
02 May 2024

AperTO - Archivio Istituzionale Open Access dell'Università di Torino

Original Citation:

Typing Multi-Agent Systems via Commitments

Publisher:

Published version:

DOI:10.1007/978-3-319-14484-9

Terms of use:

Open Access

(Article begins on next page)

Anyone can freely access the full text of works made available as "Open Access". Works made available
under a Creative Commons license can be used according to the terms and conditions of said license. Use
of all other works requires consent of the right holder (author or publisher) if not exempted from copyright
protection by the applicable law.

Availability:

Springer

This is the author's manuscript

This version is available http://hdl.handle.net/2318/151906 since 2016-06-28T17:12:50Z

This is the author’s final version of the contribution published as:

Matteo Baldoni, Cristina Baroglio, and Federico Capuzzimati Typing Multi-
Agent Systems via Commitments. In F. Dalpiaz, J. Dix, and M. B. van
Riemsdijk, editors, Post-Proc. of the 2nd International Workshop on En-
gineering Multi-Agent Systems, EMAS 2014, Revised Selected and Invited
Papers, number 8758 in LNAI, pages 388-405. Springer, 2014. ISBN:
9783319144832, DOI: 10.1007/978-3-319-14484-9.

The publisher’s version is available at:
http://dx.doi.org/10.1007/978-3-319-14484-9

When citing, please refer to the published version.

Link to this full text:
http://hdl.handle.net/2318/151906

This full text was downloaded from iris -AperTO: https://iris.unito.it/

iris-AperTO
University of Turin’s Institutional Research Information System and Open Access Institutional Repository

Typing Multi-Agent Systems via Commitments

Matteo Baldoni, Cristina Baroglio, Federico Capuzzimati

Università degli Studi di Torino — Dipartimento di Informatica
c.so Svizzera 185, I-10149 Torino (Italy)

{matteo.baldoni,cristina.baroglio,federico.capuzzimati}@unito.it

Abstract. This work presents an agent typing system, that differently
than most of other proposals relies on notions that are typical of agent
systems instead of relying on a functional approach. Specifically, we use
commitments to define types. The proposed typing includes a notion of
compatibility, based on subtyping, which allows for the safe substitution
of agents to roles along an interaction that is ruled by a commitment-
based protocol. Type checking can be done dynamically when an agent
enacts a role. The proposal is implemented in the 2COMM framework
and exploits Java annotations. 2COMM is based on the Agent & Artifact
meta-model, exploit JADE and CArtAgO, by using CArtAgO artifacts
in order to reify commitment protocols.

Keywords: Commitments, Static and dynamic type checking, Agents and Ar-
tifacts, JADE, Implementation

1 Introduction

Software infrastructures are quickly changing, becoming more and more global,
pervasive and autonomic. Computing is becoming ubiquitous, with embedded
and distributed devices interacting with each other. Multi-Agent Systems (MAS)
have been recognized to be a promising paradigm for this kind of scenarios,
however, as the complexity of programming these systems increases, the need
for effective tools for reasoning on properties of programs becomes stronger and
stronger. This is particularly true in the case of open systems, where heteroge-
neous and autonomously developed agents may need to interact. MAS usually
rely on interaction protocols (or other kinds of “contract”) to specify the in-
teracting behavior that is expected of the agents. How can, then, an agent, a
designer, the system verify that the agent has the the means for carrying on the
encoded interaction? How to decide whether the agent is capable of behaving in
a certain way or whether it shows specific skills/properties?

One way is to rely on some typing of agents, in a way that is similar to the typ-
ing of objects. Typing provides abstractions to perform sophisticated forms of
program analysis and verifications: it helps performing compile-time/run-time
error checking, modeling, documentation, verification of conformance and of
compliance, reasoning about programs and components. It also allows a sim-
ple form of (a priori/runtime) verification. To the best of our knowledge, Zapf

and Geihs [34] were the first to propose the use of a type system for (mobile)
agents, and they also introduced the idea of using sub-typing for the substitution
of more specific subclasses in places where more general classes are expected,
thus supporting safe extension and program re-use. More recent examples in-
clude [18,19,1,26]. In particular, [26] describes an agent-oriented programming
language with a type checking that is inspired by mainstream object-oriented
languages, and [1] uses global session types for realizing monitors of the interac-
tion.

Differently than [18,19,26], we believe that, since types are abstraction tools
for easily programming and modeling, for typing MAS it is necessary to rely
on concepts that are typical abstractions of MAS, rather than relying on ab-
stractions from other programming paradigms. Similarly to [1], our proposal is
centered around interaction, which we believe to be one essential aspect of MAS.
Differently than [1], we rely on commitments rather than on global session types.
Commitments [13,28] are one of the fundamental abstractions for ruling agent
interaction while preserving agent autonomy. For this reason, we discuss how
commitments can be used for typing MAS and why it is interesting to rely on
them. Specifically, we report the first steps towards a definition of a behavioral-
based typing system for autonomous agents. The proposal is not bound to a
specific agent programming language but, rather, it can be implemented in dif-
ferent frameworks. In the paper we describe an implementation in 2COMM [2].
The paper is organized as follows. Section 2 reports and comments the relevant
literature motivating our proposal. Section 3 describes the 2COMM system that
we used for the implemantation. Section 4 introduces the type system, while
Section 5 describes its implementation. Conclusions end the paper.

2 Background and Motivation

The notion of “typing an agent” requires a precise, crisp definition. In pro-
gramming languages, type systems are used to help designers and developers in
avoiding code errors, bugs, that can entail unpredictable results. Type systems
can be weak or strong, static or dynamic, but at the end they all share the same
goal: support the development of error-free and human-readable code.

Most agent system implementations (JADE [9], Jack [20], A-Globe [29]) are
based on programming languages like Java and do not supply agent type support
but rather rely on the typing system of the language used for developing the
system. Zapf and Geihs [34] underlined the importance of using a type system
which allows dynamic type checking and proposed to base agent typing (1) on the
externally visible actions of the agents, that they identify as being the messages
agents accept and send, (2) on the meaning of the messages agents can exchange
which includes, through the special symbol self, a characterization of the agent
itself, (3) on the used communication protocol. They structure an agent type as
a triple. The first component is the syntactic type, which is stateless and consists
of the set of the input messages and of the set of output messages. The second
is a transition type, i.e. a finite state automaton capturing a communication

protocol similarly to regular types [22]. The third and last component is the
semantic type, an annotation aimed at checking behavior-compatibility, based
on J. F. Sowa’s conceptual graphs.

We agree on the importance of dynamic type checking for verifying that
an agent fits the requirements for interacting in an open MAS in the moment
the agent decides to enter the interaction, because it may have the required
properties only when it enters the system; on the importance of relying only on
externally visible actions, because the agents’ internal states are not inspectable;
on the importance of accounting for the interaction protocol, because it captures
the rules of encounter of the agents, ruling their interaction. What we disagree
with is the solution adopted by the authors of relying on finite state automata
for describing the interaction as well as for describing the agents’ behavior. This
hinders the agent’s autonomy in two ways. The first reason is that agents must
supply a description of their behavior. Secondly, this description concerns how
to do things, rather than what to do: it is prescriptive. An agent may have
the possibility (and the capability) of doing something in different ways. We
think that the typing system should be capable of featuring a more flexible
representation of the behavior, with the possibility of leaving the choice of how
to act up to the agent.

The main claim of [1] is the importance of using interaction protocols for
representing the functioning of a system. To this aim, they use global session
types as an abstraction tool, which allows automatically generating monitors
that are aimed at verifying the correctness of on-going, multi-party interactions.
In particular, the global session type is used to automatically generate a monitor
agent, which intercepts all the exchanged messages and verifies whether the
protocol is respected. This proposal is implemented in Jason [12]; a global session
type is represented by a cyclic Prolog term, which is consumed as messages are
sniffed. Along the line of the previous proposal, [1] focuses on externally visible
actions (message exchanges) and on the use of interaction protocols. It differs
from the previous one in that there is no actual type system, but rather global
session types are used for specifying the interaction of a system from a global
perspective. Since agents are not typed, when they enter a system, it is not
possible to verify whether their behavior is compatible with the protocol nor
it is possible to search for agents showing characteristics which allow them to
successfully take part to the system. It is up to the monitor agent to check
the exchanged messages. This is surely an important functionality but it is not
type checking. In other words, the representation does not clearly express what
an agent can do nor what is expected of an agent. Moreover, we disagree with
the choice of realizing the monitor as an agent. In order for the system to be
transparent, the monitor should be inspectable by the interacting agents, and the
infrastructure should guarantee that the monitor is notified of all the exchanged
messages. We believe that the environment should supply proper monitoring
services, or an artifact, but not another autonomous agent.

Ricci and Santi [25,26] defined the SimpAL language, where types are seen
as useful for realizing integrated development environments, and they imple-

mented an Eclipse plugin [27]. The approach to typing is a classic one, grounded
on interfaces. This is the way in which most programming languages assure co-
herence, and prevent (statically) or detect (dynamically) logical errors. SimpAL
extends the notion of interface to the agent abstraction level, introducing the
notion of role as a collection of tasks, that an agent is capable to perform. A role
will be implemented by an agent script, containing the behavioural logic of the
agent. Specifically, a SimpAL role is an interface, while a role task is a method
signature, which includes a list of formal parameters needed for its completion,
that are expressed as pairs �name : Type�. SimpAL provides environment typ-
ing and organizational typing too, used for programming coordination, resources
and interactions between agents.

A typing of agents merely based on syntactic interfaces is criticized in [34],
where the authors explain how conventional typing does not suffice the context
of agent systems. The critic bases upon work by Nierstrasz [22] on active objects,
that showed how the enumeration of the possible input and output messages is
not sufficient to guarantee the interoperability. It is advisable to rely, instead,
on some sort of behavioral type, including semantic information. Moreover, in
SimpAL agent type checking is static. This is not a major concern in a homoge-
neous, single application environment. However, in an open MAS, where agents
may be composed dynamically, static type checking is not enough; instead, it
is necessary to rely on dynamic type checking and on monitoring. In this set-
ting, agents themselves may verify their conformance to a role in order to decide
whether to enter an interaction as well as to decide whether adopting new be-
haviors. As a consequence, the notion of type not only is a tool that supports
the programmer’s work but it becomes an programming element, that is used
by agents in order to take decisions.

The proposal that we present in this paper concerns an agent typing system,
which is characterized by (1) being based on typical agent society abstractions
(social relationships), (2) being based on the agents’ observable behavior, (3)
dynamically checking if agents satisfy role requirements, (4) supplying a run-
time monitoring environment. The implementation is provided in 2COMM, a
middleware for developing open MAS whose interaction is commitment-based [2],
which combines the well-known JADE [9] and CArtAgO [24] platforms. JADE
agents interact based on commitment protocols. Each interaction protocol is
realized as a CArtAgO artifact. Such an artifact provides social relationships as
environmental resources. Dynamic checks are realized based on Java annotations.

3 Reference Framework

This proposal relies on the 2COMM middleware [2,3] for developing Multi-Agent
Systems. In 2COMM, the MAS is specified as a set of social relationships, that
govern the behavior of the agents taking part into the system. In a system
made of autonomous and heterogeneous actors, social relationships cannot but
concern the observable behavior [17]: for this reason, and in order to give them

that normative value which allows them to create social expectations, we realize
social relationships by means of commitments [28].

On the other hand, we need social relationships to be accepted explicitly by
the participants to the interaction, and possibly to be inspected by the agents,
in order to decide whether conforming to them. To this aim, we need to explic-
itly model social relationships as resources, that are available to the interacting
peers. Given that agents and social relationships are both first-class entities, that
interact in a bi-directional manner, we adopt the Agents and Artifacts (A&A)
meta-model [32,23], that extends the agent paradigm with another primitive
abstraction, the artifact. A&A provides abstractions for environments and arti-
facts, that can be acted upon, observed, perceived, notified, and so on. When
embodied inside artifacts, social relationships can be examined by the agents (to
take decisions about their behavior), as advised in [14], used (which entails that
agents accept the corresponding regulations), constructed, e.g., by negotiation,
specialized, composed, and so forth.

2COMM1 [2] provides a middleware for programming social relationships, by
exploiting a declarative, interaction-centric approach. It is based on a combina-
tion of JADE [9] and CArtAgO [24]. JADE provides the agent platform, charac-
terized by a FIPA compliant communication framework, and an agent-developing
middleware. CArtAgO is a framework based on the A&A meta-model which ex-
tends the agent programming paradigm with the first-class entity of artifact : a
resource that an agent can use. CArtAgO provides a way to define and organize
workspaces, that are logical groups of artifacts, and that can be joined by agents
at runtime. The environment is itself programmable and encapsulates services
and functionalities. CArtAgO provides an API to program artifacts that agents
can use, regardless of the agent programming language or the agent framework
used. CArtAgO artifacts reify communication and interaction, represented in
terms of commitment-based protocols. From an organizational perspective, a
protocol is structured into a set of roles. A role represents a way of manipulating
the social state and belongs to the artifact which reifies a protocol. Roles and
agents are different entities, and we assume that roles cannot live autonomously:
they exist in the system in view of the interaction, because agents, for interact-
ing, use artifacts and execute actions on them [8]. Agents will use an interaction
artifact to establish a channel of normed, mediated communication. The roles
of such an artifact specify how agents can manipulate it: by enacting a role,
an agent receives social powers by the artifact. Social powers have different and
public social consequences, that we express in terms of commitments.

In 2COMM interaction is ruled by commitment-based protocols. A commit-
ment C(x, y, r, p) represents a directed obligation between a debtor x and a
creditor y to bring about the consequent condition p when the antecedent con-
dition r holds. A commitment may be manipulated by means of a set of prim-
itives: delegate, assign, release [30]. They represents contractual relationships
between agents, thus agents have the social expectation that an agent involved

1 The source files of the system and examples are available at the URL http://di.

unito.it/2COMM.

in a commitment as a debtor will realize the consequent condition; the debtor is
responsible for the violation of a commitment. A commitment protocol defines a
collection of actions, whose social effects are expressed in terms of commitment
primitives, e.g., adding a new commitment, releasing another agent from some
commitment, satisfying a commitment, see [33]. We assume that commitment
conditions are yielded by the execution of artifact operations. For example, hav-
ing a commitment C1 = C(x, y, r, p ∧ q), a protocol artifact needs to supply at
least an operation that makes r true, at least an operation that makes p true and
at least an operation that makes q become true. The use of commitments gives
a normative characterization to agent coordination [13,28]. When an agent uses
a protocol artifact it accepts the regulations it contains and, in particular, that
by executing certain actions it will be the debtor of some commitments. Public
acceptance of the regulations is extremely important because it allows reasoning
about the agents’ behavior [15].

Figure 1 shows an excerpt of the 2COMM UML diagram. Overall the mid-
dleware is organized as follows: JADE supplies standard agent services (message
passing, distributed containers, naming and yellow pages services, agent mobil-
ity); when needed, an agent can enact a protocol role, thus using a communi-
cation artifact – implemented by exploiting CArtAgO, which provides a set of
operations by means of which agents participate in a mediated interaction ses-
sion. Each communication artifact corresponds to a specific protocol enactment
and maintains an own social state and an own communication state.

Class CommunicationArtifact (CA for short) provides the basic communica-
tion operations in and out for allowing mediated communication. by means of
which agents respectively ask to play or to give up playing a role. CA extends
an abstract version of the TupleSpace CArtAgO artifact: briefly, a blackboard
that agents use as a tuple-based coordination means. In and out are, then, op-
erations on the tuple space. CA also traces who is playing which role by using
the property enactedRoles.

Class Role extends the CArtAgO class Agent, and contains the basic ma-
nipulation logic of CArtAgO artifacts. Thus, any specific role, extending this
super-type, will be able to perform operations on artifacts, whenever its player
will decide to do so. Role provides static methods for creating artifacts and for
enacting/deacting roles. This is done by passing a reference to the JADE agent
behavior that will actually play the role. The class CARole is an inner class of
CA and extends the Role class. It provides the send and receive primitives, by
which agents can exchange messages. Send and receive are implemented based
on the in and out primitives provided by CA.

ProtocolArtifact (PA for short) extends CA and allows modeling the social
layer with the help of commitments. It maintains the state of the on-going pro-
tocol interaction, via the property socialState, a store of social facts and com-
mitments, that is managed only by its container artifact. This artifact imple-
ments the operations needed to manage commitments (create, discharge, can-
cel, release, assign, delegate). PA realizes the commitment life-cycle and for the
assertion/retraction of facts. Operations on commitments are realized as in-

���������������������
������������������������

��������������
����������������

�������������������

�����������������������������
��������������������������������
�����������������������������
������������������������������
���
���
��������������������������������������

������������������������������
�����������������������
���������
����������������������������������

�����������

�������������
������������������
����������������������������
������������������������������������
�������������������������������
���������������������������������������
��������������

��������������
������������
����������������������������
����������������������������
��

����������

���������������
��������������������������
��������������
������������������������
��������������
��������������������������

������������
������������
�������������������
�������������������

����

��
���
���
������������������������������������
�����������������
��
��

�����������������
�����������������������

����������

�����������������
�����������������������������
�����������������
������������������������������������
������������

���

���

���

���������������������
������������������������
��������������

��������������
���������������������

�������������������
������������������������������
������������������

���
���������������������������

�������������� ������������

�������

����������

�����

�����
�������������

�����

����������
������

����������������
����������
�������������
���������

�

����������
������

����������������������������
��������������������
����������������������
��������������������

����������������������
����������������

�

�����

�

�

���������

�����

��������

���������������
����������������

����������������������

�����������������������������

�

Fig. 1. UML Architecture of 2COMM.

ternal operations, that is, they are not invokable directly: the protocol social
actions will use them as primitives to modify the social state. Being an ex-
tension of CA, PA maintains two levels of interaction: the social one (based
on commitments), and the communication one (based on message exchange).
The class PARole is an inner class of PA and extends the CARole class. It
provides the primitives for querying the social state, e.g. for asking the com-
mitments in which a certain agent is involved, and the primitives that allow
an agent to become, through its role, an observer of the events occurring in
the social state. For example, an agent can query the social state to verify if it
contains a commitment with a specific condition as consequent, via the method

existsCommitmentWithConsequent(InteractionStateElement el). Alterna-
tively, an agent can be notified about the occurrence of a social event, provided
that it implements the inner interface ProtocolObserver. Afterwards, it can start
observing the social state. PARole also inherits the communication primitives
defined in CARole.

In order to specify a commitment-based interaction protocol, it is necessary to
extend PA by defining the proper social and communicative actions as operations
on the artifact itself. Actions can have guards that correspond to context precon-
ditions : each such condition specifies the context in which the respective action
produces the described social effect. Since we want agents to act on artifacts only
through their respective roles, when defining a protocol it is also necessary to
create the roles. We do so by creating as many extensions of PARole as protocol
roles. These extensions are realized as inner classes of the protocol: each such
class will specify, as methods, the powers of a role. Powers allow agents who
play roles to actually execute artifact operations. The reification of commitment
protocols by way of artifacts has many advantages: by exploiting the distributed
nature of artifacts it is possible to naturally rely on a modularization that helps
the re-use of software, it is possible to implement run-time monitoring function-
alities, and it is possible to provide a normative characterization of interaction
thanks to commitments.

4 Typing MAS

To the aim of defining an agent typing system, we assume each agent a to be
characterized by a set of behaviors {b1, . . . , bm}, enabling a to perform various
activities. Along the lines of [22], we view types as partial specifications of be-
havior, which support in using agents to play protocol roles safely. A type τ is a
set of commitments {c1, c2, . . . , cn}, defined inside a collection of definitions of
artifacts, that represents the environmental setting. The debtor, creditor, condi-
tions of each commitment are defined as roles and actions inside some artifact,
i.e. artifact definitions provide name spaces. Commitments, by having a norma-
tive value, can be seen as specifications of behavior because the debtor agents
are expected to behave so as to satisfy them. A behavior b has type τ , denoted
as b : τ , if it is capable of satisfying the commitments in the type. This means
that it allows to make the consequent conditions in the commitments become
true.

Definition 1 (Type). Given an agent a, with a set of behaviors b1 : τ1, . . . ,
bm : τm, we say that a has type τ =

�m
i=1 τi, denoted as a : τ .

Let P = r1 ◦ . . . ◦ rn be an interaction protocol, where ri are all the protocol
roles. Let p be a protocol action, whose execution creates the commitments
c1, . . . , cn, (conditionally) binding the executor to achieve some conditions.
This represents the fact that p requires the executor can satisfy (directly or
indirectly – i.e. by way of other agents) c1, . . . , cn. So, we say that p has type
τ = {c1, . . . , cn}, denoted as p : τ .

Definition 2 (Role and Protocol Types). Let p1 : τ1, . . . , pm : τm be the
actions of P that the role rj allows to execute together with their respective types.
The type of role rj is τj =

�m
i=1 τi. Finally, the type of P is {r1 : τ1, . . . , rn : τn}.

We, now, introduce a notion of subtype, that is inspired to the width subtyp-
ing used for records. Given two types τ1 and τ2, we say that τ1 is a subtype of
τ2, denoted by τ1 ≤ τ2, when the set of commitments of τ2 is included in the one
of τ1, i.e. τ2 ⊆ τ1. A subtype is a stronger specification which guarantees that
the set of values satisfying it is a subset of the set of values of the supertype.
What kinds of properties should types specify? According to the principle of
substitutability [31] an instance of a subtype can always be used in any context
in which an instance of the supertype is expected. A subtype at least guarantees
the “promises” of the supertype, at least the same commitments, and possibly
more, are satisfiable.

Since our subtyping relationship is defined based on subset inclusion, it is
easy to see that subtyping is a partial order, and thus shows the properties of
reflexivity, antisimmetry, and transitivity. More interestingly, the subsumption
property also holds: consider an agent a : τ and suppose τ ≤ τ �, then a : τ �.

The rationale of the proposed subtyping relationship is that we mean to
support the substitution of an actual agent and its behaviors to the specification
of requirements that is given by a role: any behavior which is capable of achieving
a superset of the required commitments will fit our case. Any operation feasible
on the supertype will be supported by the subtype. This definition makes it
possible to introduce a notion of compatibility of agents with roles.

Definition 3 (Compatibility). An agent a : τ is compatible with a protocol
role r : τ � if τ ≤ τ �.

In fact, since a : τ and τ ≤ τ �, by subsumption a : τ �. So, we are guaranteed
that a can achieve the commitments it could get engaged into, when playing r,
directly or by relying on other agents. Generally, a will have a more specialized
behavior w.r.t. what the role demands.

We, now, show that subtyping guarantees substitutability: namely, that sub-
stituting a role by an agent that is compatible with it preserves the type of
the protocol. Such a verification should be performed dynamically during the
enactment of the protocol role.

Property 1 (Substitutability). Let P = r1 ◦ . . . ◦ rn be an interaction protocol of
type τ . The system obtained by the enactment of the protocol, performed by
the set of agents a1, . . . , an, each compatible with its respective P role, preserves
the type τ .

The proof is trivially obtained by considering the above definitions.
Besides the behavioural-oriented notion of typing described above, we rely on

Java to perform event (action) type checking. In fact, since they are implemented
as artifact operations, when an agent uses an operation, through a role, the Java
compiler checks the correctness of the parameters.

By adopting classical depth and width subtyping rules for records, i.e. {r1 :
τ1, . . . , rn : τn} ≤ {r1 : τ �1, . . . , rm : τ �m} if m ≤ n and τi ≤ τ �i , for all i from 1 to
m, it is possible to introduce also a notion of protocol specialization.

Definition 4 (Specialization). Let P : τ and P � : τ � be two interaction proto-
cols with their respective types. We say that P � is a specialization of P if τ � ≤ τ .

5 Implementing the typing in 2COMM

Let us, now, introduce the way in which we implemented the proposed typing
system in 2COMM. The implementation relies on Java annotations2. These are
commonly used to provide meta-data about a program which can be used by
the compiler, or be used at deploy time or, as in our case, at run-time.

���������������������������

����

���������������������������
�������������������������������

�����������������������������

��������������
������������
����������������������������
����������������������������
��

����������

���������������
��������������������������
��������������
������������������������
��������������
��������������������������

���������������������
������������������������
��������������

��������������
���������������������

�������������������
������������������������������
������������������

���
���������������������������

��������������
��������

��
��������������������������������

��������������
�������������

��

������������� ��������������� ��������������������� �����������������������

������������������

����������

��������������������

����������

��������� �����������

�����������������������

���������������� ������������� �������� ��������

Fig. 2. UML Architecture of the typing system.

With reference to Figure 2, we introduced two annotations, one for interaction
protocol roles, the other for agent behaviors. They are respectively @RoleType

2 More information about Java annotations can be retrieved at
http://docs.oracle.com/javase/tutorial/java/annotations/

and @BehaviourType. They both represent commitment sets. The former via
the annotation property requirements, the latter via the annotation property ca-
pabilities. @RoleType also contains a property interactionCardinality, specifying
whether a role can be concurrently played by many agents – as it is, for instance,
the case of the Contract Net Protocol role Participant.

In our implementation, a type (Definition 1) is specified as an object of sort
Type, which is an abstract class which contains the field definition (an array of
commitments).

1 public abstract class Type {
2 f ina l private ArrayList<Commitment> d e f i n i t i o n ;
3 protected Type (Commitment [] commitsDef in i t ion) {
4 d e f i n i t i o n = new ArrayList<Commitment>() ;
5 for (Commitment c : commitsDef in i t ion) {
6 d e f i n i t i o n . add (c) ;
7 }
8 }
9 public boolean i s I n c l ud ed (Type inc luderType) {

10 boolean inc luded = true ;
11 for (Commitment c : this . d e f i n i t i o n) {
12 i f (inc luded) {
13 inc luded = fa l se ;
14 for (Commitment d : inc luderType . d e f i n i t i o n) {
15 i f (c . equa l s (d)) {
16 inc luded = true ;
17 break ;
18 }
19 }
20 }
21 else break ;
22 }
23 return inc luded ;
24 }
25 public boolean equa l s (Type t) {
26 return this . i s I n c l ud ed (t) && t . i s I n c l ud ed (this) ;
27 }
28 public stat ic Type merge (ArrayList<Type> typesToMerge) {
29 . . .
30 }
31 . . .
32 }

Type must be subclassed by actual types, whose constructors will invoke the
superconstructor and specify proper arrays of commitments. Moreover, Type
specifies two methods, equals and isIncluded (that we report hereafter) which
respectively verify if a type (set of commitments) is identical to another and if a
type is subtype of another. A static, utility method merge is provided too, that
creates a new Type object from the union of commitments of types passed as
parameters.

The equals method considers two commitments equal if all their components
are respectively equal.

1 public boolean equa l s (Soc ia lStateElement e l) {
2 i f (e l . getElType () != SocialStateElementType .COMMITMENT)
3 return fa l se ;
4 Commitment c = (Commitment) e l ;
5 return (this . g e tCred i to r () . equa l s (c . g e tCred i to r ()) &&
6 this . getDebtor () . equa l s (c . getDebtor ()) &&
7 this . getAntecedent () . equa l s (c . getAntecedent ()) &&
8 this . getConsequent () . equa l s (c . getConsequent ())
9) ;

10 }

Antecedent and consequent formulas have to match exactly, while the identities
of creditors and debtors are checked as follows:

1 public boolean equa l s (RoleId otherRole Id) {
2 i f (this . type == otherRole Id . type && this . type == PARTICULAR ROLE)
3 return this . id == otherRole Id . id ;
4 else
5 return this . getRoleName () . equa l s (otherRole Id . getRoleName ()) ;
6 }

The implementation can compare commitments that are instantiated and involve
specific agents or that are “generic”, in that they involve protocol roles. To
separate the two cases, in the former the debtor and creditor of a commitment
are associated to the case PARTICULAR ROLE while in the latter they are
associated to the case GENERIC ROLE. This information is used by the method
equals : A debtor/creditor identity is considered equal to that of another in two
cases: (1) when the two refer to the very same enactment of a certain role (i.e.
they refer to the same agent); (2) when one or both identities refer to a role type
(e.g. the initiator) and the respective role names are equal.

Agent

Behavior

Behavior

use-operation

use-operation

h
o

w social meaning

Role

Operation

Operation

social meaning

w
h

a
t
-

h
o

w

Commitment
Communication

Artifact

Tuple space

Social state

@RoleType(
 requirements = ...)

@BehaviourType (capabilities = ...)

Fig. 3. Agent typing and roles definition.

With reference to Figure 3, type checking amounts to verifying if the com-
mitments specified in the capabilities property of annotation @BehaviourType
include the commitments specified in the requirements of the annotation @Ro-
leType. The check is performed by the method checkRoleRequirements which is
included in the class CommunicationArtifact. This method, which is executed in
the context of enactRole, uses the set of behaviors of an agent and the role this
means to play, and computes an answer by extracting at run-time the informa-
tion contained in the involved annotations. An agent can successfully enact a
role only if it is compatible with it (Definition 3), i.e. only if its type is a subtype
of that of the role. For the property of substitutability, the enactment preserves
the type of the protocol, thereby assuring safety.

1 public abstract class CommunicationArtifact extends AbstractTupleSpace {
2 . . .
3 protected boolean checkRoleRequirements (S t r ing roleName ,

4 Behaviour [] o f f e r edP laye rBehav iour s) {
5 // check the reques ted Role Name
6 i f (! enabledRoles . containsKey (roleName)) {
7 l o gg e r . debug (" Role "+roleName+" not found among enabled roles .") ;
8 return fa l se ;
9 }

10 // con t r o l i s exc luded f o r r o l e ”CA Role”
11 i f (roleName . equa l s (CA ROLE))
12 return true ;
13 Class <? extends Behaviour> behClass ;
14 ArrayList<Annotation> behaviourTypeAnnotations
15 = new ArrayList<Annotation >() ;
16 Annotation behav iourSat i s fyAnnotat ion ;
17 for (Behaviour beh : o f f e r edP laye rBehav iour s) {
18 behClass = beh . ge tC la s s () ;
19 behaviourTypeAnnotation
20 = behClass . getAnnotation (BehaviourType . class) ;
21 i f (behaviourTypeAnnotation == null)
22 // i f nu l l , c o r r e c t annotat ion i s miss ing
23 return fa l se ;
24 Class<?> r o l eC l a s s ;
25 try {
26 St r ing roleClassName = (this . g e tC la s s () . getName ())
27 + "�" + roleName ;
28 r o l eC l a s s = Class . forName (roleClassName) ;
29 } catch (ClassNotFoundException e) {
30 return fa l se ;
31 }
32 Annotation ro leAnnotat ion =
33 r o l eC l a s s . getAnnotation (RoleType . class) ;
34 i f (ro l eAnnotat ion == null) {
35 return fa l se ;
36 }
37 // Both annotat ions r e t r i e v e d
38 // Gett ing i n s t an c e s f o r r e t r i e v e d types
39 ArrayList<Type> typesToMerge = new ArrayList<Type >() ;
40 Type behaviourType ;
41 Type roleType ;
42 Type mergedType ;
43 for (Annotation ann : behaviourTypeAnnotations) {
44 behaviourType = ((BehaviourType) ann) . c a p a b i l i t i e s ()
45 . ge tDec laredConstructor () . newInstance () ;
46 typesToMerge . add (behaviourType) ;
47 }
48 roleType = ((RoleType) ro leAnnotat ion) . requ i rements ()
49 . ge tDec laredConstructor () . newInstance () ;
50 mergedType = Type . merge (typesToMerge) ;
51

52 return roleType . i s I n c l ud ed (mergedType) ;
53 }
54 }

When an agent tries to enact a role, the artifact, whose role is being enacted,
is in charge for checking the compliance between the agent’s behaviour and the
role requirements. The method checkRoleRequirements of the class Commitmen-
tArtifact performs these controls. This implementation realizes the principle of
compatibility : an agent can enact a role provided it has a (set of) behaviour(s)
that are compatible with the type of the role.

The Type abstract class, together with the @RoleAnnotation and @Behaviour-
Type annotation classes, allows constructing types as Java structures, an ap-
proach similar to the one proposed in [34], where each agent carries an object
representing its type.

Let us, now, show an example of annotation added on top of an implemen-
tation of the Contract Net Protocol presented in [3]. We will focus on the role
Initiator and on an agent willing to play that role.

1 public c lass CNPArtifact extends Pro t o c o lA r t i f a c t {
2 . . .
3 @RoleType (requ i rements = In i t i a to rRequ i r ement s . class)
4 public c lass I n i t i a t o r extends PARole {
5 public I n i t i a t o r (Behaviour player , AID agent) {
6 super (INITIATOR ROLE, player , agent) ;
7 }
8 . . .
9 }

10 }

The role Initiator is tagged by the @RoleType annotation, whose value for the
property requirements is set to InitiatorRequirements.class, a class that builds
the set of commitments that defines the type of the role. InitiatorRequirements
is specified in this way:

1 public c lass In i t i a to rRequ i r ement s extends Type {
2 public In i t i a to rRequ i r ement s () throws MissingOperandException ,
3 WrongOperandsNumberException {
4 super (new Commitment [] {
5 new Commitment(CNPArtifact . INITIATOR ROLE,
6 CNPArtifact .PARTICIPANT ROLE, " propose " ,
7 new CompositeExpression (LogicalOperatorType .OR,
8 new Fact (" accept ") , new Fact (" reject ")))
9 }) ;

10 }
11 . . .
12 }

Specifically, this class contains the commitment C(CNPArtifact.INITIATOR
ROLE, CNPArtifact.PARTICIPANT ROLE, propose, accept ∨ reject),

where CNPArtifact is the CommitmentArtifact which realizes the Contract
Net Protocol.

On the agent’s side, an agent willing to play the role Initiator must offer a
set of behaviors that are typed accordingly. In our case, we suppose that the
agent offers the following behavior:

1 @BehaviourType (c a p a b i l i t i e s = Type In i t i a t o r . class)
2 public c lass I n i t i a t o rBehav i ou r extends OneShotBehaviour implements
3 CNPInit iatorObserver {
4
5 }

where the class TypeInitiator specifies the capabilities shown by the agent through
the behavior. Once again, this is a set of commitments the behavior can satisfy.
TypeInitiator is a subclass the Type:

1 public Type In i t i a t o r () throws MissingOperandException ,
2 WrongOperandsNumberException {
3 super (new Commitment [] {
4 new Commitment(CNPArtifact . INITIATOR ROLE,
5 CNPArtifact .PARTICIPANT ROLE, " propose " ,
6 new CompositeExpression (LogicalOperatorType .OR,
7 new Fact (" accept ") , new Fact (" reject "))) ,
8 new Commitment(TradeArt i fac t .BUYER ROLE,
9 TradeArt i fac t .SELLER ROLE, " pay " , " deliver "

10)
11 }) ;

12 }
13 . . .
14 }

It is easy to see that the commitment perfectly matches the requirements, and so
the enactment will succeed. Notice that the presented implementation is slightly
different w.r.t. the definition of compatibility with a role (Definition 3): it uses a
collection of behaviours instead of an agent because in JADE there is no reference
to the agents that we could exploit. The result is a more restrictive test, which
does not necessarily account for the whole agent but considers only the set of
behaviors the agent displays.

6 Discussion and Future Work

This paper presented a typing system for MAS. The key characteristic of the
proposal is that the typing system is defined based on notions that are typical
of agents rather than on a functional approach. Specifically, it relies on the
“social capabilities” of the agents. As such, the proposal represents a novelty
w.r.t. previous work on agent typing, which applies the functional type theory
[18,19,26]. The functional approach benefits of the results of a vast literature,
but types should be aimed at providing abstraction/modeling features that help
the programmer. Functional typing systems discard the typicalities of agents
and, thus, in our view, they do not accomplish their aim.

Besides providing the basic notions of type, subtype, compatibility and sub-
stitutability, we implemented the proposal in the context of the 2COMM frame-
work [2]. 2COMM allows programming social relationships by exploiting a declar-
ative, interaction-centric approach, and was developed by relying on existing
technologies as far as possible. In particular, the social relationships that arise
along the interaction among agents are captured as social commitments – real-
ized as first-class objects –, while interaction is mediated by protocol artifacts.

The choice of relying on commitments is motivated by the desire of typing
agents and roles in a way that results minimally prescriptive, so to preserve the
autonomy of the agents as far as possible. Indeed, we agree with [22,34] that the
typing system should include a representation of the behavior but, differently
than in those works – which deal with objects, we are also convinced of the need
of a representation which does not hinder the agents’ autonomy. For this reason,
a prescriptive representation, based on finite state automata – as the one intro-
duced in those works, would not be adequate. Commitments allow specifying the
expected behavior of agents without imposing unnecessary restrictions. In case
a more expressive language for specifying constraints is needed, it is possible
to rely either on proposals like [21], where conditions inside commitments can
express temporal regulations, or on proposals like 2CL [6], where commitment
protocols are enriched with explicit temporal constraints on the evolution of the
social state. This kind of extension is one of our next goals.

Clearly, a type system allows only a light check of the behavior of the involved
agents, being more concerned with a safe usage rather than a full behavioral

compatibility. It does not imply that an agent which has the same type of another
agent will display the same behavior. This does not exclude the possibility to
integrate deeper checks, for instance based on model checking such as [10].

The described agent typing system will help realizing both static, compile-
time coding support and dynamic, run-time type checking. Inspired by [27], the
former can be realized by developing a plugin for an IDE that provides coding
support, like smart code completion or type warning or error. The latter, instead,
amounts to the development of tools for verifying, at run-time, the compliance
between the agent’s logics and the role requirements, signalling the occurrence
of wrong enactments when needed. Altogether similar tools based on the sub-
stitutability property, which guarantees the safe replacement of agents to roles,
when they have the same type or the agent has a subtype of the role. In the
current proposal such a verification is performed as a syntactic inclusion of com-
mitment sets. This is limitating because it does not consider logical expressions
inside commitment antecedent and consequent conditions. To solve the problem
we mean to study the applicability of complex typing systems, relying on union
and intersection types [16].

Type checking as a light verification adopts notions, e.g. substitutability, that
are used also for facing the issues of interoperability and conformance discussed
in [7,5]. The conformance verification aims at guaranteeing that when an agent
plays a role, or substitutes another agent in an on-going interaction, the inter-
operability of the system is preserved – in the present paper, when an agent
plays a role, the protocol type is preserved. In [7,5], protocols are represented
by way of a sort of finite state automata. Thus, the approach suffers from the
drawbacks due to a prescriptive description, that, as we explained (Section 2,
see the comments to the approach in [1]), does not suit well the autonomy of
the agents. Another direction of research that we mean to pursue is to explore
how commitment-based types can be adapted to solve the issue of conformance
in MAS.

Finally, in [4], we presented an extension of JaCaMo [11] that, analogously
to 2COMM, allows reasoning about social relationships in Jason agents. We aim
to introduce the use of the proposed typing system also in that setting. This
would allow an even deeper comparison to SimpAL, which is built on top of the
same platform.

Acknowledgements

We thank the anonymous reviewers for their helpful comments, which gave us
important suggestions for future developments.

References

1. Davide Ancona, Sophia Drossopoulou, and Viviana Mascardi. Automatic gener-
ation of self-monitoring mass from multiparty global session types in jason. In
Matteo Baldoni, Louise A. Dennis, Viviana Mascardi, and Wamberto Vasconcelos,

editors, DALT, volume 7784 of Lecture Notes in Computer Science, pages 76–95.
Springer, 2012.

2. M. Baldoni, C. Baroglio, and F. Capuzzimati. 2COMM: a commitment-based
MAS architecture. In M. Cossentino, A. El Fallah Seghrouchni, and M. Winikoff,
editors, Post-Proc. of the 1st International Workshop on Engineering Multi-Agent
Systems, EMAS 2013, Revised Selected and Invited Papers, number 8245 in LNAI,
pages 38–57. Springer, 2013.

3. Matteo Baldoni, Cristina Baroglio, and Federico Capuzzimati. A Commitment-
based Infrastructure for Programming Socio-Technical Systems. ACM Transac-
tions on Internet Technology, Special Issue on Foundations of Social Computing,
2014. To appear.

4. Matteo Baldoni, Cristina Baroglio, and Federico Capuzzimati. Reasoning about So-
cial Relationships with Jason. In Amit Chopra and Harko Verhagen, editors, Proc.
of the 1st International Workshop on Multiagent Foundations of Social Computing,
SC-AAMAS 2014, held in conjuction with AAMAS 2014, Paris, France, May 2014.

5. Matteo Baldoni, Cristina Baroglio, Amit K. Chopra, Nirmit Desai, Viviana Patti,
and Munindar P. Singh. Choice, Interoperability, and Conformance in Interaction
Protocols and Service Choreographies. In Proceedings of the 8th International
Conference on Autonomous Agents and Multiagent Systems, AAMAS 2009, pages
843–850. IFAAMAS, 2009.

6. Matteo Baldoni, Cristina Baroglio, Elisa Marengo, and Viviana Patti. Constitutive
and Regulative Specifications of Commitment Protocols: a Decoupled Approach.
ACM Transactions on Intelligent Systems and Technology, Special Issue on Agent
Communication, 4(2):22:1–22:25, March 2013.

7. Matteo Baldoni, Cristina Baroglio, Alberto Martelli, and Viviana Patti. A priori
conformance verification for guaranteeing interoperability in open environments. In
A. Dan and W. Lamersdorf, editors, Proc. of the 4th International Conference on
Service Oriented Computing, ICSOC 2006, volume 4294 of LNCS, pages 339–351,
Chicago, USA, December 2006. Springer.

8. Matteo Baldoni, Guido Boella, and Leon van der Torre. Interaction between Ob-
jects in powerjava. Journal of Object Technology, Special Issue OOPS Track at
SAC 2006, 6(2), 2007.

9. F. Bellifemine, F. Bergenti, G. Caire, and A. Poggi. JADE - A Java Agent De-
velopment Framework. In R. H. Bordini, M. Dastani, J. JDix, and A. El Fallah-
Seghrouchni, editors, Multi-Agent Programming: Languages, Platforms and Ap-
plications, volume 15 of Multiagent Systems, Artificial Societies, and Simulated
Organizations, pages 125–147. Springer, 2005.

10. J. Bentahar, J.-J. Ch. Meyer, and W. Wan. Model Checking Communicative Agent-
based Systems. Knowledge-Based Systems, 22(3):142–159, 2009.

11. Olivier Boissier, Rafael H. Bordini, Jomi F. Hübner, Alessandro Ric ci, and Andrea
Santi. Multi-agent oriented programming with JaCaMo. Science of Computer
Programming, 78(6):747 – 761, 2013.

12. RafaelH. Bordini and JomiF. Hübner. Bdi agent programming in agentspeak using
jason. In Francesca Toni and Paolo Torroni, editors, Computational Logic in Multi-
Agent Systems, volume 3900 of Lecture Notes in Computer Science, pages 143–164.
Springer Berlin Heidelberg, 2006.

13. C. Castelfranchi. Principles of Individual Social Action. In G. Holmstrom-Hintikka
and R. Tuomela, editors, Contemporary action theory: Social action, volume 2,
pages 163–192, Dordrecht, 1997. Kluwer.

14. Amit K. Chopra and Munindar P. Singh. Elements of a business-level architecture
for multiagent systems. In Lars Braubach, Jean-Pierre Briot, and John Thangara-
jah, editors, PROMAS, volume 5919 of Lecture Notes in Computer Science, pages
15–30. Springer, 2009.

15. Rosaria Conte, Cristiano Castelfranchi, and Frank Dignum. Autonomous norm
acceptance. In Jörg P. Müller, Munindar P. Singh, and Anand S. Rao, editors,
ATAL, volume 1555 of Lecture Notes in Computer Science, pages 99–112. Springer,
1998.

16. Mario Coppo, Mariangiola Dezani-Ciancaglini, Ines Margaria, and Maddalena Za-
cchi. Toward isomorphism of intersection and union types. In Stéphane Graham-
Lengrand and Luca Paolini, editors, ITRS, volume 121 of EPTCS, pages 58–80,
2013.

17. Mehdi Dastani, Davide Grossi, John-Jules Ch. Meyer, and Nick A. M. Tinnemeier.
Normative Multi-agent Programs and Their Logics. In John-Jules Ch. Meyer and
Jan Broersen, editors, KRAMAS, volume 5605 of Lecture Notes in Computer Sci-
ence, pages 16–31. Springer, 2008.

18. Claudia Grigore and Rem Collier. Supporting agent systems in the programming
language. In Jomi Fred Hübner, Jean-Marc Petit, and Einoshin Suzuki, editors,
Web Intelligence/IAT Workshops, pages 9–12. IEEE Computer Society, 2011.

19. Claudia Grigore and Rem W. Collier. Af-raf: an agent-oriented programming lan-
guage with algebraic data types. In Cristina Videira Lopes, editor, SPLASH Work-
shops, pages 195–200. ACM, 2011.

20. Nick Howden, Ralph Rönnquist, Andrew Hodgson, and Andrew Lucas. Intelligent
agents - summary of an agent infrastructure. In Proc. of the 5th International
Conference on Autonomous Agents, 2001.

21. Elisa Marengo, Matteo Baldoni, Cristina Baroglio, Amit K. Chopra, Viviana Patti,
and Munindar P. Singh. Commitments with Regulations: Reasoning about Safety
and Control in REGULA. In K. Tumer, P. Yolum, L. Sonenberg, and P. Stone,
editors, Proceedings of the 10th International Conference on Autonomous Agents
and Multiagent Systems, AAMAS 2011, volume 2, pages 467–474, Taipei, Taiwan,
May 2011. IFAAMAS.

22. Oscar Nierstrasz and Dennis Tsichritzis, editors. Object-Oriented Software Com-
position, chapter 6, pages 99–121. 1995. Prentice Hall.

23. Andrea Omicini, Alessandro Ricci, and Mirko Viroli. Artifacts in the a&a meta-
model for multi-agent systems. Autonomous Agents and Multi-Agent Systems,
17(3):432–456, 2008.

24. Alessandro Ricci, Michele Piunti, and Mirko Viroli. Environment programming
in multi-agent systems: an artifact-based perspective. Autonomous Agents and
Multi-Agent Systems, 23(2):158–192, 2011.

25. Alessandro Ricci and Andrea Santi. From actors to agent-oriented programming
abstractions in simpal. In Gary T. Leavens, editor, SPLASH, pages 73–74. ACM,
2012.

26. Alessandro Ricci and Andrea Santi. Typing Multi-agent Programs in simpAL. In
Mehdi Dastani, Jomi Fred Hübner, and Brian Logan, editors, ProMAS, volume
7837 of Lecture Notes in Computer Science, pages 138–157. Springer, 2012.

27. Andrea Santi and Alessandro Ricci. An eclipse-based ide for agent-oriented pro-
gramming in simpal. In Proc. of The Seventh Workshop of the Italian Eclipse
Community, 2012.

28. Munindar P. Singh. An ontology for commitments in multiagent systems. Artif.
Intell. Law, 7(1):97–113, 1999.

29. David Šǐslák, Martin Rehák, Michal Pěchouček, Milan Rollo, and Dušan Pavĺıček.
A-globe: Agent development platform with inaccessibility and mobility support. In
Software Agent-Based Applications, Platforms and Development Kits, pages 21–46.
Birkhäuser Basel, 2005.

30. Pankaj R. Telang and Munindar P. Singh. Specifying and Verifying Cross-
Organizational Business Models: An Agent-Oriented Approach. IEEE Transac-
tions on Services Computing, pages 1–14, 2011.

31. Peter Wegner and Stanley B. Zdonik. Inheritance as an Incremental Modification
Mechanism or What Like Is and Isn’t Like. In Proceedings ECOOP ’88, number
322 in Lecture Notes in Computer Science, pages 55–77. Springer-Verlag, 1988.

32. Danny Weyns, Andrea Omicini, and James Odell. Environment as a first class
abstraction in multiagent systems. Autonomous Agents and Multi-Agent Systems,
14(1):5–30, 2007.

33. Pınar Yolum and Munindar P. Singh. Commitment Machines. In Intelligent Agents
VIII, 8th International Workshop, ATAL 2001, volume 2333 of LNCS, pages 235–
247. Springer, 2002.

34. Michael Zapf and Kurt Geihs. What type is it? a type system for mobile agents.
In 15th European Meeting on Cybernetics and Systems Research (EMCSR), 2000.

