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LAGRANGIAN SUBMANIFOLDS AT INFINITY
AND THEIR PARAMETRIZATION

SANDRO CORIASCO AND RENÉ SCHULZ

Abstract. In this paper, we study a class of Lagrangian sub-
manifolds which may be viewed as intersecting at infinity. They
are objects naturally associated with a class of tempered oscilla-
tory integrals. In this context, we prove the adapted versions of
the classical theorems, such as parametrization results, as well as
equivalence of phase functions.

1. Introduction

The study of Lagrangian submanifolds is an important branch in
symplectic geometry. One of the main motivations for their study
is due to the fundamental role they play as carriers of singularities
in the global theory of Fourier integral operators on manifolds, see
[10, 16, 19, 20]. The fundamental connection is that the kernels of
Fourier integral operators are Lagrangian distributions associated with
a Lagrangian submanifold given by a canonical relation.

The resulting calculus is especially well-suited for working on com-
pact, boundaryless manifolds, while a global theory of Fourier inte-
gral operators on unbounded manifolds, even on Rd, is far from being
complete. A natural choice of a class of pseudodi↵erential operators
that such operators should contain are those defined through the so-
called SG-symbols, see [2, 32, 34]. There are many contributions to
the long-standing problem of introducing a suitable global calculus of
SG-Fourier integral operators, see for instance [1, 3, 4, 8]. As a key
ingredient, it is desirable to understand the suitable class of associated
Lagrangian submanifolds that should be considered.

In [25, 26, 30], a geometric approach to the SG-calculus on gen-
eral asymptotically conic manifolds, the so-called scattering geome-
try, has been developed. Unbounded geometries are therein viewed
as manifolds with boundary and the cotangent bundle is replaced by
a rescaled and compactified version, the scattering cotangent bundle.
Melrose and Zworski subsequently introduced the so-called Legendrian
distributions, see [30], which are smoooth functions with a prescribed
singularity at infinity, associated with Legendrian submanifolds “at in-
finity” (see also [14, 15, 39]). On a vector space, these distributions
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2 SANDRO CORIASCO AND RENÉ SCHULZ

correspond to Fourier transforms of compactly supported Lagrangian
distributions.

In [9] we discussed SG-type tempered oscillatory integrals on Rd,
which are Lagrangian distributions with a suitable behaviour at infin-
ity. It turned out that their singularities, encoded by their SG-wave
front set, may be decomposed into two sets: one which admits an in-
terpretation as a Lagran-gian submanifold, and one that corresponds
to a Legendrian. These sets may thus be used as the starting point of a
global theory of SG-Fourier integral operators, and a clear understand-
ing of their geometric properties and local parametrization is then a
necessary prerequisite.

Here we provide the details needed to start such analysis. In partic-
ular, we introduce a class of pairs of Lagrangian-Legendrian submani-
folds and show how they can be parametrized by a class of SG-phase
functions. We then review in which sense the resulting objects are suit-
able to formulate the singularities of SG-Lagrangian distributions. In
future publications, we will then establish a calculus of the associated
SG-Lagrangian distributions.

The paper is organized as follows. In Section 2, we revisit some fea-
tures of the scattering geometry and outline the geometric setting in
which our analysis takes place. Here we give our main definition of
SG-Lagrangian submanifold, and emphasize in which sense the compo-
nents of it are Lagrangian “at infinity” and “at co-infinity”. In Section
3 we introduce the class of phase functions that may be used to pa-
rametrize SG-Lagrangians. We check that such (non-degenerate) phase
functions indeed give rise to SG-Lagrangian submanifolds. In the main
Parametrization Theorem 3.24 we state that the converse is also true.
That is, we may always parametrize SG-Lagrangians by a phase func-
tion - in a suitable sense of locality. The subsequent Section 4 is de-
voted to the proof of the Parametrization Theorem. In Section 5 we
outline when two phase functions parametrizing the same Lagrangian
may be considered equivalent. Section 6 is devoted to reviewing some
elements of the theory of tempered oscillatory integrals from [9] and
give an example of how SG-Lagrangian submanifolds arise. Finally, for
the benefit of the reader, we collected some results on the analysis of
manifolds with corners in Appendix A.

Acknowledgements. The authors would like to express their grati-
tude for helpful advice and comments received by D. Bahns, U. Bat-
tisti, A. Fino, B.-W. Schulze, A. Vasy and I. Witt. We also thank an
anonymous referee, for the useful remarks and suggestions, aimed at
improving the general organization of the paper and the presentation
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2. Asymptotically Euclidean manifolds

and their symplectic structure

2.1. Scattering manifolds. There are many definitions available to
formulate aysmptotic flatness of manifolds. In this subsection we give a
short description of the scattering geometry, introduced in [25, 26, 30].
Therein, an asymptotically Euclidean manifold X is one that admits a
specific compactification, in the sense that X may be viewed as a com-
pact manifold with boundary Xo ∪ @X, equipped with a Riemannian
metric g defined in the interior. In a neighbourhood of the boundary,
of the form [0, ✏)×@X ∋ (ỹ, y), where ỹ is a boundary defining function,
it is required that g can be written in the form

(1) g(ỹ, y) =
dỹ⊗2
ỹ4
+

h

ỹ2
,

with h being a smooth symmetric 2-tensor which restricts to a met-
ric on the boundary. The geometry “at infinity”, identified with the
boundary, is then modelled by the scattering vector fields, that is, vec-
tor fields that are tangent to the boundary and of bounded length w.r.t.
g. These are the sections of a vector bundle, denoted by sc

TX, and are
spanned by vector fields of the form ỹ2@ỹ and ỹ@yj . In fact, these vector
fields, the scattering vector fields sc

V , may be obtained as ỹVb where
Vb are the vector fields tangent to the boundary. Consequently, there
is a natural map sc

TX � TX, under which g restricts to a well-defined
tensor of sc

TX, and a corresponding dual bundle T ∗X � sc
T
∗
X.

In the next subsection we recall one way of viewing Rd as a scattering
manifold.1

2.2. Radial compactification. We set Bd = {x ∈ Rd ∶ �x� ≤ 1}, and
denote @Bd = Sd−1, (Bd)o = {x ∈ Rd ∶ �x� < 1}, and R+ = (0,∞). Pick any
di↵eomorphism ◆ ∶ Rd → (Bd)o that for �x� > 3 is given by

◆ ∶ x�
x

�x�
�1 −

1

�x�
� .

1The choice of compactification is motivated by that of [12], here reformulated
in terms of scattering geometry.
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Then its inverse is given, for �y� ≥ 2
3 , by

◆
−1
∶ y �

y

�y�
(1 − �y�)−1.

The map ◆ is called the radial compactification map. The associated
polar coordinates equip Rd with a di↵erential structure “at infinity”.
Indeed, introducing polar coordinates (r,') ∈ Rd we see that ◆ is simply
given (for large r) by

(2) r � 1 −
1

r
and '� '.

Denote by x � [x] any smooth function Rd → R+ that coincides with
�x� for �x� > 3. Then, the map Bd → [0,∞) given by y �

1[◆−1(y)] =∶ ỹ is
a boundary defining function, that is, a non-negative smooth function
that vanishes on and only on the boundary of Bd, and whose di↵erential
is non-vanishing at @Bd. Notice that, for �y� > 2�3, the map y � ỹ is
simply given by y � (1−�y�). In a collar neighbourhood of the boundary,
0 ≤ ỹ < 1�3, the metric induced by these coordinates from the standard

Euclidean metric on Rd is given by g =
dỹ⊗2
ỹ2 +

h
ỹ4 , where h is the (lifted)

standard metric on the (d − 1)-sphere.

2.3. Scattering geometry at infinity. We now return to the case
of a general scattering manifold. Since sc

T
∗
X is a vector bundle, it is

possible to apply radial compactification to its fibres, resulting in an
object denoted by sc

T
∗
X. We denote coordinates therein by (ỹ, y, ⌘̃, ⌘),

where ⌘̃ is the fibre-boundary defining function. The resulting set sc
T
∗
X

carries the structure of a manifold with corners. Various elements of
the theory of manifolds with corners are recalled in Appendix A, based
on [23]. In the sequel, we will refer to its contents whenever needed.

The boundary of sc
T
∗
X consists of two components,

@(
sc
T
∗
X) =

sc
S
∗
X ∪

sc
T @X
∗

X,

which intersect in the corner (of codimension 2) sc
S@X
∗

X. Here, sc
S
∗
X

is a (co-) sphere bundle on X, where the (co-)sphere is interpreted as
the boundary of Bd.
It is important to note that by the rescaling isomorphism dy

ỹ ↔ dy,
using the boundary defining function, we have

sc
T @X
∗

X ≅ T
∗
@XX.

This corresponds to the fact that the (dual) rescaling isomorphism
sc
V ∋ v � ỹ

−1
v induces an isomorphism sc

T@XX ≅ T@XX. In the same
way, using ⌘̃, we may identify sc

S
∗
X with the usual co-sphere bundle.

Following [2], we call W̃ ∶= @(scT ∗X) the wave front space and the
boundary components its faces. In our model case Rd, the resulting
space is W̃ ∶= @(Bd × Bd). The one-dimensional case is depicted in
Figure 1. Note that it is exceptional, since @B1 = S0 = ±1, which is not
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W̃ 

W̃e

W̃ e

Xo

sc
T @X
∗

X

@X

Figure 1. The boundary faces and corner of sc
T @X
∗

X

connected. We depict the situation near the top right corner (+1,+1).

Notation. The faces of W̃ behave in a lot of ways “symmetrically”.
In order to reflect this in a more symmetric notation, following [12],
we attach to any object defined on sc

S
∗
(X

o
) =∶ W̃

 an index “ ” and
to the corresponding one in sc

T
∗
@XX =∶ W̃

e an index “e”. To the corner,
sc
S@X
∗

X =∶ W̃
 e, we attach the label “ e”. In the model case this

becomes

@(Bd
×Bd
) = (Sd−1

× (Bd
)
o
) ∪ ((Bd

)
o
× Sd−1

) ∪ (Sd−1
× Sd−1

)

=∶ W̃
e
∪ W̃

 
∪ W̃

 e
.

We will need to interpret conic subsets of T ∗X � {0} as subsets of W̃ 

and viceversa. We then form

W
 
∶= W̃

 
×R+ ≅ T ∗X � {0}, W

e
∶= R+ × W̃e

≅ T
∗
(�(@X)),

where �(@X) is the cone with base @X, that is R+ × @X with metric
dr + r2h.

2.4. Symplectic structure at infinity. In the sequel, we will view
@(

sc
T
∗
X) from two viewpoints: as the correct space for (scattering)

microlocalization, and as the carrier of a natural symplectic structure,
induced from the interior bundle T ∗(Xo). That is, the symplectic
structure on W̃ should be obtained from the canonical symplectic 2-
form ! defined in the interior. However, this 2-form blows up near
the boundary @X, see [30]. Since we aim at connecting microlocal
phenomena to the symplectic geometry of the underlying manifold,
we need a suitable extension of the symplectic structure of T ∗(Xo) to
@(

sc
T
∗
X). This can be achieved by rescaling as follows, cf. [25, 39] and
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[19, Sect. 21.1]. We set

↵̃
 
∶= (⌘̃

2
@⌘̃) � ! restricted to W̃ 

,

↵̃
e
∶= (ỹ

2
@ỹ) � ! restricted to W̃e

.

The 1-forms ↵̃ and ↵̃e turn out to be two contact forms. Before
proceeding, we will establish a di↵erent viewpoint for these 1-forms.

Recall that T ∗X is a vector bundle and, as such, a conical manifold.
This yields a distinguished radial vector field ⇢ , corresponding to fibre-
wise dilation, given by ⇢ (f)(x, ⇠) = @tf(x, t⇠)�t=1. In local coordinates
(x, ⇠), ⇢ is then given by∑ ⇠j ⋅@⇠j , which, under radial compactification
in the fibre with ⌘̃ = 1�⇠� , becomes ⌘̃@⌘̃. It is well-known that insertion of

⇢ into ! yields the canonical 1-form ↵ , which restricts to the canon-
ical contact form on the co-sphere bundle. Thus, ↵̃ corresponds to
a rescaling of the canonical 1-form under the rescaling isomorphism
sc
S
∗
X ≅ S

∗
X. We may obtain ↵̃e by an analogous construction. Indeed,

any choice of boundary defining function, and corresponding collar de-
composition X = [0, ✏) × @X, introduces a conical structure near the
boundary ofX. The associated radial vector field yields again a 1-form,
of which ↵̃e is the rescaling. In our model example T ∗Rd with standard
symplectic coordinates, these 1-forms correspond to a rescaling of the
1-forms

↵
e
= −x ⋅ d⇠, ↵

 
= ⇠ ⋅ dx.

Lemma 2.1. The di↵erential 1-forms ↵̃e and ↵̃ do not depend on the
choice of coordinates.

Proof. We check the statement for ↵̃e, since it here represents the main
new element of the symplectic structure at infinity, and the result for
↵̃ can be obtained in a completely similar way (cfr. also [30]). Let
(ỹ′, y′) be new coordinates inducing the same smooth structure. Then
(ỹ′, y′) are related to (ỹ, y) by a di↵eomorphism. Since ỹ and ỹ′ are
both boundary defining functions we have ỹ′ = ỹf(ỹ, y) for some smooth
f > 0. Moreover, the fact that the metric has to take the form (1) for
both of them implies that near the boundary ỹ = ỹ′ = 0 we necessarily
have

f
−2
�f + ỹ�

@f

@ỹ
�� = 1 +O(ỹ).

We compute

ỹ
2
@ỹ = f

−2
�f + ỹ�

@f

@ỹ
�� (ỹ

′
)
2
@ỹ′ +

(ỹ′)2
f 2

n

�
j=1
�
@y′
@ỹ
�@y′ .

Therefore, ỹ2@ỹ = (ỹ′)2@ỹ′ , up to contributions from ỹ
sc
V . As sections

of sc
TX, the bundle obtained by sc

TX through radial compactification
of the fibers, the latter vanish under restriction to the boundary ỹ = 0.
Hence, ↵̃e does not depend on the choice of coordinates associated with
the same scattering structure, as claimed. ⇤
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We have then obtained two well-defined 1-forms, that describe the
symplectic structure “at infinity” and at “co-infinity” in the wave front
space, induced by the symplectic and scattering structures in the inte-
rior. In terms of contact geometry, this corresponds to the freedom of
passing from a contact manifold to the associated symplectic cone and
going back by contracting with the Liouville vector field ⇢e or ⇢ .

Recall, see e.g. [10, Section 3.7], that a conic submanifold L of
T ∗X ⊂ {0} is called Lagrangian if ↵ �L ≡ 0. Since ↵e and ↵ are
defined by contraction with radial vector fields, they vanish on that
radial vector field by antisymmetry of !. Consequently, by applying
the rescaling isomorphism for the tangential vector fields, we have also
proved:

Lemma 2.2. A compact submanifold L̃ of W̃ is Legendrian with re-
spect to ↵̃ , that is, it satisfies ↵̃ �scTL̃X

≡ 0, if and only if on the associ-

ated cone L = L̃× (0,∞) we have ↵ �L = 0. Correspondingly, a compact
submanifold L̃ of W̃e is Legendrian with respect to ↵̃e if and only if on
the associated cone L = (0,∞) × L̃ we have ↵e�L = 0.

It follows that we may view such submanifolds either as conic and
Lagrangian or Legendrian for the corresponding contact forms. In the
next step we will generalize this notion to pairs of  - and e-Legendrian
submanifolds with boundary that intersect in the corner. That is,
we want to have a Lagrangian structure across the corner, as shown
schematically2 in Figure 2. We are now in the position to introduce

W̃ 

W̃e

W̃ e

⇤̃ e

y, ⌘
ỹ

⌘̃
⇤̃e

⇤̃ 

Figure 2. Intersection of ⇤̃ ⊂ W̃ and ⇤̃e ⊂ W̃e at the
corner W̃ e

such Legendrian submanifolds.

2The simplest non-trivial situation, in which this arises, is in 4 dimensions.
In Figure 2, the boundary coordinates (y, ⌘) were combined and drawn as one-
dimensional.
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Definition 2.3. A closed, embedded Legendrian (corner-crossing) sub-
manifold ⇤̃ = (⇤̃e, ⇤̃ ) is a pair of closed, embedded submanifolds with
boundary of @(scT ∗X), such that

1. (⇤̃e)o ⊂ W̃e, (⇤̃ )o ⊂ W̃ ,
2. dim(⇤̃e) = dim(⇤̃ ) = d − 1,
3. (⇤̃e ∩ ⇤̃ ) = @⇤̃e = @⇤̃ =∶ ⇤̃ e ⊂ W̃ e (with dim(⇤̃ e) = d − 2),

with the intersection being clean,
4. The contact forms ↵̃e and ↵̃ satisfy

↵̃
e
�⇤̃e ≡ 0, ↵̃

 
�⇤̃ ≡ 0.

Furthermore, we make the following assumptions, which will become
clear in the later parts of the document:

5. (⇤̃e)o ∩ (@X × {0}) = �,
6. ⇤̃ e is the conormal sphere to some submanifold S̃ of @X,

namely, ⇤̃ e = @(scN∗S̃).
We call the associated pair (⇤e,⇤ ) of submanifolds, of We and W 

respectively, an SG-Lagrangian submanifold.

Remark 2.4. We remark that Definition 2.3 only covers the case where
there is actually an intersection in the corner. The case where ⇤ is a
compact Legendrian submanifold (w.r.t. one of the contact forms)
without boundary in the corresponding face - or a finite collection
thereof - is straightforward to formulate. Since this case is already well-
studied in [19] and [30], respectively, we focus on the corner-crossing
case in the remainder of the paper.

3. Phase functions and associated submanifolds

Having formulated what a Legendrian submanifold/pair of Lagrangian
submanifolds is in our context, we now turn towards its parametriza-
tion. In this section, we will discuss the class of phase functions that
may be used to parametrize the previously defined objects. We start
by recalling elements from the classical theory.

3.1. Introduction and motivation. Assume for now that X is a
compact manifold without boundary, and ⇤ ⊂ T ∗X�{0} is a Lagrangian
submanifold conic in the fiber. Introduce local coordinates around a
given point x0 ∈ X such that (x0, ⇠0) ∈ ⇤. Then, it is always possible
to find a (real) phase function '(x, ✓) ∈ C∞(Rd × (Rs � {0})), that
is, a smooth function, positively 1-homogeneous w.r.t. ✓, that has no
critical points, i.e. dx' + d✓' ≠ 0, which locally parametrizes ⇤. This
means that, in a suitable neighbourhood of (x0, ⇠0), conic in ⇠, we have

(3) ⇤ ≡ ⇤' = {(x,∇x'(x, ✓)) �∇✓'(x, ✓) = 0}.
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In fact, ' may be assumed non-degenerate, meaning that the map
�' ∶ (x, ✓)� (x,∇x') is a local di↵eomorphism

{(x, ✓)∶ ∇✓'(x, ✓) = 0} =∶ C' → ⇤.

In the following, we will reinterpret this analysis and establish a suit-
able analogue in the non-compact setting. The guiding idea is that the
phase function ', in the previous setting of compact manifolds without
boundary, is actually determined, by homogeneity, by its restriction to
X × Ss−1. Moreover, ⇤ is determined by its (Legendrian) intersection
with the co-sphere bundle, ⇤ ∩ S∗X. In local coordinates, we thus
have a (local) correspondence of smooth, 1-homogenous, non-critical
functions on Rd×Ss−1 and Legendrian submanifolds in W̃ . This moti-
vates that a Legendrian corner-crossing submanifold should be locally
parametrized by a smooth function '̃ on a “suitable model corner”
@(Bd×Bs). Revisiting Figure 2 the situation is schematically modelled
in Figure 3.

�̃'

�̃'

⇤̃ '

⇤̃e
'

Figure 3. Parametrization of ⇤̃' from a model corner

Smooth functions on such a model corner are given by pairs '̃ =
('̃ , '̃e) of smooth function on the respective faces that are compatible
in the corner. Actually, such a smooth function is the restriction of a
smooth function on Bd × Bs to the boundary. This gives rise, under
inverse radial compactification, to the classical SG symbols, also called
scattering symbols.

3.2. Classical SG-symbols and phase functions.

Notation. In the sequel, we need to introduce some notation in or-
der to distinguish the di↵erent faces and the corner in the (compact-
ified) cotangent bundle and the space used for parametrization by a
phase function. These di↵erent faces of manifolds and corners behave
somewhat symmetrically. To avoid confusion when di↵erent spaces are
involved, we make systematic use of the following notation:

● y denotes “variable-type” elements of Bd, ⌘ denotes “co-variable-
type” elements of Bd, � denotes “co-variable-type” elements of
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Bs; if we distinguish one variable as a boundary defining func-
tion, we mark it by adding a tilde to it;
● the corresponding elements of Rd are denoted by x and ⇠ and
elements of Rs are named ✓.

Subsets of Bd and Bs that correspond to subsets of Rd � (Rd � {0})
or Rs � (Rs � {0}) are usually denoted by the same symbol equipped
with a tilde. We recall that the SG-wave front space is defined as
W̃ ∶= @(Bd ×Bd) = W̃e � W̃ � W̃ e, where

(4) W̃
e
∶= Sd−1

× �Bd
�
o
, W̃

 
∶= �Bd

�
o
× Sd−1

, W̃
 e
∶= Sd−1

× Sd−1
.

In a completely similar fashion to the faces of W̃ , substituting s in
place of d in the dimensions of the second factors in (4), we define
B̃ ∶= @(Bd ×Bs) = B̃e � B̃ � B̃ e. We also set W =We �W �W e, with

(5) W
e
∶= R+ × W̃e

, W
 
∶= W̃

 
×R+, W

 e
∶= R+ × W̃ 

×R+,
and, again with s in place of d in the dimensions of the second factors
of (5), B ∶= Be � B � B e. Finally, we set S = Se � S � S e, with

S
e
= Sd−1

×Rs
, S

 
= Rd

× Ss−1
, S

 e
= Sd−1

× Ss−1
.

Moreover, we will use the symbol � for any excision function, that
is, a smooth function � ∶ Rd → [0,1] (or defined on Rs) that equals 0
in a neighbourhood of the origin and is identically equal to 1 outside
some compact set. When appropriate, we attach a label “e” or “ ” to
it, to emphasize the variables on which � acts.

SG-symbol classes.The class of SG-symbols on Rd×Rs of order (me,m )

∈ R2 consists of those a ∈ C∞(Rd×Rs) such that, for all ↵,� ∈ Nd
0, there

exist C↵� > 0 such that, for all (x, ✓) ∈ Rd ×Rs,

�@
↵
x@

�
✓ a(x, ✓)� ≤ C↵��x�

me−�↵��✓�m −���.
Such symbol classes will be denoted by SGme,m (Rd×Rs). On a general
(SG-admissible) manifold X, these are introduced by covering X with
local coordinate patches that make X look like Rd, see [25].

There is an important subclass of SG-symbols, denoted by SG
me,m 

cl (Rd×

Rs), which consists of those elements of SGme,m (Rd × Rs) that ad-
mit polyhomogeneous expansions (in both x and ✓ separately), see
[12, 31, 41]. The important feature for our analysis is that these are
precisely given, by radial compactification, as weighted smooth func-
tions on the corresponding compactifications, see [12, 25, 41]. From
here on, we will denote coordinates on Bs, viewed as the radial com-
pactification of Rs, by (�̃,�). We use the symbol ◆ for both the radial
compactification map in Rd as well as Rs.

Theorem 3.1 (Realization as smooth functions). For (me,m ) ∈ R×R,
consider the map ◆

me,m 

SG on SG
me,m 

cl (Rd ×Rs) given by
(6)
a(x, ✓)� b(y,�) ∶= ỹ

me �̃
m [(◆

−1
× ◆
−1
)
∗
a](ỹ, y, �̃,�) = ỹ

me �̃
m ã(ỹ, y, �̃,�).
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Then, (6) extends to an isomorphism

◆
me,m 

SG ∶SG
me,m 

cl (Rd
×Rs
)→ C∞(Bd

×Bs
).

Remark 3.2. This means that ã = (◆−1× ◆−1)∗a ∈ ỹ−me �̃−m C∞(Bd×Bs),
and that under radial compactification we have a filtration-preserving
isomorphism3. Namely,

SGcl(Rd
×Rs
) = �

me,m 

SG
me,m 

cl (Rd
×Rs
) ≅ �

me,m 

ỹ
−me �̃

−m C∞(Bd
×Bs
).

Under this isomorphism, the polyhomogeneous expansions correspond
to Taylor series in polar coordinates. In particular we may recover the
principal symbols.

Definition 3.3. Let a ∈ SG
me,m 

cl (Rd ×Rs). The principal symbol of a
is the triple of smooth functions �(a) = (� (a),�e(a),� e(a)) on B ,
Be and on B e, respectively, obtained by

�
 
(a)(x, ✓) = lim

�→∞�
−m a(x,�✓),

�
e
(a)(x, ✓) = lim

µ→∞µ
−mea(µx, ✓),

�
 e
(a)(x, ✓) = lim

µ→∞ lim
�→∞�

−m µ
−mea(µx,�✓).

Lemma 3.4 (Properties of the principal symbol).Let a ∈ SG
me,m 

cl (Rd×

Rs). Then

a) for any two excision functions �e and � we have

(7) a(x, ✓)−�
 
�
 
(a)−�

e
�
e
(a)+�

e
�
 
�
 e
(a) ∈ SG

me−1,m −1
cl (Rd

×Rs
);

b) for all (↵,�) ∈ Nd
0 ×Ns

0, ● ∈ {e, , e} we have

�
●
�@

↵
x@

�
✓ a� (x, ✓) = @

↵
x@

�
✓ (�

●
a)(x, ✓);

c) the symbol a is said to be ●-elliptic at a given point (x, ✓) in the
respective domain of �●(a), ● ∈ { , e, e}, if we have �●(a)(x, ✓) ≠
0;

d) under the isomorphism in Theorem 3.1, the principal symbol
may be computed as the restriction of ã to the respective bound-
ary face, homogeneously continued into the interior, that is, we

3We remark that this isomorphism may be used to equip SGcl with a Fréchet
topology, see [12, 41].
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have �●(a)�S●(x, ✓) = ã�B̃●(y,�); explicity, using polar coordi-
nates,

�
 
(a)(x, ✓) = �✓�

m ã�◆(x); 0,
✓

�✓�
� ,

�
e
(a)(x, ✓) = �x�

me ã�0,
x

�x�
; ◆(✓)� ,

�
 e
(a)(x, ✓) = �x�

me �✓�
m ã�0,

x

�x�
; 0,

✓

�✓�
� .

Remark 3.5. Notice that, in view of point d) in Lemma 3.4, equation
(7) is nothing else than the fact that ỹme �̃m ã, subtracted by (any
smooth continuation to the interior of) its restriction to the boundary,
vanishes there. Similarly, ellipticity at a point in Rd ×Rs is simply the
non-vanishing of ỹme �̃m ã at the corresponding point on B̃.

SG-Phase functions. We will now introduce the class of SG-symbols
that may be used to parametrize Lagrangian submanifolds, that is,
SG-phase functions. Such phase functions were introduced in [9], see
also Section 6 below. We restrict our attention to phase functions of
order (1,1).4

Definition 3.6. An element of SG1,1
(Rd×Rs) is called an (admissible,

classical) SG-phase function near (x0, ✓0) ∈ B if it is real-valued and the
associated function

(8) �(x, ✓) ∶= �x�2 �∇x'(x, ✓)�
2
+ �✓�

2
�∇✓'(x, ✓)�

2

is elliptic at (x0, ✓0). We associate with a phase function the critical
set

C' = �(x0, ✓0) ∈ B ∶ �∇✓'� is not elliptic at (x0, ✓0)�.

More precisely, we write '● = �●(') and split C' into

C
e
' ∶= {(x0, ✓0) ∈ B

e
∶ ∇✓'

e
(x0, ✓0) = 0},

C
 
' ∶= {(x0, ✓0) ∈ B

 
∶ ∇✓'

 
(x0, ✓0) = 0},

C
 e
' ∶= {(x0, ✓0) ∈ B

 e
∶ ∇✓'

 e
(x0, ✓0) = 0}.

Remark 3.7. The principal symbol of a SG1,1-symbol ' is a triple of
functions 'e(x, ✓), ' (x, ✓) and ' e(x, ✓), each 1-homogeneous in x, ✓
and both separately, respectively. It follows that ' is then a phase
function in the ordinary sense, and the C ' -component coincides with
the standard notion of critical set C' for a homogenous phase function
' .

4In view of Theorem 3.1, this is no real restriction, since any space SG
(me,m )
cl

is isomorphic to the smooth functions, and this isomorphism actually contains the
geometric information.
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We will now characterize C' in the boundary components on the
compactified space B̃ by the compactification map ◆.

Lemma 3.8. The condition that the associated function � = �⇡1,0 ⋅
∇x'�

2+ �⇡0,1 ⋅∇✓'�
2 is SG-elliptic of order (2,2) is equivalent to the con-

dition that ��̃�∇x', ỹ�∇✓'� is not vanishing on the corresponding point

B̃. We can write

C̃' ∶= {(y0,�0) ∈ B̃ ∶ ỹ�∇✓'(y0,�0) = 0},

for which we have

C̃
e
' = (◆ × id)�C

e
' ∩ S

e
�, C̃

 
' = (id × ◆)�C

 
' ∩ S

 
�, C̃

 e
' = C

 e
' ∩ S

 e
.

Proof. By Lemma 3.4, � is elliptic if and only if ◆2,2SG(�) is not vanishing
at the corresponding point in B̃. We can also write,

◆
2,2
SG(�)(y,�) = �̃

2
ỹ
2
��x�

2
�∇x'(x, ✓)�

2
+ �✓�

2
�∇✓'(x, ✓)�

2
� �(x,✓)=(◆−1(y),◆−1(�))

= ��(◆
1,0
SG(�x�) ⋅ ◆

0,1
SG(∇x')�

2
+ �(◆

0,1
SG(�✓�) ⋅ ◆

1,0
SG(∇✓')�

2
� (y,�)

Since �x� and �✓� are elliptic, their images under ◆1,0SG and ◆
0,1
SG are

nowhere vanishing, which proves the first assertion. The characteriza-
tion of C̃' follows by repeating the same argument for ��✓� ⋅∇✓'(x, ✓)�2,
in view of Definition 3.6. ⇤

Lemma 3.8 allows for us to write the image of C' as the null set of a
smooth function. We will now show that C̃' may be regarded as a pair
of smooth manifolds in the boundary faces which intersect cleanly in
the corner.

Definition 3.9 (Non-degenerate classical SG-phase functions). Let ' ∈
SG1,1

cl (Rd × Rs) be a classical SG-phase function. Then ' is called
non-degenerate if the di↵erentials �d �ỹ�@✓j'�X��j=1,...,s form, for every

(y0,�0) ∈ C̃', a set of linearly independent vectors in T ∗(y0,�0)(B̃●), for
any choice of ● ∈ {e,  ,  e} .

Each of the boundary faces B̃e and B̃ are submanifolds (with bound-
ary) of the manifold with corners Bd×Bs, that intersect cleanly at their
joint boundary B̃ e. That is, for every (y0,�0) ∈ Sd−1 × Ss−1 we have

T(y0,�0)B̃ e = T(y0,�0)B̃e ∩ T(y0,�0)B̃ .
We recall that, by Lemma 3.8, C̃' is the set of boundary elements
(y0,�0) jointly annihilated by ỹ�∇✓', j = 1, . . . , s. From that we are able
to obtain a similar set-up for the di↵erent components of C̃', detailed
in the next Proposition 3.10.

Proposition 3.10. Let ' ∈ SG1,1
cl (Rd × Rs) be a non-degenerate SG-

phase function. Then, the following properties hold true.
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(1) The di↵erent components of C̃' are totally neat submanifolds of
the corresponding boundary component in Bd ×Bs. That is, we
have

C̃' = C̃
e
' ∪ C̃

 
' ⊂ B̃

e
∪ B̃

 
,

and their possible boundaries form a subset C̃ e' of B̃ e.
(2) The codimension of the respective component is (if non-empty)

always s, meaning dim(C̃e') = dim(C̃
 
') = d − 1 and dim(C̃ e' ) =

d − 2.
(3) The tangent space to each face of C̃●' in B̃● may be calculated as

�v ∈ T(y0,�0)(B̃●) � �dy,� �ỹ�@✓j'�B̃●� �v = 0 ∀j ∈ {1, . . . , s}� .
(4) The intersection C̃ ' ∩ C̃e' = C̃

 e
' is clean.

Proof. Statements (1)-(3) are consequences of the regular value the-
orem for manifolds with corners, see Theorem A.17. Then, also the
cleanness of the intersection follows. ⇤

We now show how a non-degenerate SG-phase functions ' parametrizes
a pair of associated submanifolds ⇤●' over its critical set C●'. We seek
to generalize (3). To that end, we set

Definition 3.11. Let ' ∈ SG1,1
cl (Rd ×Rs) be a classical SG-phase func-

tion. We define

⇤e
' ∶= �((x,∇x'

e
(x, ✓)) �∃ (x, ✓) ∈ B

e
∶ ∇✓'

e
(x, ✓) = 0� ,

⇤ ' ∶= ��(x,∇x'
 
(x, ✓)� �∃ (x, ✓) ∈ B

 
∶ ∇✓'

 
(x, ✓) = 0� ,

⇤ e' ∶= ��(x,∇x'
 e
(x, ✓)� �∃ (x, ✓) ∈ B

 e
∶ ∇✓'

 e
(x, ✓) = 0� .

The problem of Definition 3.11 is that it is hard to extract geometric
insight “at infinity”. In this “limit”, ⇤e

' = ⇤
 
' = ⇤

 e
' , but this is hard to

define for manifolds that are not even submanifolds of the same space.
In order to overcome this di�culty, we pass again to the compactified
space.
We may first look at the map �' ∶ Rd ×Rs → Rd ×Rd given by (x, ✓)�
(x,∇x'(x, ✓)). This is a map whose components are SG1,0 and SG0,1-
symbols, respectively. We want to find an analogue to this function
on (Bd)o × (Bs)o → (Bd)o × (Bd)o that extends it to (parts of) the
boundary that becomes an isomorphism suitably close to C̃'. We start
by considering the map

(y,�)� �◆
−1
(y), �∇x'(y,�)� =̂(x,�∇x'(x, ✓)),

defined on (Bd)o×(Bs)o. We may compactify the image space to Bd×Bd,
by means of the map ◆ × ◆, to look at the extension of

(9) �̃'�(Bd)o×(Bs)o = (◆ × ◆) ○ �(◆−1 × ◆−1)∗�'�
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to the subset

(10)
Ẽ = ((Bd

)
o
× (Bs

)
o
) � B̃

e
� B̃ell,

B̃ell = {(y0,�0) ∈ B̃
 
∪ B̃

 e
∶ �∇x'�

2 is elliptic at (y0,�0)}.

Remark 3.12. This construction may be visualized through the follow-
ing commuting diagram:

Ẽ Bd ×Bd

(Bd)
o
× (Bs)

o
(Bd)

o
× (Bd)

o

Rd ×Rs Rd ×Rs

�̃'

�̃'

�'

◆−1 × ◆−1 ◆ × ◆

Indeed, we know by Theorem 3.1 that the map (◆1,0SG × ◆
0,1
SG)�' ∶ Bd ×

Bs → Bd ×Rd given by

(11) (y,�)� �y, �̃�∇x'(y,�)�

is smooth up to the boundary. We will show that, close to the boundary
components of Ẽ , this property yields the desired extension of �̃'.

Proposition 3.13. �̃' defined on (Bd)o×(Bs)o by (9), can be extended
as a smooth map to the subset Ẽ ⊂ Bd ×Bs defined in (10).

Proof. Since ◆ is a di↵eomorphism, it is clear that �̃' is smooth in the
interior, i.e. on (Bd)o × (Bs)

o. So, it is enough that we look at (9)
for �y�, ��� > 2�3. It is also clear that we have to prove the existence of
the extension only for the second component of �̃', since the first one
coincides with pr1, the projection on the first set of variables, which is
of course smoothly extendable from the interior to the whole of Bd×Bs.

By Theorem 3.1 and Lemma 3.4, we have, for a vector-valued symbol
p ∈ SG−1,1,

(12)

◆(�∇x'(y,�)) = ◆�∇x'
e
�
y

�y�
(1 − �y�)−1, �

���
(1 − ���)−1� + p̃(y,�)�

= ◆�∇x'
e
�
y

�y�
,
�

���
(1 − ���)−1� + p̃(y,�)� .

Then, �̃' can be extended smoothly to

A1 = {y ∈ Bd
∶2�3 < �y� ≤ 1} × {� ∈ Bs

∶ ��� < r
′
},

with arbitrary r′, 1 > r′ > 2�3. In fact, this is clearly true for the first
term appearing in the argument of ◆ in the right hand side of (12).
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For the second term, it is enough to observe that, by Theorem 3.1, for
any p ∈ SG−1,1, p̃ ∈ ỹ�̃−1C∞(Bd × Bs), that is, also p̃ is smooth on A1.
Moreover, the values of both such extensions to A1 remain bounded,
and ◆ is smooth on Rd. This implies that �̃' can be smoothly extended
to any point in B̃e.

We now consider the subset of Bd ×Bs given by

A2 = {y ∈ Bd
∶2�3 < �y� < 1} × {� ∈ Bs

∶ ��� > r},

r′ > r > 2�3, so that, of course, B̃ell ⊂ A2. Observe that, by Lemma 3.4
(in fact by its analogue for vector-valued symbols),

(13)

◆(�∇x'(y,�)) = ◆�∇x'
 
�
y

�y�
(1 − �y�)−1, �

���
(1 − ���)−1� + q̃(y,�)�

= ◆�∇x'
 
�
y

�y�
(1 − �y�)−1, �

���
� (1 − ���)−1 + q̃(y,�)� .

q̃ can be extended smoothly to Bd ×Bs, since, by Theorem 3.1, for any
q ∈ SG0,0

cl , i
0,0
SG(q) = q̃ ∈ C

∞(Bd ×Bs). At points (y0,�0) ∈ B̃ell, we have

either (y0,�0) ∈ B̃
 and ∇x'

 
(◆
−1
(y0),�0) �= 0,

or (y0,�0) ∈ B̃
 e and ∇x'

 e
(y0,�0) �= 0.

In the former case, the norm of the first term in the argument of ◆ in
the right hand side of (13) tends to +∞ when ���↗ 1. Then, su�ciently
close to (y0,�0) we have

◆(�∇x') =
�∇x'

��∇x'�
�1 −

1

��∇x'�
� =

�̃�∇x'

��̃�∇x'�
�1 −

�̃

��̃�∇x'�
� ,(14)

where �̃�∇x' = ◆
0,1
SG(∇x') is smooth up to the boundary. Moreover,

�̃�∇x'(y,�) = �̃(◆
−1
×◆
−1
)
∗
∇x'(y,�) = ∇x'

 
�
y

�y�
(1 − �y�)−1, �

���
�+�̃⋅q̃(y,�),

so such an expression cannot vanish close to (y0,�0), since �∇x'
 (◆−1(y0),�0)�

= k > 0 and ��̃ ⋅ q̃(y,�)� < k�2 for (y,�) ∈ V , suitably small neighborhood
of (y0,�0), by ��̃(�0) ⋅ q̃(y0,�0)� = 0. Then the smooth extendability of
(14) to points in B̃ell ∩ B̃ follows.

The remaining case, that is, the result for (y0,�0) ∈ B̃ell∩ B̃ e, follows
in a similar way, writing

◆(�∇x'(y,�)) = ◆((◆
−1
× ◆
−1
)
∗
∇x'(y,�))

= ◆�∇x'
 e
�
y

�y�
(1 − �y�)−1, �

���
(1 − ���)−1� + p̃(y,�) + q̃(y,�)�

= ◆�∇x'
 e
�
y

�y�
,
�

���
� (1 − ���)−1 + p̃(y,�) + q̃(y,�)� ,
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with p ∈ SG−1,1, q ∈ SG0,0 and ∇x'(y0,�0) �= 0, so that

�̃(�∇x'(y,�) = ∇x'
 e
�
y

�y�
,
�

���
� + �̃ ⋅ p̃(y,�) + �̃ ⋅ q̃(y,�),

with the last two terms smoothly extendable to (y0,�0) and vanishing
there.

The proof is complete. ⇤
Remark 3.14. Observe that, in view of the assumption (8) on �, �̃' is
well defined in a neighborhood of C̃'. In fact, at points (y0,�0) ∈ C̃' we
necessarily have �̃∇y'̃(y0,�0) �= 0⇔ �∇x'�

2 is elliptic at (y0,�0). Since
this is equivalent to the fact that ◆0,1SG(∇x') does not vanish at (y0,�0),
the same holds, by continuity, in a neighborhood of (y0,�0) in B̃.

Finally, we can state in which sense a non-degenerate phase function
may parametrize a pair of Lagrangian submanifolds.

Definition 3.15. Let ' ∈ SG1,1
cl (Rd ×Rs) be a classical SG-phase func-

tion. Then we set ⇤̃' ∶= �̃'(C̃').
For a given Legendrian submanifold ⇤̃ we say that ' parametrizes ⇤̃
near some p ∈ ⇤̃ if we have, in a neighbourhood Ũ of p in W̃ , that
⇤̃ = ⇤̃' or, equivalently, if ⇤ = (⇤e,⇤ ) is the corresponding pair of
Lagrangian submanifolds, we have ⇤● ∩U ● = ⇤●' ∩U ●, ● ∈ {e, }, in the
associated5 neighbourhoods U e and U .

Remark 3.16. Notice that if p is a corner point, U e and U will nec-
essarily be unbounded (asymptotically conic) in both variables, that is
we have a local parametrization “up to infinity”.

From the smoothness of �̃' up to the boundary in a neighborhood
of C̃', we now obtain a statement similar to Lemma 3.8 for ⇤̃'.

5Associated under inverse radial compactification.
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Proposition 3.17. Let ' ∈ SG1,1
cl (Rd × Rs) be a non-degenerate SG-

phase function. Then, the following properties hold true.

(1) The di↵erent components of ⇤̃' are each totally neat, immersed
submanifolds of the corresponding boundary component Bd×Bs.
That is, we have

⇤̃' = ⇤̃
e
'
�⊂�We

∪ ⇤̃ '
�⊂�W 

,

and their possible boundaries form a subset ⇤̃ e' of W̃ e.
(2) The codimension of the respective component is always s, mean-

ing dim(⇤̃e
') = dim(⇤̃

 
') = d − 1 and (if non-empty) dim(⇤̃ e' ) =

d − 2.
(3) The tangent space to each face of ⇤̃●' in W̃ may be calculated by

means of the di↵erential of �̃', that is, via

T ⇤̃●' = �d ��̃'�C̃●'��T C̃●', ● ∈ {e, }.

(4) The intersection ⇤̃ ' ∩ ⇤̃e
' = ⇤̃

 e
' is clean.

Proof. By the non-degeneracy of ', �̃' is an immersion near C̃', and
we may use Theorem A.14. ⇤

Again, Figure 2 provides a schematic visualization of the geometric
situation. We now check that ⇤̃ is truly the analogue of ⇤' under
radial compactification.

Lemma 3.18. Let ' ∈ SG1,1
cl (Rd×Rs) be a classical SG-phase function.

We have

⇤̃e
' = (id × ◆)�⇤

e
' ∩ S

e
), ⇤̃ ' = (◆ × id)�⇤

 
' ∩ S

 
�, ⇤̃ e' = ⇤

 e
' ∩ S

 e
.

Proof. We start with the proof for ⇤ ', which coincides with the clas-
sical definition of the manifold of stationary points for a classical ho-
mogeneous phase function. We have ⇤̃ ' = �̃'(C̃

 
'). By Lemma 3.8

we have ỹ�∇✓'(y,�) = 0 on C̃'. Thus, in view of the same Lemma,
�̃�∇x'(y,�) ≠ 0. Recalling (14) from the proof of Proposition 3.13 and
using the fact that �̃ vanishes on C̃ ' and Lemma 3.4, we can write

(◆
−1
× id)(⇤̃ ') = ��(◆

−1
(y),

�̃�∇x'(y,�)

��̃�∇x'(y,�)�
� �(y,�) ∈ C̃

 
'� ,

and the cone over it as

(◆
−1
× id)(⇤̃ ') ×R+ = ��(x,µ ∇x'

 (x, ✓)

�∇x'
 (x, ✓)�

� �(x, ✓) ∈ C
 
' , µ > 0� .

Making use of the homogeneity of ' , we may write this simply as

(◆
−1
× �)(⇤̃ ') =

= ��(x,∇x'
 
(x, ✓)� ∶ (x, ✓) ∈ Rd

× (Rs
� 0)and∇✓'

 
(x, ✓) = 0� ,
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which is the definition of ⇤ ', as claimed. In the same way we can write

R+ × (id × ◆−1)(⇤̃e
') = R+ × �(id × ◆−1)�̃'�(C̃e')
= ��µy,�∇x'(y,�)� ∶ (y,�) ∈ C̃

e
'�

= �(x,∇x'
e
(x, ✓)) ∶ (x, ✓) ∈ C

e
'� ,

where we have again made use of Lemma 3.4. The characterization of
the corner component ⇤ e' follows in exactly the same way. ⇤

Remark 3.19. Note that in the classical theory, also clean phase func-
tions are permitted to parametrize Lagrangian submanifolds, see [19],
in which case �' is locally a fibration of a fixed dimension, called the
excess e. In our case, this would give rise to complicated geometric
structures, such as (compactified) fibrations over manifolds with cor-
ners. While there are tools available to also treat these, see [24, 28], we
omit such complications here, and will address the question of excess
phase parameters and the elimination thereof in future works on the
calculus of Lagrangian distributions.

3.3. Lagrangian properties of the components and their parametriza-
tion. So far, we have only stated how phase function parametrize a
submanifold, but have not actually discussed its Lagrangian proper-
ties. We will now prove:

Theorem 3.20. Let ' ∈ SG1,1
cl (Rd ×Rs) be a non-degenerate SG-phase

function. Then ⇤̃' = (⇤̃e
', ⇤̃

 
') is an SG-Legendrian submanifold of W̃

in the sense of Definition 2.3.

We start by checking the symplectic properties. For a classical phase
function, ⇤ is well-known to be Lagrangian. We will now obtain an
analogous statement for ⇤e.

Lemma 3.21. Let ' be a non-degenerate classical SG-phase function.
Then ↵e vanishes on ⇤e

'. As a consequence, ↵̃e vanishes on ⇤̃ e.

Remark 3.22. We remark that, to our best knowledge, Lemma 3.21
indeed requires its own proof, and cannot be simply “deduced by sym-
metry” from the classical theory, due to the “asymmetrical definition”
of ⇤' with respect to x and ✓.

Proof. We adopt here the notation in [10], and denote the induced
coordinates on TxM by �x. We first notice that ⇤e

' is, by definition,
the image of

C
e
' = {(x0, ✓0) ∈ Rd

� {0} ×Rs
∶ ∇⇠'

e
(x0, ✓0) = 0},

which, by the non-degeneracy of ', is a smooth manifold, under the
map �e' = (pr1,∇x'

e). We can thus calculate its tangent space in terms
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of that of the preimage.6 T(x,✓)Ce' is given by

(15) (�x ⋅ ∇x)∇✓' + (�✓ ⋅ ∇✓)∇✓' = 0,

and we thus have

T(x,∇x'e(x,✓))⇤e
' = J(pr1,∇x'

e
) ⋅ T(x,✓)Ce',

where J(pr1,∇x'
e) denotes the Jacobian matrix of the map (pr1,∇x'

e).
Furthermore,

(16) J(x,✓)(pr1,∇x'
e
)(�x, �✓) = (�x, (�x ⋅ ∇x)∇x'

e
+ (�✓ ⋅ ∇✓)∇x'

e
).

Computing ↵e = x ⋅ d⇠ on such a vector, we see that

x ⋅ (�x ⋅ ∇x)∇x'
e
+ x ⋅ (�✓ ⋅ ∇✓)∇x'

e

=�
j,k

xj(�xk@xk
)@xj'

e
+�

j

(�✓ ⋅ ∇✓)xj@xj'
e

=�
j,k

(�xk@xk
)xj@xj'

e
−�

k

�xk@xk
'
e
+�

j

(�✓ ⋅ ∇✓)xj@xj'
e
.(17)

Since 'e is 1-homogeneous in the first set of variables, by Euler’s the-
orem for homogeneous functions (17) is equal to

�
k

(�xk@xk
)'

e
−�

k

�xk@xk
'
e
+ (�✓ ⋅ ∇✓)'

e
,

= �✓ ⋅ (∇✓'
e
)
(x,✓)∈Ce'
= 0

This proves the assertion. ⇤
Finally, we observe the additional properties that these kind of sub-

manifolds, arising from SG-classical phase functions, possess, which
limit their behaviour at infinity.

Lemma 3.23. Let ' ∈ SG1,1
cl (Rd × Rs) be a non-degenerate classical

SG-phase function. Then,

(1) the pairing �x, ⇠� vanishes on ⇤ e' , meaning that ⇤̃' is contained
in the conormal to its base pr1(⇤̃

 );
(2) ⇤e

' does not intersect (Rd � {0}) × {0}.

Proof. On ⇤ e we have, by Euler’s theorem for homogeneous functions
applied twice,

�x, ⇠� = �x,∇x'
 e
(x, ✓)� = '

 e
(x, ✓) = ✓ ⋅ ∇✓'

 e
(x, ✓) = 0.

The second assertion follows from the characterization of ⇤e
' in Lemma

3.18, since the assumption on � in Definition 3.6 implies that if ∇✓'e(x, ✓) =

0 we have ∇x'
e(x, ✓) ≠ 0. ⇤

6As in Lemma 2.3.2 of [10], we can conclude from (15) and (16) that(pr1,∇x'
e) is an immersion, and thus its image is an immersed d-dimensional

conic submanifold.
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We have then proved Theorem 3.20, meaning that every non-degenerate
classical SG-phase function gives rise to an associated SG-Lagrangian
submanifold. We are now ready to prove our main result, namely, that
it is always possible to find a SG-classical phase function to locally7

parametrize a given SG-Lagrangian.

Theorem 3.24 (Parametrization Theorem). Let ⇤ = (⇤e,⇤ ) be an
SG-Lagrangian submanifold. Then, ⇤ is locally parametrizable by a
non-degenerate SG-classical phase function. That is, ∀(y0, ⌘0) ∈ ⇤̃ there
exist

(1) a neighbourhood Ũ of (y0, ⌘0) in Bd ×Bd,
(2) an open set Ṽ ⊂ Bd ×Bs,
(3) a function '̃ ∈ �̃−1ỹ−1C∞(Ṽ ) such that the corresponding (lo-

cally defined) phase function ' = (◆ × ◆)∗'̃ is non-degenerate,

such that

⇤̃ ∩ Ũ = �̃' ��(y0,�0) ∈ Ṽ ∩ B̃ ∶ (y0,�0) ∈ C̃'�� .

Remark 3.25. We will say, for short, that both the functions '̃ and ' =
(◆ × ◆)∗'̃, satisfying the properties stated in Theorem 3.24, are (local)
non-degenerate SG-phase functions, associated with the Legendrian ⇤̃
and/or the corresponding SG-Lagrangian ⇤.

4. Proof of the Parametrization Theorem

We will only consider the case where (y0, ⌘0) ∈ ⇤̃ e, since the other
possible situations are far simpler and will be covered by the same
argument. The outline of the proof is classical, cf. [15] and [19], but
here some tools from the theory of manifolds with corners are essential
to achieve the result, as well as the extension of �̃' and the symplectic
structure “at infinity” discussed in Section 2.
Let (y0, ⌘0) ∈ ⇤̃ e. ⇤̃ e is a (d − 2)-dimensional embedded submanifold
of Sd−1 × Sd−1 and we may assume, possibly after a rearrangement of
variables in a neighbourhood Ũ of (y0, ⌘0), that ⇤̃ e is parametrized as

Ũ ∩ ⇤̃ e = �y′, y′′,
�

1 − (y′)2 − (y′′)2,
�

1 − (⌘′)2 − (⌘′′)2, ⌘′, ⌘′′� ,
where, for some s ≤ d − 1, we have that ⌘′ = (⌘2, . . . , ⌘s) and y′′ =
(ys+1, . . . , yd−1) are independent variables and the remaining variables,

y
′
= Ỹ

 e
(y
′′
, ⌘
′
), ⌘

′′
= H̃

 e
(y
′′
, ⌘
′
),

are smoothly dependent on (y′′, ⌘′). We may further assume that yd

and ⌘1 do not vanish in the chosen coordinate neighbourhood, that is
we have, for some 1 ≥ c > 0, yd > c and ⌘1 > c.
Due to the clean intersection at the corner ⇤̃ e = ⇤̃e ∩ ⇤̃ = @⇤̃e = @⇤̃ ,

7Notice that “locally” near the corner component means “up to infinity”, which
is where the di�culty of the theory lies.
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that is T⇤̃ e⇤̃e∩T⇤̃ e⇤̃ = T ⇤̃ e, we may find, accordingly, parametriza-
tions of ⇤̃e and ⇤̃ near the corner point (y0, ⌘0), namely

Ũ ∩ ⇤̃e
= �y

′
, y
′′
,

�

1 − (y′)2 − (y′′)2, ⌘1, ⌘′, ⌘′′� ,
Ũ ∩ ⇤̃ = �y′, y′′, yd,

�

1 − (⌘′)2 − (⌘′′)2, ⌘′, ⌘′′� .
Here we have the independent coordinates (y′′, ⌘1, ⌘′) on ⇤̃e and (y′′, yd, ⌘′)
on ⇤̃ . The remaining variables on Ũ ∩ ⇤̃ may be written as functions
smooth up to the boundary,

y
′
= Ỹ

e
(y
′′
, ⌘1, ⌘

′
), ⌘

′′
= H̃

e
(y
′′
, ⌘1, ⌘

′
),

and on Ũ ∩ ⇤̃ as

y
′
= Ỹ

 
(y
′′
, yd, ⌘

′
), ⌘

′′
= H̃

 
(y
′′
, yd, ⌘

′
).

By ⇤̃e ∩ ⇤̃ = @⇤̃e = @⇤̃ = ⇤̃ e we conclude that, if

�⌘1, ⌘
′
, H̃

e
(y
′′
, ⌘1, ⌘

′
)� ∈ Sd−1 and �Ỹ  

(y
′′
, yd, ⌘

′
), y

′′
, yd� ∈ Sd−1

,

we have

Ỹ
e
(y
′′
, ⌘1, ⌘

′
) = Ỹ

 
(y
′′
, yd, ⌘

′
) = Ỹ

 e
(y
′′
, ⌘
′
),(18)

H̃
e
(y
′′
, ⌘1, ⌘

′
) = H̃

 
(y
′′
, yd, ⌘

′
) = H̃

 e
(y
′′
, ⌘
′
).(19)

This choice of coordinates induces coordinates on the associated conic
manifolds ⇤e = R+ × ⇤̃e and ⇤ = ⇤̃ × R+. That is, we may take, as
independent variables on ⇤e,

x
′′
= (µy

′′
, µ

�

1 − (y′)2 − (y′′)2), ⇠
′
= ◆
−1
(⌘1, ⌘

′
).

In particular, x′′ may be defined implicitly in terms of the map

(y
′′
, µ)� �µ(id × ◆)∗Ỹ e

(y
′′
, ⇠
′
), µy

′′
, µ

�

1 − ((id × ◆)∗Ỹ e(y′′, ⇠′))2 − (y′′)2� .

We obtain that x′ = µ(id× ◆)∗Ỹ e(y′′, ⇠′) =∶Xe(x′′, ⇠′) is a smooth func-
tion of x′′ and ⇠′ and polyhomogeneous in ⇠′, of maximal degree 0. By
�(x′, x′′)� = µ it is further 1-homogeneous in x′′. Similarly we have that

⇠
′′
= ◆
−1
�(id × ◆)∗H̃e

(y
′′
, ⇠
′
)� =∶ ⌅e

(x
′′
, ⇠
′
)

is 0-homogeneous in x′′ and polyhomogeneous in ⇠′. We can thus write,
locally near (x0, ⇠0) = (id × ◆−1)(y0, ⌘0),

⇤e
= ��X

e
(x
′′
, ⇠
′
), x

′′; ⇠′,⌅e
(x
′′
, ⇠
′
�� .

In the same way we may write, in coordinates

x
′′
= ◆
−1
(y
′′
, yd), ⇠

′
= (µ⌘1, µ⌘

′
),

that

⇤ = ��X 
(x
′′
, ⇠
′
), x

′′; ⇠′,⌅ (x′′, ⇠′�� .



LAGRANGIAN SUBMANIFOLDS AT INFINITY 23

We now define phase functions parametrizing these conic submanifolds
in the given neighbourhoods. We set

�
e
(x, ⇠) = �x

′
, ⇠
′
� + �x

′′
,⌅e
(x
′′
, ⇠
′
)�,(20)

�
 
(x, ⇠) = �x

′
, ⇠
′
� − �X

 
(x
′′
, ⇠
′
), ⇠
′
�.(21)

By the above definitions of ⌅e andX we observe that �e is 1-homogeneous
in x and 1-polyhomogeneous in ⇠, whereas � is 1-homogeneous in ⇠

and polyhomogeneous in x. In fact these functions, restricted to (suit-
able neighbourhoods in) Sd−1 ×Rd and Rd × Sd−1, respectively, may be
written as

�
e
(x, ⇠)�Sd−1×Rd = (id × ◆)∗ ��(y′, y′′, yd) , ◆−1 �⌘1, ⌘′, H̃e

(y
′′
, ⌘1, ⌘

′
))���

���������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������=∶ỹ⋅�̃e��We

,

(22)

�
 
(x, ⇠)�Rd×Sd−1 = (◆ × id)∗ ��◆−1(y′) − ◆−1 �Ỹ  

(y
′′
, yd, ⌘

′
)� , (⌘1, ⌘

′
)��

���������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������=∶⌘̃⋅�̃ ��W 

.

(23)

Using ◆−1(y) = y�y�(1 − �y�)−1 = ỹ−1 y�y� for large arguments and Theorem
3.1, we obtain the desired symbol properties.
We now show that �e and � may be obtained as the respective princi-
pal symbol components of a single SG-phase function. To this aim, we
calculate the principal symbols of �e and � by means of the proof of
Lemma 3.4. Using limn→∞ ỹn ◆

−1(yn) = y�y� in case yn → y with yn ∈ (Bd)o

and y ∈ Sd−1 as well as (18) and (19) in (22) and (23) we obtain in the
corner component

� (�
e
)�Sd−1×Sd−1 = (id × id)∗�(y′, y′′, yd), �⌘1, ⌘′, H̃ e

(y
′′
, ⌘
′
)� �,

�e(�
 
)�Sd−1×Sd−1 = (id × id)∗ �y′ − Ỹ  e

(y
′′
, ⌘
′
), (⌘1, ⌘

′
)� ,

and thus we have

� (�
e
)�Sd−1×Sd−1 − �e(� )�Sd−1×Sd−1 =
(id × id)∗ ��Ỹ  e

(y
′′
, ⌘
′
), (⌘1, ⌘

′
)� + �(y

′′
, yd), H̃

 e
(y
′′
, ⌘
′
)�� ,

which is nothing else than �x, ⇠� restricted to Sd−1 × Sd−1 in ⇤ e and
thus vanishes by the conormality assumption. We are then able, using
(18) and (19), Lemma 3.4 and Remark 3.5, to continue (�e,� ) to a
single SG-symbol with principal symbol (�e,� ,� e).
To have a chance of non-degeneracy, we first reduce the number of
phase variables since, so far, the resulting phase function is constant
in the ⇠′′-variables. Getting rid of these redundant variables, we may
define ' ∶ Rd × Rs → R by ((x′, x′′); ✓) � �((x′, x′′); (✓, ⇠′′0 )) for some
arbitrary ⇠′′0 . We then obtain the components of the principal symbol
'● = �●(') for ● ∈ {e, , e} and may define '̃ ∈ �̃−1ỹ−1C∞(Ũ) via
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(◆−1 × ◆−1)∗'.
We now have to see that the functions '● indeed parametrize ⇤'. For
that we gather, by ↵●�⇤● = 0, the identities

X
e
(x
′′
, ⇠
′
) +∇⇠′ (x′′ ⋅⌅e

(x
′′
, ⇠
′
)) = 0,

x
′′
⋅ @x′′j⌅

e
(x
′′
, ⇠
′
) = 0, j ∈ {s + 1, . . . , d},

✓ ⋅ @⇠′kX
 
(x
′′
, ⇠
′
) = 0, k ∈ {1, . . . , s},

∇x′′ �✓ ⋅X 
(x
′′
, ⇠
′
)� +⌅ (x′′, ⇠′) = 0.

We may then use these to compute, using (20) and (21),

∇✓'
e
(x, ✓) = x

′
+ x

′′
⋅ ∇✓⌅

e
(x
′′
, ✓)

�������������������������������������������������������������������������������������=−Xe(x′′,✓)
,

@✓k'
 
(x, ✓) = (x

′
k −X

 
k (x

′′
, ✓)) − �@✓kX

 
(x
′′
, ✓)� ⋅ ✓

�����������������������������������������������������������������������������������������������������=0
.

We therefore have ∇✓'● = 0 if and only if x′ = X●(x′′, ✓), and we have
obtained

C
●
' = {�X

●
(x
′′
, ✓), x

′′; ✓�}, ● ∈ {e, }.

In a similar fashion, using the remaining two identities,

⇤●' = ��X●(x′′, ✓), x′′; ✓,⌅●(x′′, ✓)�� = ⇤●, ● ∈ {e, }.

We can thus (locally) parametrize ⇤● by '●, ● ∈ {e, }. Finally, we
have to check that the symbol ' actually defines a phase function in
the sense of Definition 3.6, which means �●(�) ≠ 0 on B●, ● ∈ {e, }.
By assumption, ∇✓'● vanishes only on C●', ● ∈ {e, }. There, however,
we always have ∇x'

● ≠ 0, ● ∈ {e, }, since, by assumption, none of the
faces of ⇤' contains a point of the form (x,0).

This concludes the proof of Theorem 3.24. ⇤

5. Equivalence of phase functions

Having established that we can always find a (local) non-degenerate
SG-phase function parametrizing any SG-Lagrangian, we now inves-
tigate when two such phase functions may be considered equivalent.
Here we rely again on the identification provided in Theorem 3.1

Theorem 5.1. Let '̃1, '̃2 ∈ �̃
−1ỹ−1C∞(Bd ×Bs) be two non-degenerate

SG-phase functions that parametrize the same SG-Legendrian ⇤̃ ⊂ W̃
in a neighbourhood of (y0, ⌘0) ∈ ⇤̃ such that

(1) there exists (y0,�0,1) ∈ C̃'1 and (y0,�0,2) ∈ C̃'2 such that8

(y0, ⌘0) = �̃'i(y0,�0,i) and '̃1(y0,�0,1) = '̃2(y0,�0,2),

8We note that this is always fulfilled in the classical case since, by homogeneity,
'i vanishes on C'i , i = 1,2.
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(2) The matrices

��̃
−1
ỹ
�
@2✓j✓k

'1�X�
j,k=1,...,s and ��̃−1ỹ �@2✓j✓k'2�X�

j,k=1,...,s
have the same signature at (y0,�0,i) ∈ C̃'i, where 'i ∶= (◆× ◆)

∗'̃i

are the (locally defined) phase functions associated with '̃i, i =
1,2.

Then, there exists a local di↵eomorphism9
̃ of the boundary B̃ � B̃ that

is defined in a neighbourhood of (y0,�0,2) in the corresponding faces,
which is smooth on each face and such that '̃2 ○ ̃ = '̃1�B̃. In this case,
'̃1 and '̃2 are called equivalent phase-functions.

Remark 5.2. Note that the statement only ensures that the principal
symbols of the corresponding phase functions 'i may be arranged to
agree, that is, the triples ('e

i ,'
 
i ,'

 e
i ), i = 1,2. This is, however, not a

drawback, since only the principal symbols of 'i, i = 1,2, are used in
the definition of ⇤̃' and C̃'.

Proof of Theorem 5.1. We assume (y0, ⌘0) ∈ ⇤̃ e since again this case
(with slight adaptations) includes the others. Indeed, the case of ⇤̃ '
is known from the classical theory and our proof follows the classical
outline of [16] and [10]. We begin by arranging '̃1 and '̃2 such that
they agree “up to second order” on C̃'1 . Consider the maps �̃1, �̃2

given by

(y,�)� �̃i(y,�) ∶ = (�̃'i, ỹ
�∇✓'i) ∈ Bd

×Bd
×Rd

.

By Theorem 3.1 and Proposition 3.13, these maps are well-defined and
smooth up to the boundary in a neighbourhood of C̃'i . By Lemma 3.8
and Lemma 3.15 we have, for (y,�) ∈ B̃,

(pr3 ○ �̃i)(y,�) = 0⇐⇒ (y,�) ∈ C̃'i ⇐⇒ �̃i(y,�) ∈ ⇤̃ × {0}, i = 1,2.

By the implicit function theorem on manifolds with corners, that is,
Theorem A.10, and the non-degeneracy assumption of '̃i, i = 1,2, we
may thus locally invert, in each closed face B̃ ∪ B̃ e = Bd × Ss−1 and
B̃e ∪ B̃ e = Sd−1 × Bs separately, to obtain two maps defined in neigh-
bourhoods of (y0, ⌘0,i,0), namely,

 ̃ i ∶ (W̃
 
∪ W̃

 e
) ×Rd

→ Bd
× Ss−1

,

 ̃e
i ∶ (W̃

e
∪ W̃

 e
) ×Rd

→ Sd−1
×Bs

,

such that
 ̃●i ○ ��̃i�B̃●� = idB̃● , ● ∈ {e, }, i = 1,2.

That is, we have the diagrams, for ● ∈ {e, }, i = 1,2,

9In the sense of manifolds with boundary, meaning it is the restriction of a
di↵eomorphism of surrounding extensions, see [24].
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(y0,�0,i) C̃●'i
∪ C̃

 e
'i B̃● ∪ B̃ e

(y0, ⌘0,0) ⇤̃● × {0} (W̃● ∪ W̃ e) ×Rd

∈ ⊂

∈ ⊂

�̃●i ̃●i �̃●i ̃●i �̃●i ̃●i

Notice that the last column is only meant locally, since, in general, we
cannot achieve a global definition of �̃●i and  ̃●i , ● ∈ {e, }, i = 1,2.
However, in a neighbourhood of (y0, ⌘0,i,0) in W̃ e ×Rd, we have

 ̃ i ��W e×Rd =  ̃e
i ��W e×Rd , i = 1,2.

We also note that pr1 ○ �̃'i = id, i = 1,2. Therefore, the compositions

 ̃●1 ○ ��̃2�S̃●� induce a di↵eomorphism ̃, which on each face is given by

̃
●
∶�W

●
⊆ C̃

●
'2
�→ C̃

●
'1
∶ (y,�2)� �y,�1(y,�2)�,

where �W ● is a neighbourhood of (y0,�0) in C̃●'2
, ● ∈ {e, }. We then

define the new (local) phase function

f̃ ∶= �
'̃2 ○ ̃

e (y,�) ∈ B̃e

'̃2 ○ ̃
 (y,�) ∈ B̃ .

This yields a continuous function on the boundary B̃ that is smooth
in the interior of each boundary face up to the corner. Since f̃ and '̃2

are related by the di↵eomorphism ̃, we may continue our analysis by
replacing '̃2 with f̃ . If we thus look at the principal symbol of this
phase function, by means of Lemma 3.4, we see that f̃ agrees (at the
boundary) up to second order with '̃1 on C̃'1 . In fact, their di↵erentials
vanish there, and both functions agree at the point (y0,�0,1).

We may now essentially argue as in [16] on each of the two faces.
Indeed, since all the involved objects are smooth up to the boundary
of each face, Seeley’s Extension Theorem allows us to extend them
smoothly to a mirror copy of B̃●, ● ∈ {e, }, across S̃ e. It is then
possible to consider Taylor expansions around points in B̃ e.

Let now '̃ and �̃ be two non-degenerate SG-phase functions parametriz-
ing the same Legendrian and agreeing up to second order on C̃' = C̃ ,
up to the boundary, in the sense above. Using the non-degeneracy of '̃,
setting h̃j = ỹ

�@✓j'(y,�), j = 1, . . . , s, we can write, at any given point

in C̃',

ỹ�̃�̃(y,�) = ỹ�̃'̃(y,�) +

s

�
j,k=1

b̃jk(y,�)h̃jh̃k,

for a symmetric matrix B̃ = (b̃jk(y,�)). The non-degeneracy of �̃ is
then equivalent to

det(I + B̃Ã) �= 0 at (y0,�0),
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where we have set Ã = ��̃−1ỹ�@2✓j✓k'(y,�)�j,k=1,...,s. When B̃ is su�-

ciently small, we can show the equivalence between �̃ and '̃. In fact,
by Taylor expansion,

ỹ�̃'̃(y, �) = ỹ�̃'̃(y,�) +

s

�
j=1
(�j − �j)�̃

�@✓j'(y,�)

+

s

�
j,k=1

c̃jk(y,�, �)(�j − �j) (�k − �k),

with a symmetric matrix C̃ = (c̃jk)j,k=1,...,s. Setting

�j = �j +

s

�
k=1

w̃jk(y,�)hk,

we prove the assertion if we show that there exist a matrix W̃ =

(w̃j,k)j,k=1,...,s such that

W̃ +
t
W̃ C̃ W̃ = B̃.

It is well known that, under the condition that the signatures of Ã and
C̃ agree, this equation has a solution for small B̃, which holds true in
our cases, in view of the hypothesis (2) and the fact that the two phase
functions agree on C̃'. The statement then follows, by determining a
continuous family of non-degenerate phase functions �̃t, t ∈ [0,1], such
that �̃0 = '̃ and �̃1 = �̃. In fact, two elements �̃s and �̃t of such a family
will be equivalent for �s − t� su�ciently small. Since the procedure can
be performed separately on the two faces, and �̃ and '̃ agree to second
order up to the boundary including the corner, they are equivalent also
there. The remaining details of this analysis, with reference to [16], are
left to the reader. ⇤

6. Tempered oscillatory integrals

In this section we give a brief summary of the results we obtained in
[9], to provide an example of how the previously introduced geometric
structures arise in the study of tempered distributions. In [9] we asso-
ciated with a given (inhomogeneous) SG-phase function ' a family of
tempered distributions, denoted by I'(a), parametrized by amplitudes
that are SG-symbols.

Theorem 6.1. With any fixed admissible SG-phase function ' of order
(1,1) we may associate a map

I' ∶ SG(Rd
×Rs
)→S ′

(Rd
),

uniquely determined by the the following properties:

(1) a� I'(a) is a linear map,
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(2) If a ∈ S (Rd × Rs), then I'(a) coincides with the (absolutely
convergent) integral

(24) I'(a) = �
Rs

e
i'(x,✓)

a(x, ✓)d✓,

(3) the restriction of I' to SGme,m (Rd ×Rs) is a continuous map

SGme,m (Rd
×Rs
)→ S ′

(Rd
).

We call the resulting distribution I'(a) a SG-oscillatory integral.

For these families of tempered oscillatory integrals we proved an
inclusion for their so-called SG-wave front set, which generalizes the
corresponding statement valid for Hörmander’s wave front set WFcl(u)

and the usual class of oscillatory integrals, see [16].10 In order to state
our result in the SG setting, we first recall the definition of the SG-wave
front set.

Definition 6.2. Let u ∈ S ′ (Rd). Then WFSG(u) ⊂ W is defined in
terms of its complement as follows: (x0, ⇠0) ∉ WFSG(u) if and only if
there exists a pseudo-di↵erential operator with symbol in SG0,0

cl (Rd×Rd)

elliptic at (x0, ⇠0) such that Au ∈S (Rd).

For a broader exposition and description of the properties of this
notion of wave front set, we refer to [2, 7, 9, 25, 26]. In [9] we proved
the following bounds for the singularities of the temperate oscillatory
integral I'(a) defined in Theorem 6.1.

Theorem 6.3. Let ' be an admissible SG-phase function. Then, for
any amplitude a ∈ SGme,m (Rd ×Rs) we have the inclusions

pr1(WFSG(I'(a))) ⊂ pr1(C') and WFSG(I'(a)) ⊂ ⇤' .

This theorem establishes a connection between the singularities of
oscillatory integrals and the geometric structures established above.

Remark 6.4. Recalling the existence of a canonical principal part for
classical SG-symbols, we can write

'(x, ✓) = �
e
(x)'

e
(x, ✓)+�

 
(✓)'

 
(x, ✓)−�

e
(x)�

 
(✓)'

 e
(x, ✓)+r'(x, ✓).

Since eir' ∈ SG0,0, we may absorb the r' part of the phase function in
an oscillatory integral into the amplitude. We are thus reduced to the
case of studying phase functions of the form

'(x, ✓) = �
e
(x)'

e
(x, ✓) + �

 
(✓)'

 
(x, ✓) − �

e
(x)�

 
(✓)'

 e
(x, ✓).

and thus we have found that only the behaviour at infinity, i.e. the
principal symbol of ', enters in the study of the SG-singularities of
such oscillatory integrals. It is by this logic that only the boundary

10In the present paper we follow a notation close to the one used in [19], di↵erent
from the one we adopted in [9]. In particular, in the original statement of Theorem
6.3 proved there, C̃' was denoted by M', and ⇤̃' by SP', respectively.
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components ⇤' play a role in the study of Lagrangian distributions,
and this is why we do not ask for SG-Lagrangians ⇤ to arise as the
boundary of a manifold in the interior, which would be simpler.

6.1. An example. In this subsection, we revisit the example of [9],
see also [35, 42], and study a distribution associated with an SG-
Lagrangian that has a non-trivial ( e)-component, and hence it is
neither Legendrian, nor a Lagrangian in the classical sense.

We consider the two-point function of a free, scalar, bosonic quantum
field theory on a flat space-time, that is, Minkowski space R × Rd,
wherein we denote points by (x0, x) for x0 ∈ R and x ∈ Rd. Let m > 0,
!m(x) =

�

m2 + �x�2. The two-point function11 is the distribution given
by the formal oscillatory integral (see [33, Sect. IX.8])

(25) �+(x0, x) ∶=
i

2(2⇡)d �Rd

ei(−x0!m(✓)+x✓)
!m(✓)

d✓

It also arises in the study of the fundamental solutions of the Klein-
Gordon equation, and therein its microlocal properties play a signifi-
cant role, see [21].

We observe that (25) is expressed as a formal oscillatory integral like
the one in (24). In fact, we have12 !m(✓) ∈ SG

0,1
cl (Rd+1 × Rd), and we

conclude

'(x0, x; ✓) ∶= −x0!m(✓) + x✓ ∈ SG
1,1
cl (Rd+1

×Rd
).

We may then compute the principal symbols and their gradients at an
arbitrary point (x0, x; ✓) on their respective domains of definition:

' = −x0�✓� + x✓ , ∇✓'
 = −x0

✓�✓� + x , ∇x'
 = (−�✓�, ✓)t;

'e = −x0!m(✓) + x✓ , ∇✓'e = −x0
✓

!m(✓) + x , ∇x'
e = (−!m(✓), ✓)

t;

' e = −x0�✓� + x✓ , ∇✓'
 e = −x0

✓�✓� + x , ∇x'
 e = (−�✓�, ✓)t.

Since ∇x'
● does not vanish on W●, ● ∈ { , e, e}, the function � as-

sociated with ' is SG-elliptic, hence ' is a classical SG-phase function
in the sense of Definition 3.6. Theorem 6.1 then defines (25) as a tem-
pered oscillatory SG-integral. From the principal symbols of ', we may
now reproduce the bounds on the singularities of �+ in terms of the

11Recall that the two-point function takes this form in di↵erence variables x =
y − y′.

12Indeed,

!m(✓) =
�

m2 + �✓�2 = �✓��1 + (�✓��m)−2 = �✓� ∞�
j=0

(−1)j(2j)!
(1 − 2j)(j!)2(4j)(�✓��m)−2j ,

where the series converges for �✓� > m, and therefore we have a polyhomogeneous
expansion.
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associated geometric sets C' and ⇤' given in [9, 35]. We find

C
 
' = �(0,0; ✓) ∶ ✓ ∈ (Rd

� {0})� ∪ �(±�x�, x;±�x) ∶ x ∈ Rd
� {0}, � > 0�,

C
e
' =

�
��
�
��
�

�

�
±x0, x;

±mx
�
x2
0 − �x�

2

�

�
∶ x0 ∈ R+, x ∈ Rd

, �x�
2
< x

2
0

�
��
�
��
�

,

C
 e
' = �(±�x�, x;±�x) ∶ x ∈ Rd

� {0}, � > 0�,

and ⇤' is, by Definition 3.11, the union of

⇤ ' = �(0,0;−�⇠�, ⇠) ∶ ⇠ ∈ Rd
� ∪ �(±�x�, x;−��x�,±�x) ∶ x ∈ Rd

� {0}, � > 0�,

⇤e
' =

�
��
�
��
�

�

�
±x0, x;

−m�x0�
�
x2
0 − �x�

2
,
±mx

�
x2
0 − �x�

2

�

�
∶ x0 ∈ R+, x ∈ Rd

, �x�
2
< x

2
0

�
��
�
��
�

,

⇤ e' = �(±�x�, x;−��x�,±�x) ∶ x ∈ Rd
� {0}, � > 0�.

As in [9], we may parametrize the e-component of ⇤' also as follows:

(26) ⇤e
' = �(±�!m(✓),±�✓;−!m(✓), ✓) ∶ ✓ ∈ Rd

, � > 0� .

Thus, Theorem 6.3 yields WFSG(�+) ⊆ ⇤', and, in fact, equality holds
true (see [9, 35]).

We now turn to a discussion of these sets. pr1(⇤
 
') yields the light-

cone, that is {(x0, x) ∶ �x0� = �x�}, and pr1(⇤̃
 e
' ) is simply the boundary

of the light-cone “at infinity”. Then, ⇤ ' and ⇤ e' are formed by attach-
ing those tangential co-vectors to the light-cones that have a negative
⇠0-component. On the other hand, pr1(⇤

e
') is formed by all the time-

like directions that satisfy �x�2 < x2
0. ⇤

e
' can also be understood by

considering (26) as a bundle over the second set of variables, the (neg-
ative)mass shell {−!m(✓), ✓}, reversing the role of fibre and base space.
This information - (schematically, in 1 + 1 dimensions) - is visualized
in Figure 4, consider also [9, 33, 35].
Obviously, ⇤ e and ⇤e are manifolds. The remaining ⇤ has a (bi-

Figure 4. The sets ⇤ ' ∪⇤
 e
' and ⇤e

' associated with '
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)conical singularity at (x0, x) = 0. This stems from the fact that '
is everywhere non-degenerate, except at all point of C' of the form
(0,0, ✓).

Therefore, the singular sets associated with the two-point function
(in fact, with any of the distinguished fundamental solutions to the
Klein-Gordon equation) provide an example of a SG-Lagrangian sub-
manifold, apart from a singularity at the origin. This singularity, how-
ever, is expected, since the it lies in the classical  -part of the La-
grangian. To allow also such kind of singularity, which arises, for in-
stance, in the construction of parametrices to hyperbolic Cauchy prob-
lems, one could pass to an extended version of the calculus of paired
Lagrangian distributions, see [29].

The previous example shows how SG-Lagrangian submanifolds, which
can be decomposed into two suitable submanifolds, one of which is Leg-
endrian, while the other one is Lagrangian, arise.

Appendix A. Manifolds with corners

In this appendix we will present some results from the analysis
on manifolds with corners that are employed in the study of SG-
Lagrangians. There are di↵erent definitions of manifold with corners,
see [28], and, e.g. [22, 23]. Since in the main part of this document
we only deal with finite-dimensional manifolds with corners, here we
shortly recall the approach of [23] in such a case, while in its original
formulation it is based on quadrants in general Banach spaces. Therein,
the results needed for our purposes (notably, Theorem A.17 below) are
explained in full detail, within the complete presentation of this theory.

Definition A.1. With d ∈ N, let ⇤ ⊆ {1, . . . , d}. The set

E
+
⇤,d = �

Rd, if ⇤ = �,

{x ∈ Rd∶xj ≥ 0, j ∈ ⇤}, otherwise,

is called (⇤-)quadrant of Rd. The notation E+j,d is used when ⇤ = {j}.
Obviously,

E
+
⇤,d = �

j∈⇤E
+
j,d.

The notion of di↵erentiability on open subsets of a quadrant of Rd

can be introduced exactly as on open subsets of Rd.

Definition A.2. Let U be an open subset of E+⇤,d, f ∶U → Rd′ a map,

and x ∈ U . Then, if there exists an element u ∈ L(Rd,Rd′) such that

lim
y→x

�f(y) − f(x) − u(y − x)�

�y − x�
= 0,

�.� denoting the standard Euclidean norms on Rd, Rd′ , f is said to be
di↵erentiable at x. In such a case, u is called di↵erential of f at x and
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is denoted by Jf(x). If f is di↵erentiable at every x ∈ U , f is said to
be di↵erentiable on U .

The notion of di↵erentiability and of di↵erential in Definition A.2
is well-defined and coincides with the ordinary one when ⇤ = �. The
basic properties and notions of di↵erentiability, such as continuous dif-
ferentiability and higher order di↵erentiability, carry over to this notion
of di↵erentiation on quadrants. In particular, we call f of class ∞, or
smooth (up to the boundary) in a (relatively) open subset U ⊂ Rd, de-
noted f ∈ C∞(U), if for every p ∈ N0 the maps Jpf ∶ (Rd)⊗p → Rd′ are
continuous and di↵erentiable at every x ∈ U .

Equivalent alternative definitions of smooth maps on E+⇤,d can be
given in terms of existence of extensions on open sets of Rd including
U , or on neighbourhoods in Rd of points x ∈ U , which are continuously
di↵erentiable of any order with respect to the standard notion, see [23],
Sections 1.1 and 2.1, for details.

Definition A.3. Let X be a set. The triple (U, ⌫,E+⇤,d) is a chart on
X if:

(1) U ⊆X;
(2) ⌫∶U → E+⇤,d is an injective map and ⌫(U) is an open set of E+⇤,d.

Let (U, ⌫,E+⇤,d), (U ′, ⌫′,E+⇤′,d) be charts on X. They are smoothly
compatible if U ∩U ′ = � or, if U ∩U ′ �= �,

(3) ⌫(U ∩ U ′) and ⌫′(U ∩ U ′) are open subsets of E+⇤,d and E+⇤′,d,
respectively;

(4) ⌫′○⌫−1∶⌫(U∩U ′)→ ⌫′(U∩U ′) and ⌫○⌫′−1∶⌫′(U∩U ′)→ ⌫(U∩U ′)
are smooth maps.

A collection A of smoothly compatible charts that cover X is called
a smooth atlas. As usual, two atlases A, A′ are called equivalent if
A∪A′ is an atlas, which yields an equivalence relation. An equivalence
class [A]∼ is called smooth di↵erentiable structure on X and the pair
(X, [A]∼) is called smooth manifold or a C∞-manifold, denoted simply
by X. If ⇤ cannot be chosen as empty, X is called a smooth manifold
with corners.

Given a C∞-manifold X, the set

{U ⊆X ∶ U is the domain of a chart on X}

is a basis for a topology on X. The space of smooth maps among C∞-
manifolds X and Y , denoted by C∞(X,Y ), is defined in a completely
similar fashion to the usual way. In particular the tangent bundle may
be defined in a neighbourhood U given by a chart as U × Rd, and
consequently over the full manifold by imposing contravariant trans-
formation behaviour. The di↵erential of a smooth map f ∶ X → Y in
local coordinates then induces a map df ∶ TX → TY .

Definition A.4. Let U be an open set of E+⇤,d.
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(1) For x ∈ E+⇤,d, ind(x) ∶= ind⇤(x) =#{j ∈ ⇤∶xj = 0};
(2) The set {x ∈ U ∶ ind(x) ≥ 1} is called boundary of U , and denoted

@⇤U = @U ;
(3) The set {x ∈ U ∶ ind(x) = 0} is called interior of U , and denoted

int⇤U = intU = U o.

It can be proved that the value ind(x) is invariant under smooth
di↵eomorphisms13, that is, it has an invariant meaning on a manifold
X. This implies that also the notions of boundary and interior are
invariantly defined on X. More generally, for any k ∈ N0, it is possible
to define @kX, the k-boundary of X, as the set of all points x ∈X such
that ind(x) ≥ k. We set @X ∶= @1X. Moreover, for any k ∈ N0, the
set {x ∈ X ∶ ind(x) = k} is denoted by BkX. The set B0X is called the
interior of X.

Example A.5. Consider d ∈ N, Bd = {y ∈ Rd∶ �y� ≤ 1}, and, for all
j ∈ {1, . . . , d}, (V +j , ⌫+j ,E+j,d), (V −j , ⌫−j ,E+j,d), where

● V +j = {y ∈ Bd∶ yj > 0}, V −j = {y ∈ Bd∶ yj < 0};

● ⌫
+
j (y) = (. . . , yj−1,

�

1 − (⋅ ⋅ ⋅ + y2j−1 + y2j+1 + . . . ) − yj, yj+1, . . . );
● ⌫

−
j (y) = (. . . , yj−1,

�

1 − (⋅ ⋅ ⋅ + y2j−1 + y2j+1 + . . . ) + yj, yj+1, . . . ).
Then, it turns out that

A = {(V
+
j , ⌫

+
j ,E

+
j,d)}j=1,...,n ∪ {(V −j , ⌫−j ,E+j,d)}j=1,...,n ∪ {(Bd

)
o
, id,Rd

)}

is a smooth atlas on Bn. Furthermore, the topology of of the manifold
(Bd, [A]) is the usual (subset) topology of Bd ⊂ Rd, @Bd = Sn−1, @2Bd =

�.

Proposition A.6. Let X, X ′ be C∞-manifolds, f ∶X → X ′ a di↵eo-
morphism. Then, for any k ∈ N, f(@kX) = @kX ′. In particular, if
@2X = �, f is a di↵eomorphism of @X onto @X ′.

It is well known that the finite Cartesian product of manifolds with-
out boundary is a natural, well-defined construction, which yields an-
other manifold without boundary. However, in the category of mani-
folds with boundary (i.e., @2X = �), there is no such a natural finite
product construction. It turns out that the category of manifolds with
corners is the suitable one in which to define finite Cartesian products.

Proposition A.7. Let X,X ′ be C∞-manifolds. Then, there exists a
unique C∞-structure [A] on X×Y such that, for every chart (U, ⌫,E+⇤,d)
on X and every chart (U ′, ⌫′,E+⇤′,d′) on X ′, (U ×U ′, ⌫ × ⌫′,E+⇤�⇤′,d+d′),
⇤ � ⇤′ = ⇤ ∪ {d + j′∶ j′ ∈ ⇤′}, is a chart of (X × X ′, [A]). The pair
(X ×X ′, [A]) is called the product manifold of X and X ′.

13A smooth di↵eomorphism is a smooth bijective map X → X whose inverse is
also smooth.
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Proposition A.8. Let X,X ′ be C∞-manifolds. Then, the following
statements hold true.

(1) The topology of the product manifold X×X ′ is the product topol-
ogy of those on X and X ′.

(2) For every (x, x′) ∈X ×X ′, ind(x, x′) = ind(x) + ind(x′).
(3) For all l ∈ N, @l(X ×X ′) = �

j+k=l
j,k≥0

@
j
X × @

k
X
′. Moreover, (X ×

X ′)o =Xo × (X ′)o.
Example A.9. This proposition allows us to construct a di↵erential
structure on Bd×Bs, s ∈ N, in terms of that in Example A.5, that turns
this set into a manifold with corners of codimension 2 such that

Bk(Bd
×Bs
) =

�
�������
�
�������
�

(Bd)o × (Bs)o k = 0

((Bd)o × Ss−1� ∪ �Sd−1 × (Bs)o� k = 1

Sd−1 × Ss−1 k = 2

� k > 2.

It is a remarkable aspect of this theory that the implicit function
theorem extends to manifolds with corners, under a rather mild (and
natural) additional condition on boundaries. In the next statement,
given a map f ∶X × Y → Z, for any (a, b) ∈ X × Y , we write d(a,b)f =
(dX(a,b)f, dY(a,b)f) with the linear morphisms dX(a,b)f ∶TaX → Tf(a,b)Z and

dY(a,b)f ∶TbY → Tf(a,b)Z.
Theorem A.10. Let X,Y,Z be C∞-manifolds, f ∶X ×Y → Z a smooth
map and (a, b) ∈X ×Y . Suppose that dY(a,b)f ∶TbY → Tf(a,b)Z is a linear
homeomorphism, and suppose that there are open neighbourhoods Va of
a and Vb of b such that f(Va × (Vb ∩ @Y )) ⊂ @Z.
Then there exist an open neighborhood Wa of a, an open neighbourhood
Wb of b and a unique map g∶Wa → Wb such that f(x, g(x)) = f(a, b)
for x ∈Wa. Furthermore:

(1) g(a) = b, and g is smooth on Wa;
(2) for every x ∈Wa, dY(x,g(x))f is a linear homeomorphism and

dxg = −(d
Y(x,g(x))f)−1 ○ dX(x,g(x))f.

We now state the definition of a submanifold (with corners) in this
setting.

Definition A.11. Let X be a C∞-manifold and X ′ ⊂ X. Then, X ′ is
a C∞-submanifold of X if, for every x′ ∈X ′, there exist:

(1) a chart (U, ⌫,E+⇤,d) of X such that x′ ∈ U and ⌫(x′) = 0;
(2) an integer d′ ∈ N, d′ ≤ d, and ⇤′ ⊆ {1, . . . , d′}, such that ⌫(U ∩

X ′) = ⌫(U)∩E+⇤′,d′ , and ⌫(U)∩E+⇤′,d′ is an open subset of E+⇤′,d′ .
In particular, Xo is an open submanifold of X and if @2X = �,

@X is a submanifold of X. In general, there is no relation between
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the boundary of X and that of a submanifold of X. This leads to
the definition of special submanifolds, whose boundaries have “good
positions” within the boundary of the ambient manifold.

Definition A.12. Let X ′ be a submanifold of X. Then:

(1) X ′ is a neat submanifold of X if @X ′ = (@X) ∩X ′;
(2) X ′ is a totally neat submanifold ofX if, for all x′ ∈X ′, indX′(x′) =

indX(x
′), that is, BkX

′ =X ′ ∩BkX for any k ∈ N0.

An equivalent condition for X ′ to be a totally neat submanifold of
X is that, for all x′ ∈X ′ ∩BkX,

@X
′
= (@X) ∩X

′ and Tx′X = (dx′j′)(Tx′X ′) + (dx′j)(Tx′BkX),

where j′∶X ′ � X and j∶BkX � X are the canonical inclusions. The
properties of being a neat or totally neat submanifold are invariant
under di↵eomorphisms.

Definition A.13. Let f ∶X →X ′ be a C∞-map and x ∈X. f is called
(smooth) immersion at x if there is a chart (U, ⌫,E+⇤,d) on X such that
⌫(x) = 0, and a chart (U ′, ⌫′,E+⇤′,d′) on X ′ with ⌫′(f(x)) = 0, such
that f(U) ⊆ U ′, ⌫(U) ⊂ ⌫′(U ′) and ⌫′ ○ f�U ○ ⌫−1∶⌫(U) → ⌫(U ′) is the
inclusion map. If f is an immersion ∀x ∈ X, it is called immersion on
X.

Theorem A.14. Let f ∶X →X ′ be a smooth map and x ∈X such that
f(x) ∈ (X ′)o. Then, the following statements are equivalent:

(1) f is an immersion at x;
(2) dxf is an injective map.

We now recall the definition of embeddings in this context, and de-
scribe how they can be characterized.

Definition A.15. Let f ∶X →X ′ be a map of class p. Then, f is called
embedding if it is an immersion and f ∶X → f(X) is a homeomorphism.

We may now give a characterization of embedded submanifolds.

Proposition A.16. Let X,X ′ be C∞-manifolds and f ∶X →X ′ a map.
Then, the following statements are equivalent:

(1) f is a smooth embedding;
(2) f(X) is a C∞-submanifold of X ′ and f ∶X → f(X) is a di↵eo-

morphism.

The next result, [23, Prop. 4.2.10], with which we conclude this
appendix, shows that also on manifolds with corners the solutions to
systems of equations give rise to submanifolds, provided that the cor-
responding di↵erentials are linearly independent.

Theorem A.17. Let X be a smooth manifold and f1, . . . , fs∶X → R
be C∞(X)-maps. Consider the set Y = {x ∈ X ∶f1(x) = ⋅ ⋅ ⋅ = fs(x) =
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0}, and suppose that, for every x ∈ Y , (dx(f1�BkX), . . . , dx(fs�BkX))

is a linearly independent system of elements of (Tx(BkX))
∗, where

k = ind(x). Then we have

(1) Y is a closed totally neat C∞-submanifold of X;
(2) Tx(j)(TxY ) = {v ∈ TxX ∶Txf1(v) = ⋅ ⋅ ⋅ = Txfn(v) = 0}, where

j∶Y →X is the inclusion map and x ∈ Y ;
(3) For all x ∈ Y , codimxY = s.
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