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ABSTRACT 26 

Geophysical surveys can provide useful, albeit indirect, information on vadose 27 

zone processes. However, the ability to provide a quantitative description of the 28 

subsurface hydrological phenomena requires to fully integrate geophysical data 29 

into hydrological modeling. Here, we describe a controlled infiltration experiment 30 

that was monitored using both electrical resistivity tomography (ERT) and 31 

ground-penetrating radar (GPR). The experimental site has a simple, well-32 

characterized subsoil structure: the vadose zone is composed of aeolic sand with 33 

largely homogeneous and isotropic properties. In order to estimate the unknown 34 

soil hydraulic conductivity, we apply a data assimilation technique based on a 35 

sequential importance resampling (SIR) approach. The SIR approach allows a 36 

simple assimilation of either or both geophysical datasets taking into account the 37 

associated measurement uncertainties.  We demonstrate that, compared to a 38 

simpler, uncoupled hydro-geophysical approach, the coupled data assimilation 39 

process provides a more reliable parameter estimation and better reproduces the 40 

evolution of the infiltrating water plume. The coupled procedure is indeed much 41 

superior to the uncoupled approach that suffers from the artifacts of the 42 

geophysical inversion step and produces severe mass balance errors. The 43 

combined assimilation of GPR and ERT data is then investigated, highlighting 44 

strengths and weaknesses of the two datasets. In the case at hand GPR energy 45 

propagates in form of a guided wave that, over time, shows different energy 46 

distribution between propagation modes as a consequence of the evolving 47 

thickness of the wet layer. We found that the GPR inversion procedure may 48 



  

produce estimates on the depth of the infiltrating front that are not as informative 49 

as the ERT dataset. 50 

 51 

KEYWORDS: hydro-geophysical inversion, electrical resistivity tomography, 52 

ground-penetrating radar, infiltration, vadose zone. 53 

 54 

1. INTRODUCTION 55 

Hydrological research increasingly requires detailed information to feed data-56 

hungry numerical models. For this reason, geophysical data are increasingly called 57 

into play to fill the lack of spatial and sometimes temporal resolution of traditional 58 

hydrological data. This is particularly true for the vadose zone, where the 59 

difficulties for obtaining direct measurements, the general lack of knowledge and 60 

the uncertainty on the soil parameters and their spatial heterogeneity often lead to 61 

develop numerical models that cannot reproduce the behavior of the real systems, 62 

unless they are strongly constrained by multiple, extensive and complementary 63 

data. 64 

The vadose/unsaturated zone is home to a number of complex key processes 65 

that control the mass and energy exchanges in the subsurface (soil water 66 

migration) and between the subsurface and the atmosphere (rain infiltration, soil 67 

evaporation and plant transpiration). The understanding of vadose zone fluid-68 

dynamics is key to the comprehension of a large number of hydrologically-69 

controlled environmental problems, with strong implications in water resources 70 

management and subsurface contaminant hydrology. Unsaturated processes are 71 

also key factors in a number of important issues, such as the availability of water 72 



  

for agriculture, slope stability, and floods. The dependence of the hydro-73 

geophysical response on changes in soil moisture content is the key mechanism 74 

that allows the monitoring of the vadose zone in time-lapse mode via non-invasive 75 

techniques. The use of these techniques can provide high-resolution images of 76 

hydro-geological structures in the shallow and deep vadose zones and, in some 77 

cases, a detailed assessment of dynamical processes in the subsurface. 78 

The estimation of the time and space variations of water content using non-79 

invasive methodologies has been the focus of intensive research over the past 80 

three decades. Among the numerous techniques developed in literature for such a 81 

goal, such as electromagnetic induction, off-ground ground-penetrating radar, 82 

surface nuclear magnetic resonance, in this work we consider electrical resistivity 83 

tomography (ERT) and ground-penetrating radar (GPR). These techniques 84 

measure the electrical resistivity ρ (Ωm) and the relative dielectric permittivity ��  85 

(-) of the porous media, respectively. For both methods the determination of soil 86 

water content is based upon existing relationships that link water content to the 87 

geophysical quantities measured (e.g., Archie, 1942; Topp et al., 1980; Roth et al., 88 

1990; Brovelli and Cassiani, 2008, 2011). 89 

When used to study hydrological dynamics, GPR surveys are often performed to 90 

detect changes in soil moisture content via the variation of dielectric permittivity, 91 

generally measured from GPR travel times in a variety of configurations (e.g., 92 

Huisman et al., 2003; Cassiani et al., 2006; Cassiani et al., 2008), such as borehole-93 

to-borehole (e.g., Rucker and Ferré, 2004a, 2004b; Rossi et al., 2012) or borehole-94 

to-surface (e.g., Vignoli et al., 2012). However, the most common setup uses GPR 95 

antennas from the the ground surface, even though only few studies with this 96 



  

configuration have been focused on the understanding of the dynamics of the 97 

water front during irrigation (e.g., Galagedara et al., 2005; Moysey, 2010; Mangel et 98 

al., 2012; Lai et al., 2012) or using natural rainfall (Busch et al., 2014). When 99 

working solely from the ground surface, three approaches are possible to 100 

determine soil moisture content: (a) use the velocity of the direct ground wave, (b) 101 

estimating velocity from the reflected events, (c) estimating impedance and thus 102 

velocity from the reflected GPR signal. Approaches (a) and (b) share in fact the 103 

same operational characteristics, needing the two antennas to be separated from 104 

each other. Approach (c) does not require antenna separation and exploits the 105 

physics of the reflection mechanism, with its own advantages and disadvantages 106 

(e.g., Lambot et al., 2004; Schmelzbach et al., 2012), and with more limited 107 

applications so far. When the two antennas are separated from each other, the 108 

survey can be conducted in wide angle reflection and refraction (WARR) mode 109 

(e.g., van Overmeeren et al., 1997), where one antenna is kept fixed while the other 110 

is moved, or common mid point (CMP) (Fisher et al., 1992; Greaves et al., 1996; 111 

Steelman et al., 2012), where both antennas are moved simultaneously to keep the 112 

same mid-point. Both sounding techniques allow for a good identification of direct 113 

waves through the air and the ground. These methods are also employed for the 114 

estimation of velocity from the reflected events, even though for this use the 115 

normal move-out approach, typical of seismic processing, may not be ideal (see 116 

Becht et al., 2006 for a discussion). The estimation of velocity from the direct wave 117 

through the ground is the most widely adopted approach for vadose zone 118 

applications (e.g. van Overmeeren et al., 1997; Huisman et al., 2001; Hubbard et al., 119 

2002). However, in some cases direct arrivals are not so straightforward to 120 



  

identify and can be confused with other events. This can happen in the presence of 121 

critically refracted radar waves (Bohidar and Hermance, 2002) or guided waves 122 

(Arcone et al., 2003; van der Kruk et al., 2006; Strobbia and Cassiani, 2007). A 123 

water front that infiltrates from the surface can give rise to such ambiguous 124 

situations, as the wet and consequently low velocity layer, lying on top of a faster 125 

(drier) media, can give rise to critically refracted waves (Bohidar and Hermance, 126 

2002) as well as act as a waveguide confined between two faster layers: the air 127 

above and the drier media below (Strobbia and Cassiani, 2007), the two situations 128 

being defined by the ratio between the wavelength and the layer thickness. 129 

Therefore, to study infiltrating fronts, maximum care must be given in 130 

understanding the nature of the observed, multi-offset GPR signal, possibly 131 

exploiting the entire information content of the data (e.g. Busch et al., 2012). 132 

ERT measurements (Binley and Kemna, 2005) have been widely employed to 133 

monitor water dynamics, as variations of moisture content (Daily et al., 1992; 134 

Binley et al., 1996) and salinity of pore water (Perri et al., 2012) leads to changes in 135 

the electrical properties of the media (La Brecque et al., 2004; Cassiani et al., 136 

2009a). However, it is well known that resolution limitations (Day-Lewis et al., 137 

2005) can produce severe mass balance errors (Singha and Gorelick, 2005) even in 138 

the most favorable cross-hole configurations. The problem is even more serious 139 

when only surface ERT are used to monitor natural or artificial irrigation from the 140 

ground surface (Michot et al., 2003; Clément et al., 2009; Caputo et al., 2012; 141 

Cassiani et al., 2012; Travelletti et al., 2012) where resolution dramatically drops 142 

with depth and a direct conversion of inverted resistivity values into estimates of 143 

soil moisture content may prove elusive. 144 



  

Geophysical measurements can be informative of the hydrological response of the 145 

soil and subsoil if applied in time-lapse monitoring mode: some geophysical 146 

quantities (in this case, ρ and ε� ) are useful indicators of changes in the 147 

hydrological state variables, such as moisture content or pore water salinity. 148 

However, in order to extract this hydrological information, the assimilation of 149 

measurements in a hydrological model is needed. Two different approaches may 150 

be applied, named respectively “uncoupled” and “coupled” hydro-geophysical 151 

inversions (Ferré et al. 2009; Hinnell et al., 2010). The procedure for an uncoupled 152 

inversion can be summarized by the following steps:  153 

1. the spatial distribution of the geophysical quantity of interest (e.g. electrical 154 

resistivity for ERT) is derived from the inversion of geophysical field data; 155 

2. the application of a petro-physical relationship leads to obtaining, from the 156 

geophysical quantity, an estimation of moisture content distribution;  157 

3. the estimated hydrologic state variable, in its spatio-temporal distribution, 158 

is used to calibrate and constrain a hydrological model, thus identifying the 159 

corresponding governing parameters. 160 

The inversion of geophysical measurements is usually an ill-posed inversion 161 

problem that can be tackled introducing prior information. If no solid independent 162 

information is available, the most common approach is the introduction of a 163 

regularizing functional, commonly a smoothness constraint (Menke, 1984). As a 164 

consequence of ill-posedness and regularization, the inversion procedure can lead 165 

to artifacts, misinterpretations and unphysical results, especially in the subsurface 166 

regions where the sensitivity of the measurements is low (consider e.g. Day Lewis 167 



  

et al., 2005). To overcome these problems, a coupled hydro-geophysical modeling 168 

can be applied: 169 

1. a hydrological model is used to predict the evolution of hydrological state 170 

variables – e.g. moisture content – on the basis of a set of hydrological 171 

governing parameters, the identification of which is the final aim of the 172 

inversion; 173 

2. a suitable petrophysical relationship (same as for point (2) above) 174 

translates hydrological state variables into geophysical quantities, such as 175 

resistivity or dielectric permittivity; 176 

3. the simulated geophysical quantities are used to predict the geophysical 177 

field measurements; 178 

4. a comparison between predicted and measured geophysical field 179 

measurements allows a calibration of the complex of hydrological and 180 

geophysical models (thus the name “coupled inversion”), leading to the 181 

identification of the hydrological parameters, that is the key objective of the 182 

study. 183 

In this work we follow a coupled approach within the framework of data 184 

assimilation (DA). DA schemes are mathematical tools of common use in 185 

hydrological applications. The main idea behind DA is using the field 186 

measurements to correct numerical simulations obtained with a hydrological 187 

model, thus modifying their governing parameters. This is possible by the 188 

recursion of forecast steps, which simulate the time-evolution of the probability 189 

density function (pdf) of the hydrological process, and analysis (or update) steps, 190 

which compute a posterior pdfs of the model parameters and state variables by 191 



  

assimilating the measurements (e.g., McLaughlin, 2002; Moradkhani et al., 2005). A 192 

few examples of coupled hydro-geophysical inversion exist in the literature (e.g., 193 

Busch et al., 2014) but the use of DA techniques is less widespread (Rings et al., 194 

2010; Tran et al., 2014). 195 

The present work focuses on a field experiment where artificial irrigation is 196 

monitored in time-lapse mode from the surface via both ERT and GPR. The 197 

homogeneous nature of the site, made of aeolic sand deposits, provides a 198 

simplified case study suitable to evaluate the performance of coupled hydro-199 

geophysical inversion and test the information content of different geophysical 200 

data. Both GPR and ERT geophysical measurements are assimilated into the 201 

hydrological model CATHY (Camporese et al., 2010), that is employed for the 202 

numerical simulation of the experiment. We elected to use the iterative sequential 203 

importance resampling (SIR) proposed by Manoli et al. (2015) as a DA technique to 204 

estimate the model saturated hydraulic conductivity. This technique is particularly 205 

designed to assimilate geophysical measurements in a coupled hydro-geophysical 206 

model: the geophysical measurements are blended in the simulation to update the 207 

state of the system, estimate the model parameters and quantify the model 208 

uncertainties.   209 

The specific goals of this work are: 210 

1. to analyze in detail the nature of the WARR GPR data collected during the 211 

irrigation experiment, verifying whether or not complex refraction and 212 

waveguide phenomena occur during the progression of the wetting front, 213 

and how and to what extent this type of data can be processed and inverted; 214 



  

2. to assess the effectiveness of incorporating ERT and GPR data in a coupled 215 

hydro-geophysical inversion procedure that, using the unsaturated flow 216 

equations, point directly at the estimation of the saturated hydraulic 217 

conductivity, and to compare this approach with the results of a classical 218 

uncoupled inversion approach; 219 

3. to evaluate to what extent the information that can be obtained from GPR 220 

and ERT data corroborate each other, how the independent assimilation of 221 

each data type performs, if the assimilation of both geophysical techniques 222 

adds information with respect to separate procedures, and finally what is 223 

the value of using both techniques to monitor the infiltration process. 224 

The paper is organized as follows: Section 2 is dedicated to the description of the 225 

hydrological model and the DA procedure used for the coupled inversion of the 226 

geophysical data. After presenting the hydrological experiment taken into 227 

consideration (Section 3), in Sections 4 and 5 we analyze the GPR and ERT data, 228 

respectively. In Section 6 we describe the setup for the DA procedure in this 229 

experiment. The benefits of the coupled inversion are presented in Section 7. The 230 

major conclusions of this work are summarized in Section 8. 231 

 232 

2. DATA ASSIMILATION 233 

Data Assimilation methods are typically made of three components: 1) a 234 

forward model describing the dynamics of the physical process under study, 2) an 235 

observation model that links the simulated system variables to the observed data, 236 

and 3) the update procedure, that changes the simulated variables on the basis of 237 

the observations.  This section describes these three components for our particular 238 



  

application, i.e., the assimilation of ERT and GPR data to calibrate an unsaturated 239 

hydrological model with the iterative SIR method. 240 

 241 

2.1 Hydrological model 242 

The infiltration process in a variably-saturated isotropic porous medium is 243 

described by the Richards’ equation: 244 

�����	
 �	
�� + � ����	


�� = ∇��� ∙ ������	
�∇���	 + ���� + q (1) 

where �� is the elastic storage term [m-1], 	�� is water saturation [-],		 is water 245 

pressure head/suction [m], � is time [s], � is porosity [-], �� is the saturated 246 

hydraulic conductivity [m s-1] tensor, ��  is the relative hydraulic conductivity [-], 247 

�� = �0, 0, 1
"  with z the vertical coordinate directed upward, and #  is a 248 

source/sink term [s-1]. Eq. (1) is highly nonlinear due to the dependencies of soil 249 

saturation and relative hydraulic conductivity on pressure head. These terms are 250 

modeled using the water retention curves proposed by van Genuchten and Nielsen 251 

(1985).  252 

 253 

2.2 Geoelectrical and GPR models for data assimilation 254 

The electrical potential field induced in the soil by current injection during the 255 

ERT survey, Φ [V], can be modeled as: 256 

−∇��� ∙ �&'(∇���Φ� = )*+�,� − ,�-.
 − +�,� − ,�-'
/ (2) 

where & is the electrical resistivity of the soil [Ωm], ) is the applied current [A], + is 257 

the Dirac function, ,� = �0, 1, 2
, and ,�-. and ,�-' are the source and sink electrode 258 



  

positions, respectively. Here, the geophysical model is linked to the hydrologic 259 

model by the petrophysical relationship proposed by Archie (1942): 260 

&��3
 = &��4
 5����4

����3
6

7
 (3) 

where ����4
  is the background water saturation degree and &��4
  is the 261 

corresponding bulk electrical resistivity of the soil. In Eq. (2) the bulk electrical 262 

resistivity at i-th measurement time, &��3
, can be predicted by the knowledge of 263 

the saturation degree at the same time step, ����3
, and vice-versa. Thanks to Eqs. 264 

(2) and (3), we can write the ERT measurements, here indicated with 189:��3
, as a 265 

nonlinear function ;<=" of the water saturation: 266 

189:��3
 = ;<="�����3
� + ><="��3
 (4) 

where  ><="��3
 represents a Gaussian measurement error with variance ?<=" ��3
, 267 

><="��3
~A�0, ?<="��3 
�. 268 

For linking the GPR data to the hydrological model we adopt a simplified 269 

approach. The observation model that links the numerical simulations to the GPR 270 

measurements consists in the estimation of the infiltration front depth from the 271 

simulated vertical profiles of water saturation. When the considered porous media 272 

can be considered spatially uniform and the irrigation rate is nearly constant in 273 

time, at any assimilation time (t1, t2 or t3) the water saturation can be considered 274 

uniform from the surface down to a certain depth d1, while from d1 to a depth d2 it 275 

decreases to the initial saturation value according to the soil water retention curve, 276 

and finally the water content remains practically constant from d2 to the bottom of 277 

the domain (considering that the water table is much deeper than the vertical 278 

extent of the infiltration domain). The average value of the two depths d1 and d2 is 279 



  

an approximation of the depth of the simulated infiltration front. Indicating the 280 

estimated infiltration front with 1CD9��3
, from the described procedure we have 281 

that: 282 

1CD9 ��3
 = ;EF=�����3
� + >EF=��3
 (5) 

where ;EF=  is nonlinear operator and >EF=��3
 is a Gaussian measurement error 283 

with with variance ?EF= ��3
, >EF=��3
~A�0, ?EF= ��3
�. In the DA process 1CD9��3
 is 284 

compared with the average thickness estimated from GPR measurements. 285 

More accurate (and more complex) GPR modeling could be conducted to 286 

construct a forward model e.g. based upon a full-waveform approach (see e.g. 287 

Klotzsche et al., 2012, 2013). However we do not deem this is necessary for this 288 

case study, where the key information that is derived from GPR resides in the 289 

depth of the infiltration front and the electromagnetic (EM) wave propagation is 290 

dominated by guided waves (see Section 4). 291 

 292 

2.3 Iterative SIR algorithm for Data Assimilation 293 

In Manoli et al. (2015) the hydrological and geophysical models are coupled in a 294 

DA framework to simulate ERT surveys and update the physical state variable (soil 295 

saturation) and the model parameters whenever a geophysical measurement is 296 

available. DA methods allow the incorporation of real system observations onto 297 

the dynamical model to automatically correct the model forecast (i.e., the solution 298 

of Eq. 1) and the model parameters (e.g., the saturated hydraulic conductivity ��) 299 

thus reducing the uncertainties related to the model prediction. In the following 300 

we indicate with λ the set of time-independent model parameters in Eq. (1) and 301 

with G4�H
 its prior pdf.  302 



  

The SIR algorithm uses a weighted Monte Carlo (MC) approach to perform the 303 

state and parameter update (e.g., Moradhkani et al., 2005).  The MC realizations, 304 

which are also called particles, are initialized by sampling the parameter values 305 

from the prior distribution, IH4J KJL(
M

, where N is the total number of MC realizations 306 

and j is the realization index. SIR associates a weight to each realization, N4J , which 307 

is initialized to 1/N. The forecast step is given by the numerical solution of 308 

Richards’s equation (1) for each set of parameters, thus describing the space and 309 

time evolution of the infiltration process. Note that weights and parameters are 310 

invariant during the forecast step. At a general time t, each realization is described 311 

by its particular set of parameters, state variables and weight IHOJ , ��J ��
, NOJKJL(
M

.   312 

In an assimilation step ti, with the idea that the weight represent the ‘closeness’ 313 

of a realization to the real process, the SIR algorithm changes the weights 314 

according to the Bayes’ formula: new weights are assigned to each particle on the 315 

basis of the likelihood function of the measured data with respect to the simulated 316 

data, e.g., G�1<=" ��3
|��J ��3

 for ERT data. The likelihood functions for the ERT and 317 

GPR data can be obtained from the measurement error pdfs described Eqs. 4 and 5, 318 

respectively. Then, the weights are changed with the following formula (here 319 

written for a general observation y): 320 

NQOR
J = NORST

J G�1��3
|��J ��3

 (6) 

NOR
J = NQOR

J
∑ NQOR

JMJL(
 (7) 

where (7) is a normalization of the weights. Since some of the updated weights 321 

may be negligible, meaning that the corresponding particles are not representative 322 



  

of the physical process, the SIR introduces a resampling step after the update. In 323 

the resampling step, the particles with negligible weights are discarded, while 324 

those with large weights are duplicated, in order to retain only the particles that 325 

are more representative of the filtering probability. Manoli et al. (2015), similarly 326 

to Moradhkani et al. (2005), adapted this step to update also the model 327 

parameters: the weighted empirical distribution of the parameters is adopted to 328 

sample new parameter values the duplicated particles. The SIR method continues 329 

with a repetition of forecast and update steps, and terminates in correspondence 330 

of the last geophysical measurement. Since bias may be present in the initial model 331 

parameters, and since the hydraulic conductivity distribution may not converge 332 

during the sequential assimilation, the posterior distribution computed with the 333 

SIR method may not be optimal for the whole simulation. For this reason it is 334 

fundamental to iterate the described procedure until the parameter distribution is 335 

unchanged during the simulation. At each iteration the procedure initializes the 336 

parameters with an averaged posterior distribution, computed on the ensemble of 337 

the hydraulic conductivities computed after all the previous updates.  338 

 339 

3. FIELD SITE AND IRRIGATION EXPERIMENT 340 

The experimental site is located in the campus of the Agricultural Faculty of the 341 

University of Turin, Italy, in Grugliasco (45° 03' 52'' N, 7° 35' 34'' E, 290 m a.s.l.) 342 

(Fig.1). The depth of interest is the top 1 m from the ground surface, where the 343 

lithology is homogeneous. The stratigraphy is composed of a regular sequence of 344 

sandy soil (mesic Arenic Eutrudepts) and the sediments in this area are largely 345 

aeolic sands with extremely low organic content. The aeloic sand grains are 346 



  

relatively homogeneous in size with a mass median diameter (d50) of about 200 µm 347 

and porosity ranging between 0.35 and 0.4 (Cassiani et al., 2009c). According to 348 

the Comprehensive Soil Classification System, the horizon down to about 1-1.5 349 

meter depth is an A-horizon made of mineral matter (80% sand, 14% silt and 6% 350 

clay). 351 

The water table is located around 20 m below the ground surface and therefore 352 

the shallow vadose zone, where our experiment took place, is not practically 353 

influenced by the underlying saturated zone. At the moment of the survey the 354 

vegetation was composed only of natural grass, no cultivation is present (Fig. 1b). 355 

An infiltration experiment was performed at the site on August 28, 2009. The 356 

irrigation was provided by a 17 m line of sprayers. The soil surface covered by 357 

irrigation was approximately a rectangle of 18 m by 2.6 m (Fig. 1). The irrigation 358 

lasted for 5 hours and 45 minutes and was performed in 3 steps (Table 1), 359 

separated by intervals when a break of the irrigation allowed ERT and GPR 360 

acquisitions to be performed (see Fig. 1c for the geometry of the geophysical 361 

surveys). At the center of the ERT profile, along the sprinkler line, two Time 362 

Domain Reflectometry (TDR) probes were vertically placed in the soil with a 363 

length of 0.15 and 0.30 cm. 364 

The irrigation intensity was always lower than the infiltration capacity of the 365 

soil, so no ponding was observed at the soil surface. The ERT and GPR 366 

measurements were performed with the schedule summarized in Table 2, where 367 

the time is referred to the starting of the irrigation. 368 

 369 

 370 



  

4. GPR DATA ANALYSIS 371 

The infiltration test was monitored by GPR using a PulseEkko Pro radar system 372 

(Sensors and Software Inc., Canada) with 100 MHz antennas. The surveys were 373 

repeated in time (Table 2) using a WARR scheme. The WARR profiles were 374 

acquired along the sprinkler line (Fig. 1c); the time sampling interval was 0.2 ns 375 

and the offset increment between transmitting and receiving antennas was equal 376 

to 0.1 m over a 10.5 m line, starting from an initial offset (minimal distance 377 

between transmitter and receiver) of 1 m. 378 

The background WARR radargram before the irrigation is shown in Fig. 2, 379 

where we can clearly recognize the direct ground wave with a velocity of about 380 

0.14 m/ns. The evolution of WARR surveys over time (Fig. 3) shows that the 381 

infiltration front modifies substantially the appearance of the GPR signal. The 382 

radargrams in Fig. 3 are distinctly different from each other: the direct radar wave 383 

in air is obviously unaltered over time, while the signal from the soil is 384 

progressively delayed. This phenomenon is due to the presence of a wet low-385 

velocity layer, between the surface and the dry sandy soil, which becomes 386 

increasingly thicker over the irrigation period. At a first glance, the interpretation 387 

of the data may be conducted by identifying the first soil arrival as a critically 388 

refracted GPR wave that comes from the –wet - dry interface and arrives at larger 389 

intercept times as infiltration progresses, consistently with a deeper wetting front. 390 

Although, this event must be present in the data, it is likely to be masked by guided 391 

modes of GPR wave propagation as described by Strobbia and Cassiani (2007). The 392 

establishment of guided EM waves is the consequence of the geometry of the 393 

dielectric properties of the materials involved in the wave propagation. The energy 394 



  

radiated from the transmitting antenna is spread out into the low-velocity layer 395 

and reaches the underlying faster layer (dry sand) with an angle greater than the 396 

corresponding Snell critical angle, in such a way that the energy is totally reflected. 397 

The same phenomenon happens when the reflected energy reaches the boundary 398 

between the air and the wet sandy media. The total internal reflections guide the 399 

GPR waves horizontally inside the low-velocity layer, while outside of the wet layer 400 

there are only evanescent waves with no radiation in the dry material and in the 401 

air. A simpler interpretation of the radargrams (Fig. 3A) as a simple consequence 402 

of refracted events - albeit possible (see Cassiani et al., 2009b) - would lead to 403 

unclear event identification. 404 

We analyzed the frequency-wavenumber (f-k) spectra of the radargrams with 405 

the aim of recognizing guided modes of wave propagation (Fig. 4A). The f-k spectra 406 

are obtained by a preprocessing involving several filtering procedures. The first 407 

preprocessing step consists in the application of a de-wow filter, following the 408 

procedure of Gerlitz et al. (1993). The wow effect is due to the air-ground pulse 409 

interference. In fact, electrostatic and inductive fields near the transmitter lead to 410 

the saturation of the receiver electronics and generate a low frequency 411 

contribution that decays with distance. The consequence of the wow is to move 412 

trace amplitude towards positive (or negative) values, resulting in a non-zero-413 

mean trace. Removing the wow frequencies should reconstruct a zero-mean trace, 414 

where small amplitudes are easier to identify. This filter is based on the 415 

subtraction of the median amplitude, calculated inside a mobile window in the 416 

time domain. The window size is determined from the maximum wow frequency, 417 



  

achieved from the frequency spectra of all unfiltered traces (f-x spectra – i.e. one 418 

frequency spectrum for each offset x). 419 

The second processing step is a muting of the portions of the radargram that are 420 

not relevant in the guided mode propagation, so as to highlight the signal of the 421 

supposed guided waves. The muting process has the aim of cleaning those portions 422 

of the radargrams that are not useful in the present study: events that may be 423 

considered as noise in a guided wave analysis. So  muting is applied to remove the 424 

air direct wave as well as the reflected events at later times. We applied a Tukey 425 

window in time, to prevent ringing in the f-k domain that may be due to an abrupt 426 

signal step in the time domain. The Tukey window is set to obtain half of the entire 427 

window length as a flat plateau, while the two marginal sectors consist of segments 428 

of a phase-shifted cosine. 429 

The final filtering process is the application of a finite impulse response (FIR) 430 

filter to remove signal noise at low and high frequencies. The FIR filter has a 431 

structure that can maintain the true intensity of the signal between 20 and 250 432 

MHz. This is a broad window for a signal centered around 100 MHz, since the 433 

guided propagation shows apparent frequencies that can be higher than the 434 

acquisition capabilities of the receiving antenna. This fact is the consequence of the 435 

limitation of our array, that records the GPR echoes only at the ground surface. 436 

The filtered radargrams are shown in Fig. 3B. The corresponding f-k spectra (Fig. 437 

4A) show the signal evolution over time. The color scale of the power spectral 438 

density is the same for the different time-steps, in order to show the differences of 439 

energy distribution over time. The energy peaks at times t1 and t3 have much 440 

higher amplitudes than at time t2, when energy peaks are relatively weak as energy 441 



  

is spread over several modes of propagation, while at times t1 and t3 a dominant 442 

mode is clearly recognizable. This may be the consequence of our spatial sampling 443 

that is not able to record with enough intensity the prevailing mode of resonance 444 

induced by that particular subsoil geometry, but can also be a symptom of the 445 

energy shifting between fundamental (at time t1) and first higher mode (at time t3). 446 

The positions of the absolute maxima, detected for each frequency, are plotted as 447 

magenta dots (Fig. 4A), while the white dots represent the local maxima. 448 

Maxima picking in spectral amplitudes leads to obtaining the dispersion curves 449 

of Fig. 4B, showing the dependence of phase velocity on frequency. Here red dots 450 

correspond to the absolute maxima, while blue dots show local maxima. The 451 

dispersion curves at times t1 show a clearly identifiable fundamental mode, while 452 

at time t3 the first higher mode is much more energetic than the fundamental mode. 453 

The switch of the highest energy to higher modes of propagation may lead to the 454 

transient step which involves time t2, where the power spectral density is spread 455 

upon different modes (Fig. 4A). 456 

In order to give a hydrological meaning to these results, we need to translate the 457 

spectral analysis of guided waves into an estimate of the evolution of the hydraulic 458 

process. In particular we are interested in the location of the wetting front at depth, 459 

as this information is suitable for the calibration of hydrological models. The depth 460 

of this front corresponds to the thickness of the guiding high dielectric permittivity 461 

layer. The identification of the layer thickness and dielectric properties requires 462 

inversion of the dispersion curves (van der Kruk et al., 2006; Strobbia and Cassiani, 463 

2007). We adopted as a forward model the description of the asymmetric slab 464 

waveguide given by Strobbia and Cassiani (2007). The approximation of 1-465 



  

dimensional waveguide is valid as long as we assume that irrigation is practically 466 

uniform along the sprinklers’ line, and the soil is largely homogeneous. The 467 

inversion of dispersion curves was performed using a MC approach. We sampled 468 

the controlling parameters, i.e.: velocity of the shallower wet layer, velocity of the 469 

deeper dry layer and thickness of the wet layer. The velocity of air can be 470 

considered a constant equal to 0.3 m/ns. To reduce the number of ensembles of 471 

parameters combinations, we fixed the value of the velocity of the deeper and 472 

faster layer to about 0.14 m/ns, i.e. we set it equal to the velocity of the soil before 473 

irrigation (Fig. 2). This choice is also in accordance with the TDR measurements 474 

(0.3 m prongs) performed before the irrigation, showing a dielectric permittivity of 475 

4.55, which corresponds to a EM wave velocity of 0.141 m/ns. The forward model 476 

of EM wave propagation assumes the presence of only two ground layers, so we 477 

are not able to simulate a smoothed wetting front, that is approximated as a sharp 478 

discontinuity of dielectric permittivity. The thickness range is fixed, for all times, 479 

between 0.3 m and 1 m, with an increment of 0.05 m. The velocity of wet layer is 480 

sampled in the interval from 0.065 m/ns to 0.1 m/ns, at steps of 1.05×10-4 m/ns. 481 

Both fundamental and first modes are simulated, setting all possible combinations 482 

of the parameter space for a total of about 47000 simulations. 483 

Fig. 5 shows the results of the inversion procedure, where the goodness of fit 484 

between experimental and simulated dispersion curves is calculated using the 485 

Nash-Sutcliffe index (NSI) (Nash and Sutcliffe, 1970). Fig. 5A reproduces the 486 

experimental curve (black dotted line) plotted together with the best-fitting 487 

synthetic curves: the light gray lines have NSI values between 0.85 and 0.95, while 488 

the dark gray lines show NSI>0.95. At time t1 1035 curves of the fundamental 489 



  

mode have a NSI>0.95. At time t2 the fitting of the measured dispersion curve for 490 

the fundamental mode is poor, as NSI does not exceed, for any curve, the value of 491 

0.87. For this reason we consider in Fig. 5 only the 1124 simulations with NSI>0.85. 492 

The 1232 synthetic curves of the first higher mode are used to represent the 493 

experimental first mode at time t3, where the NSI is greater than 0.95. We inverted 494 

the first higher mode for time t3, as at this time the higher mode is much more 495 

energetic than the fundamental mode, as shown by Fig. 4. Fig. 5B-C show the 496 

distribution of the parameters linked to the best simulations: wet layer thickness 497 

and wet layer velocity, respectively. 498 

We averaged the parameters of the best simulations to achieve an estimated 499 

value for both the velocity and the thickness of the wet layer, at all times. Statistics 500 

and ranges of the considered best simulations are summarized in Table 3. The 501 

velocity of the wet layer changes slightly over time, with values confined in a 502 

narrow range, in all cases very far from the value of the dry sand (0.14 m/ns). 503 

We are less confident in the inversion of time t2 for two reasons: (1) the fitting 504 

between measured and calculated data is poor respect to the other time-steps that 505 

show high values of NSI; (2) the experimental dispersion curve is derived from the 506 

f-k domain, that shows that energy is smeared between fundamental and first 507 

higher mode. Therefore, the dispersion curve at time t2 may be heavily affected by 508 

the unfavorable signal to noise ratio for both the fundamental and the first higher 509 

mode. 510 

It should also be noted that our MC inversion provides a view of the degree of 511 

correlation of the two governing parameters (thickness and velocity of the wet 512 

layer). Fig. 6 shows the levels of NSI>0.85 plotted in the parameter space, 513 



  

highlighting some degree of positive correlation. However, at times t1 and t3 the 514 

best fitting simulations (NSI>0.984 for t1, NSI>0.987 for t3), marked as a green area, 515 

are centered around small parameter ranges. At time t2 the green area highlights 516 

the simulations with NSI>0.886. Table 3 reports the standard deviations of the 517 

parameters associated to the best-fitting simulations that are quite small with 518 

respect to the average values. 519 

 520 

5. ERT DATA ANALYSIS 521 

The ERT data were collected at the surface using a Syscal-Pro resistivimeter 522 

(IRIS Instruments, France). Twenty-four electrodes spaced 20 cm were placed on a 523 

transect perpendicular to the sprinklers’ line, for a total length of 4.6 m (Fig. 1). 524 

The acquisition scheme was a dipole-dipole skip zero (dipoles with minimal 525 

distance equal to one electrode spacing). Reciprocal measurements were acquired 526 

and processed to estimate data errors. All the reciprocal measures with the 527 

statistical operator RSD (Relative Standard Deviation) exceeding the 5% were 528 

removed from the dataset. This reciprocal error analysis leads to a different 529 

dataset for each time step. For this reason and to have comparable results, we 530 

performed the inversions considering only the quadripoles that are present in all 531 

datasets. The common datasets preserve 200 measurements over a total of 231 532 

quadripoles, thus data quality is particularly good. We inverted the data as the 533 

ratio of electrical resistances at a specific time with respect to the resistance values 534 

at the background measurement (in our case the time-step before the irrigation): 535 

? = ?3?4 ∙ ?VWX  (8) 



  

Where Ri is the electrical resistance at the i-th time-step, R0 is the electrical 536 

resistance at the background measure and Rhom is the electrical resistance for a 537 

homogenous space of 100 Ωm. All the electrical resistances are referred to the 538 

same quadripole and R is calculated for each measurement in the dataset. As data 539 

errors are difficult to estimate in terms of resistance ratios, some degree of 540 

arbitrary choice is present in ratio inversion. Fig. 7A shows the inversion of the 541 

resistivity ratios with respect to background (Eq. 8) applying a smoothness 542 

constrain of 3%. 543 

This time-lapse ratio inversion clearly shows the variation of the electrical 544 

resistivity during the experiment (Fig. 7A). The results of the inversion are sections 545 

of the percentage variation of resistivity respect to the background values: values 546 

equal to 100 Ωm correspond to unchanged resistivity, while values less or more 547 

than 100 Ωm show a decreasing or an increasing resistivity, respectively. The 548 

inversions were performed using the 2D code developed by Andrew Binley 549 

(http://www.es.lancs.ac.uk/people/amb/Freeware/Freeware.htm; Slater et al. 550 

2000; Cassiani and Binley, 2005; Linde et al., 2006). 551 

Fig. 7B shows the results of the ratio of the inverted absolute profiles with 552 

respect to the inversion of the background survey. In this case the profiles are 553 

inverted with a data error set at 5%, consistent with the reciprocal error removal 554 

procedure, and then a pixel by pixel ratio is computed. From the comparison 555 

between Fig. 7A and 7B it is apparent that the two approaches are, in this case, 556 

essentially equivalent at showing the evolution of the infiltration process. This 557 

similarity corroborates the hypothesis of the 2D symmetry of the infiltration 558 



  

process along the sprinkler line, since the ERT monitoring is performed on 2D 559 

profiles, assuming a homogeneous resistivity distribution on the third direction. 560 

In Fig. 7 the infiltration process is clearly visible. The plume of injected fresh 561 

water increases moisture content and consequently reduces resistivity. The shape 562 

of the plume is the consequence of a non-uniform distribution of irrigation in the 563 

direction perpendicular to the sprinklers’ line. The distribution of the artificial 564 

precipitation is more likely Gaussian in shape, with considerably more water 565 

dropping close to the sprinklers. Time-steps t5 and t7 are not shown, as only 566 

modest variations are present at these late times after the end of the irrigation. 567 

 568 

6. SETUP OF THE COUPLED INVERSION  569 

In this work the modeling based on the coupled-inversion described in Section 2 is 570 

aimed specifically at the estimation of soil saturated hydraulic conductivity. The 571 

physically-based hydrological model CATHY (Camporese et al., 2010) is employed 572 

for the numerical solution of Eq. (1) and the simulation of the infiltration 573 

experiment. The van Genuchten’s parameters necessary for the setup of the 574 

numerical model were derived from laboratory experiments: residual saturation is 575 

fixed at 0.003 and α (the inverse of the air entry suction) is equal to 5.4 m-1. These 576 

values are derived from laboratory experiments and are not considered of 577 

paramount importance in the context of the given infiltration experiment. Of 578 

course a more complete parameter identification scheme could also include them, 579 

as described by Manoli et al. (2015) in the context of using ERT data alone. 580 

A careful analysis of Fig. 7 reveal that irrigation was not uniformly distributed in 581 

the direction orthogonal to the sprinkler line, probably due to the presence of 582 



  

wind. This was taken into account in order to properly simulate the top boundary 583 

conditions: the irrigation is modeled with a Gaussian distribution centered at 2.5 584 

m, with variance equal to 0.6 m, both values calculated such that the total flux 585 

equals the real irrigation rate. The parameters of the Gaussian distribution are 586 

fixed after a trial procedure where we matched the shape of the measured and 587 

modeled plume (Fig. 7 and Fig. 10).  588 

The parameters of Archie’s law (Eq. 3), which are necessary to define the ERT 589 

observation operator, are spatially uniform for considered field study. The 590 

exponent n is set to 1.27 as reported in Cassiani et al. (2009c), where the value is 591 

obtained from laboratory calibration on the site’s sediments. The initial soil 592 

electrical resistivity &��4
 is set equal to 1300 Ωm, based on the averaged value 593 

obtained by the inversion of background ERT measures. In order to apply Eq. (3), 594 

we need also an estimation of the initial volumetric water content, θ(t0). For our 595 

field experiment this is estimated from background GPR and TDR measurements. A 596 

value θ(t0) = 0.07  is obtained by applying the petrophysical relationship of Topp et 597 

al. (1980): 598 

 Y = �−530 + 292�� − 5.5��^ + 0.043�� `
 ∙ 10'a   (5) 599 

where εr is the bulk soil dielectric permittivity. A moisture content value of 7% 600 

corresponds to ����4
 of 0.212 assuming a porosity of 0.33 as estimated by 601 

Cassiani et al. (2009b) for the considered field sediments. 602 

In this particular case, we are interested in the value of the saturated hydraulic 603 

conductivity ��, that is difficult to identify in unsaturated conditions by direct 604 

measurements. The methodology presented in Manoli et al. (2015) describes 605 

��with a lognormal probability distribution which mean and variance are updated 606 



  

at each assimilation time. Here, the prior values of the hydraulic conductivity mean 607 

and variance are summarized in Table 5.  608 

The iterative procedure is particularly advantageous when geophysical 609 

measurements of different nature (e.g. ERT and GPR) are available for the 610 

assimilation, as in the case we consider here. In fact, the independent assimilation 611 

of different measurements is to prefer to the joint assimilation of the 612 

measurements, since the latter requires the introduction of an artificial 613 

normalization to weight the measurements. 614 

In this paper the procedure is used to provide the “best possible” estimate of 615 

��	for the site using both ERT and GPR data. We adopt a strategy that is 616 

particularly clear in assessing the information content of each dataset and of the 617 

two datasets together. In particular, we produce the following four assimilation 618 

schemes: 619 

A. a scheme assimilating only ERT data (similar to the one proposed by Manoli 620 

et al., 2015); 621 

B. a scheme assimilating only GPR data, based on the depth of the infiltration 622 

front estimated from the guided wave analysis (see section 3); 623 

C. a scheme that assimilates alternatively ERT and GPR leading to a final 624 

estimate that accounts for both; 625 

D. a scheme analogous to C, but using GPR and ERT in the reverse order – to 626 

check convergence stability (the first iteration starts assimilating GPR data, 627 

instead of ERT data). 628 

The advantage of assimilating both ERT and GPR measurements is the 629 

integration of different information. In this kind of experiment (irrigation 630 



  

monitored on the ground surface), the low sensibility of the ERT array at large 631 

depths may be a disadvantage; so the infiltration front may be spread over a broad 632 

area, since the most part of the energy is focalized along current paths that cross 633 

the wet zone. GPR WARR surveys may be a useful addition to the information 634 

obtained from ERT, as GPR can constrain the location of the water front at depth.  635 

 636 

7. MODELLING RESULTS 637 

The particle filter algorithm assimilates the geophysical data with four different 638 

schemes (Fig. 8). Each assimilation scheme leads to a probability distribution of 639 

the simulated parameters: in this case �� is the objective of the coupled inversion. 640 

The evolution of the �� distribution during the assimilation procedures is 641 

summarized in Fig. 8. For each assimilation scheme, 3 different prior ��-642 

distributions are tested to verify the stability of the inversion procedure. It evinces 643 

that the convergence towards the estimated �� value, at the end of the iteration 644 

process, is not depending on the initial parameter’s range. 645 

The estimated values of �� are only slightly different from scheme to scheme: 646 

for case A: 1.010-5 m s-1, for case B: 2.6 10-5 m s-1, for case C: 1.1 10-5 m s-1, for case 647 

D: 1.1 10-5 m s-1. Note that the differences in the estimated �� are almost negligible 648 

for practical applications. Assimilating both ERT and GPR we obtain the same 649 

��value, irrespective of the order of assimilation. The assimilation of only ERT 650 

data (Fig. 8A) provides a	�� 	estimate that is very similar to the ERT-GPR 651 

assimilations. The assimilation of the GPR waterfront depths provides a value of 652 

��	about two times larger than the other estimates (Fig. 8B). We attribute this 653 



  

results to the large uncertainty associated to the GPR measurement and analysis, 654 

in particular at the time t2. 655 

Forward hydrological models are then run with the estimated parameters and 656 

the results are compared to the geophysical measurements (Tables 4 and 6). 657 

Schemes C and D provide essentially the same hydrological model. The mean and 658 

standard deviations of the posterior distributions for the four cases are listed in 659 

Table 5 (together with the prior parameters). 660 

In Table 4 the waterfront position inverted from the GPR signal is compared to 661 

the simulated location of the saturation front. Note that the water front locations 662 

estimated from the coupled inversions with the GPR assimilation leads to slightly 663 

deeper water front estimations, while  ERT and ERT-GPR assimilations conduct to 664 

very similar results. The GPR contribution in the combined inversion with ERT 665 

drives the estimated waterfront slightly deeper than estimated by ERT only. The 666 

waterfront depths from GPR data alone are definitely more problematic to 667 

interpret (see also Fig. 9), with uneven penetration speed between time intervals 668 

1-2 and 2-3. Note that, as discussed in Section 3, time 2 is a problematic acquisition 669 

for GPR, with energy spread over two modes and a more difficult estimation of 670 

infiltration front depth. 671 

The forward hydrological models are also compared against the ERT field 672 

(resistance) dataset (Tab. 5). In this case the simulated hydrological states are 673 

converted into geophysical quantities via Eq. 4, and a geophysical forward model 674 

(Eq. 3) is run to obtain simulated ERT resistance data. Not surprisingly, the 675 

forward model that best matches the field measurements is derived from the 676 

assimilation of the sole ERT data. Anyway the assimilation of both ERT and GPR 677 



  

shows a very good fit to the measured ERT, while the assimilation scheme of only 678 

GPR-derived waterfronts is distant from the information achieved from ERT 679 

survey. 680 

Fig. 9 shows the distribution of moisture content predicted by the flow models 681 

with the parameters obtained from data assimilation. These saturation profiles are 682 

compared against: 683 

1. the moisture content profiles one could obtain by translating directly the 684 

resistivity inverted images (Fig. 7) using the known Archie’s law 685 

parameters (Eq. 4). 686 

2. the locations of the infiltration front as estimated from GPR inversion 687 

(Section 3). 688 

3. the estimation of the degree of saturation measured by TDR probes placed 689 

at the mid-point of the ERT profile; relative dielectric permittivity is 690 

translated into water content using Eq. (5). 691 

There is no doubt that the data assimilated simulations are superior at providing 692 

estimates of moisture content profiles that, while slightly different from each other, 693 

are both consistent with data and model assumptions (most of all, mass balance 694 

and hydraulic conductivity homogeneity). 695 

The TDR data are used as validation of the modeled water saturation curves (Fig. 696 

9). The values are consistent with the hydrological models, that show a rapidly-697 

moving saturation front at the first time steps. Unfortunately the TDR probes reach 698 

the maximum depth of only 0.3 m, so no information is available for the deeper 699 

portions. 700 



  

For the sake of completeness, we also inverted the synthetic ERT data (Fig. 7C) 701 

to provide a direct comparison with the ρ distributions achieved by field 702 

measurements (Fig. 7A). In addition, Fig. 10 shows the “true” resistivity structure 703 

as simulated by the hydrological model in the combined ERT-GPR data 704 

assimilation case. Comparing Figs. 7 and 10, note how inverted and “true” 705 

resistivity images tend to diverge at late times, when the front reaches the deeper 706 

zones where ERT has the lowest sensitivity, and inversion regularization takes 707 

over and smears the images at depth. Consistently, the mass balance derived from 708 

ERT data as calculated for the coupled and the uncoupled hydro-geophysical 709 

inversions (Table 7) shows the weaknesses of the uncoupled approach for the 710 

problem at hand. The uncoupled approach leads to a cumulative volume of injected 711 

water over time that strongly overestimates the effective amount of irrigated 712 

water. 713 

Note that in the literature underestimation of mass balance is more commonly 714 

observed (e.g., Singha and Gorelick, 2005), but this fact is dependent primarily on 715 

the acquisition scheme and electrode geometrical configuration (e.g. cross-hole 716 

versus surface measurements, as in this work). 717 

 718 

8. CONCLUSIONS 719 

Hydro-geophysical techniques are extremely useful in monitoring the 720 

hydrological processes acting in the vadose zone and the data can be effectively 721 

translated into hydrological quantities, particularly state variables such as 722 

moisture content. The presented field case study analyzes a controlled irrigation 723 



  

test in an unsaturated subsoil with a plain terrain and nearly homogeneous sandy 724 

soil. 725 

The adopted hydro-geophysical methodology may strongly affect the results of 726 

the hydro-geophysical inversion and consequently the hydrological parameter 727 

estimations. An approach, that fully couples hydrological modeling and 728 

geophysical measurements in a data assimilation procedure, leads to more 729 

accurate results. Avoiding the geophysical inversion of the data, we reduce the 730 

uncertainty in the hydrological quantities estimation, since no artifacts are 731 

inserted in the method by solving an inverse problem. The errors that may be 732 

present are due only to data acquisition and model choosing, as in any hydro-733 

geophysical issue. Of course an analysis of the inverted data is generally necessary, 734 

not only to ascertain the data quality, but also to direct a correct choice of the 735 

hydrological model needed to explain the data (see, e.g., discussion in Camporese 736 

et al., 2011). One of the advantages of the coupled approach, that includes a 737 

stochastic process, is the proper conservation of mass. This aspect is often a key 738 

issue of the uncoupled approach, where the calibration of hydrological models via 739 

geophysical inverted data may lead to inconsistent results that may jeopardize the 740 

user’s confidence in the method. 741 

In the present field case  both ERT and the infiltration front estimated with the 742 

GPR data are considered in the data assimilation process, using a Sequential 743 

Importance Resampling (SIR) that allows a flexible assimilation of either or both 744 

datasets in a natural, non-subjective manner (i.e. without arbitrary weighting of 745 

one dataset with respect to the other). From this procedure the information 746 

content of each dataset in the assimilation procedure emerges naturally. 747 



  

In this particular case study, it is apparent that ERT data provide most of the 748 

information needed to a robust hydraulic conductivity estimation. GPR, albeit 749 

being apparently of easy interpretation in its time-lapse evolution (see Figure 3), at 750 

a more in-depth quantitative analysis shows its intricacies linked to the inversion 751 

of multi-modal dispersion guided waves. As the energy distribution over different 752 

modes changes over time due to the changing geometry of the wet layer, the 753 

inversion of GPR data requires particular attention and ultimately delivers weak 754 

information on the infiltration process. 755 

The comparison between coupled and uncoupled hydro-geophysical inversions 756 

shows that, in this particular case, the latter is superior. This happens primarily 757 

because the monitoring of type of experiment that we consider (irrigation and 758 

infiltration from the ground surface) depends strongly on our ability to image the 759 

processes honoring mass balance. In this respect, the uncoupled approach is not 760 

capable of reproducing the real state of the system and consequently the mass 761 

balance. The uncoupled approach may therefore lead to erroneous parameter 762 

estimate. It should be noted how other problems may be less prone to suffering 763 

from an uncoupled approach (see e.g. Camporese et al., 2011). 764 
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TABLES 978 

 979 

Irrigation 

steps 

Irrigation start 

[min] 

Irrigation end 

[min] 

Cumulative water 

volume [m
3
] 

1 0 115 2.509 

2 146 233 4.127 

3 264 327 5.652 

 980 

Table 1. Time schedule and irrigated volumes for the infiltration experiment. 981 

  982 



  

Geophysical 

techniques 

Starting time of the survey [min] 

Background 

t0 

 

t1 

 

t2 

 

t3 

 

t4 

 

t5 

 

t6 

 

t7 

 

t8 

GPRWARR -10 115 233 327 - - - - - 

ERT -5 120 240 335 1030 1150 1420 1480 1540 

 983 

Table 2. Time schedule of the geophysical acquisitions; time is referred to the 984 

irrigation start. 985 

  986 



  

Time step 

Averaged 

thickness 

[m] 

Standard 

deviation of 

thickness 

[m] 

Averaged 

velocity 

[m/ns] 

Standard 

deviation of 

velocity 

[m/ns] 

Number of 

averaged 

simulations 

NSI range of 

averaged 

simulations 

t1 
0.46 0.031 0.091 0.0013 197 0.984-0.987 

t2 
0.49 0.019 0.074 0.0006 106 0.886-0.889 

t3 0.74 0.016 0.081 0.0007 83 0.987-0.990 

 987 

Table 3. Statistics of the GPR slab waveguide simulations that best fit the 988 

measured dispersion curves. 989 

  990 



  

Time-step t1 

 (m) 

t2  

(m) 

t3  

(m) 

Mean Error 

(m) 

GPR inversion -0.46 -0.49 -0.74  

Posterior ERT -0.32 -0.52 -0.66 0.083 

Posterior GPR -0.38 -0.61 -0.79 0.083 

Posterior ERT-GPR -0.34 -0.54 -0.70 0.070 

 991 

Table 4. Infiltration front depth for the first three time-steps, obtained from GPR-992 

EM-waveguide inversion and from posterior hydrological forward models. The last 993 

column is the average absolute error between the waterfront positions measured 994 

with the GPR and those estimated with the posterior hydrological forward models. 995 
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 997 

 998 
Prior distribution Posterior distribution 

 
ERT GPR ERT+GPR GPR+ERT 

Mean St. dev. Mean  St. dev. Mean St. dev. Mean St. dev. Mean St. dev. 

m/s m/s 10
-5 

m/s 10
-5

 m/s 10
-5 

m/s 10
-5 

m/s 10
-5 

m/s 10
-5 

m/s 10
-5 

m/s 10
-5 

m/s 

1×10
-7 

1×10
-7

 0.99 0.014 2.50 0.148 1.15 0.014 1.11 0.015 

1×10
-5

 1×10
-5

 1.02 0.008 2.63 0.083 1.14 0.076 1.08 0.018 

1×10
-3

 1×10
-3

 0.90 0.018 2.86 0.053 1.17 0.032 1.06 0.012 

 999 

 1000 

Table 5: Prior and posterior distributions of the hydraulic conductivity Ks for the 1001 

different data assimilation schemes 1002 

 1003 
  1004 



  

 1005 

 1006 

Time-step t1 t2 t3 t4 t5 t6 t7 t8 Mean 

Posterior ERT 3.5 4.3 3.7 3.1 3.1 3.4 3.5 3.6 3.525 

Posterior GPR 3.6 4.4 3.7 4.4 4.5 5.1 5.3 5.4 4.550 

Posterior ERT-
GPR 

3.5 4.2 3.6 3.2 3.2 3.6 3.7 3.8 3.600 

 1007 

Table 6.Root mean square relative error between the field measured electric 1008 

resistance value sand those simulated with the posterior hydrological forward 1009 

models (results in %). The last column is the mean in time of these errors. The 1010 

relative error is adopted because the electric resistances vary over several orders of 1011 

magnitude.  1012 
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 1014 

Irrigation 

steps 

Irrigation 

time [min] 

Cumulative water volume 

Effective 

injected 

volume[m
3
] 

Coupled model Uncoupled model 

Volume [m
3
] % error Volume [m

3
] % error 

1 115 2.509 2.354 6.2 4.181 66.6 

2 233 4.127 3.997 3.1 7.713 86.9 

3 327 5.652 5.564 1.6 9.559 69.1 

 1015 

Table 7. Mass balance achieved with coupled and uncoupled hydro-geophysical 1016 

inversions. 1017 
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FIGURES 1019 

 1020 

 1021 

Figure 1. Scheme and location of the experiment: (a) aerial view of the field with the 1022 

irrigated zone highlighted in blue; (b) the sprinkler line during the irrigation; (c) 1023 

scheme of the geophysical surveys and position of the irrigated soil. 1024 
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 1026 

 1027 

Figure 2. Background WARR survey with the identification of the direct wave 1028 

through the ground. 1029 

 1030 



  

 1031 
 1032 

Figure 3. Field measured WARR radargrams at the times t1, t2 and t3. A) On the left, 1033 

the radargrams are filtered only by the “dewow” procedure (traces are normalized). 1034 

B) On the right, the same radargrams are displayed after the preprocessing (muting 1035 

and FIR filter). 1036 



  

 1037 

Figure 4. Analysis of the GPR soundings in the frequency domain. (a) On the left, the 1038 

f-kdomain are displayed with the superimposition of the maxima of the spectral 1039 

density (magenta dots for main maxima, white dots for local maxima). Power 1040 

spectrum density scale in V2/Hz. (b) On the right, the dispersion curves inferred from 1041 

f-k maxima: red and blue dots correspond to absolute and local maxima, respectively. 1042 

 1043 



  

 1044 
 1045 

Figure 5. Parameterizations of the simulations of slab waveguides that best fit the 1046 

measured dispersion curves. (a) Superposition of the field-derived dispersion curves 1047 

(black dotted lines)and of the best simulated dispersion curves: light gray lines with 1048 

0.85<NSI>0.95 and dark gray lines with NSI>0.95. (b) Wet layer thickness from the 1049 

best simulations plotted against NSI>0.85. (c) Wet layer velocity from the best 1050 

simulations plotted against NSI>0.85. 1051 
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 1053 
 1054 

Figure 6. Correlation between the simulated parameters: velocity and thickness of 1055 

the layer that guides EM waves; color bar is NSI value. Green polygon highlights the 1056 

simulations with highest NSI values for each time-steps: NSI>0.984 for t1, NSI>0.886 1057 

for t2, NSI>0.987 for t3. 1058 
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 1060 

Figure 7. Time-lapse of inverted electrical resistivity profiles displayed as percentage 1061 

of variation respect to background. A) Inversion of the ratio of apparent resistivities, 1062 

measured at the field, respect to background survey. B) Ratio of the inverted profiles 1063 

related to background inversion. C) Inversion of the ratio of synthetic apparent 1064 

resistivities, simulated through the hydrological model, respect to the assumed 1065 

homogeneous background state. 1066 
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 1069 

DC

BA

 1070 
 1071 

Figure 8. ��-distributionduring the iteration of the data assimilation framework. 1072 

The lines of different colors (blue, red and green) point out different initial 1073 

distribution of the parameter: solid line is the mean of the distribution, dashed lines 1074 

are the maximum and minimum vales in the range. (a) sequential assimilation of the 1075 

ERT data. (b) sequential assimilation of the waterfront position from GPR data. (c) 1076 

sequential assimilation of ERT and GPR information. (d) sequential assimilation of 1077 

GPR and ERT information. The vertical lines, including the graph extremes, indicate 1078 

the 9 measurement instants (t0 to t8). 1079 
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 1081 

 1082 

Figure 9. Vertical profiles of water saturation, extrapolated on the position of the 1083 

sprinklers line. Solid lines of red, blue and green colors are the results of forward 1084 

hydrological models obtained with the �� estimation assimilating only ERT, only GPR 1085 

and both techniques, respectively. Gray solid line is the result of the uncoupled ERT 1086 

inversion. The horizontal black dot-dashed line is the estimation of waterfront 1087 

location from GPR-EM-waveguide inversion. The vertical black dashed lines are the 1088 

estimated water saturation achieved by TDR probes (15 and 30 cm length). 1089 
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 1092 

Figure 10. Electrical resistivity sections at different time steps, derived by the 1093 

hydrological model inferred from the assimilation of both ERT and GPR datasets. 1094 


