviving connections). Without loss of generality, we
selected node 1 in the example.

7

A first common approach is to use a first improvement strategy to explore a given neigh-
bourhood rather than a best improvement one: instead of fully exploring the neighbourhood to
search the best move, the first improvement strategy selects the first improving move.

The computational effectiveness of a first improvement strategy depends on how long it takes
to find an improving move. To facilitate this process, we introduce a ranking of the nodes so as
to identify the nodes to be evaluated first for the goal of finding such a move faster. We tested
the use of a centrality measure to get some information about the importance of the nodes.

Centrality concepts have been introduced in late seventies in [15, 16]. There exist different
centrality measures like degree, closeness, betweenness and Katz centrality among the most
common ones [31]. Degree and betweenness centrality have been used in [9] to evaluate the
tolerance of complex networks to errors and attacks.

We considered the betweenness centrality, which measures how many times a node belongs to
the shortest path between two other nodes. This measure seems closely related to CNP objective
function, see for example [29] that studies the correlation of different centrality measures with
several graph connectivity measures. Given a node u and a pair of nodes s 6= u and t 6= u, let
σs,tu be equal to the ratio of number of shortest paths between s and t containing the node u
and the total number of shortest paths between s and t. The betweenness centrality of a node
u is equal to the sum of σs,tu over all different pairs of node s, t ∈ V , that is

bu =
∑

s,t∈V,s 6=t6=u

σs,tu .

We implemented Brandes algorithm [8], running in O(|V | × |E|), to compute the bu values for
all u ∈ V .

With respect to Algorithm 5 and 7, we compute bu on the initial graph G and then we use
them to sort the nodes to be explored in N1 and N2. More specifically, we sort the nodes in a
decreasing or increasing value of bu for N1 and N2, respectively.

Algorithm 4: Generic Local Search for CNP
Data: graph G, neighbourhood N , solution S, flag CentrRanking, FirstImpr;
Result: local optima S∗;

1 foundMove←− true;
2 while foundMove do
3 (u∗, v∗)←− selectBestMove (N , S, V , FirstImpr, CentrRanking);
4 if f(S ∪ {v∗} \ {u∗}) < f(S) then S ←− S ∪ {v∗} \ {u∗} ;
5 else foundMove←− false ;

6 S∗ ←− S;

The pseudo-code reported in Algorithm 4 describes a generic Local Search for CNP returning
a local optima S∗. The inputs of this procedure are the graph G, the neighbourhood N and
the starting solution S. Furthermore it takes two boolean flags FirstImpr and CentrRanking:
FirstImpr is equal to true when a first improvement strategy is applied, false otherwise;
CentrRanking is equal to true when the nodes are ranked with respect to their betweenness
centrality values bu. Note that the ranking is performed outside the Local Search engine, thus
the values bu are not a parameter of the procedure. The loop simply encodes the exploration
of the neighbourhood selected, namely each node u ∈ S (v ∈ V \ S) is considered if N1 (N2)
is applied and accordingly the best exchange is found (function selectBestMove). The loop
is repeated until a local optima is reached, that is when foundMove is equal to false. The
exploration can be full or partial according to the selected search strategy.

8

4.1 Iterated Local Search for CNP

In this section we present a general ILS solution framework to deal with CNP. In the following
we refer to the basic ILS scheme discussed in [23] (cf., page 326). The main ingredients of our
ILS algorithm are: the procedure to compute the initial solution, the improvement procedure
and the perturbation method. The pseudo-code of our algorithm is depicted in Algorithm 5.

Algorithm 5: A ILS solution framework for CNP
Data: graph G, K, tmax, neighbourhood N , flag CentrRanking, flag FirstImpr;
Result: S∗

1 S0 ←− Greedy1(G,K); S∗ ←− S0;
2 S′ ←− LocalSearch(G, N , S0, FirstImpr, CentrRanking);
3 if f(S′) < f(S∗) then S∗ ←− S′;
4 done←− false;
5 repeat
6 S′′ ←− Perturbation(S′);
7 if S′ 6= S′′ then
8 S′ ←− LocalSearch(G, N , S′′, FirstImpr, CentrRanking);
9 if f(S′) < f(S∗) then S∗ ←− S′;

10 else done ←− true;

11 until t ≥ tmax OR done;

In our current implementation, the initial solution S0 is computed by applying the greedy
depicted in Algorithm 2. The improvement procedure is the Local Search procedure depicted in
Algorithm 4.

The perturbation method consists in fragmenting the largest connected components in the
induced graph in order to reach more homogeneous components so as to attempt to reduce the
number of node pairs still connected. The idea behind this is that, from a theoretical point of
view, the minimization of the pairwise connectivity in the CNP results also in the maximization
of the number of components while at the same time minimizing the variance in component
cardinalities. Therefore, the perturbation method aims at providing a suitable diversification of
the incumbent solution keeping into account these principles. The pseudo-code of the method
is provided in Algorithm 6.

Algorithm 6: Perturbation method for ILS
Data: graph G, K, S0

Result: S
1 S ←− S0; nc ←− 0;
2 repeat
3 nc ←− nc + 1;
4 LC ←− TakeLargestComponents(V \ S0, nc);
5 V ′ ←− VertexCover(LC);
6 S ←− S ∪ V ′;
7 while |S| > K do
8 u←− arg min{f(S \ {i})− f(S)};
9 S ←− S \ {u};

10 until S 6= S0 and nc < Number of Components in V \ S0;

Given an incumbent solution S0, the procedure first identifies the largest connected compo-
nent (nc=1) in the induced graph (V \S0), then we make the connected component disconnected
by removing the set of nodes belonging to the vertex cover of the connected components. The
nodes of the vertex cover are added to S generating an infeasible solution. Then a new feasible

9

solution is built by removing iteratively from S, |S| −K times, the node which yields the min-
imum increase in the objective function. If the resulting solution S is different from the initial
one S0, the procedure stops and the new solution S is returned. Otherwise, the initial solution is
reconsidered and the second largest component (nc=2) is analysed. If the fragmentation of the
second component does not lead to a different solution, the third largest component is evaluated
and so on for the other components. The method finally stops when all components are assessed
(nc = Number of Components in V \ S0). Finally, we remark that the connected components
are computed using the Connect procedure while the Vertex Cover is heuristically determined
by the procedure VertexCover reported in Section 2.3.

4.2 Variable Neighbourhood Search for CNP

In this section we present a general VNS solution framework to deal with CNP extending the
work presented in [4]. In the following we refer to the basic VNS scheme discussed in [20]
(cf., algorithm 7). From a notational point of view, we use h instead of k to denote the kth
neighbourhood, and S instead of x to denote a solution. The main ingredients of our VNS
algorithm are: the procedure to compute an initial solution, the improvement and the shake
procedures. The pseudocode of our algorithm is depicted in Algorithm 7.

In our current implementation, the initial solution S0 is computed by applying the greedy
depicted in Algorithm 2. The improvement procedure is the Local Search procedure depicted in
Algorithm 4.

Algorithm 7: A VNS solution framework for CNP
Data: graph G, K, tmax, neighbourhood N , flag CentrRanking, flag FirstImpr, OrderH;
Result: S

1 S ←− Greedy1(G,K);
2 h←− first(OrderH);
3 repeat
4 S′ ←− Shake(S, h);
5 S′′ ←− LocalSearch(G, N , S′, FirstImpr, CentrRanking);
6 if f(S′′) < f(S) then S ←− S′′; h←− first(OrderH);
7 else h←− next(h,OrderH);

8 until t ≥ tmax OR h = last(OrderH);

The flag OrderH is concerned with the possibility of increasing h (h = 2, . . . , hmax) or
decreasing h (h = hmax, . . . , 2): the functions first, next and last return respectively the first,
the next and the last value of h in the increasing or decreasing sequence.

Let φu be the occurrence or frequency in which a node u belongs to a solution S. The
value φu is updated (φu ←− φu + 1) in two cases: if u is added to the solution S during the
neighbourhood exploration (line 5), and if u belongs to a solution improving the current best
solution (line 6). The shaking procedure replaces the h most frequent nodes in S with the h
least frequent nodes in V \ S. Since we are not using randomness, our shaking procedure is
totally deterministic. By consequence, the whole algorithm will stop once all possible attempts
have been tried without improvement, possibly before the maximum available time consumption
tmax is reached (line 7).

4.3 Variants of the algorithms

In the previous sections, we proposed two general frameworks for solving the CNP, that is ILS
and VNS. Within these frameworks, we can derive several variants of the same algorithm.

10

The following alternatives work both for ILS and VNS: using the N1 or N2 neighbourhoods,
using the best or the first improvement strategies and applying the first improvement strategy
combined with the ranking the nodes according to the centrality measure. Regarding VNS, two
further alternatives can be considered: the former is concerned with the increasing or decreasing
values of h while the latter is concerned with the update of frequency values φu, that is updated
both during neighbourhood exploration and when a new best solution is found or only when a
new best solution is found.

Summing up, we obtained 6 ILS and 24 VNS variants which we study in the computational
experiments in the next section.

5 Computational analysis

To conduct our computational analysis of the proposed ILS and VNS algorithms and their
variants we first identify the computational environment (sect. 5.1), and report a computational
test comparing the running time efficiency of the neighbourhoods N1 and N2 with that of N0

(sect. 5.2). In Section 5.3, the quality of the solutions provided by the proposed algorithm
variants is discussed in depth. The new best known results for the benchmark instances are
summarized in Section 5.4 and an analysis for determining the best variant of the algorithms
from a statistical point of view is discussed in Section 5.5. Finally, we discuss the impact of the
first improvement strategy and the use of betweenness centrality in terms of running time in
Section 5.6.

5.1 Setting up the computational experiments

All the algorithm variants were programmed in standard C++ and compiled with gcc 4.1.2.
All tests were performed on an HP ProLiant DL585 G6 server with two 2.1 GHz AMD Opteron
8425HE processors and 16 GB of RAM. As stated previously, we use the graphs presented in [28]
as benchmark instances and compare our results with the best known results coming from the
literature. Characteristics of the benchmark instances in terms of cardinality of V and E, and
the value of K, are reported in Table 1.

Barabasi-Albert (BA) Erdos-Renyi (ER) Forest-Fire (FF) Watts-Strogatz (WS)

|V |,|E|,K
500,499,50 235,350,50 250,514,50 250,1246,70
1000,999,75 466,700,80 500,828,110 500,1496,125

2500,2499,100 941,1400,140 1000,1817,150 1000,4996,200
5000,4999,150 2344,3500,200 2000,3413,200 1500,4498,265

Table 1: Benchmark instances from [28]: main characteristics.

In Section 2 we discussed a list of competing algorithms. Given the profound differences
between all the heuristics considered here, it is tricky to set up computational conditions that
allow a fair comparison of their results. Since the metaheuristics described in Section 2.1 were run
30 times retaining the best results after 30 trials (best results reported in [28]), we ran the greedy-
based algorithms reported in Section 2.3 until 30 feasible solutions were encountered (results are
presented in [2] and summed up below). The parameter ∆K was set equal to ∆K = K/2 from
preliminary computational experiments. Finally, the algorithm DFSH-Post reviewed in 2.2 was
specifically designed to provide very fast solutions and works in a completely deterministic way.
Numerical results for DFSH-Post are extracted from [14].

11

graph K BK PBIL DFSH-Post Greedy3d Greedy4d Exact result

BA500 50 195 892 203 195 195 195
BA1000 75 559 3057 580 559 559 558
BA2500 100 3722 28044 4292 3722 3722 3704
BA5000 150 10196 146753 12273 10196 10196 10196

ER235 50 313 6700 1141 315 313 295
ER466 80 1938 44255 19952 1938 1993 NA
ER941 140 8106 229576 114166 8106 8419 NA
ER2344 200 1112685 2009132 1606656 1118785 1112685 NA

FF250 50 197 1386 302 199 197 194
FF500 110 262 1904 344 262 264 257
FF1000 150 1271 59594 1880 1288 1271 1260
FF2000 200 4592 256905 7432 4647 4592 4545

WS250 70 11401 13786 16110 11694 11401 NA
WS500 125 4818 53779 55163 4818 11981 NA
WS1000 200 308596 308596 319600 316416 318003 NA
WS1500 265 157621 703241 653015 157621 243190 NA

Table 2: Best known results for the 16 benchmark instances computed by algorithm competitors.

Overall results are summarized in Table 2. Column BK reports the best knowns computed
among all these algorithms. The last column reports the results of the exact algorithm of [11]
when it was able to converge to an optimal solution within 5 days. Table 2 showed that Greedy3d
and Greedy4d are capable to compute better solutions than the other ones. Furthermore, they
are able to compute solutions close to the exact ones in the case of BA and FF graphs, which
are the sparsest graphs.

In order to establish a basis for comparison with these competitors, we defined a time budget
for our algorithms. We have chosen the value tmax = min{10000, t(PBIL)} seconds where
t(PBIL) is the running time of PBIL reported in Table 5 of [28]. We remark that our ILS and
VNS frameworks have a tendency to terminate the search before tmax – at least, for the smaller
benchmark instances – never exceeding the total running time of the PBIL metaheuristic.

5.2 Neighbourhood running time comparison

In Section 3 we showed that N1 and N2 are more efficient than N0 in terms of complexity. To
provide further insights, we report the results of a test aiming at comparing the running time
of the three neighbourhoods.

The test consists in generating 20 different starting solutions computed by a randomized
version of the greedy algorithm described in 2, and then performing 1 full exploration of the
neighbourhood considered. This test has been done for each instance and for each neighbour-
hood. The results of this test are reported in Table 3.

graph |V | K N0/N1 N0/N2 N2/N1 (|V | −K)/K

ER466 466 80 57.6 12.9 4.5 4.8
ER941 941 140 106.6 18.8 5.7 5.7
FF500 500 110 54.2 11.7 4.6 3.5
FF1000 1000 150 112.3 18.7 6.0 5.7
WS500 500 125 57.2 18.7 3.1 3
WS1000 1000 200 154.6 37.8 4.1 4

Table 3: Ratio of running times between the different neighbourhood searches.

The results demonstrate the running time efficiency N1 and N2 with respect to N0. Fur-
thermore, they also confirm that N1 runs faster than N2 for small values of K/|V |. Finally,
the last two columns show that the complexity ratio between N2 and N1 is close to the ratio
(|V |−K)/K, since the contribution of the term K×D(G) is negligible in the graphs considered.

12

5.3 Solution quality of ILS and VNS

Table 4 reports the results of the six versions of the ILS algorithms proposed in Section 4.1,
that is using N1 or N2 neighbourhoods, best (B) or first (F) improvement strategy and first
improvement with use of the betweenness centrality (F-C). The results are compared with the
values belonging to BK column of Table 2. Values in boldface are those equalling the best known
values while those in boldface and underlined improve the best known values.

graph K BK ILS-N1-F ILS-N1-B ILS-N2-F ILS-N2-B ILS-N1-F-C ILS-N2-F-C

BA500 50 195 195 195 195 195 195 195
BA1000 75 559 559 559 559 559 559 559
BA2500 100 3722 3722 3722 3722 3722 3722 3722
BA5000 150 10196 10222 10222 10222 10222 10222 10242

ER235 50 313 313 313 343 313 366 324
ER466 80 1938 2272 1924 2490 1924 1933 1874
ER941 140 8106 6878 7749 5544 7749 6502 5724
ER2344 200 1112685 1073490 1071968 1100639 1129150 1062536 1066164

FF250 50 197 206 212 212 195 212 212
FF500 110 262 261 261 261 261 261 261
FF1000 150 1271 1300 1298 1288 1276 1290 1278
FF2000 200 4592 4583 4583 4583 4583 4583 4583

WS250 70 11401 3960 3241 3857 3751 3290 3266
WS500 125 4818 2353 2434 2383 2384 2335 2282
WS1000 200 308596 148856 156909 151900 159201 158404 158404
WS1500 265 157621 14681 16641 14926 15287 15608 16357

Table 4: Results of the 6 ILS algorithms: N1 or N2 neighbourhoods, best or first improvement
strategy and first improvement with use of the betweenness centrality.

The proposed ILS algorithms outperform the best known values. In particular, they signifi-
cantly improve those corresponding to the most difficult instances, that is ER and WS which are
the densest graphs. Only in two instances out of 16, our ILS variants are not able to replicate
or to improve the best known values, although the corresponding relative gaps are negligible.
Finally, there is not a clear dominance among the six versions of the ILS algorithm.

The following tables 5–7 report the results of the 24 VNS variants derived from the general
framework introduced in Section 4.2: best (B), first (F) or first with the use of the betweenness
centrality (F-C), and then considering the choice of neighbourhood exploration N1 or N2. For
each version, we also consider a different strategy for updating the frequencies φu. The idea
is to adopt a less intrusive strategy, that is to update φu only when u belongs to a solution
improving the current best solution (line 6 of Algorithm 7). Thus, while we previously updated
the frequency of a node each time it was found in a solution (full), we now only update it when
it is found in a local optimum (LO). The results are compared with the values belonging to BK
column of Table 2. Values in bold are those equalling the best known values while those in bold
and underlined improve the best known values.

Table 5 illustrates the results for the VNS variants that provide the best improvements. The
solutions computed outperform the best known values: actually, the 8 VNSs are always able to
replicate or to improve the best known values. Similarly to the ILS algorithms, they obtain large
improvements on the densest graphs (ER and WS). Although VNS-I-N2-B with local optima
frequency update strategy seems the more robust version since it always replicates or improves
the best known values, there is not a clear dominance among the 8 proposed versions.

Table 6 and Table 7 illustrate the results for the VNS variants with first improvements
and with first improvement with use of the betweenness centrality. The results of both Tables

13

graph K BK VNS-D-N1-B VNS-D-N2-B VNS-I-N1-B VNS-I-N2-B
full LO full LO full LO full LO

BA500 50 195 195 195 195 195 195 195 195 195
BA1000 75 559 559 559 559 559 559 559 559 559
BA2500 100 3722 3722 3722 3722 3722 3722 3722 3722 3722
BA5000 150 10196 10196 10196 10196 10196 10196 10196 10222 10196

ER235 50 313 306 303 297 301 297 301 298 306
ER466 80 1938 1572 1599 1589 1645 1560 1585 1599 1674
ER941 140 8106 5709 5821 6177 6039 5473 5992 5316 5438
ER2344 200 1112685 1124027 1101350 1127739 1109129 1094844 1055841 1066958 1034575

FF250 50 197 194 194 194 194 194 194 198 194
FF500 110 262 258 258 259 258 258 260 258 257
FF1000 150 1271 1260 1261 1269 1260 1262 1262 1261 1263
FF2000 200 4592 4576 4584 4582 4584 4570 4562 4570 4571

WS250 70 11401 9027 10206 11196 8209 11385 10248 9009 6903
WS500 125 4818 2266 2336 2207 2215 2179 2157 2236 2266
WS1000 200 308596 209640 208963 154634 154634 259697 255061 188866 157065
WS1500 265 157621 201181 201181 20098 26097 18083 15250 19524 19472

Table 5: Results of the 4 VNS algorithms: N1 or N2 neighbourhoods, best improvement strategy,
different update of parameter φu.

confirm the validity of the 16 VNS versions as previously discussed. With respect to improving
the best known solutions, the use of the best improvement strategy seems to guarantee a general
robustness of the algorithm. On the other hand, the first improvement approach seems able to
get better solution quality as we report in the next section.

5.4 New best known results

Table 8 summarizes the best values computed by each of the ILS and VNS variants in order
to determine the new best results found for each benchmark instance. Column 3 reports the
old best known values, columns 4, 5, 6 and 7 report the best results of the algorithm variants
reported in Table 4, 5, 6 and 7, respectively. The last two columns report the new best known
values and their relative gap with the older ones. Solution values yielding the new best knowns
are in boldface.

Our algorithms are able to find 13 new best known values out of 16. The remaining 3, that is
those for BA instances, cannot be improved since they correspond to the optimal values reported
in the last column of Table 2. The gaps reported showed that the largest improvements are
obtained for the WS and ER instances. Considering also the unavailability of optimal solutions

graph K BK VNS-D-N1-F VNS-D-N2-F VNS-I-N1-F VNS-I-N2-F
full LO full LO full LO full LO

BA500 50 195 195 195 195 195 195 195 195 195
BA1000 75 559 559 559 559 559 559 559 559 559
BA2500 100 3722 3722 3722 3704 3704 3722 3722 3704 3704
BA5000 150 10196 10196 10196 10218 10218 10196 10196 10196 10218

ER235 50 313 306 303 306 335 301 301 298 302
ER466 80 1938 1562 1542 1611 1727 1561 1567 1725 1751
ER941 140 8106 5470 5503 6106 6289 5722 5658 5198 5628
ER2344 200 1112685 1112994 1067397 1091185 1097573 1078895 1052406 1094239 1034333

FF250 50 197 194 194 198 199 198 194 198 199
FF500 110 262 257 257 258 258 257 257 257 258
FF1000 150 1271 1270 1270 1274 1274 1263 1270 1265 1273
FF2000 200 4592 4578 4576 4584 4584 4583 4577 4549 4550

WS250 70 11401 7175 8833 11196 6610 10237 10413 12457 7186
WS500 125 4818 2148 2170 2209 2199 2230 2152 2209 2213
WS1000 200 308596 198494 200225 139653 145718 268500 256239 179531 154813
WS1500 265 157621 16210 17198 16549 26225 14623 14719 14619 15692

Table 6: Results of the 4 VNS algorithms: N1 or N2 neighbourhoods, first improvement strategy,
different update of parameter φu.

14

graph K BK VNS-D-N1-F-C VNS-D-N2-F-C VNS-I-N1-F-C VNS-I-N2-F-C
full LO full LO full LO full LO

BA500 50 195 195 195 195 195 195 195 195 195
BA1000 75 559 559 559 559 559 559 559 559 559
BA2500 100 3722 3722 3722 3704 3704 3722 3722 3704 3704
BA5000 150 10196 10196 10196 10218 10218 10196 10196 10196 10196

ER235 50 313 301 297 295 301 301 301 298 295
ER466 80 1938 1584 1600 1566 1569 1551 1560 1595 1655
ER941 140 8106 5412 5201 5420 5564 5372 5349 5556 5326
ER2344 200 1112685 1032976 1053202 1102577 1069662 1035696 1012849 1108855 1059239

FF250 50 197 198 198 194 194 198 194 194 194
FF500 110 262 258 258 258 259 258 258 259 259
FF1000 150 1271 1261 1263 1281 1290 1273 1274 1279 1279
FF2000 200 4592 4579 4592 4593 4569 4561 4555 4565 4551

WS250 70 11401 10235 10235 8721 7327 10741 10231 9274 7977
WS500 125 4818 2188 2135 2139 2154 2209 2196 2224 2130
WS1000 200 308596 208125 211303 190892 184609 268747 265095 204311 236279
WS1500 265 157621 92855 15009 16156 15242 14527 14538 14665 14138

Table 7: Results of the 4 VNS algorithms: N1 or N2 neighbourhoods, first improvement strategy
with use of the betweenness centrality, different update of parameter φu.

by applying the exact algorithm (see Table 2), the WS instances seem to be the hardest to solve.
As a matter of fact, they are the densest graphs in our benchmark set: for the same number of
nodes, WS has 4 times more arcs than BA and twice more than ER and FF; moreover, they
present a “small-world” structure where every node’s degree is close to the average degree and
no node of degree 1 is present. Regarding the results of the algorithms, the VNS versions with
first improvement strategy are those yielding 11 new best known values out of 13. The ILS and
VNS-B versions are able to find unique new best known values only for instances WS250 and
FF1000, respectively.

5.5 Statistical comparison

In order to determine, if possible, the best algorithm variant among all our proposals, we compute
the Friedman average ranking [17] over the 16 benchmark instances. We also compute the
average gap of each algorithm to the best found solution, that is, for each instance we extract
the best found value between all the algorithms and compute the gap of each algorithm to this
best found value; then for each algorithm we compute the average gap over all 16 instances.

graph K old BK ILS VNS-B VNS-F VNS-F-C new BK gap %

BA500 50 195 195 195 195 195 195 0.00%
BA1000 75 559 559 559 559 559 559 0.00%
BA2500 100 3722 3722 3722 3704 3704 3704 -0.48%
BA5000 150 10196 10222 10196 10196 10196 10196 0.00%

ER235 50 313 313 297 298 295 295 -5.75%
ER466 80 1938 1874 1560 1542 1551 1542 -20.43%
ER941 140 8106 5544 5316 5198 5201 5198 -35.87%
ER2344 200 1112685 1062536 1034575 1034333 1012849 1012849 -8.97%

FF250 50 197 195 194 194 194 194 -1.52%
FF500 110 262 261 257 257 258 257 -1.91%
FF1000 150 1271 1276 1260 1263 1261 1260 -0.87%
FF2000 200 4592 4583 4562 4549 4551 4549 -0.94%

WS250 70 11401 3241 6903 6610 7327 3241 -71.57%
WS500 125 4818 2282 2179 2148 2130 2130 -55.79%
WS1000 200 308596 148856 154634 139653 184609 139653 -54.75%
WS1500 265 157621 14681 18083 14619 14138 14138 -91.03%

Table 8: New best known results.

15

Both results are reported in Table 9 and favour algorithms VNS-I-N2-FC-LO and ILS-N2-FC.
Unfortunately, the Wilcoxon’s matched-pairs signed-ranks test [32] – between each algorithm and
the best ranking – indicates that the dominance cannot be considered statistically significant.

algorithm VNS-D-N1-F-full VNS-D-N1-B-full VNS-D-N2-F-full VNS-D-N2-B-full VNS-I-N1-F-full VNS-I-N1-B-full
avg. ranking 13.25 16.47 17.44 16.28 15.25 13.91
avg. gap to BK 0.07 0.14 0.08 0.09 0.09 0.10

algorithm VNS-I-N2-F-full VNS-I-N2-B-full VNS-D-N1-F-LO VNS-D-N1-B-LO VNS-D-N2-F-LO VNS-D-N2-B-LO
avg. ranking 11.97 14.81 12.78 17.81 17.84 15.75
avg. gap to BK 0.08 0.09 0.08 0.14 0.10 0.10

algorithm VNS-I-N1-F-LO VNS-I-N1-B-LO VNS-I-N2-F-LO VNS-I-N2-B-LO VNS-D-N1-FC-full VNS-D-N2-FC-full
avg. ranking 12.94 14.19 13.84 13.09 13.59 13.38
avg. gap to BK 0.09 0.09 0.07 0.07 0.08 0.07

algorithm VNS-I-N1-FC-full VNS-I-N2-FC-full VNS-D-N1-FC-LO VNS-D-N2-FC-LO VNS-I-N1-FC-LO VNS-I-N2-FC-LO
avg. ranking 13.31 14.19 13.59 13.38 11.75 10.84
avg. gap to BK 0.09 0.08 0.08 0.07 0.08 0.07

algorithm ILS-N1-F ILS-N2-F ILS-N1-B ILS-N2-B ILS-N1-FC ILS-N2-FC
avg. ranking 20.16 20.00 21.12 20.72 20.56 19.81
avg. gap to BK 0.07 0.07 0.07 0.07 0.07 0.05

Table 9: Average ranking and average gap to best known of each algorithm over the 16 bench-
mark instances. The best results are displayed in bold face.

5.6 Running time

In Table 10 we provide a comparison of the running times of a version of the VNS algorithm
reflecting the general trend of our computational experience. In particular, the values of the time
to best, namely the time where the best value of the objective function is found, and of the total
running time (in seconds) of the VNS-I-N1 algorithm are presented, considering the application
of best and first (with and without the use of the betweenness centrality) improvement strategies.
We notice that a first improvement strategy lets the VNS perform faster than a best improvement
strategy, and the use of the centrality measure appreciably accelerates performances. In addition,
we have seen in the previous tables that the solutions achieved by the various strategies are
comparable. Therefore the betweenness centrality criterion seems to let the algorithms converge
quickly without compromising the quality of the results.

6 Conclusions

We devised two metaheuristics for the CNP based on the Iterated Local Search and Variable
Neighbourhood Search methodologies. We exploited two efficient neighbourhoods that make it
possible to outperform the results reported in the literature. A large proportion of improving
solutions has been found: 13 new best known values out of 16 benchmark instances. Moreover
the remaining 3 ties with best known values are optimal values.

We also evaluated the use of different exploration strategies in order to exploit the potential
of the proposed algorithms and to understand if some particular approach turns out to be
especially promising. Although there is not a clear dominance of one strategy over the others, it
is worth noting that a first improvement strategy yields a large number (11) of new best known
values. The use of betweenness centrality plays a role in improving running times without
deteriorating the quality of the results. This is a useful finding for the goal of enhancing the
computational effort of the algorithms for the CNP. In general, VNS algorithms perform better
than ILS methods in our setting, but all in all the results are comparable, and interestingly the
ILS approach seems to be able to handle hard instances.

16

graph K VNS-I-N1-B VNS-I-N1-F VNS-I-N1-F-C

Time to best Total time Time to best Total time Time to best Total time

BA500 50 0 39 1 32 0 4
BA1000 75 1 301 0 243 0 24
BA2500 100 4 1991 4 1579 1 255
BA5000 150 10121 10121 197 10088 129 1971

ER235 50 8 34 8 22 11 15
ER466 80 114 410 38 160 65 116
ER941 140 783 5356 24 1935 56 726
ER2344 200 7955 10055 6113 10025 3518 7589

FF250 50 33 61 4 25 1 3
FF500 110 270 761 153 491 59 102
FF1000 150 4474 7654 1594 4075 380 619
FF2000 200 6721 10063 21 10041 878 2047

WS250 70 8 33 7 14 8 17
WS500 125 460 2414 143 1587 200 740
WS1000 200 1568 1963 553 1162 502 771
WS1500 265 8880 10057 9299 10003 2565 10102

Table 10: Time to best and total running time (in seconds) of a version of the VNS algorithm
with best improvement, first improvement and first improvement with the use of betweenness
centrality values (and full update of the frequence parameter φu).

Even though the benchmark instances are not real networks and some of them are random
graphs with no particular features of real complex networks (ER), some of them display scale
free structures (BA, FF) or small-world structures as encountered in many social networks,
airline networks or fire propagation situations as discussed in [28, 14]. This is a good hint that
our algorithms may be expected to be relatively good for real-world critical node problem cases
according to [22, 18] which show that the no free lunch hypothesis does not seem to apply to
most real-world problems.

Future work will be devoted to devise auxiliary data structures and different neighbourhoods.
The trade-off between the quality of the solutions and computational times could be more
extensively addressed, in order to evaluate the application of our algorithms to larger instances
and real networks as well. The use of centrality measures to deal with the CNP, in relation also
with the structures of the graphs, will be further investigated. Finally, another appealing area
of investigation would be to develop effective metaheuristics to cope with other versions of the
CNP (e.g., the Cardinality Constrained CNP [6, 25, 26]) or with weighted graphs.

References

[1] Network interdiction applications and extensions, 2014. Virtual issue on Networks.

[2] B. Addis, R. Aringhieri, A. Grosso, and P. Hosteins. Hybrid constructive heuris-
tics for the critical node problem. Submitted for publication, 2014. http://www.

optimization-online.org/DB_HTML/2015/02/4764.html.

[3] B. Addis, M. Di Summa, and A. Grosso. Removing critical nodes from a graph: complexity
results and polynomial algorithms for the case of bounded treewidth. Discrete Applied
Mathematics, 16-17:2349–2360, 2013.

17

[4] R. Aringhieri, A. Grosso, P. Hosteins, and R. Scatamacchia. VNS solutions for the Critical
Node Problem. In The 3rd International Conference on Variable Neighborhood Search
(VNS’14), Electronic Notes in Discrete Mathematics, pages 37–44, February 2015.

[5] A. Arulselvan, C. W. Commander, L. Elefteriadou, and P. M. Pardalos. Detecting critical
nodes in sparse graphs. Computers & Operations Research, 36:2193–2200, 2009.

[6] V. Boginski and C. W. Commander. Identifying critical nodes in protein-protein interaction
networks. In S. Butenko, W. A. Chaovalitwongse, and P. M. Pardalos, editors, Clustering
Challenges in Biological Networks, pages 153–168. World Scientific Publishing, 2009.

[7] S. P. Borgatti. Identifying sets of key players in a network. Computational and Mathematical
Organization Theory, 12:21–34, 2006.

[8] U. Brandes. A faster algorithm for betweenness centrality. Journal of Mathematical Soci-
ology, 25:163–177, 2001.

[9] P. Crucitti, V. Latora, M. Marchiori, and A. Rapisarda. Error and attack tolerance of
complex networks. Physica A: Statistical Mechanics and its Applications, 340(1):388–394,
2004.

[10] M. Di Summa, A. Grosso, and M. Locatelli. The critical node problem over trees. Computers
and Operations Research, 38:1766–1774, 2011.

[11] M. Di Summa, A. Grosso, and M. Locatelli. Branch and cut algorithms for detecting
critical nodes in undirected graphs. Computational Optimization and Applications, 53:649–
680, 2012.

[12] T. N. Dinh and M. T. Thai. Precise structural vulnerability assessment via mathematical
programming. In MILCOM 2011 – 2011 IEEE Military Communications Conference, pages
1351–1356. IEEE, 2011.

[13] T. N. Dinh, Y. Xuan, M. T. Thai, P. M. Pardalos, and Znati T. On new approaches
of assessing network vulnerability: Hardness and approximation on approximation of new
optimization methods for assessing network vulnerability. IEEE/ACM Transactions on
Networking, 20:609–619, 2012.

[14] M. Edalatmanesh. Heuristics for the Critical Node Detection Problem in Large Com-
plex Networks. PhD thesis, Faculty of Mathematics and Science, Brock University, St.
Catharines, Ontario, 2013.

[15] L. C. Freeman. Centrality in social networks conceptual clarification. Social Networks,
1(3):215 – 239, 1978–1979.

[16] L. C. Freeman, D. Roeder, and R. R. Mulholland. Centrality in social networks: ii. experi-
mental results. Social Networks, 2(2):119 – 141, 1979–1980.

[17] M. Friedman. The use of ranks to avoid the assumption of normality implicit in the analysis
of variance. Journal of the American Statistical Association, 32:675–701, 1937.

[18] C. Garcia, F.J. Rodriguez, and M. Lozano. Arbitrary function optimisation with meta-
heuristics. no free lunch and real-world problems. Soft Computing, 16:2115–2133, 2012.

18

[19] P. Hansen, N. Mladenović, and J. A. Moreno Pérez. Variable Neighbourhood Search:
methods and applications. 4OR, 6:319–360, 2008.

[20] P. Hansen, N. Mladenović, and J. A. Moreno Pérez. Variable Neighbourhood Search:
methods and applications. Ann Oper Res, 175:367–407, 2010.

[21] J. Hopcroft and R. Tarjan. Algorithm 447: Efficient algorithms for graph manipulation.
Communications of the ACM, 16(6):372–378, June 1973.

[22] C. Igel and M. Toussaint. On classes of functions for which no free lunch results hold.
Information Processing Letters, 86:317–321, 2003.

[23] H. R. Lourenço, O. C. Martin, and T. Stützle. Iterated Local Search: Framework and ap-
plications. In Michel Gendreau and Jean-Yves Potvin, editors, Handbook of Metaheuristics,
volume 146 of International Series in Operations Research & Management Science, pages
363–397. Springer US, 2010.

[24] C. Papadimitriou and K. Steiglitz. Combinatorial Optimization: Algorithms and Complex-
ity. Prentice-Hall, Englewood Cliffs, NJ, 1982.

[25] S. Shen and J. C. Smith. Polynomial-time algorithms for solving a class of critical node
problems on trees and series-parallel graphs. Networks, 60(2):103–119, 2012.

[26] S. Shen, J. C. Smith, and R. Goli. Exact interdiction models and algorithms for discon-
necting networks via node deletions. Discrete Optimization, 9:172–88, 2012.

[27] J.R. Tarjan. Efficient algorithms for graph manipulation. Communications of the ACM,
16(6):372–378, 1973.

[28] M. Ventresca. Global search algorithms using a combinatorial unranking-based problem
representation for the critical node detection problem. Computers & Operations Research,
39:2763–2775, 2012.

[29] M. Ventresca and D. Aleman. Network robustness versus multi-strategy sequential attack.
Journal of Complex Networks, 3:126–146, 2015.

[30] A. Veremyev, V. Boginski, and E. Pasiliao. Exact identification of critical nodes in sparse
networks via new compact formulations. Optimization Letters, 8:1245–1259, 2014.

[31] S. Wasserman and K. Faust. Social Network Analysis: Methods and Applications. Cam-
bridge University Press, 1994.

[32] F. Wilcoxon. Individual comparisons by ranking methods. Biometrics, 1:80–83, 1945.

[33] R. Wollmer. Removing arcs from a network. Operations Research, 12:934–940, 1964.

[34] R. K. Wood. Deterministic network interdiction. Mathematical and Computer Modelling,
17:1–18, 1993.

19

