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Parametrices and hypoellipticity for

pseudodifferential operators on spaces of

tempered ultraditributions

Marco Cappiello a, Stevan Pilipović b and Bojan Prangoski c

Abstract
We construct parametrices for a class of pseudodifferential operators of in-

finite order acting on spaces of tempered ultradistributions of Beurling and
Roumieu type. As a consequence we obtain a result of hypoellipticity in these
spaces.

0 Introduction

The main concern in this paper is the study of hypoellipticity for pseudodifferential
operators in the setting of tempered ultradistributions of Beurling and Roumieu type
on Rd. These distributions represent the global counterpart of the ultradistributions
studied by Komatsu, see [12, 13, 16]. We recall that the space of test functions for
the ultradistributions of [12, 13, 16] is a natural generalisation of the Gevrey classes.
In the same way tempered ultradistributions act on a space which generalises the
spaces of type S introduced by Gelfand and Shilov in [9].

Before presenting our results let us recall some previous results on hypoellip-
ticity in the spaces mentioned above. Hypoellipticity in Gevrey classes has been
studied by several authors, see [11, 17, 22, 25] and the references therein. Indeed
the functional setting allows to consider very general symbols a(x, ξ) admitting ex-
ponential growth at infinity with respect to the covariable ξ. This was first noticed
in [25] and generalised in [6, 7] with applications to hyperbolic equations in Gevrey
classes. In [25] the hypoellipticity has been obtained by means of the construction
of a parametrix. More recently, the results of [25] have been extended by Fernández
et al. [8] to the space of ultradistributions of Beurling type and by the first author
to the global frame of the Gelfand-Shilov spaces of type S, see [2, 3, 4], allowing
exponential growth for the symbols also with respect to the variable x.

It is then natural to study the same problem for pseudodifferential operators
acting on tempered ultradistributions. In a recent paper [21], the third author
constructed a global calculus for pseudodifferential operators of infinite order of
Shubin type in this setting. Here we want to apply this tool to construct parametrices
for the class of [21] and to prove a hypoellipticity result.
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Let us first fix some notation and introduce the functional setting where our
results are obtained. In the sequel, the sets of integer, non-negative integer, positive
integer, real and complex numbers are denoted by Z, N, Z+, R, C. We denote
〈x〉 = (1 + |x|2)1/2 for x ∈ Rd, Dα = Dα1

1 . . . Dαd
d , D

αj
j = i−1∂αj/∂xαj , α =

(α1, α2, . . . , αd) ∈ Nd. Finally, fixed B > 0 we shall denote by QcB the set of all
(x, ξ) ∈ R2d for which we have 〈x〉 ≥ B or 〈ξ〉 ≥ B.

Following [12], in the sequel we shall consider sequences Mp of positive numbers
such that M0 = M1 = 1 and satisfying all or some of the following conditions:

(M.1) M2
p ≤Mp−1Mp+1, p ∈ Z+;

(M.2) Mp ≤ c0Hp min
0≤q≤p

{Mp−qMq}, p, q ∈ N, for some c0, H ≥ 1;

(M.3)
∞∑

p=q+1

Mp−1

Mp
≤ c0q

Mq

Mq+1
, q ∈ Z+,

(M.4)
(
Mp

p!

)2

≤ Mp−1

(p− 1)!
· Mp+1

(p+ 1)!
, for all p ∈ Z+,

In some assertions in the sequel we could replace (M.3) by the weaker assumption

(M.3)′
∞∑
p=1

Mp−1

Mp
<∞,

cf. [12]. It is important to note that (M.4) implies (M.1).
Note that the Gevrey sequence Mp = p!s, s > 1, satisfies all of these conditions.

For a multi-index α ∈ Nd, Mα will mean M|α|, |α| = α1 + ... + αd. Recall that
the associated function for the sequence Mp is defined by

M(ρ) = sup
p∈N

log+

ρp

Mp
, ρ > 0.

The function M(ρ) is non-negative, continuous, monotonically increasing, it vanishes
for sufficiently small ρ > 0 and increases more rapidly than ln ρp when ρ tends to
infinity, for any p ∈ N (see [12]).

For m > 0 and a sequence Mp satisfying the conditions (M.1)− (M.3), we shall
denote by SMp,m

∞ (Rd) the Banach space of all functions ϕ ∈ C∞(Rd) such that

‖ϕ‖m := sup
α∈Nd

sup
x∈Rd

m|α||Dαϕ(x)|eM(m|x|)

Mα
<∞, (0.1)

endowed with the norm in (0.1) and we denote S(Mp)(Rd) = lim←−
m→∞

SMp,m
∞ (Rd) and

S{Mp}(Rd) = lim−→
m→0

SMp,m
∞ (Rd). In the sequel we shall consider simultaneously the

two latter spaces by using the common notation S∗(Rd). For each space we will
consider a suitable symbol class. Definitions and statements will be formulated first
for the (Mp) case and then for the {Mp} case, using the notation ∗. We shall denote
by S∗′(Rd) the strong dual space of S∗(Rd). We refer to [5, 18, 19] for the properties
of S∗(Rd) and S∗′(Rd). Here we just recall that the Fourier transformation is an
automorphism on S∗(Rd) and on S∗′(Rd) and that for Mp = p!s, s > 1, we have
M(ρ) ∼ ρ1/s. In this case S∗(Rd) coincides respectively with the Gelfand-Shilov
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spaces Σs(Rd) (resp. Ss(Rd)) of all functions ϕ ∈ C∞(Rd) such that

sup
α,β∈Nd

h−|α|−|β|(α!β!)−s sup
x∈Rd

|xβ∂αϕ(x)| <∞

for every h > 0 (resp. for some h > 0), cf. [9, 18].
Following [21] we now introduce the class of pseudodifferential operators to

which our results apply. Let Mp, Ap be two sequences of positive numbers. We
assume that Mp satisfies (M.1), (M.2) and (M.3) and that Ap satisfies A0 = A1 = 1,
(M.1), (M.2), (M.3)′ and (M.4). Moreover we suppose that Ap ⊂Mp i.e. there exist
c0 > 0, L > 0 such that Ap ≤ c0LpMp for all p ∈ N. Let ρ0 = inf{ρ ∈ R+|Ap ⊂Mρ

p }.
Obviously 0 < ρ0 ≤ 1. Let ρ ∈ R+ be arbitrary but fixed such that ρ0 ≤ ρ ≤ 1 if the
infimum can be reached, or otherwise ρ0 < ρ ≤ 1. For any fixed h > 0,m > 0 we
denote by ΓMp,∞

Ap,ρ
(R2d;h,m) the space of all functions a(x, ξ) ∈ C∞(R2d) such that

sup
α,β∈Zd+

sup
(x,ξ)∈R2d

|Dα
ξD

β
xa(x, ξ)|〈(x, ξ)〉ρ|α+β|e−(M(m|x|)+M(m|ξ|))

h|α+β|AαAβ
<∞, (0.2)

where M(·) is the associated function for the sequence Mp. Then we define

Γ(Mp),∞
Ap,ρ

(R2d) = lim
−→

m→∞
lim
←−
h→0

ΓMp,∞
Ap,ρ

(R2d;h,m);

Γ{Mp},∞
Ap,ρ

(R2d) = lim
−→
h→∞

lim
←−
m→0

ΓMp,∞
Ap,ρ

(R2d;h,m).

Remark 1. We notice that in the case Mp = p!s, s > 1, we can replace M(m|x|) +
M(m|ξ|) by M(m|x||ξ|) in (0.2). In particular, in the case of non-quasi-analytic
Gelfand-Shilov spaces, we can include symbols of the form e±〈(x,ξ)〉

1/s
in our class,

cf. [20].

We associate to any symbol a ∈ Γ∗,∞Ap,ρ(R
2d) a pseudodifferential operator a(x,D)

defined, as it is usual, by

a(x,D)f(x) = (2π)−d
∫

Rd
ei〈x,ξ〉a(x, ξ)f̂(ξ)dξ, f ∈ S∗(Rd), (0.3)

where f̂ denotes the Fourier transform of f . In [21] it was proved that operators of
the form (0.3) act continuously on S∗(Rd) and on S∗′(Rd). Moreover, a symbolic
calculus for Γ∗,∞Ap,ρ(R

2d) (denoted there by Γ∗,∞Ap,Ap,ρ(R
2d)) has been constructed. As a

consequence it was proved that the class of pseudodifferential operators with symbols
in Γ∗,∞Ap,ρ(R

2d) is closed with respect to composition and adjoints. Here we introduce
a notion of hypoellipticity for this class.

Definition 0.1. Let a ∈ Γ∗,∞Ap,ρ
(
R2d
)
. We say that a is Γ∗,∞Ap,ρ-hypoelliptic if

i) there exists B > 0 such that there exist c,m > 0 (resp. for every m > 0 there
exists c > 0) such that

|a(x, ξ)| ≥ ce−M(m|x|)−M(m|ξ|), (x, ξ) ∈ QcB (0.4)
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ii) there exists B > 0 such that for every h > 0 there exists C > 0 (resp. there
exist h,C > 0) such that∣∣∣Dα

ξD
β
xa(x, ξ)

∣∣∣ ≤ Ch|α|+|β||a(x, ξ)|AαAβ
〈(x, ξ)〉ρ(|α|+|β|)

, α, β ∈ Nd, (x, ξ) ∈ QcB. (0.5)

The main result of the paper is the following

Theorem 0.2. Let a ∈ Γ∗,∞Ap,ρ(R
2d) be Γ∗,∞Ap,ρ-hypoelliptic and let v ∈ S∗(Rd). Then

every solution u ∈ S∗′(Rd) to the equation a(x,D)u = v belongs to S∗(Rd).

Remark 2. In the case Mp = p!s, s > 1, symbols of the form e〈(x,ξ)〉
1/s

satisfy
the conditions (0.4), (0.5), cf. [20, Section 5] for details and other examples of
hypoelliptic operators. Moreover, using the results obtained in [10] for Gelfand-
Shilov spaces, it is easy to verify that the lower bound assumption (0.4) is sharp if

we consider operators of the form exp(−P 1/ms)u :=
∑∞

j=1 e
−λ1/ms

j ujϕj , where P is
a positive globally elliptic Shubin differential operator of order m, cf. [24], λj are its
eigenvalues, {ϕj}j∈N is an orthonormal basis of eigenfunctions of P and uj are the
Fourier coefficients of u.

The proof of Theorem 0.2 is based on the construction of a parametrix for a
Γ∗,∞Ap,ρ-hypoelliptic operator. To perform this step we use the global calculus devel-
oped in [21]. In Section 1 we recall some facts about this calculus. Section 2 is
devoted to the construction of the parametrix and to the proof of Theorem 0.2.

1 Pseudodifferential operators on S∗(Rd),S∗′(Rd)

In this section we recall some facts about the pseudodifferential calculus for operators
with symbols in Γ∗,∞Ap,ρ(R

2d) which will be used in the proofs of the next section.
Since the statements below are proved in [21] for slightly more general classes of
symbols, we prefer to report here the same results as they should be read for the
class Γ∗,∞Ap,ρ(R

2d) in order to make the paper self-contained. For proofs and further
details we refer to [21]. First we recall the notion of asymptotic expansion, cf. [21,
Definition 2].

Definition 1.1. Let Mp and Ap be as in the definition of Γ∗,∞Ap,ρ(R
2d) and let m0 =

0,mp = Mp/Mp−1, p ∈ Z+. We denote by FS∗,∞Ap,ρ(R
2d) the space of all formal sums∑

j∈N aj such that for some B > 0, aj ∈ C∞(intQcBmj ) and satisfy the following
condition: there exists m > 0 such that for every h > 0 (resp. there exists h > 0
such that for every m > 0) we have

sup
j∈N

sup
α,β∈Nd

sup
(x,ξ)∈QcBmj

|Dα
ξD

β
xaj(x, ξ)|〈(x, ξ)〉ρ(|α+β|+2j)e−M(m|x|)−M(m|ξ|)

h|α+β|+2jAαAβA
2
j

<∞.

Notice that any symbol a ∈ Γ∗,∞Ap,ρ(R
2d) can be regarded as an element

∑
j∈N

aj of

FS∗,∞Ap,ρ(R
2d) with a0 = a, aj = 0 for j ≥ 1.
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Definition 1.2. A symbol a ∈ Γ∗,∞Ap,ρ(R
2d) is equivalent to

∑
j∈N aj ∈ FS

∗,∞
Ap,ρ

(R2d)
(we write a ∼

∑
j∈N aj in this case) if there exist m,B > 0 such that for every h > 0

(resp. there exist h,B > 0 such that for every m > 0) the following condition holds:

sup
N∈Z+

sup
α,β∈Nd

sup
(x,ξ)∈QcBmN

∣∣∣Dα
ξD

β
x

(
a(x, ξ)−

∑
j<N

aj(x, ξ)
)∣∣∣e−M(m|x|)−M(m|ξ|)

h|α+β|+2NAαAβA
2
N 〈(x, ξ)〉−ρ(|α+β|+2N)

<∞.

In [21] it was proved that if a ∼ 0, then the operator a(x,D) is ∗-regularizing,
i.e. it extends to a continuous map from S∗′(Rd) to S∗(Rd). Moreover we have the
following result, cf. [21, Theorem 4].

Proposition 1.3. Let
∑

j∈N aj ∈ FS∗,∞Ap,ρ(R
2d). Then there exists a symbol a ∈

Γ∗,∞Ap,ρ(R
2d) such that a ∼

∑
j∈N aj .

Finally we recall the following composition theorem, cf. [21, Corollary 1].

Theorem 1.4. Let a, b ∈ Γ∗,∞Ap,ρ(R
2d) with asymptotic expansions a ∼

∑
j∈N

aj and

b ∼
∑
j∈N

bj. Then there exists c ∈ Γ∗,∞Ap,ρ(R
2d) and a ∗-regularizing operator T such

that a(x,D)b(x,D) = c(x,D)+T. Moreover c has the following asymptotic expansion

c(x, ξ) ∼
∑
j∈N

∑
s+k+l=j

∑
|α|=l

1
α!
∂αξ as(x, ξ)D

α
x bk(x, ξ).

2 Hypoellipticity and parametrix

In this section we construct the symbol of a left (and right) parametrix for a Γ∗,∞Ap,ρ-
hypoelliptic operator starting from the asymptotic expansion of the symbol and
using the symbolic calculus developed in [21]. To do this we need some preliminary
results.

Lemma 2.1. Let Mp be a sequence of positive numbers satisfying (M.4) and M0 =

M1 = 1. Then for all 2 ≤ q ≤ p,
(
Mq

q!

)1/(q−1)

≤
(
Mp

p!

)1/(p−1)

.

Proof. For brevity in notation put Np = Mp/p!. Then N0 = N1 = 1 and Np satisfies
(M.1). Morever the sequence Np−1/Np is monotonically decreasing. It is enough to
prove that N1/(p−1)

p ≤ N
1/p
p+1 for p ≥ 2, p ∈ N. The proof goes by induction. For

p = 2 one easily verifies this. Assume that it holds for some p ≥ 2. Then we have

N2p+2
p+1 ≤ Np+1

p Np+1
p+2 ≤ NpN

p−1
p+1N

p+1
p+2 = N2p

p+2Np

(
Np+1

Np+2

)p−1

≤ N2p
p+2Np

Np−1

Np
· ... · N1

N2
= N2p

p+2,

from which the desired inequality follows.
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Lemma 2.2. Let Mp satisfy (M.4) and M0 = M1 = 1. Then for all α, β ∈ Nd such

that β ≤ α and 1 ≤ |β| ≤ |α| − 1 the inequality
(
α

β

)
Mα−βMβ ≤ |α|M|α|−1 holds.

Proof. We will consider two cases.
Case 1. 2 ≤ |β| ≤ |α| − 2.

If we use Lemma 2.1 and the inequality
(
κ

ν

)
≤
(
|κ|
|ν|

)
for ν ≤ κ, κ, ν ∈ Nd, we have

(
α

β

)
Mα−βMβ ≤ |α|! ·

Mα−β
(|α| − |β|)!

·
Mβ

|β|!

≤ |α|! ·
(

M|α|−1

(|α| − 1)!

) |α|−|β|−1
|α|−2

·
(

M|α|−1

(|α| − 1)!

) |β|−1
|α|−2

= |α|M|α|−1.

Case 2. |β| = 1 or |β| = |α| − 1.

Then obviously
(
α

β

)
Mα−βMβ ≤ |α|M|α|−1.

In the following we assume that Ap satisfies the conditions (M.1), (M.2), (M.3)′

and (M.4). Furthermore we suppose that A0 = A1 = 1. Because of (M.3)′,
Ap/(pAp−1) → ∞, when p → ∞, see [12]. Under these assumptions we can prove
the following result.

Lemma 2.3. Let a ∈ Γ∗,∞Ap,ρ
(
R2d
)

be Γ∗,∞Ap,ρ-hypoelliptic. Then, the function p0(x, ξ) =
a(x, ξ)−1 satisfies the following condition: for every h > 0 there exists C > 0 (resp.
there exist h,C > 0) such that∣∣∣Dα

ξD
β
xp0(x, ξ)

∣∣∣ ≤ Ch|α|+|β||p0(x, ξ)|Aα+β

〈(x, ξ)〉ρ(|α|+|β|)
, α, β ∈ Nd, (x, ξ) ∈ QcB. (2.1)

Proof. We observe preliminary that (M.1) and (M.2) on Ap imply that (0.5) is
equivalent to saying that there exists B > 0 such that for every h > 0 there exists
C > 0 (resp. there exist h,C > 0) such that∣∣∣Dα

ξD
β
xa(x, ξ)

∣∣∣ ≤ Ch|α+β||a(x, ξ)|Aα+β

〈(x, ξ)〉ρ(|α+β|) , α, β ∈ Nd, (x, ξ) ∈ QcB. (2.2)

Then, to simplify the notation, we set w = (x, ξ). First we will consider the (Mp)
case. Let h > 0 be arbitrary but fixed and take h1 > 0 such that 24d+2h1 ≤ h. Then
there exists Ch1 ≥ 1 such that

|Dα
wa(w)| ≤ Ch1

h
|α|
1 |a(w)|Aα
〈w〉ρ|α|

, α ∈ N2d, w ∈ QcB. (2.3)

Now, there exists t ∈ Z+ such that Ch1 ≤ 2t. Then, for |α| ≥ t,

|Dα
wa(w)| ≤ (2h1)|α||a(w)|Aα

〈w〉ρ|α|
, w ∈ QcB. (2.4)
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Choose s ∈ N, s > t+ 1, such that

Ch1s
′As′−1 ≤ As′ , for all s′ ≥ s. (2.5)

We will prove that

|Dα
wp0(w)| ≤ Cmin{s,|α|}

h1

h|α||p0(w)|Aα
〈w〉ρ|α|

, α ∈ N2d, w ∈ QcB, (2.6)

which will complete the proof in the (Mp) case.
For |α| = 0, (2.6) is obviously true. Suppose that it is true for |α| ≤ k, for some

0 ≤ k ≤ s − 1. We will prove that it holds for |α| = k + 1. If we differentiate the
equality a(w)p0(w) = 1 on QcB, we have

|a(w)||Dα
wp0(w)| ≤

∑
β≤α
β 6=0

(
α

β

)
|Dα−β

w p0(w)| · |Dβ
wa(w)|.

We can use the inductive hypothesis for the terms |Dα−β
w p0(w)|, Lemma 2.2 and the

fact that qAq−1 ≤ Aq, ∀q ∈ Z+, (which follows from (M.4)) to obtain

|Dα
wp0(w)| ≤

Ck+1
h1
|p0(w)|

〈w〉ρ|α|
∑
β≤α
β 6=0

(
α

β

)
h|α|−|β|h

|β|
1 Aα−βAβ

≤
Ck+1
h1
|p0(w)|h|α|Aα
〈w〉ρ|α|

∑
β≤α
β 6=0

(
h1

h

)|β|

≤
Ck+1
h1
|p0(w)|h|α|Aα
〈w〉ρ|α|

∞∑
r=1

(
h1

h

)r ∑
|β|=r

1.

Since
∞∑
r=1

(
h1

h

)r ∑
|β|=r

1 ≤
∞∑
r=1

(
r + 2d− 1

2d− 1

)(
h1

h

)r
≤
∞∑
r=1

(
24dh1

h

)r
≤ 1,

(2.6) is true for 0 ≤ |α| ≤ s. To continue the induction, assume that it is true
for |α| ≤ k, with k ≥ s. To prove it for |α| = k + 1, differentiate the equality
a(w)p0(w) = 1 for w ∈ QcB. We obtain

|a(w)| |Dα
wp0(w)| ≤

∑
β≤α

β 6=0, β 6=α

(
α

β

) ∣∣∣Dα−β
w p0(w)

∣∣∣ ∣∣∣Dβ
wa(w)

∣∣∣+ |p0(w)| |Dα
wa(w)| .

We can use the inductive hypothesis for the terms
∣∣∣Dα−β

w p0(w)
∣∣∣, Lemma 2.2 and

(2.5) to obtain

|Dα
wp0(w)| ≤

Csh1
|p0(w)|
〈w〉ρ|α|

(2h1)|α|Aα +
∑
β≤α

β 6=0, β 6=α

(
α

β

)
Ch1h

|α|−|β|h
|β|
1 Aα−βAβ


7



≤
Csh1
|p0(w)|
〈w〉ρ|α|

(2h1)|α|Aα +
∑
β≤α

β 6=0, β 6=α

h|α|−|β|h
|β|
1 Ch1 |α|A|α|−1



≤
Csh1
|p0(w)|
〈w〉ρ|α|

(2h1)|α|Aα +Aαh
|α|

∑
β≤α

β 6=0, β 6=α

(
h1

h

)|β|
≤

Csh1
h|α||p0(w)|Aα
〈w〉ρ|α|

∞∑
r=1

(
2h1

h

)r ∑
|β|=r

1

=
Csh1

h|α||p0(w)|Aα
〈w〉ρ|α|

∞∑
r=1

(
r + 2d− 1

2d− 1

)(
2h1

h

)r
.

Finally, we observe that

∞∑
r=1

(
r + 2d− 1

2d− 1

)(
2h1

h

)r
≤
∞∑
r=1

(
24d+1h1

h

)r
≤ 1.

This completes the induction.
In the {Mp} case, there exist h1, Ch1 > 0 such that (2.3) holds. Take h such

that 24d+2h1 ≤ h. Choose t and s as in (2.4) and (2.5). Then we can prove (2.6) in
the same way as for the (Mp) case.

Remark 3. We observe that to prove Lemma 2.3 we can replace the assumption
(M.4) on Ap by a weaker asssumption. Namely we can assume that there exists

K > 0 such that
(
Mq

q!

)1/q

≤ K

(
Mp

p!

)1/p

, for all 1 ≤ q ≤ p. In fact, the latter

condition is the same adopted to prove that 1/f ∈ E∗(R) when f ∈ E∗(R) and
inf |f(x)| 6= 0 (cf. [1] for the Beurling case and [23] for the Roumieu case). The
proof in [1], [23] relies on careful considerations of the coefficients in the Faà di
Bruno formula applied to the composition of the mapping t 7→ 1/t with a(x, ξ). On
the contrary (M.4) is needed to prove the next Lemma 2.4.

Lemma 2.4. Let a ∈ Γ∗,∞Ap,ρ
(
R2d
)

be Γ∗,∞Ap,ρ-hypoelliptic. Define p0(x, ξ) = a(x, ξ)−1

and inductively

pj(x, ξ) = −p0(x, ξ)
∑

0<|ν|≤j

1
ν!
∂νξ pj−|ν|(x, ξ)D

ν
xa(x, ξ), j ∈ Z+.

Then, the functions pj satisfy the following conditions:
there exist B > 0 such that for every h > 0 there exists C > 0 (resp. there exist

h,C > 0) such that

∣∣∣Dα
ξD

β
xpj(x, ξ)

∣∣∣ ≤ C
h|α|+|β|+2jA|α|+|β|+2j |p0(x, ξ)|

〈(x, ξ)〉ρ(|α|+|β|+2j)
, (2.7)

8



for all α, β ∈ Nd, (x, ξ) ∈ QcB, j ∈ Z+;
there exist m,B > 0 such that for every h > 0 there exists C > 0 (resp. there

exist h,B > 0 such that for every m > 0 there exists C > 0) such that

∣∣∣Dα
ξD

β
xpj(x, ξ)

∣∣∣ ≤ C
h|α|+|β|+2jA|α|+|β|+2je

M(m|x|)eM(m|ξ|)

〈(x, ξ)〉ρ(|α|+|β|+2j)
, (2.8)

for all α, β ∈ Nd, (x, ξ) ∈ QcB, j ∈ Z+.

Proof. First, observe that it is enough to prove (2.7) since (2.8) follows from (2.7)
by (0.4) (possibly with different constants). As before, we put w = (x, ξ). We will
consider first the (Mp) case. Let h > 0 be fixed. Choose h1 > 0 so small such that
29d+1h1 ≤ h and e4

ddh1/h − 1 ≤ 1/2. Then by assumption and Lemma 2.3, there
exists Ch1 ≥ 1 such that

|Dα
wa(w)| ≤ Ch1

h
|α|
1 |a(w)|Aα
〈w〉ρ|α|

, α ∈ N2d, w ∈ QcB, (2.9)

|Dα
wp0(w)| ≤ Ch1

h
|α|
1 |p0(w)|Aα
〈w〉ρ|α|

, α ∈ N2d, w ∈ QcB, (2.10)

Take s ∈ Z+, such that

C2
h1
s′As′−1 ≤ As′ , for all s′ ≥ s. (2.11)

We will prove that, for j ≥ 1,

|Dα
wpj(w)| ≤ C2min{s,j}+1

h1

h|α|+2jA|α|+2j |p0(w)|
〈w〉ρ(|α|+2j)

, (2.12)

for all α ∈ N2d, w ∈ QcB, j ∈ Z+, which will prove the lemma in the (Mp) case. We
can argue by induction on j. For j = 1, we have

|Dα
wp1(w)| ≤

∑
β+γ+δ=α

∑
|ν|=1

α!
β!γ!δ!

∣∣∣Dβ
wp0(w)

∣∣∣ ∣∣Dγ
wD

ν
ξ p0(w)

∣∣ ∣∣∣Dδ
wD

ν
xa(w)

∣∣∣
≤

C3
h1
|p0(w)|

〈w〉ρ(|α|+2)

∑
β+γ+δ=α

d · α!
β!γ!δ!

h
|β|
1 A|β|h

|γ|+1A|γ|+1h
|δ|+1
1 A|δ|+1.

For |γ| ≥ 1, by using Lemma 2.1, we obtain

A|γ|+1 ≤ (|γ|+ 1)!
(

A|α|+2

(|α|+ 2)!

) |γ|
|α|+1

.

For |γ| = 0 this trivially holds. Also, if |β| ≥ 2,

Aβ ≤ |β|!
(

A|α|+2

(|α|+ 2)!

) |β|−1
|α|+1

≤ |β|!
(

A|α|+2

(|α|+ 2)!

) |β|
|α|+1

9



and this obviously holds if |β| = 1 or |β| = 0 (note that (M.4) implies that Ap ≥ p!
for all p ∈ N). Moreover for |δ| ≥ 1, by Lemma 2.1, we have

A|δ|+1 ≤ (|δ|+ 1)!
(

A|α|+2

(|α|+ 2)!

) |δ|
|α|+1

.

If |δ| = 0 this inequality obviously holds. Insert these inequalities in the estimate
for |Dα

wp1(w)| to obtain

|Dα
wp1(w)| ≤

C3
h1
h|α|+2A|α|+2|p0(w)|
〈w〉ρ(|α|+2)

∑
β+γ+δ=α

d · α!
β!γ!δ!

(
h1

h

)|β|+|δ|+1

·(|γ|+ 1)!|β|!(|δ|+ 1)!
(|α|+ 2)!

.

Observe that

α!
β!γ!δ!

=
(

α

β + γ

)(
β + γ

β

)
≤
(
|α|
|β + γ|

)(
|β + γ|
|β|

)
=

|α|!
|β|!|γ|!|δ|!

≤ (|α|+ 1)!
|β|!(|γ|+ 1)!|δ|!

≤ (|α|+ 2)!
|β|!(|γ|+ 1)!(|δ|+ 1)!

.

We obtain

|Dα
wp1(w)| ≤

C3
h1
h|α|+2A|α|+2|p0(w)|
〈w〉ρ(|α|+2)

∑
β+γ+δ=α

(
2dh1

h

)|β|+|δ|+1

.

Note that

∑
β+γ+δ=α

(
2dh1

h

)|β|+|δ|+1

≤
∞∑
l=0

∑
|β|+|δ|=l

(
2dh1

h

)l+1

≤
∞∑
l=0

(
l + 4d− 1

4d− 1

)(
2dh1

h

)l+1

≤
∞∑
l=0

(
29dh1

h

)l+1

≤ 1,

which completes the proof for j = 1. Suppose that it holds for all j ≤ k, k ≤ s− 1,
k ∈ Z+. We will prove it for j = k + 1.

|Dα
wpj(w)| ≤

∑
β+γ+δ=α

∑
0<|ν|≤j

α!
β!γ!δ!

· 1
ν!
|Dβ

wp0(w)| · |Dγ
wD

ν
ξ pj−|ν|(w)| · |Dδ

wD
ν
xa(w)|

≤
C2j+1
h1
|p0(w)|

〈w〉ρ(|α|+2j)

∑
β+γ+δ=α

∑
0<|ν|≤j

α!
β!γ!δ!ν!

·h|β|1 A|β|h
|γ|+2j−|ν|A|γ|+2j−|ν|h

|δ|+|ν|
1 A|δ|+|ν|,

10



where we used the inductive hypothesis for the derivatives of the terms pj−|ν|(w).
By using Lemma 2.1, we obtain (note that 2j − |ν| ≥ 2)

A|γ|+2j−|ν| ≤ (|γ|+ 2j − |ν|)!
(

A|α|+2j

(|α|+ 2j)!

) |γ|+2j−|ν|−1
|α|+2j−1

≤ (|γ|+ 2j − |ν|)!
(

A|α|+2j

(|α|+ 2j)!

) |γ|+2j−|ν|
|α|+2j−1

,

where the last inequality follows from Ap ≥ p!, p ∈ N, which in turn follows from
(M.4). Also, if |β| ≥ 2,

Aβ ≤ |β|!
(

A|α|+2j

(|α|+ 2j)!

) |β|−1
|α|+2j−1

≤ |β|!
(

A|α|+2j

(|α|+ 2j)!

) |β|
|α|+2j−1

and this obviously holds if |β| = 1 or |β| = 0. Moreover for |δ| ≥ 1, by Lemma 2.1
(because |ν| ≥ 1), we have

A|δ|+|ν| ≤ (|δ|+ |ν|)!
(

A|α|+2j

(|α|+ 2j)!

) |δ|+|ν|−1
|α|+2j−1

.

If |δ| = 0 and |ν| ≥ 2 Lemma 2.1 implies the same inequality and if |δ| = 0 and
|ν| = 1 this inequality obviously holds. If we insert these inequalities in the estimate
for |Dα

wpj(w)|, we obtain

|Dα
wpj(w)|

≤
C2j+1
h1
|p0(w)|

〈w〉ρ(|α|+2j)

∑
β+γ+δ=α

∑
0<|ν|≤j

α!
β!γ!δ!ν!

h
|β|
1 h|γ|+2j−|ν|h

|δ|+|ν|
1

·(|γ|+ 2j − |ν|)!
(

A|α|+2j

(|α|+ 2j)!

) |γ|+2j−|ν|
|α|+2j−1

|β|!
(

A|α|+2j

(|α|+ 2j)!

) |β|
|α|+2j−1

(|δ|+ |ν|)!
(

A|α|+2j

(|α|+ 2j)!

) |δ|+|ν|−1
|α|+2j−1

=
C2j+1
h1

h|α|+2jA|α|+2j |p0(w)|
〈w〉ρ(|α|+2j)

∑
β+γ+δ=α

∑
0<|ν|≤j

α!
β!γ!δ!ν!

(
h1

h

)|β|+|δ|+|ν|
·(|γ|+ 2j − |ν|)!|β|!(|δ|+ |ν|)!

(|α|+ 2j)!
.

Similarly as above, we have

α!
β!γ!δ!

≤ |α|!
|β|!|γ|!|δ|!

≤ (|α|+ 2j − |ν|)!
|β|!(|γ|+ 2j − |ν|)!|δ|!

≤ (|α|+ 2j)!
|β|!(|γ|+ 2j − |ν|)!(|δ|+ |ν|)!

.
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We obtain

|Dα
wpj(w)| ≤

C2j+1
h1

h|α|+2jA|α|+2j |p0(w)|
〈w〉ρ(|α|+2j)

∑
β+γ+δ=α

∞∑
r=1

∑
|ν|=r

1
ν!

(
h1

h

)|β|+|δ|+r
.

We have the estimate

∑
β+γ+δ=α

∞∑
r=1

∑
|ν|=r

1
ν!

(
h1

h

)|β|+|δ|+r

≤
∑

β+γ+δ=α

∞∑
r=1

(
r + d− 1
d− 1

)
dr

r!

(
h1

h

)|β|+|δ|+r

≤
∑

β+γ+δ=α

(
h1

h

)|β|+|δ| ∞∑
r=1

1
r!

(
22ddh1

h

)r

=
(
e4
ddh1/h − 1

) ∑
β+γ+δ=α

(
h1

h

)|β|+|δ|
=
(
e4
ddh1/h − 1

) ∑
β+δ≤α

(
h1

h

)|β|+|δ|
≤

(
e4
ddh1/h − 1

) ∞∑
l=0

(
h1

h

)l ∑
|β|+|δ|=l

1

=
(
e4
ddh1/h − 1

) ∞∑
l=0

(
h1

h

)l (l + 4d− 1
4d− 1

)

≤
(
e4
ddh1/h − 1

) ∞∑
l=0

(
28dh1

h

)l
≤ 1.

Hence, we proved (2.12) for 1 ≤ j ≤ s. Suppose that it holds for all j ≤ k, k ≥ s.
For j = k + 1, similarly as above, we obtain

|Dα
wpj(w)| ≤

C2s+1
h1
|p0(w)|

〈w〉ρ(|α|+2j)

∑
β+γ+δ=α

∑
0<|ν|≤j

α!
β!γ!δ!ν!

·C2
h1
h
|β|
1 A|β|h

|γ|+2j−|ν|A|γ|+2j−|ν|h
|δ|+|ν|
1 A|δ|+|ν|.

Note that |γ|+ 2j − |ν| ≥ s, so, by (2.11), we have

C2
h1
A|γ|+2j−|ν| ≤ A|γ|+2j−|ν|+1/(|γ|+ 2j − |ν|+ 1).

Also |γ|+ 2j − |ν|+ 1 ≤ |α|+ 2j, hence Lemma 2.1 implies

C2
h1
A|γ|+2j−|ν| ≤

A|γ|+2j−|ν|+1

|γ|+ 2j − |ν|+ 1
≤ (|γ|+ 2j − |ν|)!

(
A|α|+2j

(|α|+ 2j)!

) |γ|+2j−|ν|
|α|+2j−1

.

In the same manner as above we obtain

Aβ ≤ |β|!
(

A|α|+2j

(|α|+ 2j)!

) |β|
|α|+2j−1

and A|δ|+|ν| ≤ (|δ|+ |ν|)!
(

A|α|+2j

(|α|+ 2j)!

) |δ|+|ν|−1
|α|+2j−1

.
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If we insert these inequalities in the estimate for |Dα
wpj(w)| and use the above in-

equality for
α!

β!γ!δ!
we obtain

|Dα
wpj(w)| ≤

C2s+1
h1

h|α|+2jA|α|+2j |p0(w)|
〈w〉ρ(|α|+2j)

∑
β+γ+δ=α

∞∑
r=1

∑
|ν|=r

1
ν!

(
h1

h

)|β|+|δ|+r
.

We already proved that
∑

β+γ+δ=α

∞∑
r=1

∑
|ν|=r

1
ν!

(
h1

h

)|β|+|δ|+r
≤ 1, hence the proof for

the (Mp) case is complete.
Next, we consider the {Mp} case. By assumption and Lemma 2.3, there exist

h1, Ch1 ≥ 1 such that (2.9) and (2.10) hold. Take h so large such that 29d+1h1 ≤ h

and e4
ddh1/h − 1 ≤ 1/2. There exists s ∈ Z+ such that C2

h1
s′As′−1 ≤ As′ , for all

s′ ≥ s. One proves that

|Dα
wpj(w)| ≤ C2min{s,j}+1

h1

h|α|+2jA|α|+2j |p0(w)|
〈w〉ρ(|α|+2j)

,

for all α ∈ N2d, w ∈ QcB, j ∈ Z+, by induction on j in the same manner as for (2.12)
in the (Mp) case. This completes the proof in the {Mp} case.

Theorem 2.5. Let a ∈ Γ∗,∞Ap,ρ
(
R2d
)

be Γ∗,∞Ap,ρ-hypoelliptic. Then there exist *-
regularizing operators T and T ′ and b, b′ ∈ Γ∗,∞Ap,ρ

(
R2d
)

such that b(x,D)a(x,D) =
Id + T and a(x,D)b′(x,D) = Id + T ′.

Proof. Let pj , j ∈ N, be as in Lemma 2.4. Then the functions p0 and pj , j ∈ Z+,
satisfy the estimates given in Lemmas 2.3 and 2.4. Since Ap satisfies (M.1) and
(M.2), these estimates are equivalent to the following:

there exist m,B > 0 such that for every h > 0 there exists C > 0 (resp. there
exist h,B > 0 such that for every m > 0 there exists C > 0) such that∣∣∣Dα

ξD
β
xpj(x, ξ)

∣∣∣ ≤ Ch|α|+|β|+2jAαAβA
2
je
M(m|x|)eM(m|ξ|)

〈(x, ξ)〉ρ(|α|+|β|+2j)
, (2.13)

for all α, β ∈ Nd, (x, ξ) ∈ QcB, j ∈ N. One can modify p0 near the boundary of
QcB so that it can be extended to C∞ function on R2d and satisfy (2.13) on the
whole R2d. Hence, (2.13) remains true for all j ∈ Z+ with larger B. We obtain∑∞

j=0 pj ∈ FS∞,∗Ap,ρ

(
R2d
)
. Let b ∼

∑
j pj , b ∈ Γ∗,∞Ap,ρ

(
R2d
)
. By Theorem 1.4 there

exist c ∈ Γ∗,∞Ap,ρ
(
R2d
)

and a *-regularizing operator T̃ ′1 such that b(x,D)a(x,D) =

c(x,D) + T̃ and c has the asymptotic expansion c ∼
∑

j cj , where

cj(x, ξ) =
∑
s+l=j

∑
|ν|=l

1
ν!
∂νξ ps(x, ξ)D

ν
xa(x, ξ).

One easily verifies that c0(x, ξ) = 1 on QcB. Also, for j ∈ Z+,

cj = pja+
j∑
l=1

∑
|ν|=l

1
ν!
∂νξ pj−l ·Dν

xa = pja+
∑

0<|ν|≤j

1
ν!
∂νξ pj−|ν| ·Dν

xa = 0,

13



onQcB, by the definition of pj . Hence, b(x,D)a(x,D) = Id+T for some *-regularizing
operator T . With similar constructions one obtains b′ such that a(x,D)b′(x,D) =
Id + T ′, where T ′ is a *-regularizing operator.

Proof of Theorem 0.2. Let u ∈ S∗′(Rd) be a solution of a(x,D)u = v ∈ S∗(Rd).
Then, applying the left parametrix b(x,D) of a(x,D), we obtain u = b(x,D)v − Tu
for some *-regularizing operator T . Hence u ∈ S∗(Rd). The theorem is proved.
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