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ASYMPTOTIC EXPANSIONS FOR HÖRMANDER
SYMBOL CLASSES IN THE CALCULUS OF

PSEUDO-DIFFERENTIAL OPERATORS

SANDRO CORIASCO AND JOACHIM TOFT

Abstract. We establish formulas for asymptotic expansions for
S(m, g), the Hörmander class parameterized by the metric g and
weight function m, defined on the phase space. By choosing m and
g in appropriate ways, we cover some classical results on expansions
for symbol classes of the form S⌧

⇢,�, and by choosing m and g in
other ways we obtain asymptotic expansions for (generalized) SG
classes.

0. Introduction

An important property in the theory of pseudo-di↵erential operators
concerns asymptotic expansions. For the classical Hörmander symbols
S

⌧

1,0, several of such expansions can be related to Proposition 18.1.3
in [7], which is equivalent to the following:

Let ⌧

j

, j = 1, 2, . . . , tend to �1 as j tends to 1 and a

j

2 S

⌧j

1,0, Then

there is an element a 2 S

⌧1
1,0 such that

a�
X

k<j

a

k

2 S

⌧j

1,0, (1)

for every k. The element a is uniquely determined modulo S

�1
1,0 , and

can be chosen such that supp a ✓ [
j�1 supp aj.

Here the uniqueness assertion means that if a is as above and (1) holds
after a has been replaced by b 2 S

⌧1
1,0, then a� b belongs to S

�1
1,0 . See

also Proposition 23.1 in [8] for similar results for the Shubin classes.
The previous result can be considered as a result on existence, since

it ensures that the element a with convenient asserted properties exists.
An other useful type of results related to the previous one can be
considered as imposing types. For example, in Proposition 18.1.4 in [7]
it is assumed that a here above exists, with certain relaxed assumptions.
It is then proved that a possess similar properties as in the previous
result. More precisely, Proposition 18.1.4 in [7] is equivalent to the
following proposition. (See also [8, Prop. 23.2] for corresponding result
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for the Shubin classes.) Here and in what follows we write A . B when
A  cB for a suitable constant c > 0.

Proposition 0. Let P
j

, ⌧

j

2 R, j = 1, 2, . . . , be such that

P

j

= sup
k�j

⌧

k

and lim
j!1

⌧

j

= �1,

and let a 2 C

1(R2d) be such that for every ↵ and �, there are constants

C

↵,�

and µ = µ(↵, �) such that

|@↵
x

@

�

⇠

a(x, ⇠)|  C

↵,�

h⇠iµ.

Also let a

j

2 S

⌧j

1,0(R
2d), j � 1, be a sequence. If

|a�
X

k<j

a

k

| . h⇠iPj

holds for every j, then a 2 S

P1
1,0(R

2d).

By the uniqueness property for asymptotic expansions it follows that
a in Proposition 0 is the asymptotic expansion (modulo S

�1
1,0 ) of the

sequence a

j

.
In this paper we extend such type of results to symbol classes of

the form S(m, g), introduced by Hörmander in [7]. (Cf. Theorems 7,
8 and 9.) Here m is an appropriate weight, and g is an appropriate
Riemannian metric on the phase space W ' R2d. By choosing m

and g in appropriate ways we cover the classical results presented here
above (cf. Propositions 18.1.3 and 18.1.4 in [7], and the related results,
Propositions 23.1 and 23.2 in [8]).

The conditions on our metric g is that it should be slowly varying
and its Planck’s constant h

g

should be bounded. We do not require
that it should be �-temperate, a property which is strongly needed in
order for the symbolic calculus should in S(m, g) classes work properly.
Therefore our results can be applied also in the absence of needed pre-
requisites in the calculus. For example, we permit symbol classes which
behaves like S

⌧1
1,0 in some directions and like S

⌧2
1,1 in other directions.

The key steps in our proofs are similar to those in the proof of Propo-
sitions 18.1.3 and 18.1.4 in [7] and corresponding results in [8]. On the
other hand, in order to manage the general situation when dealing with
symbols of the form S(m, g), we need some additional arguments.

Finally, in the last section (Section 3) we apply our results on some
important types of symbol classes. Especially we consider SG classes.
In fact, the original motivation to consider questions on asymptotic
expansions on such general level, was to find a common platform for
results on asymptotic expansions for the SG classes, and the symbol
classes in [7,8]. Note here that the classical results in [7,8] do not cover
the case of SG symbols.
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1. Preliminaries

In this section we recall the definition and some basic facts for the
involved symbol classes. (See Sections 18.4–18.6 in [7] and Section 2
in [9].)

Let N 2 N, W ' R2d be the phase space of dimension 2d, a 2
C

N(W ), g be an arbitrary Riemannian metric on W , and let m > 0 be
a measurable function on W . For each k = 0, . . . , N , let

|a|g
k

(X) = sup |a(k)(X;Y1, . . . , Yk

)|, (2)

where the supremum is taken over all Y1, . . . , Yk

2 W such that g
X

(Y
j

) 
1 for j = 1, . . . , k. Also set

kakg
m,N

⌘
NX

k=0

sup
X2W

⇣
|a|g

k

(X)/m(X)
⌘
, (3)

let S
N

(m, g) be the set of all a 2 C

N(W ) such that kakg
m,N

< 1, and
let

S(m, g) ⌘
\

N�0

S

N

(m, g).

Next we recall some properties for the metric g on W (cf. [6, 7, 9]).
It follows from Section 18.6 in [7] that for each X 2 W , there are
symplectic coordinates Z =

P
d

j=1(zjej + ⇣

j

"

j

) which diagonalize g

X

,
i. e. g

X

takes the form

g

X

(Z) =
dX

j=1

�

j

(X)(z2
j

+ ⇣

2
j

), (4)

where

�1(X) � �2(X) � · · · � �

d

(X) > 0, (5)

only depend on g

X

and are independent of the choice of symplectic
coordinates which diagonalize g

X

. Here e1, . . . , ed, "1, . . . , "d is a sym-
plectic basis for W .

The dual metric g

� and Planck’s function h

g

with respect to g and
the symplectic form �, are defined by

g

�

X

(Z) ⌘ sup
Y 6=0

�(Y, Z)2

g

X

(Y )
and h

g

(X) = sup
Z 6=0

⇣
g

X

(Z)

g

�

X

(Z)

⌘1/2
,

respectively. It follows that if (4) and (5) are fulfilled, then h

g

(X) =
�1(X) and

g

�

X

(Z) =
dX

j=1

�

j

(X)�1(z2
j

+ ⇣

2
j

). (4)0

In most of the applications we have that h

g

(X)  1 everywhere, i. e.
the uncertainly principle holds.
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The metric g is called symplectic if g
X

= g

�

X

for every X 2 W . It
follows that g is symplectic if and only if �1(X) = · · · = �

d

(X) = 1 in
(4).

There are several investigations which have been done for metrics
which occur in the symbolic calculi. (see e. g. [4, 9]). For exaple, in [9]
it is proved that for every t 2 R there is a symplectically invariant
defined Riemannian metric g

(t) which takes the form

g

(t)

X

(Z) =
dX

j=1

�

j

(X)t(z2
j

+ ⇣

2
j

), (4)00

when (4) holds. We note that g(t1) = g and g

(t2) = g

�, when t1 = 1 and
t2 = �1, and that the dual metric for g(t) is given by g

(�t) . Furthermore,
g

(0) agrees with the symplectic metric g

0 , given by

g

0
X

(Z) =
dX

j=1

(z2
j

+ ⇣

2
j

),

when (4) holds.
The Riemannian metric g on W is called slowly varying if there are

positive constants c and C such that

g

X

(Y �X)  c =) C

�1
g

Y

 g

X

 Cg

Y

, (6)

and the positive function m on W is called g-continuous if there are
constants c and C such that

g

X

(Y �X)  c =) C

�1
m(Y )  m(X)  Cm(Y ). (7)

We observe that if g is slowly varying, N � 0 is an integer and m

is g-continuous, then S

N

(m, g) is a Banach space when the topology is
defined by the norm (3). Moreover, S(m, g) is a Frechét space under
the topology defined by the norms (3) for all N � 0.

Let g and G be Riemannian metrics on W . Then G is called (�,g)-

temperate, if there is an integer N � 0 such that

G

Y

(Z) . G

X

(Z)(1 + g

�

Y

(X � Y ))N ,

G

Y

(Z) . G

X

(Z)(1 + g

�

X

(X � Y ))N , for all X, Y, Z 2 W .
(8)

The metric g is called �-temperate, if g is (�, g)-temperate.
Let g be a Riemannian metric on W . The function m on W is called

(�, g)-temperate if m is positive everywhere and there is a constant N
such that

m(X) . m(Y )(1 + g

�

X

(X � Y ))N ,

m(X) . m(Y )(1 + g

�

Y

(X � Y ))N , for all X, Y, Z 2 W .
(9)

If g is �-temperate, then only one of the conditions in (8) and in (9)
are needed.
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The following restatement of Proposition 1.2 in [6] shows that the
functions �

j

posses appropriate symplectic invariance properties and
appropriate continuity properties related to the metric g. We omit the
proof since it can be found in [6]. Here we set

⇤
g

(X) = �1(X) · · ·�
d

(X), (10)

when g

X

is given by (4).

Proposition 1. Assume that g is a Riemannian metric on W , and

that X 2 W is fixed. Also assume that the symplectic coordinates are

chosen such that (4) holds. Then the following is true:

(1) �
j

for 1  j  d and ⇤
g

are symplectically invariantly defined;

(2) if in addition g is slowly varying, then �

j

for 1  j  d and ⇤
g

are g-continuous;

(3) if in addition g is �-temperate, then �

j

for 1  j  d and ⇤
g

are (�, g)-temperate.

The following definition is motivated by the general theory of Weyl
calculus. (See e. g. [6, 9], and Section 18.4–18.6 in [7].)

Definition 2. Assume that g is a Riemannian metric on W . Then g

is called

(i) feasible if g is slowly varying and h

g

 1 everywhere;

(ii) strongly feasible if g is feasible and �-temperate.

If g is feasible and m is g-continuous, then S(hr

g

m, g) decreases with
respect to r. For conveniency we set

S(h1
g

m, g) ⌘
\

r�0

S(hr

g

m, g),

in this situation.
Note that feasible and strongly feasible metrics are not standard

terminology. In the literature it is common to use the term ’Hörmander
metric’ or ’admissible metric’ instead of ’strongly feasible’ for metrics
which satisfy (ii) in Definition 2. (See [1–5].) An important reason for
us to follow [6,9] concerning this terminology is that we permit metrics
which are not admissible in the sense of [1–5], and that we prefer similar
names for metrics which satisfy (i) or (ii) in Definition 2.

It is obvious that g(t1)  g

(t2) when t1  t2 and h

g

 1. In particular,
g  g

(t)  g

� when�1  t  1 and h

g

 1. In the following proposition
we list some important properties for strongly feasible metrics. The
proof is omitted since the result can be found in [9].

Proposition 3. Let g be a strongly feasible metric on W , G be a

Riemannian metric on W , and let t1, t2 2 [�1, 1] be such that t2 > �1.
If G is (�, g)-temperate, then G

(t1)
is (�, g(t2))-temperate.
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In particular, g

(t1)
is (�, g(t2))-temperate, and if t 2 [0, 1], then g

(t)
is

strongly feasible.

Remark 4. Assume that g is slowly varying on W and let c be the
same constant as in (6). Then it follows from Theorem 1.4.10 in [7]
that there is a constant "0 > 0, an integer N0 � 0 and a sequence
{X

j

}
j2N in W such that the following is true:

(1) there is a positive number " such that g

Xj(Xj

� X

k

) � "0 for
every j, k 2 N such that j 6= k;

(2) W =
S

j2N U

j

, where U
j

is the g
Xj -ball {X ; g

Xj(X�X

j

) < c };

(3) the intersection of more than N0 balls U
j

is empty.

Remark 5. It follows from Section 1.4 and Section 18.4 in [7] that if g
is a slowly varying metric on W , and (1)–(3) in Remark 4 holds, then
there is a sequence {'

j

}
j2N in C

1
0 (W ) such that the following is true:

(1) 0  '

j

2 C

1
0 (U

j

) for every j 2 N;

(2) sup
j2N k'

j

k
gXj

1,N < 1 for every integer N � 0 (i. e. {'
j

}
j2N is a

bounded sequence in S(1, g));

(3)
P

j2N 'j

= 1 on W .

1.1. An important family of symbol classes. A broad family of
symbol classes concerns the following extended family of SG symbol
classes. Let t, ⌧, r

l

, ⇢

l

2 R for l = 1, 2. Then the (generalized) SG class
SGt,⌧

(rl,⇢l)
(R2d), l = 1, 2, consists of all a 2 C

1(R2d) such that for every
multi-indices ↵, �, there is a constant C

↵,�

such that

|@↵
x

@

�

⇠

a(x, ⇠)|  C

↵,�

hxit�r1|↵|+r2|�|h⇠i⌧+⇢1|↵|�⇢2|�|
.

If m and g are given by m(x, ⇠) = hxith⇠i⌧ and

g(x,⇠)(y, ⌘) = hxi�2r1h⇠i2⇢1 |y|2 + hxi2r2h⇠i�2⇢2 |⌘|2, (11)

respectively, then it follows that S(m, g) = SGt,⌧

(rj ,⇢j)
(R2d). If

0  r2  r1  1 and 0  ⇢1  ⇢2  1

then g is feasible and m is g-continuous in this case. If in addition
r2, ⇢1 < 1, then g is strongly feasible. (Cf. [7].)

The dual metric and Planck’s constant are given by

g

�

(x,⇠)(y, ⌘) = hxi�2r2h⇠i2⇢2 |y|2 + hxi2r1h⇠i�2⇢1 |⌘|2,

h

g

(x, ⇠) = hxi�(r1�r2)h⇠i�(⇢2�⇢1)
,

g

0
(x,⇠)(y, ⌘) = hxi�(r2+r1)h⇠i⇢1+⇢2 |y|2 + hxir1+r2h⇠i�(⇢1+⇢2)|⌘|2.

For future references we note that

S(m,h

�N

g

g) = SGt,⌧

(rl�N,⇢l�N)(R
2d), l = 1, 2.
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In particular it follows that if S(m, g) is a symbol class of the form
SGt,⌧

(rl,⇢l)
, then the same is true for S(m, g

�), S(m, g

0) and S(m,h

�N

g

g).

We have the following two important special cases of the symbol
classes here above.

(1) If r2 = ⇢1 = 0, r1 = r and ⇢2 = ⇢, then SGt,⌧

(rl,⇢l)
(R2d) agrees

with the classical SG class SGt,⌧

r,⇢

(R2d). In particular, in con-
trast to the extended family of SG symbol classes, the classical
SG classes are in general not stable under replacements of the
metric g in S(m, g) here above, by g

�, g0 or h�N

g

g.

(2) If t = r1 = r2 = 0, ⇢1 = � and ⇢2 = ⇢, here above, then S(m, g)
agrees with the Hörmander class S⌧

⇢,�

(R2d), which consists of all
a 2 C

1(R2d) such that for every multi-indices ↵, �, there is a
constant C

↵,�

such that

|@↵
x

@

�

⇠

a(x, ⇠)|  C

↵,�

h⇠i⌧�⇢|�|+�|↵|
.

More generally, we have the following extended family of SG classes.
Here a weight m on R2d is called an SG weight on R2d of order (r

l

, ⇢

l

),
l = 1, 2, if 0 < m 2 SGt0,⌧0

(rl,⇢l)
(R2d) for some t0, ⌧0 2 R, and

m(x+ y, ⇠ + ⌘) . m(x, ⇠)h(y, ⌘)iN , (12)

for some constant N .

Definition 6. Let t0, ⌧0, rl, ⇢l 2 R and let m be an SG weight on R2d

of order (r
l

, ⇢

l

), l = 1, 2. Then SG(m)
(rl,⇢l)

(R2d), j = 1, 2, is the set of

all a 2 C

1(R2d) such that for every pairs of multi-indices ↵ and �, it
holds

|@↵
⇠

@

�

x

a(x, ⇠)|  C

↵,�

m(x, ⇠)hxi�r1|↵|+r2|�|h⇠i⇢1|↵|�⇢2|�|
,

where the constants C
↵,�

only depends on ↵ and �.

Let g be given by (11). Then it follows by straight-forward compu-

tations that S(m, g) = SG(m)
(rl,⇢l)

(R2d). Furthermore, we have

S(m, g

�) = SG(m)
(pj ,⇡j)

(R2d), when

(p1, p2, ⇡1, ⇡2) = (r2, r1, ⇢2, ⇢1),

S(m, g

0) = SG(m)
(pj ,⇡j)

(R2d), when

(p1, p2, ⇡1, ⇡2) = (r1 + r2, r1 + r2, ⇢1 + ⇢2, ⇢1 + ⇢2)/2,

and

S(m,h

�2N
g

g) = SG(m)
(pj ,⇡j)

(R2d), when

(p1, p2, ⇡1, ⇡2) = (r1 �N, r2 �N, ⇢1 �N, ⇢2 �N).
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2. Asymptotic expansions

In this section we establish asymptotic expansion results for elements
in the symbol class S(m, g).

Let g be a feasible metric, and let m be g-continuous. Then the
following proposition shows that S(m, g) fulfills convenient asymptotic
expansion properties.

Theorem 7. Let g be feasible and let m be g-continuous. If 0  r

j

2 R,

j � 1, is strictly increasing and satisfies

lim
j!1

r

j

= 1,

and a

j

2 S(h
rj
g

m, g), then there is an element a 2 S(hr1
g

m, g) such that

a�
X

k<j

a

k

2 S(hrj
g

m, g), for every j � 1. (13)

The element a is uniquely determined modulo S(h1
g

m, g), and can be

chosen such that supp a ✓ [
j�1 supp aj.

Proof. Let U

j

and '

j

be the same as in Remarks 4 and 5. For any
integer k � 1, let J

k

be the set of all l � 1 such that

|a
k

'

l

|g
n

(X)  2�k

h

rk�1
g

(X)m(X), n  k, X 2 W, (14)

and let  
k

=
P

i2Jk 'i

. We also let b1 = a1, and define inductively

b

k+1 = b

k

+  

k+1ak+1, k � 1.

We claim that

(1) b ⌘ lim
k!1 b

k

exists and defines an element in S(m, g). Fur-
thermore, lim

k!1 kb� b

k

kg
N,h

r
gm

= 0, for any r > 0 and N � 0;

(2) b�
X

j<k

a

j

2 S(hrk
g

m, g).

In fact, by the definitions and Weierstrass theorem it follows that b
exists in S(m, g), and that for N fixed, then lim

k!1 kb� b

k

kg
N,h

r
gm

= 0,

for every fixed r > 0. This gives (1) in the claim.
Next we prove (2). We have

b�
X

j<k

a

j

= u1 + u2,

where

u1 =
k�1X

j=2

( 
j

� 1)a
j

and u2 =
1X

j=k

 

j

a

j

.

The result follows if we prove that u1 2 S(hr

g

m, g) and u2 2 S(hrk
g

m, g)
for every r > 0.

8



Let K
j

= {J
j

= Z+ \ J
j

. We have

u1 = �
k�1X

j=2

v

j

,

where

v

j

=
X

i2Kj

'

i

a

j

,

and we shall investigate the terms v

j

separately. First let c0 > 0 be
fixed and let K1,j be the set of all i 2 K

j

such that h
g

(X) � c0 when
X 2 U

i

. Also let K2,j = K

j

\ K1,j, and let ⌦
k,j

= [
i2Kk,j

U

i

. Then
v

j

= v1,j + v2,j, where

v

k,j

=
X

i2Kk,j

'

i

a

j

.

Since h

g

� c0 on ⌦1,j, it follows that if r � 0 and v is smooth on W

with support in ⌦1,j, then

v 2 S(hr

g

m, g) () v 2 S(m, g).

In particular, v1,j 2 S(hrk
g

m, g).
Next we consider v2,j. From the fact that (14) is violated for some

n 2 [0, j], a
j

2 S(h
rj
g

m, g), r
j�1 < r

j

and h

g

(X) < Cc0 when X 2
[

i2K2,jUi

, it follows that K2,j is a finite set, provided c0 was chosen
small enough. Here C is the same as in (6). This implies that

v2,j 2 C

1
0 ✓ S(hrk

g

m, g).

Consequently, v2,j, and thereby u1 belong to S(h1
g

m, g).
It remains to consider u2. We have u2 = b � b

k�1 and  

j

a

j

2
S(h

rj
g

m, g) ✓ S(hrk
g

m, g) when j � k. Since kb � b

k�1kN,h

r
gm

! 0
when k ! 1, for every fixed r > 0, it follows that u2 2 S(hrk

g

m, g).
This gives (13) with a = b. Furthermore, due to the construction we
also have supp a ✓ [

j�1 supp aj.
The uniqueness follows from the uniqueness of the next result. ⇤
We also have the following extension of the previous result.

Theorem 8. Let g be feasible and m be g-continuous. If r

j

, R

j

2 R,

j � 1, satisfy

lim
j!1

r

j

= 1 and R

j

= min
k�j

r

k

,

and a

j

2 S(h
rj
g

m, g), then there is an element a 2 S(hR1
g

m, g) such that

a�
X

k<j

a

k

2 S(hRj
g

m, g), for every j � 1. (15)

The element a is uniquely determined modulo S(h1
g

m, g), and can be

chosen such that supp a ✓ [
j�1 supp aj.

9



Let m, g, r
j

and R

j

be the same as in Theorem 8. Then we write

a ⇠
X

a

j

(15)0

(with respect to the weight m and the metric g), when (15) holds.

Proof. Let n be the largest number such that r
n

< 0. By replacing a

with

a�
X

jn

a

j

,

it follows that we may assume that R1 � 0. Since r

j

� R

j

, it follows

that S(h
rj
g

m, g) ✓ S(h
Rj
g

m, g). Hence it is no restriction to assume that
r

j

= R

j

, which in particular implies that r
j

increases with j. Finally,
by letting

b

k

=
X

rj=rk

a

j

,

and considering the sequence {b
k

} instead of {a
j

}, we reduce ourself to
the case that r

j

� 0 are strictly increasing. The expansion (15) is now
an immediate consequence of Theorem 7.

If b 2 S(hr

g

m, g) satisfies b ⇠
P

a

j

, then it follows from (15) that
a� b 2 S(h1

g

m, g). This gives the asserted uniqueness, and the result
follows. ⇤

We have now the following proposition.

Theorem 9. Let g be a feasible metric on W , and let m and m

j

, j � 0,
be g-continuous weights such that

m

j

 Ch

�sj
g

m,

for some real numbers s

j

, and let r

j

, R

j

be the same as in Theorem 8.

Also let a 2 C

1(R2d) be such that

kakg
mj ,j

< 1

for every j � 0, and let a

j

2 S(h
rj
g

m, g), j � 1, be a sequence. If

|a�
X

k<j

a

k

| . h

Rj
g

m

holds for every j � 1, then a 2 S(hR1
g

m, g), and (15)0 holds.

Proof. We shall use the same framework as in the proof of Proposition
18.1.4 in [7]. We may assume that s

j

 R

j

.
By Theorem 8, there is an element b 2 S(hR1

g

m, g) such that b ⇠P
a

k

. Let u = a� b. Then it follows from the assumptions that

kukg
m1,1 < 1, kukg

m2,2 < 1 and |u| . h

2N+2s2
g

m, for every N � 0.

The result follows if we prove that u 2 S(h1
g

m, g).
10



Let c be chosen such that (6) holds, N � 0 and " 2 (0, 1), and let
X, Y 2 W be fixed such that g

X

(Y ) < c. By Taylor’s formula we have

|u(X + "Y )� u(X)� "(@
Y

u)(X)|  2�1
"

2|(@2
Y,Y

u)(X + ✓Y )|,
for some ✓ 2 [0, "]. This gives

|(@
Y

u)(X)|  "

�1(|u(X + Y )|+ |u(X)|) + 2�1
"|(@2

Y,Y

u)(X + ✓Y )|.

 C1

⇣
"

�1
�
h

2N+2s2
g

(X + Y )m(X + Y ) + h

2N+2s2
g

(X)m(X)
�

+ "h

�2s2
g

(X + ✓Y )m(X + ✓Y )
⌘

 C2

�
"

�1
h

2N+2s2
g

(X) + "h

�2s2
g

(X)
�
m(X),

for some constants C1 and C2 which only depend on m2, N , the con-
stants in (6) and (7), and kakg

m2,2. In the last step we have used the
fact that m is g-continuous, g

X

(Y ) < c and g

X

(✓Y ) < c.
By taking the supremum of the left-hand side over all possible Y and

choosing " = h

N+2s2
g

(X), we obtain
p
c|u|g1(X)  C3hg

(X)Nm(X),

which gives kukg
h

N
g m,1 < 1.

By induction, using similar arguments after u has been replaced by
(@

Y1 · · · @Yk
)u, we get kukg

h

N
g m,k

< 1 for all k � 0 and N � 0. That is

u 2 S(h1
g

m, g), and the proof is complete. ⇤
Remark 10. Let t 2 (�1, 1], and assume that �

j

in (4) satisfy �1 .
h

�M

g

�

d

, for some constant M � 0. These conditions are usually ful-
filled, e. g. they are fulfilled for any of the symbol classes in Subsection
1.1. Since the metric G ⌘ g

(t) is g-continuous, it follows from Proposi-
tion 3 that Theorem 9 in this case remains the same after the condition
kakg

mj ,j
< 1 has been replaced by the weaker condition kakG

mj ,j
< 1.

3. Applications to more specific types of symbol classes

In this section we apply the results in the previous section to symbol
classes of the form SG(m)

(rl,⇢l)
, l = 1, 2, where

0  r2  r1  1 and 0  ⇢1  ⇢2  1. (16)

(Cf. Subsection 1.1.)
The following results are immediate consequences of the listed prop-

erties in Subsection 1.1, and Theorems 8 and 9. Here and in what
follows we let

m

t,⌧

(x, ⇠) = m(x, ⇠)hxith⇠i⌧ , (17)

SG(mt,�1)
(rl,⇢l)

⌘
1\

j=0

SG
(mt,�j)
(rl,⇢l)

and SG(m�1,⌧ )
(rl,⇢l)

⌘
1\

j=0

SG
(m�j,⌧ )
(rl,⇢l)

,

11



and observe that
1\

j1,j2=0

SG
(m�j1,�j2 )

(rl,⇢l)
= S .

Theorem 11. Let t

j

, ⌧

j

, R

j

, P

j

, r

l

, ⇢

l

2 R, l = 1, 2, be such that (16)
holds,

R

j

= max
k�j

t

k

, P

j

= max
k�j

⌧

k

, and lim
j!1

t

j

= lim
j!1

⌧

j

= �1,

l = 1, 2, . . . . Also let m be an SG weight on R2d
of order (r

l

, ⇢

l

), l = 1, 2

and let m

t,⌧

be given by (17). If a

j

2 SG
(mtj ,⌧j )

(rl,⇢l)
(R2d), then there is an

element a 2 SG
(mR1,P1 )

(rl,⇢l)
(R2d) such that

a�
X

k<j

a

k

2 SG
(mRj,Pj

)

(rl,⇢l)
(R2d).

Furthermore,

(1) if r2 < r1, then a is uniquely determined modulo SG
(m�1,P1 )

(rl,⇢l)
(R2d);

(2) if ⇢1 < ⇢2, then a is uniquely determined modulo SG
(mR1,�1)

(rl,⇢l)
(R2d);

(3) if r2 < r1 and ⇢1 < ⇢2, then a is uniquely determined modulo

S (R2d).

The element a and can be chosen such that supp a ✓ [
j�1 supp aj.

Theorem 12. Let t

j

, ⌧

j

, R

j

, P

j

, r

l

, ⇢

l

2 R, j = 1, 2, . . . , l = 1, 2, and
m

t,⌧

be the same as in Theorem 11. Also let a 2 C

1(R2d) be such that

for every ↵ and � there are constants µ = µ(↵, �) and C

↵,�

such that

|@↵
⇠

@

�

x

a(x, ⇠)| . m(x, ⇠)hxi(r1�r2)µh⇠i(⇢2�⇢1)µ
,

and let a

j

2 SG
(mtj ,⌧j )

(rl,⇢l)
(R2d), j � 1, be a sequence. If

|a�
X

k<j

a

k

| . m(x, ⇠)hxi�Rjh⇠i�Pj

holds for every j � 1, then a 2 SG
(mR1,P1 )

(rl,⇢l)
(R2d) and (15)0 holds.

The following results are immediate consequences of the previous
theorems. Here the second corollary is a slight extension of Proposition
0 in the introduction.

Corollary 13. Let P
j

, ⌧

j

, ⇢, � 2 R be such that 0  � < ⇢  1,

P

j

= min
k�j

⌧

k

and lim
j!1

⌧

j

= �1,

j = 1, 2, . . . . If a

j

2 S

⌧j

⇢,�

(R2d), then there is an element a 2 S

P1
⇢,�

(R2d)
such that

a�
X

k<j

a

k

2 S

Pj

⇢,�

(R2d).

12



The element a is uniquely determined modulo S

�1
⇢,�

(R2d), and can be

chosen such that supp a ✓ [
j�1 supp aj.

Corollary 14. Let P
j

, ⌧

j

, ⇢, � 2 R be the same as in Corollary 13. Also

let a 2 C

1(R2d) be such that for every multi-indices ↵ and �, there is

a constant µ = µ(↵, �) such that

|@↵
x

@

�

⇠

a(x, ⇠)| . h⇠iµ,

and let a

j

2 S

⌧j

⇢,�

(R2d), j � 1, be a sequence. If

|a�
X

k<j

a

k

| . h⇠iPj

holds for every j � 1, then a 2 S

P1
⇢,�

(R2d) and (15)0 holds.

The corresponding results for the SG classes are the following.

Corollary 15. Let t
j

, ⌧

j

, R

j

, P

j

, r, ⇢ 2 R be such that r, ⇢ � 0,

R

j

= min
k�j

t

k

, P

j

= min
k�j

⌧

k

, and lim
j!1

t

j

= lim
j!1

⌧

j

= �1,

j = 1, 2, . . . . Also let m be an SG weight on R2d
of order (r, ⇢), and let

m

t,⌧

be given by (17). If a
j

2 SG
(mtj ,⌧j )
⇢1,⇢2 (R2d), then there is an element

a 2 SG
(mR1,P1 )
r,⇢

(R2d) such that

a�
X

k<j

a

k

2 SG
(mRj,Pj

)
r,⇢

(R2d).

If r, ⇢ > 0, then the element a is uniquely determined modulo S (R2d),
and can be chosen such that supp a ✓ [

j�1 supp aj.

Corollary 16. Let t
j

, ⌧

j

, R

j

, P

j

2 R and m

t,⌧

be the same as in Corol-

lary 15, r, ⇢ > 0. Also let a 2 C

1(R2d) be such that for every multi-

indices ↵ and �, there is a constant µ = µ(↵, �) such that

|@↵
x

@

�

⇠

a(x, ⇠)| . m(x, ⇠)hxiµh⇠iµ,

and let a

j

2 SG
(mtj ,⌧j )
r,⇢

(R2d), j � 1, be a sequence. If

|a�
X

k<j

a

k

| . m(x, ⇠)hxi�Rjh⇠i�Pj

holds for every j � 1, then a 2 SG
(mR1,P1 )
r,⇢

(R2d) and (15)0 holds.

The function m in the previous corollary satisfies

m(x, ⇠) . hxiµ0h⇠iµ0
,

for some µ0. Hence the result does not change if the conditions on the
derivatives of a are replaced by

|@↵
x

@

�

⇠

a(x, ⇠)| . hxiµh⇠iµ.
13



Finally we remark that if the metric g is chosen as

g(x,⇠)(y, ⌘) =
|y|2 + |⌘|2

1 + |x|2 + |⇠|2 ,

and the weight functions are given by

m(x, ⇠) = (1 + |x|2 + |⇠|2)⌧/2 and m

j

(x, ⇠) = (1 + |x|2 + |⇠|2)⌧j/2,
then Theorems 8 and 9 give Propositions 23.1 and 23.2 in [8].
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