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Abstract. We study the problem of existence and multiplicity of subharmonic
solutions for a second order nonlinear ODE in presence of lower and upper
solutions. We show how such additional information can be used to obtain
more precise multiplicity results. Applications are given to pendulum type
equations and to Ambrosetti-Prodi results for parameter dependent equations.

1. Introduction. The problem of existence and multiplicity of subharmonic solu-
tions for Hamiltonian systems is classical and has been widely investigated. The first
attempts in this direction seem to go back to the pioneering work by Birkhoff and
Lewis [3], which provides results of local nature by perturbation-type techniques,
while global (variational) methods were employed by Rabinowitz [40].

There is not an univocal definition of subharmonic solution. Indeed, the typical
framework is that of a nonlinear (Hamiltonian) vector field, non-autonomous and
T -periodic in the time variable (for some T > 0) and the general rule is that one has
to search for kT -periodic solutions, with k an integer number, accompanied with as
much information as possible about the minimality of the period.
The proof of the existence of kT -periodic solutions can be performed via different
methods but, as a matter of fact, considerations concerning the minimality of the
period always require further investigations. From this point of view, different
techniques have been proposed: for instance, proving the existence of an unbounded
sequence of solutions in a context where it is possible to obtain a priori bounds
for solutions of a given period [35, 40], or performing (in a variational setting)
some careful estimates of the Morse indexes or of the critical levels of the solutions
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2 ALBERTO BOSCAGGIN AND FABIO ZANOLIN

[19, 20, 44]. Summing up, it is the method itself which often suggests the most
appropriate definition of subharmonic solution in the given situation.

In the special case of planar Hamiltonian systems, a powerful tool to detect in-
formation about the minimality of the period is based on estimates of the rotation
numbers associated to (nontrivial) periodic solutions. Such rotation numbers count
the essential turns of the solutions around a given point (usually the origin) the
plane. With this respect, the application of the Poincaré-Birkhoff fixed point the-
orem turns out to be particularly useful. In fact, the so-called twist condition (for
the associated Poincaré map, or for its iterates) can often be expressed as a gap
between the numbers of revolutions associated with the solutions departing from
the inner and the outer boundaries of a topological annulus; as a consequence, the
fixed points whose existence is guaranteed by the Poincaré-Birkhoff theorem are
naturally accompanied by an information about the rotation number of the corre-
sponding periodic solution. Using this fact it is possible to deduce results about
the minimality of the period (as well as to distinguish among solutions with the
same minimal period) and, therefore, to prove sharp multiplicity results. In this
framework, it is natural to call a subharmonic solution of order k, with k integer,
a kT -periodic solution which is not lT -periodic for every integer l = 1, . . . , k − 1.
Such a definition of subharmonic, which corresponds to the one in [38] and was
employed, for instance, in [14, 42], will be used throughout the paper.

A typical situation in which this “rotation number approach”, based on the
Poincaré-Birkhoff theorem, works is that of scalar undamped second order ODEs
like

v′′ + g(t, v) = 0, (1.1)
in which the nonlinearity g : R × R → R is T -periodic in the first variable and
exhibits a sublinear growth at infinity, that is to say, g(t, x)/x → 0 as x → ±∞.
Actually, in several cases it is possible to show that only one-sided conditions suffice
in order to obtain periodic solutions (see [21] and the references therein).

From the point of view of the rotation numbers, the sublinear growth at infinity
of the nonlinearity implies that “large” solutions in the phase-plane rotate very
slowly around the origin. Hence, for an arbitrarily large but fixed time interval
[0, kT ], it is possible to prove that solutions departing sufficiently far away from
the origin will be unable to perform a complete turn. On the other hand, if we are
able to show that “smaller” solutions make more than one revolution (around the
origin) in [0, kT ], then we can conclude that a twist condition is satisfied for the k-th
iterate of the associated Poincaré map. In this manner, the kT -periodic solutions
we find via the Poincaré-Birkhoff theorem perform exactly one turn around the
origin in [0, kT ] and hence they have kT as minimal period. This argument can
be easily modified, whenever small solutions make a greater number of revolutions,
providing for instance the existence of kT -periodic solutions performing j turns in
a time interval [0, kT ]. The minimality of the period (at least within the class of
the integer multiples of T , as in our definition of k-th order subharmonic) will be
guaranteed whenever k and j are relatively prime integers (see [14, pp. 523-524]).

Such a kind of strategy has been proposed in a recent article [4], where the
following result is proved.

Theorem 1.1. Let g : R×R→ R be a continuous function, T -periodic in the first
variable and such that g(t, 0) ≡ 0. Moreover, suppose that the uniqueness and the
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global continuability for the solutions to the Cauchy problems associated with (1.1)
are ensured. Finally, assume that:

(g0) there exists q ∈ L1(0, T ) with
∫ T

0
q(t) dt > 0 such that

lim inf
x→0

g(t, x)
x

≥ q(t), uniformly in t ∈ [0, T ];

(g∞) uniformly in t ∈ [0, T ],

lim sup
x→+∞

g(t, x)
x

≤ 0.

Then there exists k∗ ∈ N0 such that, for every integer k ≥ k∗, there exists an integer
mk such that, for every integer j relatively prime with k and such that 1 ≤ j ≤ mk,
equation (1.1) has at least two subharmonic solutions v

(1)
j,k (t), v(2)

j,k (t) of order k (not
belonging to the same periodicity class) with exactly 2j zeros in the interval [0, kT [.

Remark 1. The proof of Theorem 1.1 relies on a version of the Poincaré-Birkhoff
theorem given by W. Ding in [15] dealing with a standard annulus. Recent works
[28, 26] have raised some problems about Ding’s version of the theorem published in
[16] (which is the most commonly quoted one). We stress that our result comes from
a “safer” statement of the theorem which could be also deduced from other versions
of the Poincaré-Birkhoff theorem due to Franks [22], Rebelo [41] and Qian-Torres
[39], where independent proofs are given. C

In [4, Corollary 3.1] the conclusion about subharmonics was expressed in slightly
different form, although equivalent to this one (see Remark 2 below).
We have denoted by N0 the set of positive integers, while by the fact that v

(1)
j,k (t) and

v
(2)
j,k (t) do not belong to the same periodicity class we mean that each of them is not a

time translation of the other one by an integer multiple of T , i.e., v
(1)
j,k (·) 6≡ v

(2)
j,k (·+lT )

for l = 1, . . . , k − 1.
It is worth noticing that, taking j = 1, Theorem 1.1 in particular ensures the exis-
tence of subharmonic solutions of order k for all k large enough (and, as explained
before, in this case kT is the true minimal period of such solutions). As pointed
out in [6, p. 428] this is a sharper conclusion with respect to those of papers using
variational techniques, when typically only a sequence of solutions with minimal
periods tending to infinity is provided.

Remark 2. We emphasize that, from the proof of the above theorem in [4] together
with the estimates developed in [5, Proposition 3.2], the following estimate for mk

can be deduced:

mk ≥ E−
(

k

2π
sup
ξ>0

∫ T

0
min{q(t), ξ} dt√

ξ

)
, (1.2)

where we have denoted by E−(x) the greatest integer strictly less then x, i.e.

E−(x) :=

{
bxc if x /∈ N0,

x− 1 if x ∈ N0.

Such a quantity is strictly related to the rotation numbers of “small” (i.e., near the
equilibrium point) solutions to (1.1); we refer the reader to [5, Remark 3.3] for a
more detailed discussion about this point. It is obvious that mk ≥ 1 provided that
k is sufficiently large. In this manner we can find k∗.
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We finally observe that the subharmonics of Theorem 1.1 can be counted also in a
different way, by arguing as follows. Fix a positive integer M and suppose that we
are interested in the existence of subharmonics of order k, having 2j-zeros in the
time interval [0, kT [ , for every j = 1, . . . , M. Since the map

ϕ−(k) : N0 3 k 7→ E−
(

k

2π
sup
ξ>0

∫ T

0
min{q(t), ξ} dt√

ξ

)

is nondecreasing, and ϕ−(k) → +∞ for k → +∞, we can choose the smallest
positive integer k∗(M) such that

ϕ−(k) ≥ M

holds. With such a choice, using Theorem 1.1 and estimate (1.2) we can conclude
that for every integer k ≥ k∗(M) and for every integer j relatively prime with k
and such that 1 ≤ j ≤ M , equation (1.1) has at least two subharmonic solutions
v
(1)
j,k (t), v(2)

j,k (t) of order k (not belonging to the same periodicity class) with exactly
2j zeros in the interval [0, kT [. In particular, if we are able to prove that k∗(M) = 1
for some M (usually this will occur for a not too large M, as k∗(M1) ≤ k∗(M2)
for M1 ≤ M2), we get the existence of M pairs of T -periodic solutions, having
2, 4, . . . , 2M zeros in the time interval [0, T [ . C

The aim of this paper is that of showing how Theorem 1.1, which requires a
“local” assumption (at zero) paired with a “global” assumption (at infinity), can
be suitably used in order to produce subharmonics which are confined between a
lower and an upper (T -periodic) solution. To be more precise, we consider a scalar
undamped second order equation

u′′ + f(t, u) = 0, (1.3)

being f : R×R→ R a function T -periodic in the first variable, and, as a first step,
we prove the existence of a T -periodic solution to (1.3), say u∗(t). Such a solution
will become our “equilibrium” in order to enter in the setting of Theorem 1.1 and,
accordingly, the function q(t) in condition (g0) will be the outcome of a suitable
linearization around u∗(t). Note that only a positive average for such linearization
will be required. This, in principle, allows our results to be applied to problems
with sign indefinite weights (see [43] for previous results about subharmonics using
average type conditions). In our applications of Section 3 and Section 4 the fun-
damental role for this first step is played by Mawhin’s coincidence degree [24, 29],
which turns out to be a particularly useful tool since it permits to localize our so-
lution u∗(t) in a quite precise manner. The more information we can obtain about
the range of u∗(t), the finer conditions on the function q(t) in (g0) can be derived.
Having in mind the dynamical interpretation of Theorem 1.1, such a construction
provides the inner boundary of the annulus to which the Poincaré-Birkhoff theorem
applies.

As a second step, we use upper and lower solutions techniques, in order to perform
a suitable truncation on the nonlinearity, leading to a (possible one-sided) sublin-
ear problem at infinity, namely with (g∞) satisfied. At the level of the dynamical
properties of the solutions in the phase-plane again, this second step reflects the
behavior of large-amplitude solutions, providing the outer boundary of the annulus
of the twist theorem.
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This approach appears general enough to be performed in various different situa-
tions. For instance, one could combine the results in [27] or those in [48] to obtain
multiplicity of T -periodic solutions which are confined between a lower and an upper
solution.

The plan of the paper is the following. In Section 2 we present our main general
results (Theorem 2.1 and Theorem 2.2), which produce multiple subharmonic so-
lutions via Theorem 1.1, in a context where the existence of a T -periodic solution
is paired with that of a lower and/or an upper solution. Some models to which
Theorem 2.1 directly applies are also discussed.
In Sections 3 and 4 we propose some further applications which illustrate our ap-
proach, combining coincidence’s degree theory with Theorem 2.1 and Theorem 2.2.
The first one (see Section 3) deals with a pendulum type equation, while the second
one (see Section 4) is addressed to the study of an Ambrosetti-Prodi type problem,
concerning the number of (subharmonic) solutions in dependence of a parameter.
We refer to the corresponding sections for more comments on the problems, as well
as for a comparison between our results and the existing literature. Both the exam-
ples are inspired by previous works of Professor Jean Mawhin and his collaborators.

2. The main results. In this section, we prove our main results for equation

u′′ + f(t, u) = 0, (2.1)

where f : R × R → R is T -periodic in the first variable, with T > 0 fixed. For
simplicity, we will always assume that the following regularity assumption for f(t, x)
is fulfilled:

(f) f(t, x) is continuous with continuous partial derivative
∂f

∂x
(t, x).

As a preliminary result, we state a corollary which can be deduced in a standard
way from Theorem 1.1 of the Introduction.

Proposition 1. Suppose that the global continuability for the solutions to (2.1) is
ensured and that

lim sup
x→+∞

f(t, x)
x

≤ 0, uniformly in t ∈ [0, T ]. (2.2)

Moreover, assume that (2.1) has a T -periodic solution u∗(t) such that
∫ T

0

∂f

∂x
(t, u∗(t)) dt > 0. (2.3)

Then there exists k∗ ∈ N0 such that, for every integer k ≥ k∗, there exists an integer
mk such that, for every integer j relatively prime with k and such that 1 ≤ j ≤ mk,
equation (2.1) has at least two subharmonic solutions u

(1)
j,k(t), u(2)

j,k(t) of order k (not

belonging to the same periodicity class) such that, for i = 1, 2, u
(i)
j,k(t) − u∗(t) has

exactly 2j zeros in the interval [0, kT [.

Proof. We set
g(t, x) = f(t, x + u∗(t))− f(t, u∗(t))

and we consider the equation

v′′ + g(t, v) = 0. (2.4)

Since g(t, 0) ≡ 0, this is an equation like in Theorem 1.1 and, as it is clear, v(t)
is a solution of (2.4) if and only if u(t) = u∗(t) + v(t) is a solution of (2.1). As a
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consequence, the global continuability for the solutions to (2.4) holds. Moreover, it
is easy to see that v(t) is a subharmonic of order k of (2.4) if and only if u(t) is a
subharmonic of order k of (2.1); hence, to conclude we just have to show that the
other assumptions of Theorem 1.1 are satisfied. The regularity of f(t, x) ensures
that the uniqueness for the solutions to the Cauchy problems holds; moreover, it
is easy to see that (2.2) implies condition (g∞) of Theorem 1.1. Finally, we check
that (g0) holds true with the choice q(t) = ∂f

∂x (t, u∗(t)). Indeed, by the Langrange
theorem we can write

g(t, x)
x

=
f(t, x + u∗(t))− f(t, u∗(t))

x
=

∂f

∂x
(t, ξ(t, x)),

for a suitable ξ(t, x) such that |ξ(t, x)− u∗(t)| ≤ |x|. Letting x → 0, in view of the
uniform continuity of ∂f

∂x (t, x) on compact subsets, we get

∂f

∂x
(t, ξ(t, x)) → ∂f

∂x
(t, u∗(t)) = q(t), uniformly in t ∈ [0, T ]

and hence g(t, x)/x → q(t) for x → 0 as desired.

Remark 3. In view of the proofs of Theorem 2.1 and Theorem 2.2, which apply
Proposition 1 via a truncation argument, it is crucial to observe that the conclu-
sion of Corollary 1 still persists if we only assume that f(t, x) is locally Lipschitz
continuous in x (in order to ensure the uniqueness for the solutions to the Cauchy
problems) together with the existence of the continuous partial derivative ∂f

∂x (t, x)
for every (t, x) with x ∈ [u∗(t)−δ, u∗(t)+δ], being δ > 0 a (possibly small) constant,
independent on (t, x). C

We are now ready to state and prove our first main result.

Theorem 2.1. Let us suppose that:
(a1) there exists a T -periodic solution u∗(t) of (2.1) satisfying (2.3),
(a2) there exists a T -periodic function α(t), of class C2, and such that

α′′(t) + f(t, α(t)) ≥ 0, for every t ∈ R; (2.5)

(a3) there exists a T -periodic function β(t), of class C2, and such that

β′′(t) + f(t, β(t)) ≤ 0, for every t ∈ R. (2.6)

Assume, moreover, that

α(t) < u∗(t) < β(t), for every t ∈ R. (2.7)

Then there exists k∗ ∈ N0 such that, for every integer k ≥ k∗, there exists an integer
mk such that, for every integer j relatively prime with k and such that 1 ≤ j ≤ mk,
equation (2.1) has at least two subharmonic solutions u

(1)
j,k(t), u(2)

j,k(t) of order k (not

belonging to the same periodicity class) such that, for i = 1, 2, u
(i)
j,k(t) − u∗(t) has

exactly 2j zeros in the interval [0, kT [ and

α(t) ≤ u
(i)
j,k(t) ≤ β(t), for every t ∈ R. (2.8)

Proof. Define the function f̃ : R× R→ R by setting

f̃(t, x) =





f(t, α(t)) for x ≤ α(t)
f(t, x) for α(t) < x ≤ β(t)
f(t, β(t)) for β(t) < x
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Being α(t) < β(t) for every t ∈ R, f̃(t, x) is well defined, T -periodic in the first vari-
able, continuous and locally Lipschitz continuous in x. By the regularity assumption
(f) on f(t, x), there exists ∂f̃

∂x (t, x) = ∂f
∂x (t, x) in a neighborhood of (t, u∗(t)). Hence,

it is clear that f̃(t, x) satisfies all the conditions of Proposition 1, taking into account
also Remark 3.

All we need to conclude is the following.
Claim: if u(t) is a kT -periodic solution of

u′′ + f̃(t, u) = 0 (2.9)

such that u(t)− u∗(t) has at least one zero in R, then

α(t) ≤ u(t) ≤ β(t), for every t ∈ R.

We prove that u(t) ≤ β(t), the other inequality being analogous. Let us suppose
by contradiction that, for some t∗ ∈ R, β(t∗) < u(t∗) and define [t−, t+] to be the
largest interval containing t∗ and such that β(t) < u(t) for every t ∈ ]t−, t+[. Since
u∗(t) < β(t) and, by kT -periodicity, u(t) − u∗(t) has at least one zero in every
interval of length kT , we deduce that −∞ < t− < t+ < +∞. We clearly have

(u− β)(t−) = (u− β)(t+) = 0, (2.10)

(u− β)′(t−) ≥ 0 ≥ (u− β)′(t+); (2.11)

moreover, for every t ∈ ]t−, t+[,

(u− β)′′(t) = u′′(t)− β′′(t) ≥ f̃(t, u(t))− f(t, β(t))
= f(t, β(t))− f(t, β(t)) = 0.

Together with (2.10) and (2.11), this implies that (u−β)(t) = 0 for every t ∈ ]t−, t+[,
a contradiction.

Remark 4. A T -periodic function satisfying the inequality (2.5) (resp., (2.6))
is usually referred to as a (classical) lower solution (resp., upper solution) for
the T -periodic problem associated with equation (2.1) (more weaker concepts of
lower/upper solutions could be introduced as well [12]).
Notice that in Theorem 2.1 we assume the existence of a T -periodic solution u∗(t)
satisfying (2.7). It is a classical fact that between an order pair of lower and up-
per solutions (that is, between a lower solution α(t) and an upper solution β(t)
satisfying α(t) ≤ β(t)) a T -periodic solution of the equation always exists (see, for
instance, [12]). Nevertheless, to our purposes we need to know explicitly u∗(t) be-
cause of the assumption (2.3), and the existence of α(t) and β(t) only plays the role
of an additional information which allows to perform a suitable truncation. With
this respect, it can be noticed that this fact also allows us to provide a localization
of the subarmonic solutions produced (see (2.8)), which indeed lie in a vertical strip
of the phase plane determined by α(t) and β(t). Observe moreover, that, if α(t) is a
solution, then the uniqueness for the solutions of the Cauchy problems further im-
plies that α(t) < u

(i)
j,k(t) for every t ∈ [0, T ]. Analogously, u

(i)
j,k(t) < β(t), whenever

β(t) is a solution. C

Remark 5. Another fact that it may be worth mentioning here is related to the
instability property of the periodic solutions obtained via the lower-upper solutions
techniques. Indeed, according to [45] (see also [11] for previous work in this direc-
tion), under the assumptions of Theorem 2.1 and when at least one between α(t)
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and β(t) is not a solution to (2.1), there exists a T -periodic solution to (2.1), satis-
fying (2.7), which is unstable, simultaneously in the past and in the future. On the
other hand, according to the results in [36, 37], our condition (2.3) is not incom-
patible with the stability of the solution u∗(t) itself. This is not a contradiction.
In fact, in our setting α(t) and/or β(t) may well be solutions of (2.1) (indeed, this
will occur in some of the applications of Section 3 and Section 4). Moreover, we
require the existence of a T -periodic solution u∗(t) satisfying (2.3), but this does
not prevent the existence of other (possibly unstable) T -periodic solutions. C

The next result (Theorem 2.2) is a variant of Theorem 2.1 in which we assume
solely the existence of an upper solution β(t). For this theorem we suppose that the
global continuability for the solutions to (2.1) is ensured. A dual result, in presence
of a lower solution α(t), can be obtained as well.

Theorem 2.2. Assume (a1) and (a3) of Theorem 2.1 and suppose that

u∗(t) < β(t), for every t ∈ R.

Then the same conclusion of Theorem 2.1 holds, with (2.8) replaced by

u
(i)
j,k(t) ≤ β(t), for every t ∈ R.

Proof. The proof is similar to that of Theorem 2.1, using the truncation

f̃(t, x) =
{

f(t, x) for x ≤ β(t)
f(t, β(t)) for β(t) < x

and Proposition 1 again.

Remark 6. The hypothesis of global continuability for the solutions of (2.1) is
needed only to ensure that such a property holds for the solutions of the truncated
equation

u′′ + f̃(t, u) = 0. (2.12)
Notice that this request was not made in Theorem 2.1 because in the corresponding
proof we performed a two-sided truncation, obtaining f̃(t, x) bounded and thus
having guaranteed the continuability of the solutions for equation (2.9). With this
respect, we could replace the global existence hypothesis of Theorem 2.2 by other
conditions which produce the same effect for the solutions of (2.12). For instance,
a simple possible alternative condition could be the following:
there exist three constants A,B, d > 0 such that

|f(t, x)| ≤ A|x|+ B, for every x ≤ −d and for every t ∈ [0, T ].

It is rather easy to produce examples of differential equations satisfying the above
one-sided growth assumption and possessing, at the same time, solutions which are
not globally defined in R. Other, more refined conditions could be given as well (see,
[9, 17, 25]). C

We conclude this section with a few examples in which our results immediately
apply. It is worth mentioning that both the equations (2.13) and (2.16) considered
below deal with nonlinearities f(t, x) which are odd functions in the x-variable.
Accordingly, solutions alway occur in pairs (u(t),−u(t)) and we cannot exclude,
in the situation, for instance, of Theorem 2.1, that u

(1)
j,k(t) ≡ −u

(2)
j,k(t). This fact,

however, is purely accidental and does not affect the conclusion of Poincaré-Birkhoff
twist theorem asserting, in general, the existence of pairs of fixed points. Indeed,
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after Example 1 and Example 2 we will propose some straightforward generalizations
to second order equations without any symmetry conditions.

Example 1. Consider a nonlinear frictionless unforced simple pendulum with a
periodically moving support (which can be equivalently described as a pendulum
with a stationary support in a space with a periodically varying constant of gravity
[13]). Mechanical models of this type lead to differential equations of the form

u′′ + a(t) sin u = 0, (2.13)

where a : R → R is a continuous and T -periodic function. In this case we can
apply Theorem 2.1, by taking u∗(t) ≡ 0, α(t) ≡ −π and β(t) ≡ π. With this choice
of u∗(t), we have condition (2.3) satisfied if and only if ā := T−1

∫ T

0
a(t) dt > 0.

Therefore the following result holds.

Corollary 1. Suppose that ā > 0. Then there exists k∗ ∈ N0 such that, for every
integer k ≥ k∗, there exists an integer mk such that, for every integer j relatively
prime with k and such that 1 ≤ j ≤ mk, equation (2.13) has at least two sub-
harmonic solutions u

(1)
j,k(t), u(2)

j,k(t) of order k (not belonging to the same periodicity

class) such that, for i = 1, 2, u
(i)
j,k(t) has exactly 2j zeros in the interval [0, kT [ and

−π < u
(i)
j,k(t) < π, for every t ∈ R.

Notice that, in view of the remark after Theorem 1.1, the following lower bound
for mk can be given:

mk ≥ E−
(

kT ā

2π(max a(t))1/2

)
.

Such an estimate, for the particular case of a(t) ≡ (constant =)a > 0, leads to a
sharp inequality. Indeed, in this case 2π/

√
a is the limit period for the periodic

orbits approaching the origin, which is also the infimum of the fundamental periods
of the periodic solutions of the pendulum. Therefore, in a fixed time interval [0, kT ],
the “small” (periodic) solutions to (2.13) make at least E−(kT

√
a/2π) turns around

the origin. Of course, in this particular case, we already know how to find subhar-
monic solutions for the autonomous equation u′′ + a sin u = 0 by direct continuity
arguments on the time maps. Nevertheless, our result applies to an arbitrary weight
function a(t), under the only condition that ā > 0.

The case in which ā < 0 follows again from Theorem 2.1, by starting from
u∗(t) ≡ π, α(t) ≡ 0 and β(t) ≡ 2π (see [33] for a similar remark). In this situation
the solutions we find rotate around (π, 0) in the phase plane, with the dynamics of
an inverted pendulum.

We point out that, even if Corollary 1 applies to the unforced pendulum type
equation (2.13), we do not need many special features of the sine function (in
particular, its oddness and the fact that it has zero mean value in a period). Indeed,
with the same argument, we can derive an application of Theorem 2.1 to an equation
of the form

u′′ + a(t)g(u) = 0, (2.14)

with g : R→ R a 2L-periodic function of class C1 and such that

g(0) = 0, g′(0) > 0. (2.15)
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Indeed, from the periodicity of g(x) and (2.15), we know that g(x) vanishes at some
points in ]− 2L, 0[ as well as at some points in ]0, 2L[ . Hence the constants

L− := max{x < 0 : g(x) = 0}, L+ := min{x > 0 : g(x) = 0},
are well defined and, by construction,

g(x) < 0, ∀x ∈ ]L−, 0[ and g(x) > 0, ∀x ∈ ]0, L+[ .

Similarly as before, we can enter in the setting of Theorem 2.1 via the positions
u∗(t) ≡ 0, α(t) ≡ L− and β(t) ≡ L+. Again, condition (2.3) is satisfied whenever
ā := T−1

∫ T

0
a(t) dt > 0, since q(t) = ∂f

∂x (t, u∗(t)) = a(t)g′(0). With these positions
one can easily obtain a variant of Corollary 1 to equation (2.14). Note that with this
approach, the periodicity of the potential G(x) :=

∫ x

0
g(ξ) dξ is not required. For

other results concerning (2.14) with g(x) having a periodic potential, see [32, 44].

Example 2. As a second example, we consider a model studied by Belmonte-
Beitia and Torres [1] arising from the search of some special solutions of a nonlinear
Schrödinger equation. The equation under consideration takes the form

u′′ + µu− p(t)u3 = 0, (2.16)

where µ > 0 and p : R → R is a strictly positive, continuous and T -periodic
function (to compare with the notation in [1], we have µ = −2λ and p(t) = 2g(x),
with t = x). Following [1] we introduce the constants

ξ1 :=
√

µ

min p(t)
, ξ2 :=

√
µ

max p(t)
.

A simple computation shows that ξ2 is a constant lower solution and ξ1 is a constant
upper solution for equation (2.16). By symmetry, also the constant functions −ξ1

and −ξ2 are, respectively, a lower and an upper solution for the same equation.
A direct application of Theorem 2.1 can then be given with the following choices:
u∗(t) ≡ 0, α(t) ≡ −ξ1 and β(t) ≡ ξ1 . Observe that the average condition (2.3) is
automatically satisfied, since µ > 0. Therefore the following result holds.

Corollary 2. With the above positions, there exists k∗ ∈ N0 such that, for every
integer k ≥ k∗, there exists an integer mk such that, for every integer j relatively
prime with k and such that 1 ≤ j ≤ mk, equation (2.16) has at least two sub-
harmonic solutions u

(1)
j,k(t), u(2)

j,k(t) of order k (not belonging to the same periodicity

class) such that, for i = 1, 2, u
(i)
j,k(t) has exactly 2j zeros in the interval [0, kT [ and

− ξ1 ≤ u
(i)
j,k(t) ≤ ξ1, for every t ∈ R. (2.17)

If we like to improve estimate (2.17), we can take advantage of the fact, as proved
in [1], there exist two T -periodic solutions to (2.16), say ρ−(t) and ρ+(t), such that,
for every t ∈ [0, T ],

−ξ1 ≤ ρ−(t) ≤ −ξ2, ξ2 ≤ ρ+(t) ≤ ξ1

With this further information, we can apply Theorem 2.1 with α(t) = ρ−(t) and
β(t) = ρ+(t) and obtain the sharper estimate

ρ−(t) < u
(i)
j,k(t) < ρ+(t).

Moreover, as in Example 1, we can provide a lower bound for mk as follows:

mk ≥ E−
(

kT
√

µ

2π

)
. (2.18)



SUBHARMONIC SOLUTIONS 11

Again, we have not used the oddness of the nonlinearity and our result easily
extends to the more general equation

u′′ + µu− p(t)g(u) = 0, (2.19)

being g : R→ R a C1-function such that g(x)x > 0 for x 6= 0, and

g′(0) = 0, lim
x→±∞

g(x)
x

= +∞.

Arguing like in [1] we can prove the existence of a maximal negative T -periodic
solution ρ−(t) and a minimal positive T -periodic solution ρ+(t) (this follows using a
lower/upper solutions technique). Now we can apply Theorem 2.1 with the positions
u∗(t) ≡ 0, α(t) = ρ−(t) and β(t) = ρ+(t). As before, the average condition (2.3) is
automatically satisfied since µ > 0. In this manner, we can extend Corollary 2 to
the nonsymmetric case of equation (2.19).

In the next section we consider some more general situations which are related
to Example 1 and Example 2.

3. Harmonic and subharmonic solutions for forced pendulum-type equa-
tions. In this section, we propose to develop a consequence of Theorem 2.1 which is
suited for possible applications to forced pendulum-type equations. As ideal model
for our investigation, we consider the equation

u′′ + µ sin u = e(t), (3.1)

where µ > 0 and, for simplicity, we suppose that e : R → R is a continuous and
T -periodic function. For what follows it is also convenient to split e(t) as

e(t) = ē + ẽ(t), with ē :=
1
T

∫ T

0

e(t) dt.

It is a classical fact [32, 34] that integrating both sides of (3.1), a necessary condition
for the existence of kT -periodic solutions to (3.1) (for k ∈ N0) is that ē ∈ [−µ, µ].
On the other hand, it is known that, if

ē ∈ ]− µ, µ[ ,

then for every sufficiently small ẽ(t) there exist at least two T -periodic solutions
(geometrically distinct, i.e., non differing by a multiple of 2π). Precisely, considering
the two solutions of the equation

µ sin x = ē, with x ∈ ]π, π],

namely

x0 := arcsin(ē/µ), x1 :=

{
π − x0 if x0 ≥ 0,

−π − x0 if x0 < 0,

one can prove (via degree theory) that, whenever ẽ(t) is small, T -periodic solutions
of (3.1) exist near x0 and x1 , respectively. General results which guarantee such
a claim can be found, for instance, in [7, 23, 31]. Usually, the smallness of ẽ(t)
is expressed in terms of its L1-norm on [0, T ] or of the oscillation of some of its
primitives (and, clearly, such a bound depends on µ: the smaller is µ, the larger
upper bound for ẽ(t) is available).
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In such a framework, our aim is to prove a result about subharmonic solutions.
More in general, starting from an autonomous equation of the form

u′′ + µh(t, u) = 0,

for which we assume the existence of three constant solutions N−, 0, N+, with
N− < 0 < N+ (which, in some sense, mimic the three consecutive constant solutions
−π, 0, π of u′′ + µ sin u = 0), we are going to show the existence of infinitely many
subharmonic solutions for the perturbed equation

u′′ + µh(t, u) = e(t), (3.2)

provided that e(t) is sufficiently small. We will make the convenient assumption
that

ē = 0; (3.3)
accordingly, we will denote by E(t) the unique T -periodic function such that

E ′′(t) = e(t), and ‖E‖∞ =
1
2
Osc(E),

being Osc(E) := maxt∈[0,T ] E(t)−mint∈[0,T ] E(t). Our main result of this section is
the following.

Theorem 3.1. Assume that h : R×R→ R is a continuous function, T -periodic in
the first variable and with continuous partial derivative ∂h

∂x (t, x), and that e : R→ R
is a continuous and T -periodic function satisfying (3.3).
Suppose that, for suitable real numbers N−, A,B,N+ and a constant δ > 0 satisfy-
ing,

N− + δ ≤ A < 0 < B ≤ N+ − δ,

the following conditions hold true:

h(t,N−) = h(t, 0) = h(t,N+) = 0, for every t ∈ R; (3.4)

h(t, x)(x−N±) ≤ 0, for every t ∈ R and x ∈ [N± − δ,N± + δ]; (3.5)

h(t, x)x > 0, for every t ∈ R and x ∈ ]A, 0[∪ ]0, B[ ; (3.6)
∂h

∂x
(t, x) > 0, for every t ∈ R and x ∈ ]A,B[ . (3.7)

Finally, assume that
Osc(E) < min{δ,−A,B}. (3.8)

Then there exists µ∗ > 0 such that, for every µ ∈ ]0, µ∗]:
i) there exists a T -periodic solution u∗(t) to (3.2) such that

A < u∗(t) < B, for every t ∈ R;

ii) there exist two T -periodic solutions u−(t), u+(t) to (3.2) such that

N± − δ < u±(t) < N± + δ, for every t ∈ R;

iii) there exists k∗µ ∈ N0 such that, for every integer k ≥ k∗µ there exists an
integer mk,µ such that, for every integer j relatively prime with k and such
that 1 ≤ j ≤ mk,µ, equation (3.2) has at least two subharmonic solutions
u1

j,k(t), u2
j,k(t) of order k (not belonging to the same periodicity class) such

that u
(i)
j,k(t)− u∗(t) has exactly 2j zeros in the interval [0, kT [ and

u−(t) < u
(i)
j,k(t) < u+(t), for every t ∈ R.
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Proof. First, define
M = max

t∈[0,T ],x∈[A,B]
|h(t, x)|

and choose µ∗, R > 0 so that

µ∗MT 2

12
< R < min

{
−A

2
− ‖E‖∞,

B

2
− ‖E‖∞

}
. (3.9)

Such a choice is possible, in view of (3.8). Now, fix µ ∈ ]0, µ∗].

We first show that the conclusion at point i) holds true, by proving that there
exists a T -periodic solution x∗(t) to

x′′ + µh(t, x + E(t)) = 0, (3.10)

such that
A + ‖E‖∞ < x∗(t) < B − ‖E‖∞, for every t ∈ R.

Setting u∗(t) = x∗(t) + E(t), this implies the conclusion.
Our argument is closely related to [50]. Let CT be the Banach space of the contin-
uous and T -periodic functions x : R→ R, with the norm ‖x‖∞ := maxt∈[0,T ] |x(t)|;
moreover, for x ∈ CT , set x̄ := 1

T

∫ T

0
x(t) dt and x̃(t) := x(t) − x̄. Define the open

set

Ω =
{

x ∈ CT | x̄ ∈
]
A

2
,
B

2

[
, ‖x̃‖∞ < R

}

and observe first of all that, if x ∈ Ω, then relation (3.9) implies that

A + ‖E‖∞ < x(t) < B − ‖E‖∞, for every t ∈ R. (3.11)

We are going to show, via coincidence degree’s theory, that equation (3.10) has a
solution x∗ ∈ Ω. In view of [29], or [31, Theorem 2.4], this is true if:

a) for every α ∈ ]0, 1[ , the equation

x′′ + αµh(t, x + E(t)) = 0, (3.12)

has no T -periodic solutions x ∈ ∂Ω;
b) it holds that

∫ T

0

µh

(
t,

A

2
+ E(t)

)
dt 6= 0 6=

∫ T

0

µh

(
t,

B

2
+ E(t)

)
dt;

c) it holds that

degB

(
x 7→

∫ T

0

µh(t, x + E(t)) dt,

]
A

2
,
B

2

[
, 0

)
6= 0.

Conditions b) and c) follow from (3.6). Indeed, suppose that s = B/2. In this case
we have 0 < s + E(t) < B, so that h(t, s + E(t)) > 0 for every t ∈ [0, T ]. Therefore,∫ T

0
µh(t, s + E(t)) dt > 0. Similarly, one can check that

∫ T

0
µh(t, s + E(t)) dt < 0 for

s = A/2. As consequence, b) holds and c) is satisfied with degree equal to one.
For what concerns condition a), observe first of all that whenever x(t) is a T -periodic
solution to (3.12) (0 < α < 1) such that (3.11) holds true, in view of the Sobolev
inequality and since x(t) + E(t) ∈ [A,B], we have

‖x̃‖2∞ ≤ T

12

∫ T

0

x′(t)2 dt = − T

12

∫ T

0

x′′(t)x̃(t) dt =

=
T

12

∫ T

0

αµh(t, x + E(t))x̃(t) dt ≤ µ∗MT 2

12
‖x̃‖∞ < R‖x̃‖∞.
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From such a priori bound we conclude that in order to show condition a) it is
sufficient to prove that (3.12) has no T -periodic solutions x(t) such that x̄ = A

2 or
x̄ = B

2 with ‖x̃‖∞ < R. Assume to the contrary that this is the case and, just to
fix the ideas, that x̄ = B

2 . Then

‖E‖∞ <
B

2
−R < x(t) = x̄ + x̃(t) <

B

2
+ R < B − ‖E‖∞,

a contradiction in view of (3.6) (just integrate (3.12) and divide by α > 0 to get
0 =

∫ T

0
h(t, x(t) + E(t)) dt).

The conclusion at point ii) follows in a direct way from the lower/upper solution
technique. Indeed, in view of (3.8) and (3.5), it is easy to verify that the functions

α−(t) = N− − δ

2
+ E(t), β−(t) = N− +

δ

2
+ E(t)

are, respectively, a lower and an upper solution to (3.2). Hence, the existence of a
T -periodic solution u−(t) to (3.2) satisfying, for t ∈ [0, T ],

N− − δ < N− − δ

2
+ E(t) ≤ u−(t) ≤ N− +

δ

2
+ E(t) < N− + δ,

follows immediately. A symmetric argument shows the existence of u+(t).

Finally, the conclusion at point iii) follows from Theorem 2.1, with the choice
α(t) = u−(t) and β(t) = u+(t). Indeed, (2.3) follows from (3.7), since A < u∗(t) <
B for every t ∈ [0, T ].

When applied to the forced pendulum equation (3.1), Theorem 3.1 immediately
gives the following:

Corollary 3. Assume that e : R → R is a continuous and T -periodic function
satisfying (3.3) and

Osc(E) <
π

2
. (3.13)

Then there exists µ∗ > 0 such that, for every µ ∈ ]0, µ∗]:
i) there exists a T -periodic solution u∗(t) to (3.1) such that

−π

2
< u∗(t) <

π

2
, for every t ∈ R;

ii) there exist a T -periodic solutions u−(t) to (3.1) such that

−3
2
π < u−(t) < −π

2
, for every t ∈ R;

iii) there exists k∗µ ∈ N0 such that, for every integer k ≥ k∗µ there exists an
integer mk,µ such that, for every integer j relatively prime with k and such
that 1 ≤ j ≤ mk,µ, equation (3.1) has at least two subharmonic solutions
u1

j,k(t), u2
j,k(t) of order k (not belonging to the same periodicity class) such

that u
(i)
j,k(t)− u∗(t) has exactly 2j zeros in the interval [0, kT [ and

u−(t) < u
(i)
j,k(t) < u−(t) + 2π, for every t ∈ R.

Proof. It is enough to apply Theorem 3.1 with the positions: N− = −π, A =
−π

2 , B = π
2 , N+ = π and δ = π

2 . Notice that here, in view of the 2π-periodicity of
sin x, the solution lying near π is just u+(t) = u−(t) + 2π.
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Note that, according to (3.9), in this case an estimate for µ∗ can be given, in the
sense that our result is true for

µ <
6

T 2

( π

2
−Osc(E)

)
.

We stress that, in spite of an enormous amount of literature dealing with the
existence of T -periodic solution to the forced pendulum equation (3.1) (see for in-
stance the survey [32]), much fewer results are available for subharmonic solutions
[20, 44, 47]. In particular, [20, 44] provide generic-type results under suitable nonde-
generacy conditions on the associated energy functionals, while [47] is closer to the
spirit of Corollary 3, showing the existence of infinitely many subharmonics for e(t)
small in the L2-norm. Even if our assumption (3.13) is in general not comparable
with the ones in [47], Corollary 3, as usual when trying to make a comparison be-
tween variational methods and the Poincaré-Birkhoff theorem, provides a sharper
conclusion for what concerns the multiplicity, minimal period and localization of
the subharmonics.

Existence results for pendulum-type equations based on upper bounds on Osc(E)
have been previously obtained. For instance,using topological degree methods, the
condition

Osc(E) ≤ π, (3.14)

paired with other assumptions, has been used to obtain existence results (see [10,
30]). Our condition (3.13) is clearly more restrictive than (3.14); however, it allows
to obtain a multiplicity result for subharmonic solutions as well.

4. Harmonic and subharmonic solutions for parameter dependent second
order equations. In this final section, we propose to study, via Theorem 2.2, the
existence of harmonic and subharmonic solutions for scalar second order parameter
dependent equations of the form

u′′ + g(u) = λ + e(t), (4.1)

being g : R → R a C1-function, e : R → R a continuous and T -periodic function
with

ē :=
1
T

∫ T

0

e(t) dt = 0 (4.2)

and λ ∈ R a parameter. Observe that, in this setting, (4.2) is not restrictive, up to
relabelling e(t) and λ.
Throughout the section, given a continuous T -periodic function u : R → R, we set

(as before) ū := 1
T

∫ T

0
u(t) dt, ũ(t) := u(t)− ū and ‖u‖Lp

T
:=

(∫ T

0
|u(t)|p dt

)1/p

(for
p = 1, 2).

Our goal is to find, for every λ in a suitable interval, a T -periodic solution uλ(t)
of (4.1) which plays the role of the u∗(t) in Theorem 2.2. More precisely, we will
look for some uλ(t) such that the following property is satisfied:
(P) There exists k∗λ ∈ N0 such that, for every integer k ≥ k∗λ there exists an

integer mk,λ such that, for every integer j relatively prime with k and such
that 1 ≤ j ≤ mk,λ, equation (4.1) has at least two subharmonic solutions
u

(1)
j,k,λ(t), u(2)

j,k,λ(t) of order k (not belonging to the same periodicity class) such

that, for i = 1, 2, u
(i)
j,k,λ(t)− uλ(t) has exactly 2j zeros in the interval [0, kT [ .
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As in Section 3, coincidence degree will be the main tool to find and localize
(in dependence of λ) such uλ(t). To this aim, we present a preliminary result (see
Lemma 4.1 below) which deals with the case when g(x) is strictly increasing on
a half-line. Our result, although technical, permits a unifying treatment of the
forthcoming applications.

Lemma 4.1. Assume that there exists d ∈ R such that g(x) is strictly increasing
on [d, +∞[ (respectively, on ]−∞,−d]). Moreover, suppose that there exists K > 0
such that:

• for every λ ∈ [g(d), g(+∞)[ (resp. λ ∈ ]g(−∞), g(−d)]), for every α ∈ ]0, 1[
and for every T -periodic solution u(t) of

u′′ + αg(u) = α(λ + e(t)) (4.3)

satisfying u(t) > d (resp. u(t) < −d) for every t ∈ R, it holds that

‖u′‖L1
T

< K.

Then there exists λ∗ ∈ [g(d), g(+∞)[ (resp. λ∗ ∈ ]g(−∞), g(−d)]) such that, for
every λ ∈ [λ∗, g(+∞)[ (resp. λ ∈ ]g(−∞), λ∗]), there exists a T -periodic solution
u∗λ(t) of (4.1) such that u∗λ(t) > d (resp. u∗λ(t) < −d) for every t ∈ R. Moreover,
for λ → g(+∞), it holds that

u∗λ(t) → +∞, uniformly in t ∈ R (4.4)

(resp. u∗λ(t) → −∞ uniformly in t, for λ → g(−∞)).

Proof. For every λ ∈ [g(d), g(+∞)[ let us denote by xλ the unique real number in
[d, +∞[ such that g(xλ) = λ. Clearly, xλ → +∞ for λ → g(+∞). Let us choose
now λ∗ ≥ g(d) so large that xλ∗ −K > d and fix λ ∈ [λ∗, g(+∞)[ .
Let CT be the Banach space of the continuous and T -periodic functions u : R→ R,
with the norm ‖u‖∞ := maxt∈[0,T ] |u(t)|, and, for a, b ∈ R with a < b, consider the
open set

Ω(a, b) = {u ∈ CT | a < u(t) < b, for every t ∈ R}.
We are going to show that equation (4.1) has a solution u∗λ ∈ Ω for

Ω := Ω(a, b) with a := xλ −K, b := xλ −K.

By [29], or [31, Theorem 2.4], this is true if:
a) for every α ∈ ]0, 1[ , the equation (4.3) has no T -periodic solutions u(t) such

that a ≤ u(t) ≤ b for every t ∈ R and u(t̃) ∈ {a, b} for some t̃ ∈ [0, T ];
b) it holds that

∫ T

0

(g(a)− λ− e(t)) dt 6= 0 6=
∫ T

0

(g(b)− λ− e(t)) dt;

c) it holds that

degB

(
x 7→

∫ T

0

(g(x)− λ− e(t)) dt, ]a, b[ , 0

)
6= 0.

Indeed, conditions b) and c) follow easily from the fact that g(x) is strictly increasing
on [d, +∞[ and the choice of λ. We prove condition a). Let u(t) be a T -periodic
solution of (4.3) such that u(t) ≥ xλ −K > d; then, for every s, t ∈ [0, T ],

|u(s)− u(t)| =
∣∣∣∣
∫ s

t

u′(τ) dτ

∣∣∣∣ ≤
∫ T

0

|u′(t)| dt < K. (4.5)
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On the other hand, integrating equation (4.3) and dividing by α > 0, we get

1
T

∫ T

0

g(u(s)) ds = λ,

which implies that, for some t∗ ∈ [0, T ], g(u(t∗)) = λ. Since u(t∗) > d, we get
u(t∗) = xλ. But by assumption we know that u(t̃) ∈ {xλ − K,xλ + K} for some
t̃ ∈ [0, T ]. Hence

|u(t∗)− u(t̃)| = K,

in contradiction with (4.5). Finally, (4.4) follows from the fact that xλ − K ≤
u∗λ(t) ≤ xλ + K, since xλ → +∞.
The proof of the symmetric case follows a similar argument.

Our first application deals with a problem previously considered by Cid-Sanchez,
Ward and Bereanu-Mawhin [2, 8, 46]. The general framework is that of a bounded
nonlinearity g(x) satisfying the basic assumption:

g(x) > 0, for every x ∈ R and lim
|x|→+∞

g(x) = 0 (4.6)

In such a situation, the results in [2, 8, 46] guarantee the existence of two T -periodic
solutions for small positive values of the parameter λ. Our goal is to show that,
adding an asymptotic condition on the derivative g′(x), such harmonic solutions
can be localized in a precise manner, and they are accompanied by the existence of
infinitely many subharmonic solutions with prescribed nodal properties.

Theorem 4.2. Assume (4.6) and suppose that there exists d > 0 such that:

g′(x) > 0, for every x < −d and g′(x) < 0, for every x > d. (4.7)

Set M = maxx∈R g(x). Then there exists λ∗ ∈ (0,M ] such that, for every λ ∈ ]0, λ∗]:

i) there exists a unique T -periodic solution u+
λ (t) of (4.1) such that u+

λ (t) > d
for every t ∈ R;

ii) there exists a T -periodic solution u−λ (t) of (4.1) such that u−λ (t) < −d for
every t ∈ R;

iii) property (P) holds with respect to u−λ (t), with

u
(i)
j,k,λ(t) < u+

λ (t), for every t ∈ R.

Moreover, for λ → 0+,

u+
λ (t) → +∞, and u−λ (t) → −∞

uniformly in t ∈ R.

Proof. We split our arguments into three steps.

First of all, we prove that, for λ > 0 sufficiently small, there exists a unique
T -periodic solution u+

λ (t) of (4.1) such that u+
λ (t) > d for every t ∈ R. To this

aim, let us denote by xλ the unique real number in [d, +∞[ such that g(xλ) = λ;
moreover, let E(t) be the unique T -periodic function such that E ′′(t) = e(t) and∫ T

0
E(t) dt = 0. For λ > 0 small enough, we have xλ > d + 2‖E‖∞; accordingly,

choose m,M > 0 such that

d < m− ‖E‖∞ ≤ m + ‖E‖∞ ≤ xλ ≤ M − ‖E‖∞.
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An appropriate choice can be m := xλ − ‖E‖∞ and M := xλ + ‖E‖∞ . It is easy to
see that the T -periodic functions

α+(t) = m + E(t), β+(t) = M + E(t)

are such that d < α+(t) < β+(t) and are, respectively, a lower and an upper solution
for equation (4.1). The existence of a T -periodic solution u+

λ (t) > d follows then
from the lower/upper solution method. Moreover, by the same estimates it follows
that u+

λ (t) → +∞ (uniformly in t).
The uniqueness of u+

λ (t) follows from a direct argument using g′(x) < 0 for x > d.

Secondly, we show that the condition at point ii) holds true. To this aim, we
are going to use Lemma 4.1. Indeed, g(x) is strictly increasing on ] − ∞,−d].
Moreover, for λ ∈ ]0,M ], α ∈ ]0, 1[ and every T -periodic solution u(t) of (4.3)
satisfying u(t) < −d for every t ∈ R, it holds that

‖u′′‖L1
T
≤ 2M + ‖e‖L1

T
.

Letting t∗ ∈ [0, T ] an instant such that u′(t∗) = 0, the previous relation implies
that, for every t ∈ [0, T ],

|u′(t)| =
∣∣∣∣
∫ t

t∗
u′′(s) ds

∣∣∣∣ ≤ 2M + ‖e‖L1
T
,

so that the assumption of Lemma 4.1 is satisfied by choosing K > (2M + ‖e‖L1
T
)T .

Finally, the conclusion at point iii) follows from Theorem 2.2, with the choice
u∗(t) = u−λ (t) and β(t) = u+

λ (t). Indeed, (2.3) follows from (4.7) since u−λ (t) < −d
for every t ∈ R.

Notice that the uniqueness of u−λ (t) is not guaranteed, in general. However, it
can be achieved by adding some condition on g(x) (for instance we could suppose
that 0 < g′(x) <

(
2π
T

)2 for every x < −d).

Our second application deals with a classical situation first considered by Fabry,
Mawhin and Nkashama in [18]. Basically, we have in mind to consider the case
when g(x) satisfies:

lim
|x|→+∞

g(x) = +∞ (4.8)

In such a situation, the results in [18] ensure the existence of two T -periodic
solutions to (4.1) for large values of λ. Here, again, adding conditions on g′(x) we
provide further information about the localization of such T -periodic solutions, as
well as the existence of subharmonic solutions with prescribed nodal properties. It
is worth noticing that results providing the existence of subharmonic solutions for
(4.1) in case when (4.8) is satisfied can be deduced from [42, Theorem 10]. We
postpone more comments about this point after the statement of our result.

Theorem 4.3. Assume (4.8) and suppose that there exist d > 0 and 0 < l <
(

2π
T

)2

such that

g′(x) < 0, for every x < −d and 0 < g′(x) ≤ l, for every x > d. (4.9)

Then there exists λ∗ > 0 such that, for every λ ≥ λ∗:
i) there exists a unique T -periodic solution u−λ (t) of (4.1) such that u−λ (t) < −d

for every t ∈ R;
ii) there exists a unique T -periodic solution u+

λ (t) of (4.1) such that u+
λ (t) > d

for every t ∈ R;
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iii) property (P) holds with respect to u+
λ (t), with

u−λ (t) < u
(i)
j,k,λ(t), for every t ∈ R.

Moreover, for λ → +∞,

u+
λ (t) → +∞, and u−λ (t) → −∞

uniformly in t ∈ R.

Proof. Similarly as in the proof of Theorem 4.2, we split our arguments into three
steps.

The existence and uniqueness of a T -periodic solution u−λ (t) of (4.1) such that
u−λ (t) < −d for every t ∈ R follows in a similar way as in the proof of point i) of
Theorem 4.2 (using upper and lower solutions techniques like in [18] and the fact
that g′(x) < 0 for x < −d).

To show the conclusion at point ii), we use again Lemma 4.1; indeed, g(x) is
strictly increasing on [d, +∞[ with g(+∞) = +∞. For simplicity of notations, we
set gλ(x) = g(x)−λ. Assume now that λ ≥ g(d), α ∈ ]0, 1[ and u(t) is a T -periodic
solution u(t) of (4.3) such that u(t) > d for every t ∈ R. Multiplying equation (4.3)
by ũ(t) and integrating, we get

∫ T

0

u′(t)2 dt = α

∫ T

0

gλ(u(t))ũ(t) dt− α

∫ T

0

e(t)ũ(t) dt

= α

∫ T

0

(gλ(u(t))− gλ(ū))ũ(t) dt− α

∫ T

0

e(t)ũ(t) dt.

On the other hand, since u(t), ū > d and g(x) is strictly increasing on [d, +∞[,
Lagrange’s theorem implies that

gλ(u(t))− gλ(ū) = g′λ(ξ(t))(u(t)− ū) = g′λ(ξ(t))ũ(t)

for a suitable ξ(t) > d. Hence we get

‖u′‖2L2
T
≤ l‖ũ‖2L2

T
+ ‖e‖L1

T
‖ũ‖∞,

which implies, in view of the Sobolev and Wirtinger inequalities, that(
1− l

(
T

2π

)2
)
‖u′‖2L2

T
≤

(
T

12

)1/2

‖e‖L1
T
‖u′‖L2

T
.

In conclusion, ‖u′‖L2
T

is bounded so that ‖u′‖L1
T

is bounded too and the assumption
of Lemma 4.1 are satisfied.
The uniqueness of u+

λ (t) comes from the fact that 0 < g′(x) <
(

2π
T

)2 for x > d, by
a direct argument.

Finally, the conclusion at point iii) follows from the dual version of Theorem 2.2,
with the choice u∗(t) = u+

λ (t) and α(t) = u−λ (t). Indeed, according to Remark 6,
the global continuability for the solutions to the modified equation

u′′ + f̃(t, u) = 0,

where f(t, x) = g(x)− λ− e(t) and

f̃(t, x) =
{

f(t, x) for x ≥ u−λ (t)
f(t, u−λ (t)) for x < u−λ (t)

,

is guaranteed since |g′(x)| is uniformly bounded for x > d. Moreover (2.3) follows
from (4.9) since u+

λ (t) > d for every t ∈ R.
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Remark 7. As already anticipated, the problem of the existence of subharmonic
solutions for (4.1) in case when (4.8) is satisfied has been analyzed in [42]. In
particular, the following result can be deduced from [42, Theorem 10].

Proposition 2 (From [42]). Assume (4.8); moreover, suppose that:

0 < lim inf
x→+∞

g′(x) ≤ lim sup
x→+∞

g′(x) < +∞.

Then for every r there exists k∗r such that, for every k ≥ k∗r there exists λ∗r,k such
that, for λ > λ∗r,k, equation (4.1) has at least 2r subharmonics of order k.

Trying to make a comparison between such a result and our Theorem 4.3, the
following facts may be emphasized.

• The assumption on the derivative g′(x) considered in Theorem 4.3 does not
prevent the possibility that lim infx→+∞ g′(x) = 0, which is excluded in [42,
Theorem 10].

• For a fixed (large) value of λ, the subharmonics found in Theorem 4.3 have a
sharper nodal characterization with respect to the ones in [42, Theorem 10].
Indeed, we find subharmonic solutions rotating around the fixed harmonic
solution u+

λ (t), whose existence is not considered in [42].

C

Remark 8. Combining our argument with [49, Theorem 2.1], the same conclusion
of Theorem 4.3 can be proved assuming, instead of (4.9), the following condition:

there exist d, k > 0 such that g′(x) < 0 for x < −d and

lim
x→+∞

g′(x) = k 6=
(

2πm

T

)2

, ∀m ∈ N0.

We point out that a nonresonance condition is really needed to prove that u+
λ (t) →

+∞ for λ → +∞. To see this, consider the equation

u′′ + k|u| = λ + sin(
√

kt), (4.10)

with k =
(

2πm
T

)2 for some m ∈ N0.
We claim that, for every λ > 0, equation (4.10) has no positive T -periodic solutions.
Indeed, suppose that a positive T -periodic solution u(t) exists. Then, multiplying
(4.10) by sin(

√
kt) and integrating on [0, T ], we get

∫ T

0

u′′(t) sin(
√

kt) dt + k

∫ T

0

u(t) sin(
√

kt) dt =
∫ T

0

sin2(
√

kt) dt;

integrating twice by parts the first term on the left-hand side, we find

0 =
∫ T

0

sin2(
√

kt) dt,

a contradiction.
The above example can be easily modified in order to show that, given a constant
L ≥ 0, there are no T -periodic solutions u(t) with u(t) > −L, for all t, when λ > 0.
C
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