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A MULTIPLICITY RESULT FOR PERIODIC SOLUTIONS OF

SECOND ORDER DIFFERENTIAL EQUATIONS WITH A

SINGULARITY

Alberto Boscaggin, Alessandro Fonda, Maurizio Garrione

Abstract

By the use of the Poincaré-Birkhoff fixed point theorem, we prove a mul-

tiplicity result for periodic solutions of a second order differential equation,

where the nonlinearity exhibits a singularity of repulsive type at the origin

and has linear growth at infinity. Our main theorem is related to previous

results by Rebelo and Zanolin [15, 17, 18, 19], in connection with a problem

raised by del Pino, Manásevich and Montero in [2].

AMS-Subject Classification. 34C25; 34B16, 37J10.

Keywords. Multiple periodic solutions; repulsive singularity; Poincaré-Birkhoff theorem.

1 Introduction

In [2], del Pino, Manásevich and Montero considered an equation like

x′′ − 1

xν
+ βx = p(t), (1.1)

where p : R → R is continuous and T -periodic, ν ≥ 1, and β > 0. They proved

that, if

β 6=
(kπ
T

)2
, for every k ∈ N, (1.2)

then there exists at least one T -periodic solution to (1.1). In general, this condition

is not eliminable. Indeed, if β =
(
kπ
T

)2
for some positive integer k, some kind of

resonance can occur: as shown in [1, Theorem 3], taking p(t) = ε sin(2πkT t), with |ε|
sufficiently small, no T -periodic solutions to (1.1) can exist.

Quoting the last sentence in [2],

“. . . the solution we are predicting in our “Fredholm alternative” for

(1.1) is not necessarily unique, so the multiplicity problem for this simple

equation is raised as an open question.”
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In [15, 17, 18, 19], Rebelo and Zanolin analyzed the multiplicity problem assuming

the forcing term to be of the form p(t) = s + e(t), being s a real parameter. By

the use of the Poincaré-Birkhoff fixed point theorem, they proved that, for |s| large

enough, equation (1.1) may have a large number of T -periodic solutions. Their

results apply to the wider class of T -periodic problems of the type{
x′′ + h(x) = s+ e(t)

x(0) = x(T ), x′(0) = x′(T ),
(1.3)

where h : ]0,+∞[→ R is a continuously differentiable function, with a suitable

singularity of repulsive type at the origin, and linear growth at +∞.

In this paper, similarly as in [7, 21], we consider the more general problem{
x′′ + g(t, x) = sw(t)

x(0) = x(T ), x′(0) = x′(T ),
(1.4)

where g : [0, T ]× ]0,+∞[→ R satisfies some kind of Carathéodory conditions, with

locally Lipschitz continuity in its second variable, and w ∈ L∞(0, T ). We will prove

the following result.

Theorem 1.1. Assume that:

� there exist δ > 0 and a continuous function f : ]0, δ]→ R such that

g(t, x) ≤ f(x), for a.e. t ∈ [0, T ], and every x ∈ ]0, δ],

and

lim
x→0+

f(x) = −∞,
∫ δ

0
f(x) dx = −∞,

� there exist a function a ∈ L∞(0, T ) and a positive integer m such that

– uniformly for almost every t ∈ [0, T ],

lim
x→+∞

g(t, x)

x
= a(t); (1.5)

– for almost every t ∈ [0, T ],(mπ
T

)2
< a− ≤ a(t) ≤ a+ <

((m+ 1)π

T

)2
, (1.6)

for suitable real constants a−, a+;

– the unique solution x̂(t) to{
x′′ + a(t)x = w(t)

x(0) = x(T ), x′(0) = x′(T )
(1.7)

is strictly positive, i.e., x̂(t) > 0 for every t ∈ [0, T ].
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Then, there exists s∗ > 0 such that, for every s ≥ s∗, problem (1.4) has at least{
m+ 2 solutions if m is odd,

m+ 1 solutions if m is even.

Observe that (1.6) is a nonresonance assumption with respect to the set

ΣD =

{(
kπ

T

)2

| k = 1, 2, . . .

}
,

which is the spectrum of the differential operator x 7→ −x′′, with Dirichlet boundary

conditions on [0, T ]. This implies that we also have nonresonance with respect to

the T -periodic problem, so that the Fredholm alternative ensures the uniqueness of

the solution to (1.7).

Recall that, as shown in [7, Remark 6], condition (1.6) is not enough to ensure

that the solution x̂(t) is positive; in the case when w(t) ≡ 1, some sufficient condi-

tions (in term of some Lp-norm of a(t)) to guarantee this fact have been introduced

in [20, Corollary 2.3].

We emphasize that, in comparison with the results obtained in [15, 17, 18, 19],

besides the introduction of a possibly nonconstant function w(t), we do not as-

sume any differentiability hypothesis on the function g(t, x), and the nonresonance

assumption at +∞ relies only on the asymptotic behavior of the quotient g(t, x)/x.

As it is clear, in the case w(t) ≡ 1 and a(t) ≡ β /∈ ΣD, with β > 0, the unique

solution to (1.7) is strictly positive, being x̂(t) ≡ 1
β , so that, in the particular case

of problem (1.3), we have the following.

Corollary 1.1. Assume that h(x) is a locally Lipschitz continuous function such

that

lim
x→0+

h(x) = −∞,
∫ 1

0
h(x) dx = −∞,

and

lim
x→+∞

h(x)

x
= β, (1.8)

with β > 0 satisfying (1.2). Then, there exists s∗ > 0 such that, for every s ≥ s∗,

problem (1.3) has at least Nβ solutions, being

Nβ = 2

(⌊
T
√
β

π

⌋
−
⌊
T
√
β

2π

⌋)
+ 1.

(Here, for every positive number a, we denote by the symbol bac the greatest integer

less than or equal to a.)
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Notice that

lim
β→+∞

Nβ = +∞.

This fact could be related with a result in [9], where the case of superlinear growth

at +∞ was considered, as well as the case of a second repulsive singularity at a

point b̄ > 0. In both cases, the existence of infinitely many solutions was proved.

A result similar to Corollary 1.1 has been proved in [15, Theorem 2.5], where the

function h(x) was supposed to be continuously differentiable, and some conditions

on h′(x) were assumed instead of (1.8).

The proof of Theorem 1.1 follows an argument introduced by del Pino, Manáse-

vich and Murua in [3], in the context of asymmetric nonlinearities, motivated by a

suspension bridge model proposed by Lazer and McKenna [13]. In the same line,

further generalizations were given in [7, 8, 21]. We first find a solution x̂s(t) to (1.4)

by means of topological degree arguments, and then, after a change of variable which

transforms this solution into the origin, we use the Poincaré-Birkhoff fixed point

theorem (see Section 2 for the details), to find the other solutions. In particular,

for every integer

k ∈
]T√β

2π
,
T
√
β

π

[
,

we find two solutions x1s,k(t), x
2
s,k(t) such that xis,k(t) − x̂s(t) has exactly 2k zeros

in [0, T [ , for i = 1, 2.

Let us now briefly summarize the content of the forthcoming sections. In Section

2, we recall the precise version of the Poincaré-Birkhoff theorem which we will use,

as well as some useful preliminaries about the rotation number of plane paths.

Section 3 is devoted to the proof of the main result. Finally, in Section 4 we give a

more general statement which shows how condition (1.6) can be weakened, together

with some final remarks.

2 Preliminaries for the proof

In this section, we introduce some preliminaries which will be useful for the proof

of Theorem 1.1. First, we recall the notion of rotation number of a plane curve

around the origin.

Definition 2.1. For t1 < t2, let z : [t1, t2]→ R2 be an absolutely continuous path

such that z(t) 6= 0 for every t ∈ [t1, t2]. The rotation number of z(t) = (u(t), v(t))

around the origin is defined as

Rot (z(t); [t1, t2]) =
1

2π

∫ t2

t1

v(t)u′(t)− u(t)v′(t)

u(t)2 + v(t)2
dt.
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It is well known that Rot (z(t); [t1, t2]) counts the normalized clockwise angu-

lar displacement of the curve z(t) around the origin, in the time interval [t1, t2].

Precisely, writing z(t) = ρ(t)(cos θ(t), sin θ(t)), with ρ(t), θ(t) absolutely continuous

functions, and ρ(t) > 0, it holds that

Rot (z(t); [t1, t2]) = −θ(t2)− θ(t1)
2π

.

In particular, when z(t1) = z(t2), namely when z(t) is a closed path, the number

Rot (z(t); [t1, t2]) is an integer.

Remark 2.1. We will also need the following modified version of the rotation

number, considered first in [6]. Precisely, for any positive real number κ and any

absolutely continuous path z : [t1, t2]→ R2 such that z(t) 6= 0 for every t ∈ [t1, t2],

we set

Rotκ (z(t); [t1, t2]) =
κ

2π

∫ t2

t1

v(t)u′(t)− u(t)v′(t)

κ2u(t)2 + v(t)2
dt.

Such a definition corresponds to writing z(t) = ρ(t)( 1
κ cos θ(t), sin θ(t)) and, in

general, gives a different value with respect to the classical rotation number of

Definition 2.1. However, the remarkable fact (which is implicitly used in [6], see

also [18, Theorem 4 and Remark 1] for a detailed proof) is that, for every integer j,

Rot (z(t); [t1, t2]) < j ⇐⇒ Rotκ (z(t); [t1, t2]) < j,

Rot (z(t); [t1, t2]) > j ⇐⇒ Rotκ (z(t); [t1, t2]) > j.

We will need the following homotopy invariance of the rotation number.

Proposition 2.2. Let z : [t1, t2]× [0, 1]→ R2 be a continuous function, with z(·;λ)

absolutely continuous for every λ ∈ [0, 1]. Assume that:

� z(t;λ) 6= 0 for every t ∈ [t1, t2] and every λ ∈ [0, 1];

� there exist P,Q ∈ R2 \ {0} such that, for every λ ∈ [0, 1],

z(t1;λ) = P and z(t2;λ) = Q.

Then

Rot (z(t; 0); [t1, t2]) = Rot (z(t; 1); [t1, t2]).

This property follows from the fact that, defining the differential form

ω(u, v) =
vdu− udv
u2 + v2

,

it holds that

Rot (z(t;λ); [t1, t2]) =

∫
z(·;λ)

ω,
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for every λ ∈ [0, 1]. Since ω is a closed differential form on R2 \ {0} and the paths

z(·, 0) and z(·, 1) are joint by an admissible homotopy (with the same endpoints P

and Q), the conclusion follows from the standard theory of differential forms (see,

for instance, [5, Chapter 2, Theorem 2]).

In the proof of the forthcoming Lemma 3.4, we will consider two paths z1, z2 :

[0, T ]→ R2 and a convex compact set K such that:

� z1(t) /∈ K for every t ∈ [0, T ];

� z2(t) is a closed path such that z2(t) ∈ K for every t ∈ [0, T ].

We will apply Proposition 2.2 with

z(t;λ) = z1(t)− (λz2(t) + (1− λ)P ),

where P = z2(0) = z2(T ). In this situation, z2(t) is thus continuously deformed

into its initial/final point P , so that it is possible to conclude that

Rot (z1(t)− z2(t); [0, T ]) = Rot (z1(t)− P ; [0, T ]).

Lastly, for the reader’s convenience, we recall here the theorem which will be

used in Section 3 to get our multiplicity result. We give the precise statement for

the general case of a planar Hamiltonian system. In the following, we denote by

J =

(
0 −1

1 0

)

the standard symplectic matrix and by D(Γ) the open bounded region delimited

by a Jordan curve Γ ⊂ R2 (according to the Jordan Theorem).

Theorem 2.3. Let O be a relatively open subset of [0, T ] × R2 and H : O →
R be such that ∇H(t, z) is a Carathéodory function (cf. [12]), locally Lipschitz

continuous with respect to z. Assume further that

[0, T ]× {0} ⊂ O and ∇H(t, 0) ≡ 0.

Finally, assume that there exist two Jordan curves Γ0,Γ∞ ⊂ R2, with

0 ∈ D(Γ0) ⊂ D(Γ0) ⊂ D(Γ∞),

both strictly star-shaped around the origin, and two positive integers k0 ≤ k∞ such

that:
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� for every z̄ ∈ D(Γ∞), one has (0, z̄) ∈ O, and the (unique) solution to the

Cauchy problem {
Jz′ = ∇H(t, z)

z(0) = z̄,

which we denote by z(·; z̄), is defined on [0, T ], with (t, z(t; z̄)) ∈ O for every

t ∈ [0, T ];

� Rot (z(t; z̄); [0, T ]) < k0, for every z̄ ∈ Γ0 ;

� Rot (z(t; z̄); [0, T ]) > k∞, for every z̄ ∈ Γ∞ .

Then, for every integer k ∈ [k0, k∞], the problem{
Jz′ = ∇H(t, z)

z(0) = z(T )
(2.1)

has at least two (distinct) solutions z1,k(t), z2,k(t), with

z1,k(0), z2,k(0) ∈ D(Γ∞) \ D(Γ0),

such that

Rot (z1,k(t); [0, T ]) = Rot (z2,k(t); [0, T ]) = k.

Observe that the local Lipschitz continuity assumption on ∇H(t, z) ensures the

uniqueness for every Cauchy problem associated with the equation in (2.1). In

particular, since ∇H(t, 0) ≡ 0, it turns out that z(t; z̄) 6= 0 for every t ∈ [0, T ],

provided that z̄ 6= 0. As a consequence, the rotation numbers appearing in the

statement are well defined.

Theorem 2.3 is actually a consequence of the Poincaré-Birkhoff fixed point theo-

rem, in the version by W.Y. Ding [4], when applied to the Poincaré map associated

with the planar system Jz′ = ∇H(t, z), as an area preserving map

Ψ : D(Γ∞)→ R2, z̄ 7→ z(T ; z̄). (2.2)

The result in [4], however, requires an extra assumption, i.e. the strictly star-

shapedness of the outer boundary of the annular region, as recently pointed out

in [14]. For a proof of Theorem 2.3 under this stronger assumption, we refer to

[16, Corollaries 2 and 3]. See also [10] for a recent account on the state of the art

concerning the Poincaré-Birkhoff theorem.

Theorem 2.3 will be applied to an equation of the type

u′′ + h(t, u) = 0, (2.3)

7



with h(t, u) defined on a relatively open subset Ω ⊂ [0, T ] × R and such that

h(t, 0) ≡ 0; such an equation will be obtained starting from the differential equation

in (1.4) by means of a suitable change of variable. Indeed, (2.3) is equivalent

to the planar Hamiltonian system Jz′ = ∇H(t, z), with the position z = (u, v),

O = Ω× R ⊂ [0, T ]× R2, and, for (t, u, v) ∈ O,

H(t, u, v) =
1

2
v2 +

∫ u

0
h(t, ξ) dξ.

In the situation of equation (2.3), the solutions z(t) to the equivalent Hamiltonian

system (2.1) having rotation number equal to k correspond to T -periodic solutions

u(t) with 2k zeros in [0, T [ .

3 Proof of Theorem 1.1

Let us first clarify our regularity assumptions. The function g : [0, T ]× ]0,+∞[→ R
is supposed to be an L∞-Carathéodory function which is locally Lipschitz contin-

uous in its second variable, that is:

� g(·, x) ∈ L∞(0, T ), for every x > 0,

� for every compact interval I ⊂ ]0,+∞[ , there exists a constant CI > 0 such

that, for almost every t ∈ [0, T ] and for every x, y ∈ I,

|g(t, x)− g(t, y)| ≤ CI |x− y|.

For further convenience, we set

N (x, y) =

√
1

x2
+ x2 + y2, x > 0, y ∈ R.

Such a function plays the role of a “norm” in the phase-plane for solutions of

equations with a singularity at the origin, in the sense that a solution x(t) is con-

sidered “large” when N (x(t), x′(t)) is “large”. In particular, this is the case when

x(t)2 + x′(t)2 is large, or when x(t) approaches the origin.

Our proof of Theorem 1.1 is based on four preliminary lemmas. The first one

concerns the global continuability for the Cauchy problems associated with the

differential equation in (1.4).

Lemma 3.1. For every s ∈ R, the unique solution to the Cauchy problem
x′′ + g(t, x) = sw(t),

x(0) = x̄ > 0,

x′(0) = ȳ,

(3.1)

is globally defined on [0, T ].
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Proof. Let us suppose by contradiction that there exists a solution x(t) of (3.1)

whose maximal interval of definition is [0, τ [ for τ < T . By standard arguments in

the theory of initial value problems, one has

lim sup
σ→τ−

N (x(σ), x′(σ)) = +∞.

A contradiction will then be achieved by using some properties of the rotation

number of large solutions which have been proved in [11]. Indeed, by the arguments

therein, it has to be

lim
σ→τ−

Rot ((x(t)− 1, x′(t)); [0, σ]) = +∞. (3.2)

On the other hand, following the computations in [11, Lemma 2], it is possible to

see that the time needed for large solutions to perform a complete rotation around

(1, 0) is bounded below by a positive constant, so that the solution necessarily has

to perform only a finite number of rotations in the time interval [0, τ [ . We thus

have a contradiction with (3.2).

In the second lemma, by topological degree arguments (developed in [21]), we

find a first solution of (1.4), for s > 0 sufficiently large.

Lemma 3.2. There exist s1 > 0 and two positive constants 0 < c < C such that,

for every s ≥ s1, problem (1.4) has a solution x̂s(t) satisfying

c ≤ x̂s(t)

s
≤ C, for every t ∈ [0, T ]. (3.3)

In particular,

lim
s→+∞

x̂s(t) = +∞, uniformly in t ∈ [0, T ].

Proof. Let us define, for t ∈ [0, T ] and x ∈ R, the truncated function

g̃(t, x) =

{
g(t, x) if x ≥ 1

g(t, 1) if x ≤ 1.

Since, uniformly for almost every t ∈ [0, T ],

lim
x→+∞

g̃(t, x)

x
= a(t),

and the unique solution of (1.7) is positive, using [21, Theorem 2.1] we have that,

for every s large enough, there exists a solution x̂s(t) of{
x′′ + g̃(t, x) = sw(t)

x(0) = x(T ), x′(0) = x′(T ).
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In particular, from the proof of [21, Theorem 2.1] it also follows that (3.3) is satisfied

for suitable constants c, C > 0. Indeed, such a solution is proved to be of the form

x̂s(t) = s(x̂(t) + εs(t)),

with x̂(t) as in Theorem 1.1, and ‖εs‖∞ ≤ 1
2 mint∈[0,T ] x̂(t). Hence, (3.3) is satisfied

for

c =
1

2
min
t∈[0,T ]

x̂(t) and C = max
t∈[0,T ]

x̂(t) +
1

2
min
t∈[0,T ]

x̂(t).

Clearly, (3.3) implies that xs(t) → +∞ uniformly in t ∈ [0, T ], so that, for large

values of s, x̂s(t) ≥ 1 for every t ∈ [0, T ], and hence x̂s(t) solves (1.4).

We now perform the following change of variable:

u(t) =
x(t)− x̂s(t)

s
. (3.4)

In this way, the solution x̂s(t) is transformed into the origin, and also rescaled by

a factor s, as suggested by formula (3.3). Accordingly, the differential equation in

(1.4) is changed into

u′′ + hs(t, u) = 0, (3.5)

where we have set, for simplicity,

hs(t, u) =
g(t, su+ x̂s(t))− g(t, x̂s(t))

s
.

Notice that equation (3.5) is now of the type considered in the discussion after The-

orem 2.3, that is to say, hs(t, u) is an L∞-Carathéodory function, locally Lipschitz

continuous in u, which is well defined on a relatively open subset Ωs of [0, T ]× R,

namely

Ωs =
{

(t, u) ∈ [0, T ]× R | u > − x̂s(t)
s

}
,

and hs(t, 0) ≡ 0. Observe in particular that, for the Cauchy problem
u′′ + hs(t, u) = 0,

u(0) = ū > −x̂s(0)/s,

u′(0) = v̄,

there is global continuability on [0, T ]. Indeed, u(t) is a solution if and only if

x(t) = su(t) + x̂s(t) solves (3.1) with x(0) > 0. By Lemma 3.1, x(t) is globally

extendable on [0, T ], so that the same holds for u(t).

Henceforth, we set

Ds =
{

(u, v) ∈ R2 | u > − x̂s(0)

s

}
.

In view of the previous discussion, the Poincaré operator (2.2) associated with the

planar system equivalent to (3.5) is well defined on Ds.
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The next lemma deals with the construction of the inner Jordan curve Γ0 of

Theorem 2.3, which, as a matter of fact, will be taken as a circumference around

the origin. Such a construction is possible, provided that the parameter s is large

enough.

Lemma 3.3. There exist r̃ ∈ ]0, c/2[ , with c as in (3.3), and s2 ≥ s1 such that, for

every s ≥ s2,

� B(0, r̃) ⊂ Ds, where B(0, r̃) denotes the closed ball of radius r̃ centered at the

origin;

� for every u : [0, T ] → R, solution to (3.5) satisfying u(0)2 + u′(0)2 = r̃2, it

holds that

Rot ((u(t), u′(t)); [0, T ]) <


m+ 1

2
if m is odd,

m

2
+ 1 if m is even.

Proof. We begin with the following claims.

Claim 1. For every s ≥ s1, hs(t, u) is defined for almost every t ∈ [0, T ] and

every u ∈ [−c/2, c/2], where c is as in (3.3); moreover, it holds that

lim
s→+∞

(hs(t, u)− a(t)u) = 0, (3.6)

uniformly for almost every t ∈ [0, T ] and every u ∈ [−c/2, c/2].

Proof of Claim 1. From the definition, we see that hs(t, u) is well defined for

u > − x̂s(t)
s

,

so that, by (3.3), the first part of the claim is proved.

Computing now the expression in (3.6) and using (3.3), we have, for u ∈ [−c/2, c/2],

|hs(t, u)− a(t)u| ≤
∣∣∣∣g(t, su+ x̂s(t))− a(t)(su+ x̂s(t))

s

∣∣∣∣+

∣∣∣∣a(t)x̂s(t)− g(t, x̂s(t))

s

∣∣∣∣
=

(
u+

x̂s(t)

s

) ∣∣∣∣g(t, su+ x̂s(t))− a(t)(su+ x̂s(t))

su+ x̂s(t)

∣∣∣∣+

+
x̂s(t)

s

∣∣∣∣a(t)x̂s(t)− g(t, x̂s(t))

x̂s(t)

∣∣∣∣
≤ (c+ C)

∣∣∣∣g(t, su+ x̂s(t))− a(t)(su+ x̂s(t))

su+ x̂s(t)

∣∣∣∣+

+C

∣∣∣∣a(t)x̂s(t)− g(t, x̂s(t))

x̂s(t)

∣∣∣∣ .
The conclusion is thus achieved, in view of (1.5), since x̂s(t)→ +∞ and su+x̂s(t)→
+∞, uniformly in t ∈ [0, T ].
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Claim 2. There exist b, r̃, with 0 < b < r̃ < c/2 and s̃1 ≥ s1 such that, for every

s ≥ s̃1, one has

� B(0, r̃) ⊂ Ds,

� for every u : [0, T ] → R, solution to (3.5) satisfying u(0)2 + u′(0)2 = r̃2, it

holds that

b2 ≤ u(t)2 + u′(t)2 ≤
( c

2

)2
, (3.7)

for every t ∈ [0, T ].

Proof of Claim 2. Set ρ(t) =
√
u(t)2 + u′(t)2 and fix

r̃ =
c

8
exp

(
− 1 + a+

2
T
)
,

where a+ is as in (1.6). Observe that, since r̃ < c/2, we have B(0, r̃) ⊂ Ds. We

begin to prove the second inequality in (3.7), namely that ρ(t) < c/2 for every

t ∈ [0, T ]. Notice that ρ(0) = r̃ < c/2.

Assume by contradiction that there exists t̄ ∈ [0, T ] such that

ρ(t) <
c

2
for every t ∈ [0, t̄[ , and ρ(t̄) =

c

2
.

From equation (3.5), we get

ρ′(t) =
u′(t)(u(t)− hs(t, u(t)))√

u(t)2 + u′(t)2
. (3.8)

In view of Claim 1, since |u(t)| ≤ ρ(t) ≤ c/2 for every t ∈ [0, t̄], there exists s̃1 ≥ s1
such that, for every s ≥ s̃1 and almost every t ∈ [0, T ],

|hs(t, u(t))− a(t)u(t)| ≤ r̃

T
.

Hence, by elementary inequalities, we achieve, from (3.8),

ρ′(t) ≤ 1 + a+
2

ρ(t) +
r̃

T
.

By Gronwall’s lemma, we get

ρ(t̄) ≤
(
ρ(0) +

r̃t̄

T

)
exp

(
1 + a+

2
t̄

)
≤ 2r̃ exp

(
1 + a+

2
T

)
=
c

4
,

whence the contradiction.

The proof of the other inequality in (3.7), i.e., ρ(t) > b for every t ∈ [0, T ], is

similar. Indeed, it suffices to exploit a time inversion argument, by observing that

the function ũ(σ) = u(T − σ) satisfies the equation ũ′′(σ) + hs(T − σ, ũ(σ)) = 0.

12



Hence, Gronwall’s lemma can be used just as before, and the conclusion follows by

choosing

b =
r̃

4
exp

(
− 1 + a+

2
T
)
.

Going back to the proof of Lemma 3.3, recall that, from assumption (1.6),

T
√
a+

2π
<
m+ 1

2
;

hence, it is possible to fix ζ > 0 so small that

T
√
a+

2π

(
1 +

cζ

2b2 min{a+, 1}

)
<
m+ 1

2
.

Moreover, in view of Claim 1, there exists s2 ≥ s̃1 such that, for s ≥ s2, it holds

that

|hs(t, u)− a(t)u| ≤ ζ,

for almost every t ∈ [0, T ] and every u ∈ [−c/2, c/2]. Let now u : [0, T ] → R be

a solution to (3.5), satisfying u(0)2 + u′(0)2 = r̃2. In view of Claim 2, we have

b2 ≤ u(t)2 + u′(t)2 ≤ (c/2)2 for every t ∈ [0, T ], so that

Rot√a+ ((u(t), u′(t)); [0, T ]) =

√
a+

2π

∫ T

0

u′(t)2 + hs(t, u(t))u(t)

u′(t)2 + a+u(t)2
dt

≤
√
a+

2π

(∫ T

0

u′(t)2 + a(t)u(t)2

u′(t)2 + a+u(t)2
dt+

+

∫ T

0

(hs(t, u(t))− a(t)u(t))u(t)

u′(t)2 + a+u(t)2
dt
)

≤
T
√
a+

2π

(
1 +

cζ

2b2 min{a+, 1}

)

<
m+ 1

2
≤


m+ 1

2
if m is odd

m

2
+ 1 if m is even .

By the property recalled in Remark 2.1, we conclude.

The last lemma concerns the construction of the outer Jordan curve Γ∞ ap-

pearing in Theorem 2.3, which will turn out to be a translation of a level curve of

the function N (x, y). Notice that, now, we do not need to enlarge s any more.

Lemma 3.4. For every s ≥ s2, there exists a strictly star-shaped Jordan curve Υs

around the origin such that

13



� denoting by D(Υs) the open bounded region delimited by Υs, one has

B(0, r̃) ⊂ D(Υs) ⊂ D(Υs) ⊂ Ds,

where r̃ is as in Lemma 3.3;

� for every u : [0, T ] → R, solution to (3.5) satisfying (u(0), u′(0)) ∈ Υs, it

holds that

Rot ((u(t), u′(t)); [0, T ]) > m.

Proof. Fix s ≥ s2. Since r̃ < c/2, in view of (3.3) we can fix r̂ such that

r̃ < r̂ <
x̂s(0)

s
. (3.9)

We prove the following claims.

Claim 1. There exists Rs > 0 such that, if

(u, v) ∈ Ds and N (su+ x̂s(0), sv + x̂′s(0)) ≥ Rs,

then √
u2 + v2 ≥ r̂.

Proof of Claim 1. If u ≤ −r̂, the inequality clearly holds. On the other hand,

if u > −r̂, writing explicitly the expression of N (su+ x̂s(0), sv + x̂′s(0)) and using

elementary inequalities, we have, in view of (3.9),

2s2(u2 + v2) ≥ R2
s − 2(x̂s(0)2 + x̂′s(0)2)− 1

(su+ x̂s(0))2

> R2
s − 2(x̂s(0)2 + x̂′s(0)2)− 1

(−sr̂ + x̂s(0))2
,

so that we conclude choosing Rs large enough.

Claim 2. There exists R̂s ≥ Rs such that, for every x : [0, T ] → R, solution to

the differential equation in (1.4) satisfying

N (x(t), x′(t)) ≥ R̂s for every t ∈ [0, T ],

it holds that

Rot((x(t)− x̂s(0), x′(t)− x̂′s(0)); [0, T ]) > m.

Proof of Claim 2. First of all, fix α ∈ ](mπ/T )2, a−[ and, accordingly, thanks

to (1.5) and (1.6), choose d > x̂s(0) such that

α(x− x̂s(0)) ≤ g(t, x)− sw(t), for a.e. t ∈ [0, T ], and every x ≥ d. (3.10)
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Secondly, fix η > 0 so small that

π√
α

+ 4η <
T

m
. (3.11)

Let R̂s ≥ Rs be such that N (x̂s(0), x̂′s(0)) < R̂s. Let x : [0, T ]→ R be a solution to

the differential equation in (1.4) satisfying N (x(t), x′(t)) ≥ R̂s for every t ∈ [0, T ].

In the following of the proof, we will possibly enlarge R̂s, taking care of the fact

that all the estimates will be independent of the solution considered.

Writing (x(t)− x̂s(0), x′(t)− x̂′s(0)) in polar coordinates for t ∈ [0, T ], namely

x(t) = x̂s(0) + ρ(t) cos θ(t), x′(t) = x̂′s(0) + ρ(t) sin θ(t),

a standard computation yields, for every t ∈ [0, T ],

−θ′(t) =
x′(t)(x′(t)− x̂′s(0)) + (g(t, x(t))− sw(t))(x(t)− x̂s(0))

(x(t)− x̂s(0))2 + (x′(t)− x̂′s(0))2
. (3.12)

We are going to show that the time needed for (x(t), x′(t)) to perform a whole

revolution around the point (x̂s(0), x̂′s(0)) is strictly less than T/m.

We first consider the case when x(0) > d and m = 1.

Step 1. We claim that, enlarging R̂s, if necessary, there is a first time instant t1 ∈
]0, T ] such that x(t1) = d and x(t) > d for every t ∈ [0, t1[ . Moreover, x′(t1) < 0.

To this aim, we first show that, up to choosing R̂s larger if necessary, we have

−θ′(t) ≥ sin2(θ(t)) + α cos2(θ(t))− η

2T
min{α, 1}, (3.13)

whenever x(t) ≥ d. Indeed, by (3.12) and (3.10), one has, for x(t) ≥ d,

−θ′(t) ≥ sin2(θ(t)) + α cos2(θ(t)) +
x̂′s(0)x′(t)− x̂′s(0)2

(x(t)− x̂s(0))2 + (x′(t)− x̂′s(0))2
(3.14)

and elementary arguments show that, if R̂s is large,{
N (x, y) ≥ R̂s
x ≥ d,

=⇒
∣∣∣ x̂′s(0)y − x̂′s(0)2

(x− x̂s(0))2 + (y − x̂′s(0))2

∣∣∣ ≤ η

2T
min{α, 1}.

Suppose by contradiction that x(t) > d for every t ∈ [0, T ]. From (3.13), we get

π√
α
≥ 1√

α
arctan

( 1√
α

tan θ(t)
)∣∣∣T

0
=

∫ θ(0)

θ(T )

dθ

sin2 θ + α cos2 θ
≥ T

(
1− η

2T

)
,

which contradicts (3.11). Notice that this argument also shows that

0 < t1 <
1√
α

(
arctan

( 1√
α

tan θ(0)
)
− arctan

( 1√
α

tan θ(t1)
))

+ η. (3.15)

Moreover, since x′′(t) < 0 for every t ∈ [0, t1], it follows that x′(t1) < 0.
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Step 2. Choosing R̂s large enough, one has

−θ′(t) > 0, for a.e. t ∈ [0, T ]. (3.16)

Indeed, if x(t) ≥ d, this follows from the computations made in Step 1. On the

other hand, if x(t) ∈ ]0, d[ , since N (x(t), x′(t)) is large for every t ∈ [0, T ], either

x(t) is near the singularity or |x′(t)| is large. Formula (3.16) then follows from

the fact that limx→0+(g(t, x)− sw(t)) = −∞ uniformly for almost every t ∈ [0, T ],

similarly as in [11, Lemma 2].

Arguing as in [11, Lemma 2] again, up to enlarging R̂s we can find a second

time instant t2 > t1, with

t2 − t1 < η, (3.17)

such that x(t2) = d, x′(t2) > 0, x(t) ∈ ]0, d[ for every t ∈ ]t1, t2[ , and π < θ(0) −
θ(t2) < 2π.

Step 3. We claim that there exists t3 ∈ ]t2, T ] such that θ(0)− θ(t3) = 2π.

Assume the contrary, that is, θ(0) − θ(t) < 2π for every t ∈ [t2, T ]. By convexity

reasons it has to be x(t) > d in a right neighborhood of t2.

If x(t) > d for every t ∈ ]t2, T ], with the same computations as in (3.14), together

with (3.15), we get

t1 + (T − t2) <
π√
α

+ 2η,

a contradiction with (3.11), in view of (3.17). Therefore, there exists t′ ∈ ]t2, T ]

such that x(t′) = d, with x(t) > d for t ∈ ]t2, t
′[ (see Figure 1). Then, as before,

t1 + (t′ − t2) <
1√
α

(
arctan

( 1√
α

tan θ(t2)
)
− arctan

( 1√
α

tan θ(t′)
)

+

+ arctan
( 1√

α
tan θ(0)

)
− arctan

( 1√
α

tan θ(t1)
))

+ 2η

<
π√
α

+ 2η.

Hence, using (3.17) and (3.11), we see that t′ < T −η. Consequently, the computa-

tions in [11, Lemma 2] imply that there exists t′′ ∈ ]t′, t′+η[ such that x(t′′) = x̂s(0)

and x′(t′′) < x̂′s(0), so that θ(0)− θ(t′′) > 2π, a contradiction.

From the above discussion, we can also conclude that

t3 − t2 <
1√
α

(
arctan

( 1√
α

tan θ(t2)
)
− arctan

( 1√
α

tan θ(t3)
))

+ 2η.

Step 4. We have just proved that, in the phase-plane, (x(t), x′(t)) performs at least

one turn around the point (x̂s(0), x̂′s(0)) in the time from 0 to T . In particular, we

have the following upper bound for the time needed to perform such a revolution:

t3 = t1 + (t2 − t1) + (t3 − t2) ≤
π√
α

+ 4η <
T

m
.
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Figure 1: Two possible behaviors for the solution in the phase-plane.

In view of (3.16), the proof of Claim 2 is completed in the case when x(0) > d and

m = 1. It can be easily seen that analogous considerations permit to conclude also

in the case when x(0) ≤ d.

If m > 1, we can argue as above for any of the subsequent revolutions, with

the same upper bounds on the time needed for each of them, until m turns are

performed. Hence, the time needed to perform m revolutions has to be strictly less

than T , and we conclude the proof of Claim 2 in view of (3.16).

We are now ready to conclude the proof of Lemma 3.4. Let Ks be a suitable closed

rectangle in the half-plane {x > 0} such that (x̂s(t), x̂
′
s(t)) ∈ Ks for every t ∈ [0, T ].

Up to enlarging R̂s, it is not restrictive to assume that

N (x, y) ≥ R̂s =⇒ (x, y) /∈ Ks.

As a standard consequence of the global continuability (the elastic property, cf. [18,

Lemma 10]), there exists R̃s ≥ R̂s such that, for any x : [0, T ]→ R, solution to the

differential equation in (1.4), one has

N (x(0), x′(0)) ≥ R̃s =⇒ N (x(t), x′(t)) ≥ R̂s for every t ∈ [0, T ].

Set now

Υs = {(u, v) ∈ Ds | N (su+ x̂s(0), sv + x̂′s(0)) = R̃s}.
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By Claim 1, B(0, r̃) ⊂ D(Υs); moreover, Υs is a strictly star-shaped Jordan curve

around the origin. Let u : [0, T ]→ R be a solution to (3.5), satisfying (u(0), u′(0)) ∈
Υs. In view of (3.4), N (x(0), x′(0)) = R̃s, so that (x(t), x′(t)) /∈ Ks for every

t ∈ [0, T ]. By Proposition 2.2, we then have that

Rot((x(t)− (λx̂s(t) + (1− λ)x̂s(0)), x′(t)− (λx̂′s(t) + (1− λ)x̂′s(0))); [0, T ])

is independent of λ ∈ [0, 1]. Hence, recalling (3.4) and Claim 2,

m < Rot((x(t)− x̂s(0), x′(t)− x̂′s(0)); [0, T ])

= Rot((x(t)− x̂s(t), x′(t)− x̂′s(t)); [0, T ])

= Rot((su(t), su′(t)); [0, T ])

= Rot((u(t), u′(t)); [0, T ]).

The lemma is then proved.

We now collect the results proved in the previous lemmas to prove Theorem 1.1.

Choose s∗ = s2 and fix s ≥ s∗. A first solution to (1.4) is provided by Lemma 3.2.

Moreover, setting Γ0 = ∂B(0, r̃) and Γ∞ = Υs , Lemma 3.3 and Lemma 3.4 imply,

via Theorem 2.3, the existence of m+ 1 (if m is odd) or m (if m is even) nontrivial

solutions to {
u′′ + hs(t, u) = 0

u(0) = u(T ), u′(0) = u′(T ).

Coming back to the original equation, in view of (3.4), the proof is thus concluded.

4 Final remarks

In this section, we present a possible generalization of Theorem 1.1. The proof just

exploits the same arguments as before.

In the following, for a > 0, with the symbol bac we will mean the greatest integer

less than or equal to a, while by dae we will denote the least integer greater than

or equal to a. Moreover, we introduce the notation

E−(a) =

{
bac if a /∈ N,
a− 1 if a ∈ N,

E+(a) =

{
dae if a /∈ N,
a+ 1 if a ∈ N,

so that E−(a) ≤ bac ≤ a ≤ dae ≤ E+(a). For instance,

3 = E−(π) = bπc < π < dπe = E+(π) = 4,

while

2 = E−(3) < b3c = 3 = d3e < E+(3) = 4.
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Theorem 4.1. Let g : [0, T ] × R → R be an L∞-Carathéodory function, locally

Lipschitz continuous in its second variable. Assume further that:

� there exist δ > 0 and a continuous function f : ]0, δ]→ R such that

g(t, x) ≤ f(x), for a.e. t ∈ [0, T ], and every x ∈ ]0, δ],

and

lim
x→0+

f(x) = −∞,
∫ δ

0
f(x) dx = −∞,

� there exists a ∈ L∞(0, T ) such that

– uniformly for almost every t ∈ [0, T ],

lim
x→+∞

g(t, x)

x
= a(t);

– there exist two strictly positive constants a−, a+ such that

a− ≤ a(t) ≤ a+,

for almost every t ∈ [0, T ];

– the problem {
x′′ + a(t)x = w(t)

x(0) = x(T ), x′(0) = x′(T ),

has a unique solution x̂(t), and x̂(t) > 0 for every t ∈ [0, T ].

Then, there exists s∗ > 0 such that, for every s ≥ s∗, problem (1.4) has at least

2

(
E−
(
T
√
a−

π

)
− E+

(
T
√
a+

2π

))
+ 3 (4.1)

solutions.

The expression in (4.1) highlights the fact that the elements of both ΣD and

the spectrum of the T -periodic problem, namely

ΣP =

{(
2kπ

T

)2

| k = 0, 1, 2, . . .

}
,

act as natural comparison quantities in the estimates of the rotation numbers of

“small” and “large” solutions (around x̂s(t)), respectively. When (1.6) is fulfilled,

i.e. (mπ
T

)2
< a− ≤ a+ <

((m+ 1)π

T

)2
,

so that a(t) is far away from both the spectra ΣD and ΣP , it turns out that

E−
(
T
√
a−

π

)
=

⌊
T
√
a−

π

⌋
, E+

(
T
√
a+

2π

)
=

⌈
T
√
a+

2π

⌉
,

and Theorem 4.1 simply reduces to Theorem 1.1.
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The possible interest of Theorem 4.1 lies in the fact that a(t) is allowed to inter-

act with both ΣD and ΣP . Indeed, as it is quite common when trying to apply the

Poincaré-Birkhoff theorem, the estimates of the rotation numbers can be performed

independently of any nonresonance condition, up to “correcting” the number of so-

lutions produced (when a(t) interacts with some eigenvalues). In the statement of

Theorem 4.1, such a correction is made effective by means of the functions E−, E+.

In particular, concerning the interaction with ΣD, no assumptions at all are made.

On the other hand, with respect to the T -periodic problem, we are implicitly as-

suming that {
x′′ + a(t)x = 0

x(0) = x(T ), x′(0) = x′(T ),
=⇒ x(t) ≡ 0.

This property is only needed to find the first solution x̂s(t) via topological degree

arguments (see Lemma 3.2) and can hold true even in some cases when a(t) jumps

an arbitrarily large number of T -periodic eigenvalues.

As a consequence of Theorem 4.1, we observe that Corollary 1.1 holds also when

β ∈ ΣD, provided that β /∈ ΣP . In this case, Nβ will be replaced by the corrected

number of solutions

2

(
T
√
β

π
−
⌊
T
√
β

2π

⌋)
− 1.
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Math. Soc. 88 (1983), 341–346.

[5] M. P. do Carmo, Differential Forms and Applications, Springer-Verlag, Berlin,

1994.

[6] C. Fabry and P. Habets, Periodic solutions of second order differential equa-

tions with superlinear asymmetric nonlinearities, Arch. Math. 60 (1993), 266–

276.

20



[7] A. Fonda and L. Ghirardelli, Multiple periodic solutions of scalar second order

differential equations, Nonlinear Anal. 72 (2010), 4005–4015.

[8] A. Fonda and L. Ghirardelli, Multiple periodic solutions of Hamiltonian sys-

tems in the plane, Topol. Methods Nonlinear Anal. 36 (2010), 27–38.
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