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ABSTRACT   

BACKGROUND. Air pollution and tobacco smoke can induce negative effects on the human 

health and often leads to the formation of oxidative stress.  

OBJECTIVE. The purpose of this study was to clarify the role of the urbanization degree 

and of passive exposure to tobacco smoke in the formation of oxidative stress. Thus, a group 

of non-smoking adolescents was recruited among those who live and attend school in areas 

with three different population densities. To each subject a spot of urine was collected to 

quantify 15-F2t isoprostane as a marker of oxidative stress and cotinine as a marker of 

passive exposure to tobacco smoke. Furthermore, respiratory functionality was also 

measured.  

RESULTS. Multiple Linear Regression analysis results showed a direct correlation 

(p<0.0001) of 15-F2t isoprostane with both the urbanization and passive smoke. Lung 

function parameters proved significantly lower for the subjects living in the most populous 

city of Torino.  

CONCLUSION. This remarks the negative effect that urbanization has on the respiratory 

conditions. Lastly, lung functionality presented a low inverse correlation with 15-F2t 

isoprostane, suggesting an independent mechanism than that of the urban factor. 

 

KEY WORDS: tobacco smoke, urban pollution, adolescents, oxidative stress, respiratory 

fluxes. 

ABBREVIATIONS 

PM = particulate matter 
15-F2t IsoP = 15-F2t-isoprostane 
SIDRIA = Italian Studies on Respiratory Disorders of Childhood and the Environment 
CREA = creatinine 
E.L.I.S.A. = Enzyme-Linked Immuno Sorbent Assay 
FVC = Forced vital capacity, 
FEV1 = forced expiratory volume in one second  
PEF = maximal expiratory flows at peak of FVC,  
FEF50 = maximal expiratory flows at 50% of FVC,  
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FEF25 = maximal expiratory flows at 25% of FVC, 
FEF25-75 = maximal expiratory flows among 25-75% of FVC  
MLR = Multiple linear regression 
C.I. = confidence interval 
 

Ethical considerations 
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informed on the objective of this study. A written informed consent was signed and delivered 

by each the participants’ parents. Thus, the participation of all the human subjects did not 

occur until after informed consent was obtained. However, the local ethics committee (ASL 

TO2, Turin Italy) has expressed a favorable opinion with practice number 826/13/08. 
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1. INTRODUCTION    

The airborne particulate matter (PM) has several origins, is formed in different places where 

its precursors may be different; thus it possesses various physico-chemical and toxicological 

properties (Götschi T. 2005; Hazenkamp-Von Arx, 2004; Traversi et al., 2008). Depending 

on type and quantity, the presence of airborne PM can determine deleterious effects on the 

global environment, cultural heritage, human activities and health (Fang et al., 2010; 

Henschel et al., 2012; Katsouyanni et al., 2009; Levy et al., 2012; Poschl, 2005; Raaschou-

Nielsen et al., 2013; Strak et al., 2012). To contain the problem, the European Union 

established air quality guidelines for PM as well as for other risky air pollutants (UNION, 

2008). At the same time, the research activities of the scientific community were focused on 

the urban air pollution and its potential risk for health (Bono et al., 2010; Bono R., 2001; 

Bono R., 2014; Cohen et al., 2005; Fraser et al., 2003; Tzivian, 2011), in search of the best 

preventive techniques against the onset of diseases related to air pollution.    

Exposure to urban air pollutants, whose concentration is partly dependent on proximity and 

intensity of traffic, is connected with the onset of asthma, development of respiratory 

allergies (Badyda et al., 2013; Ghio et al., 2012; Laumbach and Kipen, 2012), lung 

dysfunction (Kelly and Fussell, 2011; Wright and Brunst, 2013), inflammation, and 

exacerbation of other respiratory and cardiovascular problems (Mills et al., 2009). Numerous 

among these pathological conditions can be preceded or highlighted by the presence of 

internal dose markers, by biosynthesis of biological effects markers or, in some cases, by 

the formation of oxidative stress (Castro-Giner et al., 2009; Patel et al., 2013). An imbalance 

of the oxidative status is often a condition that precedes the onset of these respiratory 

diseases, and it is due to the exposure to airborne oxidants (Kelly et al., 2011; Sava and 

Carlsten, 2012) and a decreasing biosynthesis of endogenous antioxidant molecules (Yang 

W., 2009). To date, the mechanisms by which oxidants interact with molecules, cells, and 

tissue remain largely unclear. Remarkably, oxidative stress is also related to the 



5 
 

inflammatory response due to tobacco smoke (Doruk et al., 2011; Howard et al., 1998), 

which contains a complex mixture of mutagenic chemicals (Granella et al., 1996) able to 

promote lipid peroxidation (Kalra et al., 1991), protein and DNA oxidation (Vadhanam et al., 

2012; van Rijt et al., 2012). 

F2-isoprostanes, specific and stable products of lipid peroxidation (Basu, 2009), are non-

invasive biomarkers for in vivo investigations of oxidative stress status (Roberts and Morrow, 

2000; Romanazzi et al., 2013), airways inflammation (Basu, 2008) and asthma (Wedes et 

al., 2009). They can also be implicated in a larger number of human diseases, even if a clear 

correlation between many of these pathological conditions and oxidative stress is far from 

being proven (Giustarini et al., 2009). The determination of F2-isoprostanes levels in 

selected populations may help understanding the role that some environmental factors play 

in the expression of oxidative stress. In particular, the 15-F2t-isoprostane (15-F2t IsoP) can 

be monitored, since it has been proven capable to highlight different biological responses to 

environmental stimuli, particularly those concerning airborne chemicals (Bono 2014).  

Quantification of oxidative stress by means of F2-IsoPs has several advantages if compared 

to other biomarkers, including the one that its levels are unaffected by diet (Gopaul 2000, 

Jacob 2013). At this concern, Roberts and Morrow reported that urinary F2-IsoPs, in 

subjects consuming a normal diet, does not decrease after a four days diet consisting only 

of glucose (Roberts and Morrow, 2000), and Richelle refers that the lipid content of the diet 

does not affect the level of urinary F2-IsoPs (Richelle 1999). This aspect of F2-IsoPs is 

particularly useful when, as in this case, the role of the diet is not object of interest, although 

it is very important in the manifestation of oxidative stress. 

Finally, the relationship between biosynthesis of 15-F2t IsoP and levels of respiratory 

functionality, in relation to the environmental conditions of life, are still largely to deepen. 

That is, the purpose of this study was to clarify the role that some independent 

environmental, individual, and physiological variables have on the oxidative stress status of 
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a large population of healthy non-smoking adolescents, living in three different areas of the 

Piedmont region (northwestern Italy).  

 

2. MATERIALS AND METHODS  

15-F2t IsoP levels were studied in relation to the urbanization degree of the selected areas 

where the adolescents live and attend school, in order to understand the role that 

urbanization might play on oxidative stress formation. Any additional information, essential 

for the study, was collected through a questionnaire filled out by all the adolescents, after 

their parents or legal tutors had signed an informed consent. In detail: 

2.1. Sampling Sites. As shown in Figure 1, three geographic areas with different levels 

of urbanization and anthropization were chosen in the Piedmont region (northwestern Italy, 

25.401,56 km2): Torino, capital of Piedmont, a urbanized city with almost 900.000 

inhabitants (6.700 inhabitants/km2, 130,2 km2, 240 m. above sea level); Chivasso, a smaller 

and less urbanized city with about 26.000 inhabitants (507 inhabitants/km2, 51,3 km2 183 m 

above sea level); and Casalborgone, a rural site with 1880 inhabitants (93,3 inhabitants/km2, 

20,2 km2, 205 m above sea level). Due to the relative proximity with one another, the three 

locations do not have significant differences in climate, geography, altitude or social habits.  

2.2. Epidemiological sample. The epidemiological sample was prepared with the aim to 

represent the young population of the three locations of the Piedmont region. All subjects 

were volunteers recruited in lower secondary schools. In more detail, three schools were 

located in residential and commercial areas of the city of Torino and 214 subjects were 

recruited from there; one school was in Chivasso, where 119 subjects were recruited; one 

school was in the rural area of Casalborgone and 57 subjects were enrolled from there. 

Since all the students were minors, parents or legal tutors were asked to sign an informed 

consent. Sampling was carried out over the period from March to May 2012. Each 

adolescent was asked to fill out a questionnaire, perform a spirometry test to evaluate their 
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respiratory functionality, and provide a urine sample for the determination of 15-F2t IsoP and 

cotinine.  

Questionnaire. For each student, a short version of the questionnaire “SIDRIA” was 

prepared to acquire information on age, sex, place of residence, hobbies, therapies, and 

parent’s smoking habits (SIDRIA 1997). An interviewer administered the questionnaire 

during school hours, the same day the urine sampling and the spirometry took place.  

2.3. Biological samples and statistical analysis.  

2.3.1. Urinary cotinine. Cotinine measurement was carried out to quantify the 

passive exposure to tobacco smoke, which represents a possible factor of oxidative stress 

formation. A specimen of the first morning urine was collected from each volunteer and 

stored at -80 °C until analysis. Cotinine was measured by gas chromatography-mass 

spectrometry. The analytical procedure has been described in detail elsewhere (Bono R., 

2014). Cotinine concentrations were normalized to the urinary creatinine (CREA) levels, as 

usual for every urinary measurement.  

2.3.2. Urinary Isoprostane. 15-F2t IsoP was measured in urine by ELISA, as 

previously described (Romanazzi et al., 2013). A microplate kit specific for urinary 15-F2t 

IsoP (Oxford, MI, USA) was used following manufacturers’ instructions. The declared limit 

of detection is 0.2 ng/ml and the possible cross-reactivity of this method is fixed below 3%. 

To achieve better accuracy by the ELISA method, a dilution rate of 1:4 (v/v) was adopted 

(Romanazzi et al., 2013). 15-F2t IsoP concentrations were normalized to the CREA levels.  

2.3.3. Spirometry. According to the current standards (ATS/ERS 2005), maximal 

expiratory flow-volume curves were obtained while the subjects were in a standing position, 

wearing a nose clip and breathing into a pneumotachograph (Medicalgraphics). The 

instrument was calibrated with a 3-liter syringe. The measurements were repeated until the 

volume variability did not exceed 150 ml for at least 2 times. Forced vital capacity (FVC), 



8 
 

forced expiratory volume in one second (FEV1) and maximal expiratory flows at peak 50%, 

25% and among 25-75% of FVC (PEF, FEF50, FEF25, FEF 25-75)  were recorded (Bono 

et al., 1998; Miller M.R. and McKay R., 2005). 

2.3.4. Statistical analysis. Statistical analysis was carried out with the statistical 

package “Stata”version 12 SE for MS Windows® 64 bit). In table 1 descriptive statistics 

was reported per each location of sampling. A Box-Cox regression (Box GEP, 1964) was 

performed to find the power transformation that stabilize the variance and normalize the 

distribution.  

A Multiple linear regression (MLR) was carried out to assess the effect on covariates on 15-

F2t IsoP and lung function parametrers respectively, using 15-F2t IsoP or lung function 

parametrers as dependent variable, and  age, height, weight, gender (female as reference 

value), urinary cotinine, and sampling location as independent variables. A significant level 

(a two tailed P-value) of 0.05 (CI = 95%) was chosen for the statistical tests. For the final 

regression model, only variables that proved to be significant were selected.  

 

3. RESULTS 

The characteristics of the population enrolled in the study are described in table 1. Cohort 

numerousness, mean, and standard deviation (sd) and percentage (%) for gender, height 

and weight, age, and passive smoking exposure are reported per each investigated location 

where the adolescents live and attend school. All these parameters proved not to be 

statistically different among locations. Therefore, we could consider these individual 

characteristics as homogeneous in the three different sampling sites. 

In table 2, means and sd, minimum and maximum values of 15-F2t IsoP concentrations, 

normalized to the urinary creatinine values (ng/mg), are listed per sampling location. Torino 

is the area with highest mean value of 15-F2t IsoP in comparison to Chivasso e 

Casalborgone (p<0.001). Since Torino is the most densely populated site, this result 
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suggests the presence in the city of a possible “urban factor”: the greater the urbanization 

level, the higher the 15-F2t IsoP concentrations.  According to the Box-Cox regression 

results, the values of 15-F2t IsoP and urinary cotinine were subjected to a logarithmic 

transformation prior to execute the multiple linear regression (MLR) analysis. 

Running the MLR test allowed us to observe that sex, height and weight are not statistically 

significant in the model (p>0.050) and, therefore, were excluded from the computation of the 

final regression model. On the contrary, urinary cotinine, sampling location and age had a 

significant relationship with log 15-F2t IsoP (r2=0.37; p<0,001) and, thus used to compute 

the model (table 3). In particular, log 15-F2t IsoP adjusted for age and sampling site, proved 

to be positively correlated to cotinine, as shown in figure 2, with an estimated increase of 

17% for every increasing unit of cotinine concentration in a log scale.  

The mean value of log transformed 15-F2t IsoP concentrations, referring to the entire 

population, and adjusted for log cotinine and sampling site, significantly decreases of 6% for 

every year of age (figure 3).  

As stated above, the mean value of 15-F2t IsoP concentrations was significantly higher in 

the adolescents of Torino when compared to those who live in Chivasso (+12%) and 

Casalborgone (+51%). The adolescents living in Chivasso also presented higher 

concentrations in respect to those who live in Casalborgone (+34%). All the effects are 

orthogonal like (figure 4). 

Table 4 shows the marginal geometric means, adjusted for the covariates (age, gender, 

BMI), and the lower and upper limits at a 95% confidence interval (C.I.) of the lung function 

parameters per sampling location. All lung function parameters (volumes and flows), were 

significantly lower for the adolescents of Torino when compared to the other locations. 

Adjusting the concentrations for age, gender, BMI, and sampling location, the middle volume 

flow rates (FEF50 and  FEF 25-75) and FEV1/FVC% proved to be negatively correlated with 

the population density of the three sampling sites (figure 5); while the volumes FVC (mean 
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+0.002, CI 95% -0022 +0026) and FEV1 (CI 95% -0019 -0048 +0009) did not. This evidence 

can be accepted considering that, compared to the volumes, the flows are more sensitive, 

especially in the pediatric age. 

 

 

4. DISCUSSION.  

The main goal of this work was to highlight the role that the urbanization level of the location 

where people inhabit may have in the oxidative stress formation. Healthy non-smoking 

adolescents were chosen as target population. Three areas of the Piedmont region with 

different demographic and road-traffic intensity, though not very far from each other, were 

investigated: Torino (a big city), Chivasso (a small town), and Casalborgone (a small rural 

village). The oxidative stress level was monitored through the quantification of 15-F2t IsoP 

urinary concentration. Levels of this biomarker are unaffected by diet, an antioxidant factor, 

potentially confounding the relationship we have investigated. (Gopaul et al., 2000; Roberts 

and Morrow, 2000, Jacob et al. 2013, Richelle 1999). In particular, the diet is very similar 

among all the students because: a) they benefit from the same school lunch prepared by 

the same company according to the requirements imposed by nutritionists working at the 

local health authority to minimize oxidant food, b) all the students are white and of Caucasian 

ethnicity. This may mean that the diet consumed the previous evening at home is likely to 

be similar, c) although the three groups of students are different for population density, the 

distance between them does not exceed 50 kilometers and the altitude above sea level is 

the same.   

Since the passive exposure to tobacco smoke can also influence the oxidative stress level, 

urinary cotinine was measured to know the role of the tobacco in the onset of 15-F2t IsoP 

values and used it to adjust the relationship between 15-F2t ISoP and the urban factor.  

Finally, the respiratory function has also been taken into account as physiological factor 
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potentially able to be altered by the two environmental aspects regarded in the present 

study. The results showed the presence of a direct correlation between 15-F2t IsoP and the 

degree of urbanization of the areas where the adolescents live and attend school. This 

suggests that an “urban factor” plays a direct role in the synthesis of 15-F2t IsoP inducing its 

increase up to about 50%. Thus, the level of urbanization highlights a role of risk factor able 

to increase oxidative stress in adolescents, which proved to be a population particularly 

sensitive to even small environmental differences. 

Passive exposure to tobacco smoke and age of the subject proved to be other factors that 

can significantly influence the 15-F2t IsoP concentrations but while the exposure to passive 

smoke increases 15-F2t IsoP levels, the age leads to the opposed result. The latter effect 

has been recently observed in an independent population of a similar age (Bono R., 2014) 

but opposes to the general trend observed in adults. Indeed, recent scientific studies showed 

an increase in the intensity of oxidative stress with aging, and with the onset of many age-

related diseases, including Alzheimer (Bouzid MA, 2014; Jacob et al., 2013; Montine et al., 

2011). 

Another finding of this study is the significant lower level of respiratory fluxes in the 

adolescents living in Torino, in comparison to those living in less urbanized locations. This 

finding shows the responsibility of the higher level of urbanization of Turin in the reduction 

of respiratory flows. This aspect highlights, at the same time, an increase of respiratory risk. 

Furthermore, the three measures of fluxes (FEF 50, FEF 25-75, and FEV1/FVC), adjusted 

for age, gender, and BMI were negatively correlated to 15-F2t IsoP (p<0.047, p<0.013, 

p<0.005 respectively) when compared per sampling location (figure 5). This allows us to 

consider the low values of flux intensity as a respiratory condition inversely correlated with 

the onset of oxidative stress. This is true even after removing the effect of 15-F2t IsoP, which 

highlights the relationship of the respiratory effects from urbanization independent from 

inflammation and oxidative stress. Finally, we can conclude that the adolescents studied 
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show an increase in oxidative stress and a decrease in respiratory flow dependent from the 

urbanization and the tobacco smoke passively breathed. Thus, the evidence of this risky 

condition for public health may represent a platform for designing new preventive strategies 

against tobacco smoke exposure and urban pollution. 
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Table 1. Gender, age, height, weight, and number of passive smokers in the whole 
population and in three groups divided according to the three sites where the adolescents 
live and attend school. 
 

 TORINO 
(urban site) 

CHIVASSO 
(intermediate site) 

CASALBORGONE 
(rural site) 

TOTAL 

N 214 119 57 390 

Gender 
N (%) 

male n.  
(%) 

122 
(57%) 

male n. 
(%) 

64 
(53.8%) 

male n. 
(%) 

25 
(43.9%) 

male n. 
(%) 

211 
(54.1%) 

female n. 
(%) 

92 
(43%) 

female n.  
(%) 

55 
(46.2%) 

female n. 
(%) 

32 
(55.1%) 

female n. 
(%) 

179 
(45.9%) 

Height  
cm ± sd 

149.6 ± 9,3 154.0 ± 8.9 153.1 ± 9.8 151.7 ± 9.5 

Weight  
kg ± sd 

43.53 ± 11.0 47.3 ± 12.3 47.7 ± 12.2 45.4 ± 11.7 

Age  
years ± sd 

11.5 ± 0.8 12.7 ± 0.8 12.5 ± 0.6 12.0 ± 1.0 

Smoking 
habits  
N (%) 

passive 
70 

(32.7) 
Passive 

52 
(43.7%) 

passive 
24 

(42.1%) 
passive 

146 
(37.4%) 

not 
exposed 

144 
(67.3%) 

not 
exposed 

67 
(56.3%) 

not 
exposed 

33 
(57.9%) 

not 
exposed 

244 
(62.6%) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

Table 2. 15-F2t IsoP values in the three sampling locations. The three concentrations 

prove a direct relationship to population density: Turin, the most populated city, displays 

the highest mean value, Casalborgone, the rural site, the lowest. 
 

 15-F2t IsoP [ng/mg] 

 Mean ± sd min max 

TORINO  7.2 ± 4.0 < LOD * 37.0 

CHIVASSO 6.4 ± 5.4 < LOD * 39.8 

CASALBORGONE 4.8 ± 3.0 1.5 14.7 

TOTAL 6.5 ± 4.4 < LOD * 39.8 
* LOD = limit of detection. 15-F2t IsoP fixed to limit of detection (0.2 ng/ml) if ≤ of LOD. 
min = minimum value, max = maximum value, sd = standard deviation. Units of 15-F2t IsoP is nanograms of 
15-F2t IsoP every 1 mg of urinary creatinine. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

Table 3. Multiple linear regression parameters, with 95% confidence interval (C.I.), of log 
15-F2t IsoP as dependent variable and log (cotinine); age and sampling site as predictors.  
Note: gender, height, weight, and diet indicators, not signicant at 5% level, were excluded 
from the model. 15-F2t IsoP fixed to limit of detection (0.2 ng/ml) if ≤ of LOD (limit of 
detection). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Regression coefficient (95% C.I.) p< 

Urinary cotinine                                                             +0.158 (0.119-0.197) 0.0001 

Sampling sites 

Chivasso vs Casalborgone                +0.301 (0.152 –0.561) 0.0001 

Torino vs Casalborgone                    +0.414 (0.268 - 0.561) 0.0001 

Torino vs Chivasso+Casalborgone   +0.224 (0.108 - 0.338) 0.0001 

Age    -0.058 (-0.115 - -0.001) 0.050 



 

Table 4. Marginal geometric means with 95% confidence intervals (C.I.) of the lung function 
parameters by sampling site, as estimated by multiple regression analysis adjusted by sex, 
age, height, BMI index and log (cotinine).  

  
Means 

C.I. 95% 
p < 

  Lower limit Upper limit 

FVC (liters) 

Casalborgone 2.91 2.82 2.99  

Chivasso 2.88 2.82 2.95 0.22 

Torino 2.77 2.73 2.82 0.01 

FEV1 (liters) 

Casalborgone 2.62 2.53 2.71  

Chivasso  2.58 2.51 2.65 0.52 

Torino 2.39 2.34 2.44 0.01 

FEV1/FVC (%) 

Casalborgone 89.08 87.57 90.59  

Chivasso  89.54 88.31 90.77 0.37 

Torino 86.45 85.45 87.44 0.04 

MEF50 (liters/sec.) 

Casalborgone 3.53 3.30 3.75  

Chivasso  3.66 3.51 3.81 0.16 

Torino 3.19 3.07 3.32 0.02 

FEF25-75 
(liters/sec.) 

Casalborgone 3.15 2.96 3.34  

Chivasso  3.25 3.11 3.38 0.24 

Torino 2.80 2.68 2.91 0.02 

 

 



 

 

Figure 1. Map of the sampling sites. Torino, the capital of Piedmont region in Italy is a 
urbanized city with almost 900.000 inhabitants. Chivasso is a smaller and less urbanized 
city with about 26.000 inhabitants; Casalborgone is a rural site with 1880 inhabitants. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Figure 2. Plot of the relation between log 15-F2t IsoP and log cotinine, given age and 

sampling site.  
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Figure 3. Plot of the relation between log 15 F2t IsoP and age, given log (cotinine) and 
sampling site.  
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Figure 4. Marginal means and confidence intervals of 15-F2t IsoP levels measured in the 
three sampling sites, adjusted for log (cotinine) and age by means of multiple regression 
model (with log link). Casalborgone is the rural site, Chivasso the medium size city, Torino 
the big city. 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

1,2

1,3

1,4

1,5

1,6

1,7

1,8

1,9

2,0

CASALBORGONE CHIVASSO TORINO

lo
g
 1

5
-F

2
t-
Is

o
P



 
 
 
Figure 5. Marginal means and confidence intervals of lung function parameters by the three 
sampling sites, adjusted for age, height, gender, BMI and log (cotinine) by means of multiple 
regression model. A) FEF 50 -  Forced Expiratory Flow  at 50% of Forced Vital Capacity 
(FVC), B) FEF 25-75   mean forced expiratory flows at 25/75% of FVC, C) FEV1/FVC% = 
Forced expiratory volume in 1 second as % of FVC.  
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