2%, UNIVERSITA
%5 DEGLISTUDI
éE=" DITORINO

[T1S AperTO

AperTO - Archivio Istituzionale Open Access dell'Universita di Torino

Reasoning about Social Relationships with Jason

This is the author's manuscript

Original Citation:

Availability:
This version is available http://hdl.handle.net/2318/151905 since 2016-06-27T18:08:41Z
Publisher:

IFAAMAS

Terms of use:

Open Access

Anyone can freely access the full text of works made available as "Open Access". Works made available
under a Creative Commons license can be used according to the terms and conditions of said license. Use
of all other works requires consent of the right holder (author or publisher) if not exempted from copyright
protection by the applicable law.

(Article begins on next page)

22 February 2025

UNIVERSITA
DEGLI STUDI
DI TORINO

115 AperTO

Thisisthe author'sfinal version of the contribution published as:

Matteo Baldoni; Cristina Baroglio; Federico Capuzzimati. Reasoning about
Socia Relationships with Jason, in: Proc. of the 1st International Workshop
on Multiagent Foundations of Social Computing, SC-AAMAS 2014,
IFAAMAS, 2014, pp: 1-15.

The publisher's version is available at:
http://www.lancaster.ac.uk/staff/chopraak/sc-aamas-2014/

When citing, please refer to the published version.

Link to thisfull text:
http://hdl.handle.net/2318/151905

Thisfull text was downloaded from iris - AperTO: https://iris.unito.it/

iris - AperTO

University of Turin’s Institutional Research Information System and Open Access Ingtitutional Repository

Reasoning about Social Relationships with Jason

Matteo Baldoni, Cristina Baroglio, Federico Capuzzimati

Universita degli Studi di Torino — Dipartimento di Informatica
c.so Svizzera 185, 1-10149 Torino (Italy)
{matteo.baldoni,cristina.baroglio,federico.capuzzimati}@unito.it

Abstract. This work faces the problem of enabling an approach to agent
programming, which allows agents to seamlessly manage and work both
on social relationships and on abstractions which typically characterize
agents themselves, like goals, beliefs, intentions. A similar approach is
necessary in order to easily develop Socio-Technical Systems and provides
a basis for carrying on methodological studies on system engineering.
The paper presents an extension of JaCa(Mo) in which Jason agents can
reason on social relationships, that are represented as commitments, and
where Jason agents interact by way of special CArtAgO artifacts, which
reify commitment-based protocols.

Keywords: Commitments, Commitments, Agents and Artifacts, Social Rela-
tionships, Social Middleware, Jason, Implementation

1 Introduction

Socio-technical systems (STS) [34,14,32] support human users by mechanizing
processes and by aiding stakeholders in interacting with each other, e.g. for con-
tending resources, asking for co-working activities, or for assigning sub-units of
work. STS can be viewed as an evolution of computing [30] into social computing
[18], with a transition from an individualistic to a societal view, where notions
like social structure, role and norm come into play. They are organized in a set of
stacked layers (see Figure 1), the lowest concerning physical resources (the equip-
ment), the others concerning higher and higher abstractions and functionalities
(e.g. communication, application, business process). The topmost concerns the
laws and the regulations that govern the operation of the system (society).
Traditional approaches to software engineering do not fit the needs of STS,
which amount to large-scale, multi-party, cross-organizational systems, especially
those needs which concern the design of interaction and distributed computation
[32]. A common way to model user activities is by means of business processes.
Business processes, in their classic definition, are sets of structured, ordered
tasks. This approach does not naturally fit STS, one of whose main characteris-
tics is the autonomy of the involved parties, because business processes usually
also hard code the regulations of the system. As a consequence, regulations main-
tenance requires a modification of the components behavior and of the business

processes. The drawback is that system modularity is reduced and, in order to
upgrade the system, it is necessary that the components code be available. Our
claim is that not only there is the need for an explicit representation of the norms
that rule interaction in a system but that such layer should be integrated in the
system in the form of resources that are available to system components. That
is to say, the society level of STS should be realized by way of first-class objects
as well as the system components. Modeling them as resources, that are part
of the system at the same level of the system components, allows to dynami-
cally recognize, accept, refuse, modify, manipulate them, and decide whether to
conform to them, as advised in [17].

Many authors, e.g. [31,27,12], argue that a better way to model STS is by
way of Multi-Agent Systems. However, current frameworks and platforms, e.g.
[7,10,26,11,33], do not account for the social aspects of interaction. Again, they
dissolve STS topmost level into the business process level, spreading the inter-
action logic across the agents’ implementations. As before, the drawback is that
the autonomy of the parties is not preserved. Other proposals [24,31] account for
the social aspects of interaction but do not consider them as system resources.

This work provides an agent framework that includes the missing social level,
modeled by way of commitment-based interaction protocols [29,30] and where
commitments amount to social relationships among the parties. Following the
A&A meta-model [35,25] the social level is reified in a resource, that can be used,
observed, manipulated by the agents that are involved in the interaction. Prac-
tically, the proposal relies on the JaCaMo platform [8]: Jason agents interact by
way of commitment-based interaction protocols which are reified as CArtAgO
artifacts. Such artifacts represent the social state and provide the roles agents
enact. The use of artifacts enables the implementation of monitoring function-
alities for verifying that the on-going interactions respect the commitments and
for detecting violations and violators.

2 Modeling Social Relationships

In the 50’s, the Tavistock Institute of Human Relations developed a model of
work organization, characterized by the assignment of responsibilities, the decen-
tralization of work structures, the grouping of employees into mindful teams. The
model is called socio-technical design of socio-technical systems [34]. Inspired by
[32], we see STS as structured in three architectural macro-level (Figure 1): in-
frastructural, functional and socio-organizational. The first concerns hardware
equipment, software and data management; the second organizes activities, in-
volving actors and components; the third regulates and norms how actors can
use the system, their constraints, and the laws that rule the system.

Most of the Multi-Agent frameworks and platforms mix the third level with
the second, rather than explicitly accounting for a social layer of interaction,
and, thus, spread the interaction logic across the agents’ implementations. Con-
sider, for instance, the well-known JADE [7] and Jason [10], which respectively
rely on the object-oriented and on the declarative paradigms, and the way they

Laws Usage Policy S
Regulations

Norms Social Relationships

L <

Funcionalities

Business Processes .
Component Behaviours

\ v
Infrastructure

Hardware Operating Systems

Data Management Application software
A\ A

Fig. 1. Architectural macro-levels in a STS.

manage a simple interaction like the one captured by FIPA Contract Net Pro-
tocol (CNP). In the JADE example implementation [7, Sec. 5.4, page 100-107],
agents execute one of two behavior, named respectively ContractNetInitiator and
ContractNetResponder, that are the projections of the two roles of FIPA CNP.
These include the interaction rules and contain all the checks related to the flow
of messages, implemented based on finite state machines (FSMBehavior). These
behaviors are provided by the package jade.proto. In Jason [10, Sec. 6.3, page
130], the interaction rules are again split into the behaviors of the interacting
agents. Also in this case, and despite the declarative nature of Jason, each be-
havior contains a collection of plans, one for each of the interaction steps of the
protocol (like ¢fp and propose).

We propose to explicitly represent the third level of STS by representing
social relationships among the agents, i.e normatively defined relationships and
the expected patterns of interaction between two or more agents, resulting from
possession of the roles, and subject to social control by monitoring the observable
behavior. We envisage both agents and social relationships as first-class entities
that interact in a bi-directional manner. Social relationships are created by the
execution of interaction protocols and provide expectations on the agents’ be-
havior. It is, therefore, necessary to provide the agents the means to create and
to manipulate, and to observe, to reason and to deliberate on social relationships
so to take proper decisions about their behavior.

Specifically, we model social relationships as commitments [29]. A commit-
ment C(z,y,r,p) captures that the agent x (debtor) commits to the agent y
(creditor) to bring about the consequent condition p when the antecedent condi-
tion r holds. Antecedent and consequent conditions are conjunctions or disjunc-
tions of events and commitments. When r equals T, we use the short notation
C(x,y, p). Commitments have a regulative nature, in that debtors are expected to
behave so as to satisfy the engagements they have taken. This practically means
that an agent is expected to behave so as to achieve the consequent conditions
of the active commitments of which it is the debtor. Commitments satisfy the
requirement in [19] that in a system made of autonomous and heterogeneous

actors, social relationships cannot but concern the observable behavior . On the
other hand, they also satisfy the requirement in [17] of having a normative value,
consequently providing social expectations on the stakeholders’ behavior. As a
consequence, they can be used by agents in their practical reasoning together
with beliefs, intentions, and goals.

Commitments are manipulated by means of the standard operations create,
cancel, release, discharge, assign, delegate. As in [29], we postulate that discharge
is performed concurrently with the actions that lead to the given condition being
satisfied and causes the commitment to not hold. Delegate and assign transfer
commitments respectively to a different debtor and to a different creditor. The
interacting agents share a social state that contains commitments, and affect it
while performing their activities. In particular, a commitment-based interaction
protocols is a collection of actions, whose social effects are expressed in terms of
standard commitment operations [37,15].

In our proposal, the social state and the commitment-based interaction pro-
tocol together define the third level of an STS, accounting for the societal reg-
ulations which rule its functioning. The social relationships (commitments) are
reified as resources that are made available to the interacting agents, in the
very same way as other kinds of resources of an STS [32]. We do so by relying
on artifacts. The Agents and Artifacts (A&A) meta-model [35,25] extends the
agent paradigm with the artifact primitive abstraction. An artifact is a com-
putational, programmable system resource, that can be manipulated by agents.
The A&A paradigm provides ways for defining and organizing workspaces, i.e.
logical groups of artifacts, that can be joined by agents at run-time and where
agents can create, use, share artifacts to support their activities.

We interpret the fact that an agent uses an artifact as the explicit accep-
tance, by the agent, of the norms encoded by that artifact, and modeled by the
interaction protocol that the artifact reifies. The agent declares that will behave
in a way that complies with the protocol. The artifact can act as a monitor
of the interaction because the interaction is performed through its roles, and
detect violations that it can ascribe to the violator without the need of agent in-
trospection. Instead, in solutions that hard code the interaction rules, the check
necessarily requires agent introspection. Explicit acceptance of the interaction
rules is important also because it allows the interacting parties to perform prac-
tical reasoning, based on expectations: participants expect that the debtors of
commitments behave so as to satisfy the corresponding consequent conditions.

3 Programming social relationships in Jason

JaCaMo [3] is a platform integrating Jason (as an agent programming language),
CArtAgO (as a realization of the A&A meta-model), and Moise (as a support to
the realization of organizations). A MAS realized in JaCaMo is a Moise agent or-
ganization, which involves a set of Jason agents, all working in shared distributed
artifact-based environments, programmed in CArtAgO. CArtAgO environments
can be designed and programmed as a dynamic set of artifacts, possibly dis-

tributed among various nodes of a network, that are collected into workspaces.
By focusing on an artifact, an agent registers to be notified of events that are
generated inside the artifact, e.g. when other agents execute some action.

Jason [10] implements in Java, and extends, the agent programming language
AgentSpeak(L). Agents are characterized by a BDI architecture. Each of them
has an own belief base, which is a set of ground (first-order) atomic formulas.
Each has an own set of plans (plan library). It is possible to specify two types
of goals: achievement and test goals. An achievement goal (given as an atomic
formula prefixed by the ‘" operator) states that the agent wants to reach a state
where the specified formula holds. A test goal (prefixed by ‘?’) states that the
agent wants to test whether the associated atomic formula can be unified with
one of its beliefs. Agents can reason on their beliefs/goals and react to events,
amounting either to belief changes (occurred by sensing their environment) or
to goal changes. Each plan has a triggering event (an event that causes its
activation), which can be either the addition or the deletion of some belief or
goal. The syntax is inherently declarative. In JaCaMo, the beliefs of Jason agents
can also change due to operations performed by some agent of the MAS on the
CArtAgO environment, whose consequences are automatically propagated.

However, JaCaMo does not provide any support to the realization of the
STS social level. We need to introduce a way to reify the social relationships
and for turning changes to the social state into events on which agents can
reason and that may trigger the execution of plans. We did so by extending
the CArtAgO component with libraries for realizing artifacts that implement
commitment-based interaction protocols. The aim is to integrate Jason BDI
with social commitments. To this purpose, we leverage the connection between
Jason and CArtAgO, offered by JaCaMo, to model a class of artifacts that reify
the execution of commitment-based protocols, including their social state, and
that enable practical reasoning about social expectations, by means of commit-
ments. A commitment is represented as a term cc(debtor, creditor, antecedent,
consequent, status), where debtor and creditor are the identities of the involved
agents, while antecedent and consequent are the commitment conditions: the
debtor is responsible towards the creditor agent for the satisfaction of commit-
ment. Status is a further parameter that we use to keep track of the commitment
state. Following [23] the states of the commitment life cycle are: created, satis-
fied, violated, conditional, detached, expired, pending, terminated.

The social state of the ongoing interaction is mapped onto the belief base of
the agents which are focusing on the artifact: any modification of the former is
instantaneously propagated to the latter. The artifact is responsible for main-
taining the social state up-to-date, depending on the actions that are executed.
It updates the state of commitments, according to the commitment life cycle. It
provides such information to the focusing agents, by exploiting proper observable
properties, that are added to or removed from the artifact properties.

A protocol action is implemented as an artifact operation; its execution causes
the update of the social state, by adding new commitments or by modifying the
state of existing commitments. An agent that is focusing on an artifact can

execute protocol actions that are provided by the artifact itself: they can be
executed by the agent, if the enacted role matches with the role to which the
action is associated, otherwise the execution produces a failure. The check is
transparent to the agent.

We extend the language by allowing plan specifications whose triggering
events involve commitments, similarly to what done with beliefs. Commitments
can also be used inside a plan context or body. As a difference with beliefs com-
mitment assertion/deletion can only occur through the artifact. For example,
this is the case that deals with commitment addition:

+cc(debtor, creditor, antecedent, consequent, status) :
(context) + (body).

The plan is triggered when a commitment that unifies with the one on the
left hand side appears in the social state with the specified status. The syntax
is the standard for Jason plans. Debtor and Creditor are to be substituted by
the proper role names. A similar schema can be used in the case of commitment
deletion and in the case of addition (deletion) of social facts. Commitments can
also be used in contexts and in plans as test goals (7cc(...)) or achievement
goals (lee(...)). Addition or deletion of such goals can, as well, be managed by
plans. For example:

+lece(debtor, creditor, antecedent, consequent, status) :
(context) + (body).

The plan is triggered when the agent creates an achievement goal concerning
a commitment. Consequently, the agent will act upon the artifact so as to create
the desired social relationship.

For clarity, we report a couple of examples. The following is the plan by which
an agent, playing the role Participant, tries to achieve the goal of creating the
conditional commitment that in case its proposal is accepted, it will complete
the task unless some failure occurs.

1 +!cc(My-Role_.Id, Initiator_Role_Id , "accept",
2 "(done OR failure)", "CONDITIONAL")
3 : enactment_id (Role_Id) &
4 task (Task, Initiator_Role_Id)
<— !prepare_proposal (Task, Prop, Cost);

N o wo

propose (Prop, Cost, Initiator_Role_Id);
+my_proposal (Prop, Cost, Initiator_-Role_Id).

My_Role_Id unifies with the belief enactment_id(My-Role_1d), added as conse-
quence of a successful enactment. The plan context is that the agent actually
enacted the role Participant, and that the agent knows the task to be solved
—such knowledge is propagated by the artifact thanks to an observable property.
This is, instead, the plan that is triggered when the commitment that is created,
when the previous plan succeeds, changes state and becomes detached.

1 +cc(My Role_Id ,Initiator_Role_Id ,"true" ,"(done OR failure)" , "DETACHED")
2 enactment id(My_Id) & accept(My Role_Id)

3 <— ?my_proposal (Prop, Cost, Init_-Id);

4 !compute_result (Prop, Cost, Result);
5
6

if (Result == "fail") { failure (Init_Id); }
else { done(Result, Init_Id); }.

The realized JaCaMo extension tis inspired by 2COMM [2], which provides a
bridge between CArtAgO and JADE for realizing commitment protocols. From
an organizational perspective, a commitment protocol is structured into a set of
roles, representing different ways of manipulating the social state. By enacting a
role, an agent receives social powers by the artifact, whose execution has public
social consequences, expressed in terms of commitments. Figure 2 reports a UML

Agent Platform

CArtAgo
Agentld

A&A Platform
ﬂ]asg.g

AbstractTuple

Space
% oMM
<< Artifact >> Rol
CommunicationArtifact ole
Observable Properties # roleld: Roleld

enactedRoles: Role [1..."]
tset: TupleSet

Artifact Operations

+ in(message: Object): void
+ out(): Object
+enact(roleName: String)
+deact(roleName: String) Roleld

2..." | # artld: Artifactld
playerAgentld: Agentld

- roleName: String
- myRole: Role
- type: int

[~typeiint |
+ getCanonicalName(): String

<< Artifact >>
ProtocolArtifact
Observable Properties
socialState: SocialState
Artifact Operations

SocialFact

predicate: String
arguments: Object [0...*

+ getPredicate ()

+ setPredicate (pred: String)

+ getArguments ()

create (commit: Commitment)

discharge (commit: Commitment)
cancel (commit: Commitment)

release (commit: Commitment)) . .
assign (commit: Commitment, role: Role) + setArguments (list: Object [1..."])
delegate (commit: Commitment, role: Role) + getFact ()

assertFact (fact: LogicalExpression) 0.."
Tl

Commitment

SocialState

creditor: Roleld
debtor: Roleld

commitments: Commitment [0...*]
facts: SocialFact [0...*]

context: ProtocolArtifact

+ getFacts ()

+ getCommitments()

+ addFact (fact: SocialFact)

+ addCommitment (commit: Commitment)

+ removeFact (fact: SocialFact)

+ removeCommitment (commit: Commitment)
+ getContext()

antecedent: SocialFact [1...*]
consequent: SocialFact [1...*]

status : enum {created, discharged, ...}
, | + getCreditor()

-_| + setCreditor (role: Role)

+ getDebtor ()

+ setDebtor (role: Role)

+ getStatus ()

+ setStatus (status: enum)

Fig. 2. UML diagram of an excerpt of the JaCaMo extension.

diagram of the libraries that were realized for extending JaCaMo. The main
classes are:

— Class CommunicationArtifact (CA for short) provides the basic communica-
tion operations in and out for allowing mediated communication. CA extends

an abstract version of the TupleSpace CArtAgO artifact. CA also traces who
is playing which role by using the property enactedRoles. CA also provides
the operation enact which allows an agent to play a role. If the enactment
is successful, the artifact broadcasts the corresponding information to the
agents which focused on it.

— ProtocolArtifact (PA for short) extends CA and allows modeling the so-
cial layer with the help of commitments. It maintains the state of the on-
going protocol interaction, via the property socialState, a store of social
facts and commitments, that is managed only by its container artifact. This
artifact implements the operations needed to manage commitments (create,
discharge, cancel, release, assign, delegate). PA realizes the commitment life-
cycle and the assertion/retraction of facts. Operations on commitments are
realized as internal operations, that is, they cannot be invoked directly: the
protocol social actions will use them as primitives to modify the social state.

A commitment-based interaction protocol is an extension of PA which defines
the proper social and communicative actions as operations on the artifact itself.
Actions can have guards that correspond to context preconditions: each such con-
dition specifies the context in which the respective action produces the described
social effect. Following the CArtAgO syntax, protocol actions are tagged with
the Java annotation @QOPERATION ; this marks a public operation that agents
can invoke on the artifact. Thus, for protocol artifacts a method tagged with
@OPERATION corresponds to a social action. Our proposal adds the annota-
tion, @ROLE, that specifies which role(s) is (are) allowed to use that particular
action: this is the way in which we associate powers to the corresponding roles.

4 The Contract Net Protocol

In order to explain how to model social relationships with artifacts, and how to
use them in Jason agents, let us sketch a commitment-based implementation of
the well-known Contract Net Protocol. The reference protocol is:

cfp means create(C(initiator, participant, propose, accept \V reject))
accept means none

reject means release(C(participant, initiator, accept, done V failure))
propose means create(C(participant, initiator, accept, done \V failure))
refuse means release(C(initiator, participant, propose, accept V reject))
done means none

failure means none

none means that the only social consequence of the action is that it occurred.
The implementation is composed by the protocol artifact, that reifies the proto-
col itself and that maintains the evolution of the interaction, and by the agents
which enact the protocol roles, and use the artifact to interact. This is an excerpt
of the protocol artifact:

1 public class Cnp extends ProtocolArtifact {
2 private int numberMaxProposals = 10;

3 private int actualProposals = 0;

4 @OPERATION

5 @QROLE(name="initiator")

6 public void cfp(String task) {

7 Roleld initiator =

8 getRoleldByPlayerName (getOpUserName ());
9 this.defineObsProperty ("task", task,

10 initiator.getCanonicalName ());

11 Roleld dest = new Roleld("participant");

12 createAllCommitments (new Commitment(initiator , dest,
13 "propose", "accept OR reject"));

14 assertFact (new Fact("cfp", initiator , task));

}
16 @QOPERATION
17 @QROLE(name="initiator")
18 public void accept(String participant) {

19 Roleld participant =

20 getRoleIdByRoleCanonicalName (participant);
21 assertFact (new Fact("accept"),

22 participant .getCanonicalName ());

}
24 QOPERATION
25 QROLE(name="participant")
26 public void propose(String prop, int cost, String init) {

27 Proposal p = new Proposal (prop, cost);

28 Roleld participant = getRoleIdByPlayerName (getOpUserName ());
29 Roleld initiator = getRoleldByRoleCanonicalName (init);

30 p.setRoleld (participant);

31 defineObsProperty ("proposal", p.getProposalContent (),

32 p.getCost (), participant.getCanonicalName ());

33 createCommitment (new Commitment(participant , initiator ,

34 "accept", "done OR failure"));

35 assertFact (new Fact("propose", participant, prop));

36 actualProposals++;

37 if (actualProposals = numberMaxProposals) {

38 Roleld groupParticipant = new Roleld("participant");

39 createCommitment (new Commitment(initiator , groupParticipant,
40 "true", "accept OR reject"));

41

42 // ... other protocol operations

43 }

The operation ¢fp (identified by the CArtAgO Java annotation @QOPERATION)
is a social action which can be executed only by an agent playing the role initiator
(Java annotation @QROLE(name=“initiator”) in our implementation). It is used
to publish the task for the interaction session as an observable property of the ar-
tifact (this.defineObsProperty(“task”, task, initiator.getCanonicalName()). All
agents which focus on the artifact will have this information automatically added
to their belief base. The social effects of cfp are the creation of as many com-
mitments (createAllCommitments(new Commitment(initiator, dest, “propose”,
“accept OR reject”))) as participants to the interaction, and of a social fact
(assertFact(new Fact(“cfp”, initiator, task))). Similarly as above also these ef-
fects will be added to the agents’ belief bases. The operation accept requires
the initiator role. It asserts a social fact, accept, which causes the satisfaction
and the deletion of the previous commitment towards a specific participant.
The operation propose counts the received proposals and, when their number
is sufficient, signals this fact to the initiator by the creation of a commitment
(Commitment(initiator, groupParticipant, “true”, “accept OR reject”)) towards
the group of participants.

We now report and comment excerpts of Jason agents code. Let us begin
with the Initiator:

1 /+ Initial goals =/
2 !startCNP.

3 /+* Plans #/

4 +!startCNP : true

5 <— makeArtifact ("cnp","cnp.Cnp" ,[],C);

6 focus (C);

7 enact ("initiator").

8 +enacted (Id,"initiator" ,Role_Id)

9 <— +enactment_id (Role_Id);

10 lcc(Role_Id, "participant", "propose",

11 "(accept OR reject)","CONDITIONAL").
12 +!cc(My-Role_.Id, "participant", "propose",

13 "(accept OR reject)","CONDITIONAL")
14 <— .print("sending cfp");

15 .wait (2000);

16 cfp("task-one").

17 @commit [atomic]

18 +cc(My_Role_.Id, "participant", "true",

19 "(accept OR reject)", "DETACHED")

20 : enactment_id (My_Role_.Id) & not evaluated

21 <— +evaluated;

22 .wait (2000);

23 .findall (proposal (Content , Cost ,Id),

24 proposal (Content ,Cost ,Id),Proposals);
25 .min(Proposals , Winner) ;

26 +winner (Winner) ;

27 ?winner (proposal (Proposal ,Cost, Winner_Role_Id));
28 accept (Winner_Role_Id).

29 ... action ’reject’ for all other proposals
30 +cc(Participant_-Role_-Id , My_Role_.Id, "true",

31 "(done OR failure)", "DISCHARGED")
32 : done(Result)

33 <— .print("Task resolved: ", 6 Result).

34 +cc(Participant_Role_Id , My_Role_.Id, "true",

35 "(done OR failure)", "DISCHARGED")
36 : failure(Participant_-Role_Id)

37 <— .print("Task failed by ",Participant_role_id).

IstartCNP, line 2, is an initial goal, that is provided for beginning the inter-
action. In this implementation, the agent which plays the initiator role is in
charge for creating the artifact (makeArtifact(“cnp”, “cnp.Cnp”,[],C)) that will
be used for the interaction. The agent will, then, enact the role “initiator” (en-
act(“initiator”)); the artifact will notify the success of the operation by assert-
ing an enacted belief. Since the program contains the plan triggered by the
enacted belief, the initiator agent can, then, execute cfp. When enough partici-
pants will have committed to perform the task, in case their proposal is accepted
(ce(My-Role_Id, “participant”, “true”, “(accept OR reject”, “DETACHED?”), the
initiator agent evaluates the proposals and decides which to accept (we omit the
reject case for sake of brevity). Accepting a proposal is an action offered by
the CNP artifact; it will update the social state according to the social effects
devised for the action. For the participant agent:

1 /* Initial goals %/
2 Iparticipate.

3 /* Plans =/

4 +!participate : true

5 <— focusWhenAvailable("cnp");

6 enact ("participant").

7 +enacted (Id ,"participant" ,Role_Id)

8 <— +enactment_id (Role_Id).
9 +cc(Initiator_-Role_Id , My_Role_.Id, "propose",

10 "(accept OR reject)","CONDITIONAL")
11 : enactment_id (My_Role_Id)

12 <— lcc(My_Role_.Id, Initiator_-Role_Id , "accept",
13 "(done OR failure)", "CONDITIONAL").
14

15 +!cc(My_-Role_.Id, Initiator_Role_-Id , "accept",

16 "(done OR failure)", "CONDITIONAL")
17 : enactment_id (Role_Id) &

18 task (Task, Initiator_Role_Id)

19 <— l!prepare_proposal (Task, Prop, Cost);

20 propose (Prop, Cost, Initiator_-Role_Id);

21 +my_proposal (Prop, Cost, Initiator_Role_Id).
22 +cc(My_-Role_.Id, Initiator_Role_Id , "true",

23 "(done OR failure)", "DETACHED")

24 : enactment_id (My_Id) & accept(My_Role_Id)

25 <— ?my_proposal (Prop, Cost, Init_Id);

26 !compute_result (Prop, Cost, Result);

27 if (Result == "fail")

28

29 failure (Init_Id);

30 } else {

31 done (Result, Init_Id);

32 }.

33 +cc(My_-Role_.Id, Initiator_-Role_Id , "true",

34 "(done OR failure)", "DETACHED")

35 : enactment_id (My_-Role_.Id) & not accept(My-Id)
36 <— .print("proposal rejected").

37 +!prepare_proposal (Task,Prop, Cost)

38 <— .my-name(My_Id);

39 .concat ("proposal -" ,My_Id, Prop);

40 .random (C);

41 Cost = math.round (C*100).

42 +!compute_result (Prop, Cost, Result)

43 <— .random(Succ);

44 if (Succ < 0.5) {

45 .concat("fail" Result);

46 } else {

a7 .concat (Prop,"-",Cost,"-done" ,Result);

48 }.

A participant will wait for calls for proposal by means of the CArtAgO basic
operation focus WhenAvailable. As for the initiator, the participant agent reacts
to the commitment by the initiator agent, to accept or reject (a proposal), by
preparing a proposal or sending a refusal — we omit details for the sake of brevity.
When the participant realizes that the initiator has accepted a proposal, it checks
whether its proposal was accepted or rejected, behaving accordingly.

5 Discussion and Conclusions

Following [31], social relationships provide the invariants of an STS, and govern
the behavior of the peers taking part into it. The ability of the agents of reason-
ing on the social relationships is, thus, a fundamental element of STS. In order
to enable it, it is necessary to turn social relationships into system resources,
that can be handled by the participants to an interaction. In other words, so-
cial relationships are to be considered as first-class abstractions, at the same
level of the other abstractions used by the agents in their reasoning. Nowadays,
agent-oriented software engineers can choose from a substantial number of agent

platforms, e.g. [22,9,20,5]. The choice is related to heterogeneous factors, like:
scope and purpose of the system; formal model the platform is based on; richness
of the agent programming language (APL), if devised; platform support, main-
tenance and update; (graphical) tools for supporting design and development;
simplicity of integration with other (agent) programming languages. However,
while platforms and frameworks like JADE [6], TuCSoN [26], DESIRE [l1],
JIAC [33] provide coordination mechanisms and communication infrastructures
[9], they are not adequate to the purpose of realizing STS because they do not
account for the social level of the interaction.

The paper presented an extension of JaCaMo with a set of libraries which
realize the social level of STS, based on commitments and commitment-based
protocols. Jason agents are automatically notified of the updates to the social
state, and can reason about such events and trigger action plans exactly as they
do for beliefs, goals and the like. The advantages of the proposal are many. First
of all, thanks to the presence of reified interaction protocols, (1) agents result
being loosely coupled and (2) it is not necessary to hard code the logic of inter-
action inside each of them. In other words, the protocol implementation is not
distributed inside the agents’ code but the protocol is a separate resource. Agents
use their own behaviors to interact through the protocol resource, of course in
a way that complies with the protocol requirements. Protocols can be modi-
fied independently from agents. As a consequence the system maintainability is
increased and the autonomy of the agents is preserved.

We have already shown that this is not true in the case of JADE implemen-
tations and also for Jason [10, Sec. 6.3, page 130]. The use of JaCaMo, partly
overcomes these drawbacks by way of the artifact, which provides a communi-
cation board the agents can use. Protocol actions are clearly defined as public
operations, making the definition of protocols easier and modular. Still, an ex-
plicit notion of social relationship, that binds the interacting agents and thus
allows a form of reasoning that is based on social expectations, is missing. For
instance, [28, page 52] reports the plan:

1 +task (Task,CNPBoard) : task_descr (Task)

2 <— println("found a task: ", Task);
3 lookupArtifact (CNPBoard, BoardId);
4 focus (BoardId);

5 !make_bid (Task, BoardId).

the participant sends a bid after the assertion of a belief task(Task, CN P Board)
in the artifact, automatically propagated to its belief state. In other words, the
agent decides how to act merely on the basis of its own beliefs. If we consider the
analogous step in our implementation (lines 9-21), the bidding is performed only
as a consequence of a commitment by the initiator. The use of commitments
gives a normative characterization to coordination [13,29], and allows reasoning
about the agents’ behavior [17]. The enactment entails the acceptance of the
norms encoded via commitments, thus, our proposal realizes also the topmost
layer of Figure 1, Society, while JaCaMo stops at the Functionalities level.

The proposal implements the desiderata for a Multi-agent System layered
architecture in [16]. There, in order to better deal with cross-organizational busi-

ness processes, the authors support a middleware giving the agents the possibility
to reason directly on commitments. We do this with Jason agents: a Jason agent
which enacted a protocol role is automatically notified, in its belief base, of the
changes occurred in the social state. As a result, the agent can plan its behavior
based also on this information. The artifact can also play the role of a monitor
of the on-going interaction. This can be done because the only way for changing
the social state is by way of the social actions. The monitoring functionality aims
at verifying that the social commitments are satisfied. At the end of the interac-
tion, those commitments that remain unsatisfied raise an exception. As such, the
work sets along the line of [1] with the advantage that the use of commitments
instead of global session types preserves the autonomy of the agents.

We believe this proposal to be an interesting basis for future developments;
in particular, for studies aimed at identifying effective and efficient methodolo-
gies for engineering STS. The approach can also support extensions to richer
norm expressions, that may for instance account for more complex conditions
inside commitments (see [21]) or for richer languages where other kinds of con-
straints can be specified (see [1]). Finally, another interesting future development
concerns the introduction of an agent typing system, along the lines of [3].

Acknowledgements

We thank the anonimous reviewers for their comments which were extremely
helpful for improving the paper.

References

1. Davide Ancona, Sophia Drossopoulou, and Viviana Mascardi. Automatic gener-
ation of self-monitoring mass from multiparty global session types in jason. In
DALT, volume 7784 of LNCS, pages 76-95. Springer, 2012.

2. Matteo Baldoni, Cristina Baroglio, and Federico Capuzzimati. 2COMM: a
commitment-based MAS architecture. In Post-Proc. of EMAS 2013, Revised Se-
lected and Invited Papers, number 8245 in LNAI, pages 38-57. Springer, 2013.

3. Matteo Baldoni, Cristina Baroglio, and Federico Capuzzimati. Typing Multi-Agent
Systems via Commitments. In Proc. of the 2nd Int. Workshop on Eng. MAS,
EMAS, 2014.

4. Matteo Baldoni, Cristina Baroglio, Elisa Marengo, and Viviana Patti. Constitutive
and Regulative Specifications of Commitment Protocols: a Decoupled Approach.
ACM Trans. on Intelligent Sys. and Tech., Special Issue on Agent Communication,
4(2):22:1-22:25, March 2013.

5. Matteo Baldoni, Cristina Baroglio, Viviana Mascardi, Andrea Omicini, and Paolo
Torroni. Agents, multi-agent systems and declarative programming: What, when,
where, why, who, how? In 25 Years GULP, volume 6125 of Lecture Notes in
Computer Science, pages 204—230. Springer, 2010.

6. Fabio L. Bellifemine, Federico Bergenti, Giovanni Caire, and Agostino Poggi. JADE
- A Java Agent Development Framework. In Multi- Agent Programming: Languages,
Platforms and Applications, volume 15 of Multiagent Systems, Artificial Societies,
and Simulated Organizations, pages 125-147. Springer, 2005.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

Fabio L. Bellifemine, Giovanni Caire, and Dominic Greenwood. Developing Multi-
Agent Systems with JADE. John Wiley & Sons, 2007.

Olivier Boissier, Rafael H. Bordini, Jomi F. Hiibner, Alessandro Ricci, and Andrea
Santi. Multi-agent oriented programming with JaCaMo. Science of Computer
Programming, 78(6):747 — 761, 2013.

Rafael H. Bordini, Lars Braubach, Mehdi Dastani, Amal El Fallah-Seghrouchni,
Jorge J. Gémez-Sanz, Jodao Leite, Gregory M. P. O’Hare, Alexander Pokahr, and
Alessandro Ricci. A survey of programming languages and platforms for multi-
agent systems. Informatica (Slovenia), 30(1):33-44, 2006.

Rafael H. Bordini, Jomi Fred Hiibner, and Michael Wooldridge. Programming
Multi-Agent Systems in AgentSpeak Using Jason. John Wiley & Sons, 2007.
Frances M. T. Brazier, Barbara M. Dunin-Keplicz, Nick R. Jennings, and Jan
Treur. Desire: Modelling Multi-Agent Systems in a Compositional Formal Frame-
work. Int. J. of Cooperative Information Systems, 06(01):67-94, March 1997.
Paolo Bresciani and Paolo Donzelli. A practical agent-based approach to require-
ments engineering for socio-technical systems. In AOIS, volume 3030 of Lecture
Notes in Computer Science, pages 158-173. Springer, 2003.

Cristiano Castelfranchi. Principles of Individual Social Action. In Contemporary
action theory: Social action, volume 2, pages 163-192, Dordrecht, 1997. Kluwer.
Albert Cherns. Principles of Socio-Technical Design. Human Relations, 2:783-792,
1976.

Amit K. Chopra. Commitment Alignment: Semantics, Patterns, and Decision Pro-
cedures for Distributed Computing. PhD thesis, North Carolina State University,
Raleigh, NC, 2009.

Amit K. Chopra and Munindar P. Singh. An Architecture for Multiagent Systems:
An Approach Based on Commitments. In Proc. of ProMAS, 2009.

Rosaria Conte, Cristiano Castelfranchi, and Frank Dignum. Autonomous Norm
Acceptance. In ATAL, volume 1555 of LNCS, pages 99-112. Springer, 1998.
Fabiano Dalpiaz, Amit K. Chopra, and Soo Ling Lim. The 1st int. workshop on
requirements engineering for social computing. In RESC, page 1. IEEE, 2011.
Mehdi Dastani, Davide Grossi, John-Jules Ch. Meyer, and Nick A. M. Tinnemeier.
Normative Multi-agent Programs and Their Logics. In KRAMA.S, volume 5605 of
LNCS, pages 16-31. Springer, 2008.

Michael Fisher, Rafael H. Bordini, Benjamin Hirsch, and Paolo Torroni. Compu-
tational logics and agents: A road map of current technologies and future trends.
Computational Intelligence, 23(1):61-91, 2007.

Elisa Marengo, Matteo Baldoni, Cristina Baroglio, Amit K. Chopra, Viviana Patti,
and Munindar P. Singh. Commitments with regulations: reasoning about safety
and control in regula. In AAMAS, pages 467-474. IFAAMAS, 2011.

Viviana Mascardi, Maurizio Martelli, and Leon Sterling. Logic-based specification
languages for intelligent software agents. TPLP, 4(4):429-494, 2004.

Felipe Meneguzzi, Pankaj R. Telang, and Munindar P. Singh. A first-order formal-
ization of commitments and goals for planning. In AAAIL AAAI Press, 2013.
Felipe Rech Meneguzzi and Michael Luck. Norm-based behaviour modification in
bdi agents. In AAMAS (1), pages 177-184. IFAAMAS, 2009.

Andrea Omicini, Alessandro Ricci, and Mirko Viroli. Artifacts in the A&A meta-
model for multi-agent systems. Autonomous Agents and Multi-Agent Systems,
17(3):432-456, 2008.

Andrea Omicini and Franco Zambonelli. TuCSoN: a coordination model for mobile
information agents. In Ist Int. WS on Innovative Internet Information Systems
(1115798), pages 177-187. IDI — NTNU, Trondheim (Norway), 8-9 June 1998.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

Davide Porello, Davide Setti, Roberta Ferrario, and Marco Cristani. Multiagent
Socio-Technical Systems. An Ontological Approach. In Proc. of the 15th Int. Work-
shop COIN, pages 1-15, 2013.

Alessandro Ricci and Andrea Santi. Cartago by ex-
ample. http://www.emse.fr/ boissier /enseignement /-
maopl3/courses/cartagoByExamples.pdf.

Munindar P. Singh. An ontology for commitments in multiagent systems. Artif.
Intell. Law, 7(1):97-113, 1999.

Munindar P. Singh. A social semantics for agent communication languages. In
Issues in Agent Communication, volume 1916 of LNCS, pages 31-45. Springer,
2000.

Munindar P. Singh. Norms as a basis for governing sociotechnical systems. ACM
Trans. on Int. Sys. and Tech. (TIST), 5(1):22:1-22:21, December 2013.

Ian Sommerville. Software Engineering. Addison-Wesley, 9 edition, 2010.
Alexander Thiele, Thomas Konnerth, Silvan Kaiser, Jan Keiser, and Benjamin
Hirsch. Applying JIAC V to Real World Problems: The MAMS Case. In MATES,
volume 5774 of LNCS, pages 268-277. Springer, 2009.

Eric Trist. The FEwvolution of Socio-technical Systems: A Conceptual Framework
and an Action Research Program. 1981.

Danny Weyns, Andrea Omicini, and James Odell. Environment as a first class
abstraction in multiagent systems. Autonomous Agents and Multi-Agent Systems,
14(1):5-30, 2007.

Brian Whitworth and Adnan Ahmad. Socio-Technical System Design. The Inter-
action Design Foundation, Aarhus, Denmark, 2013.

P. Yolum and M. P. Singh. Commitment Machines. In Intelligent Agents VIII, 8th
Int. WS, ATAL 2001, volume 2333 of LNCS, pages 235-247. Springer, 2002.

	Reasoning about Social Relationships with Jason

