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ON THE INVERSE TO THE HARMONIC
OSCILLATOR

MARCO CAPPIELLO, LUIGI RODINO, AND JOACHIM TOFT

Abstract. Let bd be the Weyl symbol of the inverse to the har-
monic oscillator on Rd. We prove that bd and its derivatives satisfy
convenient bounds of Gevrey and Gelfand-Shilov type, and obtain
explicit expressions for bd. In the even-dimensional case we char-
acterize bd in terms of elementary functions.

In the analysis we use properties of radial symmetry and a
combination of different techniques involving classical a priori esti-
mates, commutator identities, power series and asymptotic expan-
sions.

0. Introduction

A fundamental operator in quantum physics and classical analysis is
the harmonic oscillator

H = Hd = −∆ + |x|2, x ∈ Rd. (0.1)
In physics the operator H appears in the stationary Schrödinger equa-
tion for a particle under the action of a quadratic potential. In classi-
cal analysis, H is also known as the Hermite operator, and possesses
several convenient properties. For example, the operator H is strictly
positive in L2(Rd) with discrete spectrum, and the eigenfunctions are
the Hermite functions, see for example [7, 15,19].

By means of the Hermite functions one can express also the kernel of
the inverse H−1. On the other hand, coherently with the point of view
of the quantum physics, H−1 can be written as Weyl pseudo-differential
operator

H−1f(x) = (2π)−d
∫∫

ei〈x−y,ξ〉b ((x+ y)/2, ξ) f(y) dydξ, (0.2)

for a suitable symbol b(x, ξ) = bd(x, ξ) in R2d (see for example the
general calculus in [9, 10, 12, 16] for classes of symbols and operators
in Rd). The calculus provides, as a particular case, the construction in
these classes of the symbol of the parametrix of H. Also the symbol
of the inverse bd(x, ξ) in (0.2) belongs to the same classes, in view
of the property of spectral invariance (cf. [1]). Despite the power of
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the pseudo-differential theory, the study of the peculiar properties of
bd(x, ξ) is missing in literature.

The aim of the paper is to analyze the function bd(x, ξ) in R2d and
to derive suitable regularity estimates and explicit expressions. In the
even-dimensional case we express bd in terms of elementary functions.
Just to have a sample of our study, we here mention the striking and
seemingly unnoticed formula in dimension d = 2:

b2(x, ξ) =
1− e−|x|2−|ξ|2

|x|2 + |ξ|2
. (0.3)

Before giving a more detailed presentation of our results, we recall
some known facts forH. First, we have convenient bijectivity properties
of H in different function, distribution and ultradistribution spaces.
(See e. g. [9–12,14,16], and Proposition 2.2 and Theorem 3.10 in [17].)
Furthermore, the operator possesses useful regularity properties. For
example, if f ∈ S ′(Rd), and

Hf ∈ S (Rd) or HNf ∈ L2(Rd)

for every N , then f ∈ S (Rd). One way to obtain the latter property is
to use Theorem 3.10 in [17]. The other standard way is to use Theorem
25.4 (with m = m0 = 2) in [16], which implies that

|∂αbd(x, ξ)| ≤ Cα〈(x, ξ)〉−2−|α|, (0.4)

and using appropriate mapping properties of pseudo-differential oper-
ators with symbols satisfying (0.4). In [3] more refined estimates are
established for the solutions f ∈ S ′(Rd) of the equation Hf = g and
for more general differential operators when g belongs to the Gelfand-
Shilov space Ss(Rd), s ≥ 1/2 (cf. Section 1 for the definitions).

The first aim of this paper is to establish certain refinements as well
as other estimates related to (0.4). Imitating the local analytic calculus
of [2] and trying to adapt the global Gelfand-Shilov calculus of [6] one
could tentatively assume

|∂αbd(x, ξ)| ≤ C |α|+1(α!)s0〈(x, ξ)〉−2−|α|, (0.5)

for some s0 ≥ 1/2 and positive constant C independent of α. A global
calculus for symbols satisfying factorial estimates of the form (0.5)
does not exist in the literature, especially for 1/2 ≤ s0 < 1, and sharp
estimates for bd are considered as an open and difficult problem. Nev-
ertheless in the present paper we prove that the estimate

|∂αbd(x, ξ)| ≤ C |α|+1(α!)(s+1)/2〈(x, ξ)〉−2−s|α|, (0.6)

holds for some positive constant C which is independent of α ∈ N2d

and s ∈ [0, 1]. In particular, for s = 0 we have

|∂αbd(x, ξ)| ≤ C |α|+1(α!)1/2〈(x, ξ)〉−2, (0.7)
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whereas, for s = 1, (0.4) is refined into

|∂αbd(x, ξ)| ≤ C |α|+1α!〈(x, ξ)〉−2−|α|, (0.8)

for some constant C which is independent of α ∈ N2d. Furthermore,
we use (0.6) to establish similar estimates for bd,t, the t-symbol of H−1

(cf. Theorem 2.1, Proposition 2.2′ and Remarks 2.4 and 2.5).
Starting from the estimate (0.6) for bd, it might be interesting to

study general symbols satisfying estimates of the same type and to
establish regularity results for the related operators in the setting of
Gelfand-Shilov spaces as it has been done in [3–5]. We will treat these
applications in future papers and focus here only on the model H−1.

To prove (0.6), in Section 2 we use classical a priori estimates for
globally elliptic operators, and suitable commutator estimates. More-
over we apply the symbolic calculus to prove that bd satisfies

(H0bd)(X) ≡ |X|2bd(X)− 1

4
∆Xbd(X) = 1, X = (x, ξ) ∈ R2d. (0.9)

We note that the operator on the left-hand side is a (dilated) harmonic
oscillator on the phase space variables X = (x, ξ) ∈ R2d. In Sections 1
and 2 we show that any solution of (0.9) is of the form

bd(X) = cd(|X|2), (0.10)

for some entire function cd on C. In particular, bd is radial symmetric.
This introduces the next main issue, which concerns explicit formulas

for bd, and is presented in Section 3. In fact, by the radial symmetry we
may reduce (0.9) into an ordinary differential equation on cd. A power
series expansion and (0.7) then give

cd(t)

=
d!!

d

(
α

∞∑
p=0

t2p

(2p)!!(2p+ d− 1)!!
−
∞∑
p=0

t2p+1

(2p+ 1)!!(2p+ d)!!

)
, (0.11)

where α is equal to 1 when d is even, and equal to π/2 when d is odd.
The expansion (0.11) gives finite analytic expressions for cd, thereby

for bd, when d = 2n is even. Namely, we first obtain an explicit asymp-
totic expansion of the symbol bd in terms of homogeneous functions
in |(x, ξ)|. Then, by a slight modification of this expansion inspired by
(0.3), we establish the general formula

b2n(x, ξ) =
n−1∑
j=0

(
n− 1

j

)
(−1)j(2j)!

1− e−|x|2−|ξ|2p2j(|x|2 + |ξ|2)
(|x|2 + |ξ|2)2j+1

,

for the symbol b2n(x, ξ), where p2j(t) denotes the Taylor polynomial of
et of order 2j centered at t = 0 (cf. formula (3.27) in Section 3).

For the odd dimensional case, the formula (0.11) does not give any
simple expressions of finite numbers of elementary functions. In fact, if
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d = 2n+ 1, then the first series in (0.11) is equal to un(t2/4), for some
Bessel function un (cf. Theorem 3.2), and for the second series it seems
to be even more complicated to find well-known special functions, since
each coefficient contains two factors of odd semi-factorials. For example,
in contrast to the the first series, the second one can not be completely
described by Bessel functions. On the other hand, by the link between
cd and bd, a combination of (0.6) and (0.11) leads to

∞∑
p=0

t2p+1

(2p+ 1)!!(2p+ d)!!
=
π

2
un(t2/4) +O(1/t), t→ +∞,

which seems to be unknown until now and should be interesting in the
theory of special functions. (See Theorem 3.2 and Remark 3.3 for more
detailed explanations, which also include more detailed estimates for
the involved functions and their derivatives).

1. Preliminaries

In this section we recall some basic results on pseudo-differential
calculus. We shall often formulate these results in the framework of
the Gelfand-Shilov space S1/2(R

d) and its dual S ′1/2(Rd) (see e. g. [8]).
The reader who is not interested in this general situation may re-
place S1/2(R

d) and S ′1/2(Rd) by S (Rd) and S ′(Rd) respectively. Here
S (Rd) is the set of Schwartz functions on Rd, and S ′(Rd) is the set
of tempered distributions on Rd, see e. g. [10].

We start by recalling the definition of Gelfand-Shilov spaces. Let
s ≥ 1/2 be fixed. For any f ∈ C∞(Rd) and h > 0 we let

‖f‖Ss,h ≡ sup
|xβ∂αf(x)|

h|α|+|β|(α! β!)s
.

Here the supremum should be taken over all x ∈ Rd and multi-indices
α, β ∈ Nd. Then the Gelfand-Shilov space Ss(Rd) consists of all f ∈
C∞(Rd) such that ‖f‖Ss,h is finite for some h > 0. Evidently, Ss(Rd) ⊂
S (Rd) for every s ≥ 1/2.

The set Ss(Rd) contains all finite linear combinations of Hermite
functions. Since such linear combinations are dense in S (Rd), it follows
that the dual S ′s(Rd) of Ss(Rd) is a space which contains S ′(Rd).

We refer to [8, 12] for more facts about Gelfand-Shilov spaces and
their duals.

Next we recall certain properties of pseudo-differential operators. Let
t ∈ R. For any a ∈ S1/2(R

2d), the pseudo-differential operator Opt(a)
is the linear and continuous operator on S1/2(R

d), defined by

Opt(a)f(x) = (2π)−d/2
∫∫

R2d

a((1−t)x+ty, ξ)f(y)ei〈x−y,ξ〉 dydξ. (1.1)
4



The definition extends uniquely to any a ∈ S ′1/2(R2d), and then Opt(a)

is continuous from S1/2(R
d) to S ′1/2(Rd). (Cf. [18].) In the case t = 0,

then Op0(a) agrees with the Kohn-Nirenberg representation a(x,D),
and if t = 1/2, then Op1/2(a) is equal to the Weyl quantization Opw(a).

Now we recall the definition of the Shubin class of pseudo-differential
operators. Let m ∈ R. Then the Shubin class Γm(R2d) is the set of all
functions a(x, ξ) ∈ C∞(R2d) satisfying the estimate

|∂αa(x, ξ)| ≤ Cα〈(x, ξ)〉m−|α|, (x, ξ) ∈ R2d.

In particular, for the symbols of the harmonic oscillator and its inverse,
we have h ∈ Γ2(R2d) and bd ∈ Γ−2(R2d). By (23.17) in [16], the op-
erators Opt(a) with a ∈ Γm(R2d) are continuous on S (Rd), and on
S ′(Rd).

A symbol a ∈ Γm(R2d) is said to be globally elliptic if

|a(x, ξ)| ≥ c|(x, ξ)|m, when |(x, ξ)| ≥ R, (1.2)

for some positive constants c and R.
In the following we shall prove a result on the radial symmetry of

solutions of the problem

Opt(a)f = g (1.3)

where Opt(a) is the pseudo-differential operator given by (1.1). Here
we recall that an element f ∈ S ′1/2(Rd) is called radial symmetric, if
the pullback U∗f is equal to f , for every unitary transformation U on
Rd. In the case when f in addition is a measurable function, then f is
radial symmetric, if and only if f(x) = f0(|x|) a. e., for some measurable
function f0 on R.

Proposition 1.1. Let a ∈ S ′1/2(R2d) and f, g ∈ S ′1/2(Rd) be such that
Opt(a)f is well defined and is equal to g, and that a(x, ξ) is a radial
symmetric symbol in the x-variable and in the ξ-variable. Then the
following is true:

(1) If f is radial symmetric, then g is radial symmetric;
(2) If Opt(a) is injective and g is radial symmetric, then f is radial

symmetric.
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Proof. Assume that f is radial symmetric and let U be a unitary matrix
on Rd. Then formal computations give

g(Ux) = (2π)−d
∫∫

a((1− t)Ux+ ty, ξ)f(y)ei〈Ux−y,ξ〉 dydξ

= (2π)−d
∫∫

a((1− t)Ux+ ty, Uξ)f(y)ei〈x−U
−1y,ξ〉 dydξ

= (2π)−d
∫∫

a(U((1− t)x+ ty), ξ)f(y)ei〈x−y,ξ〉 dydξ

= (2π)−d
∫∫

a((1− t)x+ ty, ξ)f(y)ei〈x−y,ξ〉 dydξ = g(x),

which proves that g is radial symmetric. Hence (1) holds.
Assume instead that g is radial symmetric and that Opt(a) is injec-

tive. Again let U be an arbitrary unitary matrix. By (1.3) we have

g(x) = g(Ux) = (2π)−d
∫∫

a((1− t)Ux+ ty, ξ)f(y)ei〈Ux−y,ξ〉 dydξ

= (2π)−d
∫∫

a(U((1− t)x+ ty), Uξ)f(Uy)ei〈U(x−y),Uξ〉 dydξ

= (2π)−d
∫∫

a((1− t)x+ ty, ξ)f(Uy)ei〈x−y,ξ〉 dydξ.

Hence both f and U∗f solves (1.3). Since Op(a) is injective, it follows
that f = U∗f . Consequently, f is radial symmetric, and (2) follows.
The proof is complete. �

Proposition 1.1 applies in particular to the harmonic oscillator giving
the following result.

Corollary 1.2. Let f, g ∈ S ′1/2(Rd) be such that

(−∆ + C|x|2)f = g (1.4)
for some constant C > 0. Then f is radial symmetric if and only if g
is radial symmetric.

Remark 1.3. In the literature it is common to add a constant (the
spectral parameter) to the harmonic oscillator and to consider the more
general equation

(−∆ + C1|x|2 + C2)f = g. (1.4)′

For example, the Helmholz equation is of this form.
In particular, Corollary 1.2 can be extended into the following.

Let f, g ∈ S ′1/2(Rd) be such that (1.4)′ holds for some constants

C1 > 0 and C2 ∈ C \ {C1/2
1 (−d− 2n) ; n ∈ N }. (1.5)

Then f is radial symmetric if and only if g is radial symmetric.
6



2. Estimates for the inverse of the harmonic oscillator

In this section we derive estimates for the Weyl symbol of the inverse
to the harmonic oscillator. In the last part of the section we shall use
these results to obtain related estimates for the t-symbol of that inverse.
More precisely, we prove the following result, which in the case s =
1 gives more detailed information about bd compared to the Shubin
estimate (0.4).

Theorem 2.1. Let bd be the Weyl symbol of the inverse to the harmonic
oscillator on Rd. Then there is a constant C > 0 such that (0.6) holds
for every α ∈ N2d and s ∈ [0, 1].

By an argument with geometric mean-values, it suffices to prove the
result in the limit cases s = 0 and s = 1, which correspond to the
estimates (0.7) and (0.8), respectively, Since these cases are interesting
by their own we write them as two independent statements.

Proposition 2.2. Let bd be the Weyl symbol of the inverse to the har-
monic oscillator on Rd. Then there is a constant C > 0 such that (0.7)
holds for every α ∈ N2d.

Proposition 2.3. Let bd be the Weyl symbol of the inverse to the har-
monic oscillator on Rd. Then there is a constant C > 0 such that (0.8)
holds for every α ∈ N2d.

In order to prove Proposition 2.2 we need some preparation. The
invertibility properties and the symbolic calculus give

(|x|2 + |ξ|2)#bd(x, ξ) = 1, (2.1)

where # is the Weyl product (cf. Section 18.5 in [10]). We claim that

H0bd(x, ξ) ≡ (|x|2 + |ξ|2)bd(x, ξ)−
1

4
∆x,ξbd(x, ξ) = 1 (2.2)

and
d∑
j=1

(xj∂ξjbd(x, ξ)− ξj∂xjbd(x, ξ)) = 0. (2.3)

In fact, by (2.1) and asymptotic expansion we get

H0bd(x, ξ) + i

d∑
j=1

(xj∂ξjbd(x, ξ)− ξj∂xjbd(x, ξ)) = 1. (2.4)

Since H is self-adjoint, it follows that Opw(bd) is also self-adjoint. By
using the fact that a Weyl operator is self-adjoint, if and only if its Weyl
symbol is real-valued, it follows that bd is real-valued. Hence (2.4) gives
(2.2) and (2.3).
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Proof of Proposition 2.2. For α = 0 the assertion is true since bd is in
Γ−2(R2d). Assume instead that α 6= 0. By letting X = (x, ξ), it follows
that (2.2) is the same as (0.9). Since H0 is globally elliptic, we have

∑
|γ+δ|≤2

‖Xγ∂δXu‖Lp(R2d) ≤ Cp‖H0u‖Lp(R2d) (2.5)

for every p ∈ (1,∞), u ∈ S (R2d) and for some constant Cp depending
on p and d only (cf. [12]). From now on, let p > 2d. With this choice,
bd(X) ∈ Lp(R2d) together with all its derivatives and the same holds
for 〈X〉bd(X), since bd ∈ Γ−2(R2d). Now let u = ∂αXbd in (2.5), where
α ∈ N2d \ {0}. In order to obtain appropriate estimates we consider
the commutator

[H0, ∂
α
X ]bd = H0(∂

α
Xbd)− ∂αX(H0bd) = H0(∂

α
Xbd), (2.6)

since H0bd = 1. By combining (2.5) and (2.6) we get

∑
|γ+δ|≤2

‖Xγ∂δ+αX bd‖Lp(R2d) ≤ C‖[H0, ∂
α
X ]bd‖Lp(R2d). (2.7)

Since [∆X , ∂
α
X ] = 0, we have

[H0, ∂
α
X ]bd = [|X|2, ∂αX ]bd

= −2
∑

1≤j≤2d

αj 6=0

αjXj∂
α−ej
X bd −

∑
1≤j≤2d
αj≥2

αj(αj − 1)∂
α−2ej
X bd, (2.8)

where ej, j = 1, . . . , 2d, is the standard basis in R2d.
Now we set, for α 6= 0:

Jα =
∑
|γ+δ|≤2

(γ,δ) 6=(0,0)

‖Xγ∂δ+αX bd‖Lp(R2d).
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From (2.7) and (2.8) it follows that

Jα ≤ 2C
∑

1≤j≤2d

αj 6=0

αj‖Xj∂
α−ej
X bd‖Lp(R2d)+C

∑
1≤j≤2d
αj≥2

αj(αj−1)‖∂α−2ej
X bd‖Lp(R2d)

= 2C
∑

1≤j≤2d
αj=1

‖Xj∂
α−ejbd‖Lp(R2d) + 2C

∑
1≤j≤2d
αj≥2

αj‖Xj∂j∂
α−2ejbd‖Lp(R2d)

+C
∑

1≤j≤2d
2≤αj≤3

αj(αj−1)‖∂α−2ejbd‖Lp(R2d)+C
∑

1≤j≤2d
αj≥4

αj(αj−1)‖∂2
j ∂

α−4ejbd‖Lp(R2d)

≤ 2C
∑

1≤j≤2d
αj=1

Jα−ej + 2C
∑

1≤j≤2d
αj≥2

αjJα−2ej

+ 6C
∑

1≤j≤2d
2≤αj≤3

Jα−2ej + C
∑

1≤j≤2d
αj≥4

αj(αj − 1)Jα−4ej , (2.9)

Using (2.9) we want now to prove by induction on |α| ≥ 1 that

Jα ≤ C
|α|
1 (α!)1/2 (2.10)

for some positive constant C1 depending only on d and on the constant
C = Cp in (2.5). For |α| ≤ 4, α 6= 0, the assertion is obvious. Now
assume that it is true for |α| ≤ N − 1 and let us prove it for |α| = N.
We observe that

αj(α− 2ej)!
1/2 ≤

√
2(αj(αj − 1)(α− 2ej)!)

1/2 =
√

2(α!)1/2

and

αj(αj − 1)(α− 4ej)!
1/2 ≤ 2(αj(αj − 1)(αj − 2)(αj − 3)(α− 4ej)!)

1/2

= 2(α!)1/2,

Then, from (2.9) and from the inductive assumption we obtain

Jα ≤ 4CdC
|α|−1
1 (α!)1/2 + 4

√
2CdC

|α|−2
1 (α!)1/2

+12CdC
|α|−2
1 (α!)1/2 + 4CdC

|α|−4
1 (α!)1/2 ≤ C

|α|
1 (α!)1/2

choosing C1 sufficiently large. In particular, from (2.10) we obtain that∑
|γ|≤2

‖Xγ∂αXbd‖Lp(R2d) ≤ C
|α|+1
1 (α!)1/2

holds for every α ∈ N2d, α 6= 0. Finally, the estimate (0.7) follows from
standard Sobolev embedding estimates. �
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Proof of Proposition 2.3. In view of Proposition 2.2, it is sufficient to
prove the estimate (0.8) for |X| ≥ 1. First we prove that if p > 2d,
then bd satisfies the following estimate

‖Xβ+τ∂αXbd‖Lp(R2d) ≤ C |α|+1
o |α||α|, X ∈ R2d, (2.11)

for every α, β, τ ∈ N2d with α 6= 0, |β| < |α| and |τ | ≤ 2. Namely,
settingM = |α+β+τ |, we shall obtain (2.11) by proving the following
estimate

‖Xβ+τ∂αXbd‖Lp(R2d) ≤ CM+1MM (2.12)

for some positive constant C independent of M . We shall argue by
induction on M . For M ≤ 4, the estimate (2.12) holds true since by
the Shubin estimate (0.5) we have

|Xβ+τ∂αXbd(X)| ≤ C1〈X〉−2−|α|+|β|+|τ | ≤ C1〈X〉−1 ∈ Lp(R2d),

when p > 2d.
Now let M > 4, assume that (2.12) holds for |α + β + τ | ≤ M − 1

and we shall prove it for |α + β + τ | = M . First we write

Xβ+τ∂αXbd = Xβ+τ−δXδ∂α−γX ∂γXbd,

where we choose γ, δ such that γ 6= 0, |γ + δ| = M − 2 and |α − γ| +
|β + τ − δ| = 2. Then, applying (2.5), we get

‖Xβ+τ∂αXbd‖Lp(R2d) ≤ ‖Xβ+τ−δ[Xδ, ∂α−γX ]∂γXbd‖Lp(R2d)

+ ‖Xβ+τ−δ∂α−γX (Xδ∂γXbd)‖Lp(R2d)

≤ ‖Xβ+τ−δ[Xδ, ∂α−γX ]∂γXbd‖Lp(R2d) + Cp‖H0(X
δ∂γXbd)‖Lp(R2d)

≤ ‖Xβ+τ−δ[Xδ, ∂α−γX ]∂γXbd‖Lp(R2d) + Cp‖[H0, X
δ∂γX ]bd‖Lp(R2d), (2.13)

since Xδ∂γX(H0bd) = 0. Here we used the fact that H0bd = 1 and γ 6= 0.
We now estimate the two terms in the right-hand side of (2.13).

Concerning the first term we have

Xβ+τ−δ[Xδ, ∂α−γX ]∂γXbd = −
∑

0 6=σ≤α−γ
σ≤δ

(
α− γ
σ

)
δ!

(δ − σ)!
Xβ+τ−σ∂α−σX bd.

We can now apply the inductive assumption observing that

|α− σ|+ |β + τ − σ| = M − 2|σ| < M < 1
10



and that δ!/(δ − σ)! ≤M |σ| and we obtain

‖Xβ+τ−δ[Xδ, ∂α−γX ]∂γXbd‖Lp(R2d)

≤
∑

0 6=σ≤α−γ
σ≤δ

(
α− γ
σ

)
M |σ|CM−2|σ|+1(M − 2|σ|)M−2|σ|

≤
∑

0 6=σ≤α−γ
σ≤δ

(
α− γ
σ

)
CM−2|σ|+1MM−|σ|

≤ CM−1MM−1
∑

06=σ≤α−γ

(
α− γ
σ

)

≤ 2|α−γ|CM−1MM−1 ≤ 4

C2
CM+1MM ≤ 1

2
CM+1MM (2.14)

if C was chosen larger than 2
√

2.
In order to estimate the second term in the right-hand side of (2.13),

we observe that the operator H0 is of the form

H0 =
∑

|ρ1|+|ρ2|≤2

cρ1ρ2X
ρ2∂ρ1X

for some constants cρ1ρ2 ∈ R. Moreover we have

[Xρ2∂ρ1X , X
δ∂γX ]bd

=
∑

0 6=σ≤ρ1
σ≤δ

c1ρ1δσX
δ+ρ2−σ∂γ+ρ1−σX bd −

∑
0 6=σ≤ρ2
σ≤γ

c2ρ2γσX
δ+ρ2−σ∂γ+ρ1−σX bd,

where

c1ρ1δσ =

(
ρ1

σ

)
δ!

(δ − σ)!
, c2ρ2γσ =

(
ρ2

σ

)
γ!

(γ − σ)!
.

The constants c1ρ1δσ, c
2
ρ2γσ

are bounded from above by C3M
|σ| for some

constant C3. Therefore,

‖[Xρ2∂ρ1X , X
δ∂γX ]bd‖Lp(R2d) ≤ C3(S1 + S2), (2.15)

where

S1 =
∑

0 6=σ≤ρ1
σ≤δ

M |σ|‖Xδ+ρ2−σ∂γ+ρ1−σX bd‖Lp(R2d)

and

S2 =
∑

0 6=σ≤ρ2
σ≤γ

M |σ|‖Xδ+ρ2−σ∂γ+ρ1−σX bd‖Lp(R2d).

11



In order to estimate S1 and S2 in (2.15) we observe that |γ| + |δ| =
M − 2 and |ρ1|+ |ρ2| ≤ 2 imply

|γ + ρ1 − σ|+ |δ + ρ2 − σ| ≤M − 2|σ|.
Then, from the inductive assumption we obtain

‖Xδ+β̃−σ∂γ+ρ1−σX bd‖Lp(R2d) ≤ CM−2|σ|+1(M − 2|σ|)M−2|σ|,

giving that

‖[Xρ2∂ρ1X , X
δ∂γX ]bd‖Lp(R2d) ≤ 2C3C

M−1MM
∑

1≤|σ|≤2

M−|σ|. (2.16)

By combining (2.13), (2.14) and (2.16), and choosing C sufficiently
large, we get

‖Xβ+τ∂αXbd‖Lp(R2d) ≤
1

2
CM+1MM

+ 2CpC3C
M−1MM

∑
|ρ1|+|ρ2|≤2

|cρ1ρ2|
∑

1≤|σ|≤2

M−|σ| ≤ CM+1MM .

This gives (2.12).
Now by estimate (2.12), standard Sobolev embedding estimates and

the fact that |α||α| ≤ C
|α|
d α!, we get

|∂αXbd(X)| ≤ C |α|+1α!〈X〉−|α|, X ∈ R2d. (2.17)

To obtain (0.8) for |X| ≥ 1, we finally use the fact that by (2.2) we
have

bd(X) =
1

|X|2
− 1

4

∆Xbd(X)

|X|2
, (2.18)

for |X| 6= 0. Here it follows by induction on |α| that∣∣∣∣∂αX ( 1

|X|2

)∣∣∣∣ ≤ C |α|+1α!〈X〉−2−|α|, |X| ≥ 1. (2.19)

Hence, by differentiating (2.18) and applying (2.17) and (2.19) we ob-
tain (0.8) for |X| ≥ 1. This concludes the proof. �

So far we have only considered the Weyl symbol of H−1. In the
following we make some remarks on the symbol of H−1 with respect to
other pseudo-differential calculi. More precisely, let t ∈ R, and let bd,t
be the t-symbol of H−1, i. e. bd,t is chosen such that Opt(bd,t) = H−1

d

(cf. (1.1)). We have

bd,t(x, ξ) = eiτ〈Dξ,Dx〉bd(x, ξ), τ = t− 1

2
(2.20)

(cf. [10]), and by straight-forward computations we get

bd,t(x, ξ) = Cτ−d
∫∫

bd(x− y, ξ − η)e−i〈y,η〉/τ dydη, (2.21)

12



where the right-hand side is considered as an oscillatory integral, and
should be interpreted as bd ∗ δ0 = bd when τ = 0 (i. e. when t = 1/2,
which is the Weyl case). Here the constant C only depends on the
dimension.

We have now the following extension of Proposition 2.2, where es-
sentially the condition (0.7) is replaced by

|∂αbd,t(x, ξ)| ≤ C |α|+1(α!)1/2〈(x, ξ)〉−2, (0.7)′

Proposition 2.2′. Let bd,t be the t-symbol of the inverse to the har-
monic oscillator on Rd. Then there is a constant C > 0 such that (0.7)′
holds for every α ∈ N2d.

Proof. Since the result is the same as Proposition 2.2 when t = 1/2,
we may assume that t 6= 1/2, or equivalently, that τ 6= 0. We have

e−i〈y,η〉/τ =
(1−∆η)

d+1e−i〈y,η〉/τ

(1 + |y|2/τ 2)d+1
, (2.22)

and using this in (2.21), and integrating by parts, we get

bd,t(x, ξ) = Cτ−d
∫∫

((1−∆ξ)
d+1bd)(x− y, ξ − η)

(1 + |y|2/τ 2)d+1
e−i〈y,η〉/τ dydη.

In the same way we have

e−i〈y,η〉/τ =
(1−∆y)

d+1e−i〈y,η〉/τ

(1 + |η|2/τ 2)d+1
, (2.23)

and again integrations by parts give

bd,t(x, ξ)

= Cτ−d
∫∫

(1−∆y)
d+1

(
((1−∆ξ)

d+1bd)(x− y, ξ − η)

(1 + |y|2/τ 2)d+1

)

× e−i〈y,η〉/τ

(1 + |η|2/τ 2)d+1
dydη

=
∑
|β|≤4d

Cβuβ ∗ ψβ, (2.24)

where uβ = ∂βbd, and ψβ(x, ξ) are equal to

Pβ(D)(〈x/τ〉−2d−2〈ξ/τ〉−2d−2),

for some differential operator Pβ(D) with constant coefficients of order
at most 4d, and which depend on β only. In particular it follows that
for some constant C > 0 we have

|ψβ(X)| ≤ C〈X〉−2d−2,

for every β.
13



The result follows if we prove that for every β, there is a constant C
such that we have

|(∂αuβ) ∗ ψβ| ≤ C1−|α|(α!)1/2〈X〉−2. (2.25)

We have

|((∂αuβ) ∗ ψβ)(X)| ≤ (|∂αuβ| ∗ |ψβ|)(X)

≤ C1

∑
|β|≤4d

(|∂α+βbd| ∗ 〈 · 〉−2d−2)(X)

≤ C2

∑
|β|≤4d

(|∂α+βC1+|α+β|(α + β)!1/2〈 · 〉−2 ∗ 〈 · 〉−2d−2)(X)

≤ C
1+|α|
3 α!1/2

∑
|β|≤4d

(〈 · 〉−2 ∗ 〈 · 〉−2d−2)(X)

≤ C
1+|α|
4 α!1/2〈X〉−2,

for some constants Ck, k = 1, . . . , 4, which only depend on β. This
proves the result. �

Remark 2.4. The techniques in the preceding proof can also be applied
to obtain estimates for bt,d, related to Proposition 2.3, where the decay
should be similar as in the estimates (0.4)–(0.8). In such approach, one
needs to apply the operators

1−∆η

1 + |y|2/τ 2
and

1−∆y

1 + |η|2/τ 2
(2.26)

|α| + 2d + 2 times instead of 2d + 2. More precisely, if fr(x) = 〈x〉−r,
x ∈ Rd, then it follows by straight-forward computations that

|∂αfr1 ∗ fr2| ≤ Crα!fr+|α|, r = min(r1, r2), (2.27)

for some constant C which is independent of r1, r2 ∈ R and α ∈ Nd such
that max(r1, r2) ≥ d+1. Here it seems not possible to replace r by larger
values in the inequality (2.27). Consequently, if the functions which
corresponds to ∂αuβ ∗ ψβ in the previous proofs should be bounded
by functions of the form 〈X〉−2−|α|, it is required that the operators in
(2.26) are applied the asserted number of times.

This has also consequences on the final estimate. In fact, in the ex-
pressions which corresponds to (2.25), one obtains one factor α! from
bd, because of (0.8), and one such factor because of the factorial in
(2.27). Hence, from such computations it follows that bd,t satisfies

|∂αbd,t(x, ξ)| ≤ C |α|+1α!2〈(x, ξ)〉−2−|α|,

for some constant C which is independent of α. By taking the geometric
mean-value with the previous proposition we obtain

|∂αbd,t(x, ξ)| ≤ C |α|+1α!(1+3s)/2〈(x, ξ)〉−2−s|α|. (2.28)
14



Consequently, the obtained estimates for bd,t when t 6= 1/2 and s > 0,
are not so strong compared to the Weyl symbol bd, when using this
method of approximation, since the factor α!(1+3s)/2 in (2.28) increases
faster compared to the factor α!(1+s)/2 in (0.6).

On the other hand, by using more refined methods which also involve
symbolic calclulus it is here conjectured that (2.28) can be improved
in such way that the factor α!(1+3s)/2 can be replaced by a factor α!s0 ,
for some s0 which is strictly smaller than (1 + 3s)/2, when s > 0.

Remark 2.5. Let t ∈ R, and consider the general harmonic oscillator

H = −∆ + C1|x|2 + C2, (2.29)

which can be found in Remark 1.3. Here C1, C2 ∈ R should satisfy (1.5).
It follows that H is an invertible and globally elliptic operator on S
and Ss, and their dual spaces, for every s ≥ 1/2 (cf. e. g. [17,18]). The
inverse H−1 of H is a Weyl operator Opw(bd) or a t-operator Opτ (bd,t),
for some appropriate smooth functions bd and bd,t on R2d.

For such choices of C1 and C2, it follows by Theorem 2.1 and Proposi-
tion 2.2′, and their proofs that these results remain valid after the stan-
dard harmonic oscillator has been replaced by the operator in (2.29).

3. Explicit formulas for the inverse of the harmonic
oscillator

In this section we derive some formulas for the symbol bd(x, ξ) start-
ing from the equation (2.2) As before, let X = (x, ξ) ∈ R2d. By a slight
dilation of the variables in bd, we may reformulate (2.2) as an equation
of the form

H2dF = G,

where G is constant. Hence (0.10) holds for some real valued cd, in
view of Corollary 1.2. By straight-forward computations, (0.9) and the
radial property (0.10), it follows that cd satisfies

−tc′′d(t)− dc′d(t) + tcd(t) = 1. (3.1)

We see from (3.1) that c′d(0) = −1/d. Furthermore, we know that
|X|2bd(X) is bounded. This implies that tcd(t) is bounded. Moreover,
by Proposition 2.2 it follows that cd is extendable to an entire function.
In particular, it is equal to its power series expansion, i. e.

cd(t) =
∞∑
k=0

akt
k, (3.2)

15



for some sequence {ak}∞k=0. By differentiations we have

tc′′d(t) =
∞∑
k=1

(k + 1)kak+1t
k, c′d(t) =

∞∑
k=0

(k + 1)ak+1t
k,

tcd(t) =
∞∑
k=1

ak−1t
k.

By inserting this into (3.2) we get
∞∑
k=1

(
− (k + 1)(k + d)ak+1 + ak−1

)
tk − da1 = 1,

which gives

a1 = −1

d
, ak =

ak−2

k(k + d− 1)
, k ≥ 2. (3.3)

If k = 2p is even, then the latter equation gives

a2p =
a0

(2p)!!(2p+ d− 1)(2p+ d− 3) · · · (d+ 1)
,

and if k = 2p+ 1 is odd, we get

a2p+1 =
a1

(2p+ 1)!!(2p+ d)(2p+ d− 2) · · · (d+ 2)
.

This gives

a2p =
a0(d− 1)!!

(2p)!!(2p+ d− 1)!!
, a2p+1 =

a1d!!

(2p+ 1)!!(2p+ d)!!
. (3.4)

Here and in what follows we set 0!! = 1, as usual.
Since a1 = −1/d, we get

cd(t)

=
d!!

d

(
α

∞∑
p=0

t2p

(2p)!!(2p+ d− 1)!!
−
∞∑
p=0

t2p+1

(2p+ 1)!!(2p+ d)!!

)
, (3.5)

where α = a0(d − 1)!!d/d!!. Since b is bounded together with all its
derivatives, the same is true for cd(t) when t ≥ 0. This implies that
α is uniquely determined. In fact, the right-hand side of (3.5) is a
difference of two sums, which both increase to infinity faster than any
polynomial. Hence there is at most one choice of α such that cd(t) is
bounded when t ≥ 0.

We claim that α is independent of d when d stays purely among the
even numbers, or purely among the odd numbers. This means that if
α = αd in (3.5), then we claim that αd = αd−2 for every d ≥ 3.
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In fact, let β = αd − αd−2. Then it follows from (3.5) and straight-
forward computations that

(d−1)cd(t)+tc′d(t)−(d−2)cd−2(t) = β(d−2)!!
∞∑
p=0

t2p

(2p)!!(2p+ d− 3)!!
.

Here the left-hand side is bounded when t ≥ 0. Since (d− 2)!! > 0 and
the power series on the right-hand side is unbounded, it follows that
β = 0. This proves the stated invariance, as well as

(d− 1)cd(t) + tc′d(t) = (d− 2)cd−2(t), d ≥ 3. (3.6)

Proposition 3.1. Let cd be such that cd(|X|2) is the Weyl symbol of
the inverse to the harmonic oscillator on Rd. Then cd is given by (3.5),
where α = 1 when d is even, and α = π/2 when d is odd.

Proof. We may assume that d = 2 when considering the case when d
is even. By (3.5) we have

c2(t) = α
∞∑
p=0

t2p

(2p+ 1)!
−
∞∑
p=0

t2p+1

(2p+ 2)!

=
1− (cosh(t)− α sinh(t))

t
. (3.7)

Since c2 should be bounded at infinity, it follows from the last expres-
sion that α = 1, and the result follows in this case.

Next we consider the case when d is odd, and then we may assume
that d = 1. Let F be the (one-sided) Laplace transform of c = c1. Then
the Laplace transforms of tc(t), c′(t), tc′′(t) and 1 are

s 7→ −F ′(s), s 7→ sF (s)− c(0), s 7→ −2sF (s)− s2F ′(s) + c(0)

and
s 7→ 1

s
,

respectively. Hence by Laplace transformation, the equation (3.1) be-
comes

(s2 − 1)F ′(s) + sF (s) =
1

s
,

and the general solution of this equation is

F (s) =
arctan(

√
s2 − 1) + C√
s2 − 1

, s > 1.

Since c1(t) is bounded for t ≥ 1, it follows that F is extendable to an
analytic function on the half plane Re(s) > 0. This implies that C = 0,
and F (s) should be interpreted as

F (s) =
∞∑
p=0

(−1)p(s2 − 1)p

2p+ 1
, when 0 ≤ s ≤

√
2.
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Summing up, it follows that

F (s) =


∞∑
p=0

(−1)p(s2 − 1)p

2p+ 1
, 0 < s ≤ 1,

arctan(
√
s2 − 1)√

s2 − 1
, s > 1.

(3.8)

Now we get

c1(0) = lim
s→∞

sF (s) = lim
s→∞

s · arctan(
√
s2 − 1)√

s2 − 1
=
π

2
,

and the result now follows from these equalities and letting t = 0 in
(3.5). The proof is complete. �

It follows from Theorem 2.1 and Faà di Bruno’s formula, and the
fact bd(X) = cd(|X|2), that for some constant C we have

|c(k)d (t)| ≤ C1+k(k!)(1+s)/2(1 + t)−1−sk, t ≥ 0, (3.9)

for every s ∈ [0, 1] and k ∈ N. We shall now go beside the main stream
for a while and combine this inequality with (3.5) to establish narrow
estimates for the special function

wn(t) ≡
∞∑
p=0

t2p+1

(2p+ 1)!!(2p+ 2n+ 1)!!
, (3.10)

in terms of the Bessel function

un(t) ≡
∞∑
p=0

tp

p!(p+ n)!
. (3.11)

In fact, if d = 2n + 1 is odd, then Proposition 3.1, (3.5) and (3.9)
give the following result.

Theorem 3.2. Let n ∈ N, wn(t) and un(t) be as in (3.10) and (3.11).
Then∣∣∣∣ dkdtk (wn(t) − π

2
un(t2/4)

)∣∣∣∣ ≤ C1+k(k!)(1+s)/2(1 + t)−1−sk, t ≥ 0

(3.12)
for some constant C > 0 which is independent of s, k and t ≥ 0.

Remark 3.3. Note that the coefficients in the power series in (3.12)
contain two factors with odd semi-factorials, which can be formulated
by four factors of factorials. It seems to be difficult to find qualitative
estimates in the literature for special functions which are obtained by
such power series expansion (cf. e. g. [13]). The estimate (3.12) might
then shed some light on how such functions can be approximated in
terms of the more well-known Bessel functions.
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We now continue with our analysis of bd when d = 2n is even.
From (3.7) we have

c2(t) =
1− e−t

t
, (3.13)

giving that

b2(X) =
1− e−|X|2

|X|2
, d = 2, (3.14)

which can also be rewritten as (0.3).
Moreover, by differentiating (3.6) and using (3.1) we obtain the fol-

lowing recursive formula

tcd(t) = (d− 2)c′d−2(t) + 1. (3.15)

For example, by (3.13) and (3.15), we get

c4(t) =
2(t+ 1)e−t + t2 − 2

t3
. (3.16)

Hence,

b4(X) =
2(|X|2 + 1)e−|X|

2
+ |X|4 − 2

|X|6
, d = 4. (3.17)

Now we aim to prove a general compact formula for bd(X) in the even
dimensional case. To this hand, rather than applying the recursive for-
mula (3.15), we shall proceed by giving first the asymptotic expansion
of cd(t) and bd(X), for any d ≥ 1, in terms of homogeneous functions.
In principle, these computations are included in [16, Section 25], but
here we need a more explicit result.

Proposition 3.4. Let cd be defined by (0.10), and let hd,j(t) be given
by

hd,0(t) = t−1

and

hd,j(t) =

(
(−1)j(2j − 1)!!

j∏
l=1

(d− 2l)

)
t−1−2j, j ≥ 1.

Then for every N ∈ N, N ≥ 1 and n ∈ N, there exists a positive
constant Cn,N such that∣∣∣∣∣ dndtn

(
cd(t)−

∑
j<N

hd,j(t)

)∣∣∣∣∣ ≤ Cn,N t
−1−2N−n. (3.18)

To prove the proposition we need some preliminary results. First we
note that by (0.4) and (0.10), it follows that for every n ≥ 0, there is
a constant Cn such that

|c(n)
d (t)| ≤ Cnt

−1−n. (3.19)
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Lemma 3.5. Let hd,j be the same as in Proposition 3.4. Then

thd,j(t) = th′′d,j−1(t) + dh′d,j−1(t), j ≥ 1. (3.20)
Lemma 3.5 follows by straight-forward computation. The details are

left to the reader.
Lemma 3.6. Let cd and hd,j be the same as in Proposition 3.4. If
N ≥ 1, then

t

(
cd(t)−

∑
j≤N

hd,j(t)

)

= t

(
c
′′

d(t)−
∑

j≤N−1

h
′′

d,j(t)
)

+ d
(
c′d(t)−

∑
j≤N−1

h′d,j(t)

)
. (3.21)

Proof. We prove the lemma by induction on N . As th0(t) = 1, from
(3.1) we get

t(cd(t)− hd,0(t)) = tc′′d(t) + dc′d(t). (3.22)
By Lemma 3.5 we obtain

t
(
cd(t)− hd,0(t)− hd,1(t)

)
= tc′′d(t) + dc′d(t)− thd,1(t)

= tc′′d(t) + dc′d(t)− th′′d,0(t)− dh′d,0(t)

= t
(
c′′d(t)− h′′d,0(t)) + d(c′d(t)− h′d,0(t)

)
,

which gives the assertion for N = 1.
Assume now that (3.21) is true for some N and let us prove it for

N + 1. By (3.20) and by the inductive assumption we get

t
(
cd(t)−

∑
j≤N+1

hd,j(t)
)

= t

(
cd(t)−

∑
j≤N

hd,j(t)

)
− thd,N+1(t)

= t

(
c
′′

d(t)−
∑

j≤N−1

h
′′

d,j(t)

)
+d

(
c′d(t)−

∑
j≤N−1

h′d,j(t)

)
−th′′d,N(t)−dh′d,N(t)

= t

(
c
′′

d(t)−
∑
j≤N

h
′′

d,j(t)

)
+ d

(
c′d(t)−

∑
j≤N

h′d,j(t)

)
.

This proves the lemma. �

Proof of Proposition 3.4. First let N = 1. By (3.22) we have

dn

dtn
(
cd(t)− hd,0(t)

)
=

dn

dtn

(
c
′′

d(t) + d
c′d(t)

t

)
= c

(n+2)
d (t) + d

∑
m≤n

(
n

m

)
(−1)m

m!

tm+1
c
(n−m+1)
d (t).
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Hence (3.19) gives∣∣∣∣ dndtn (cd(t)− hd,0(t))
∣∣∣∣ ≤ C1t

−3−n + 2ndC2n!t−3−n ≤ C3t
−3−n,

for some constants C1, C2, C3, and (3.18) follows for N = 1. For N > 1
we argue by induction using Lemma 3.6. By (3.21) we have

dn

dtn

(
cd(t)−

∑
j≤N

hd,j(t)

)
=

dn

dtn

(
c
′′

d(t)−
∑

j≤N−1

h
′′

d,j(t)

)

+ d
∑
m≤n

(
n

m

)
(−1)m

m!

tm+1

dn−m

dtn−m

(
c′d(t)−

∑
j≤N−1

h′d,j(t)

)
.

By the inductive assumption we get∣∣∣∣∣ dndtn (cd(t)−∑
j≤N

hd,j(t)
)∣∣∣∣∣ ≤ Ct−3−2N−n,

for some constant C. This gives the result. �

Note that if d is even, we have hd,j = 0 for j ≥ d/2. One cannot

expect however that cd(t) =
∞∑
j=0

hd,j(t), since the terms in the sum have

singularities at the origin. Inspired by (3.13), (3.16), we now define

h̃d,j(t) = (1− e−tp2j(t))hd,j(t), j ≥ 0, (3.23)

where pj(t) is the Taylor polynomial of et of order j centered at t = 0
and the functions hd,j(t) are the same as in Proposition 3.4. Since terms
with exponential decay do not change the asymptotic expansion, we
have for some positive constants Cn,N the following∣∣∣∣∣ dndtn

(
cd(t)−

∑
j<N

h̃d,j(t)

)∣∣∣∣∣ ≤ Cn,N〈t〉−1−2N−n (3.24)

The singularities at the origin are now cancelled. In the even dimen-
sional case we still have h̃d,j(t) = 0 for j ≥ d/2, and the asymptotic
expansion (3.24) becomes indeed an identity as proved below.

Proposition 3.7. Let d = 2n > 0 be even, and let h̃d,j be defined by
(3.23). Then

cd(t) =
∞∑
j=0

h̃d,j(t) =
n−1∑
j=0

(
n− 1

j

)
(−1)j(2j)!

1− e−tp2j(t)

t2j+1
. (3.25)

Proof. We shall prove the result by induction. First we perform some
investigations about the sums in (3.25). We note that h̃d,j = 0 when
j ≥ n, and by straight-forward computations it follows that the second
equality in (3.25) hold.
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Let ϕd(t) be the right-hand side of (3.25). By straight-forward com-
putations we get

ϕd(t) =
n−1∑
j=0

(
n− 1

j

)
(−1)j(2j)!gj(t), where gj(t) =

1− e−tp2j(t)

t2j+1
,

h̃d,j(t) =

(
n− 1

j

)
(−1)j(2j)!gj(t), and tg′j(t) = −(2j+1)gj(t)+

e−t

(2j)!
.

This gives

tϕ′d(t) + (d− 1)ϕd(t)

=
n−1∑
j=0

(2n− 2j − 2)

(
n− 1

j

)
(−1)j(2j)!gj(t) + e−t

n−1∑
j=0

(
n− 1

j

)
(−1)j

= 2(n− 1)
n−2∑
j=0

(
n− 2

j

)
(−1)j(2j)!gj(t) + e−t

n−1∑
j=0

(
n− 1

j

)
(−1)j.

Here the first sum on the right-hand side is (d− 2)ϕd−2(t), and the
second sum is zero, by the binomial theorem.

Hence
tϕ′d(t) + (d− 1)ϕd(t) = (d− 2)ϕd−2(t),

that is, the sequence {ϕ2n}n≥1 satisfies the same type of differential
equations as {c2n}n≥1 (cf. (3.6)). In particular, if ψd = cd − ϕd, then
{ψ2n}n≥1 also fulfills (3.6), after cd and cd−2 have been replaced by ψd
and ψd−2, respectively.

We now turn into the induction step (over n). By the definitions, the
result follows if we prove that ψd = 0 for every d = 2n. The result is
true for n = 1, in view of (3.13) and by the definition of ϕ2.

Assume that the result is true for n − 1, i. e. ψ2n−2 = 0. Then (3.6)
implies that tψ′2n + (2n− 1)ψ2n = 0, giving that

ψ2n(t) = Ct1−2n, t > 0,

for some constant C. Since ψ2n(t) is continuous for all t and t1−2n is
singular at origin, it follows that C must be zero, i. e. ψ2n = 0. The
proof is complete. �

Returning now to bd(X), we may reformulate Proposition 3.4 as fol-
lows.

Theorem 3.8. Let bd,j, j = 0, 1, . . . , be given by

bd,0(X) = |X|−2

and

bd,j(X) =
(

(−1)j(2j − 1)!!

j∏
l=1

(d− 2l)
)
|X|−2−4j, j ≥ 1.
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Then, for every N ∈ N, N ≥ 1 and for every α ∈ N2d the following
estimate holds:∣∣∣∂αX(bd(X)−

∑
j<N

bd,j(X)
)∣∣∣ ≤ Cα,N |X|−2−4N−|α| (3.26)

for some positive constant Cα,N depending only on α,N and on the
dimension d.

Finally, by Proposition 3.7 we get the following result which gives
exact formulas for bd when d is even.

Theorem 3.9. Let d = 2n > 0 be even, and let pj be the Taylor
polynomial of et of order j centered at t = 0. Then

b2n(X) =
n−1∑
j=0

(
n− 1

j

)
(−1)j(2j)!

1− e−|X|2p2j(|X|2)
|X|2+4j

. (3.27)

References

[1] J.M. Bony, J.Y. Chemin, Espaces fonctionnels associés au calcul de Weyl-
Hörmander, Bull. Sci. Math. France 122 (1994), 77–118.

[2] L. Boutet de Monvel, P. Krée, Pseudodifferential operators and Gevrey classes,
Ann. Inst Fourier, Grenoble 17 (1967), 295–323.

[3] M. Cappiello, T. Gramchev, L. Rodino, Super-exponential decay and holomor-
phic extensions for semilinear equations with polynomial coefficients, J. Funct.
Anal. 237 (2006), 634–654.

[4] M. Cappiello, T. Gramchev, L. Rodino, Entire extensions and exponential de-
cay for semilinear elliptic equations. J. Anal. Math. 111 (2010), 339–367.

[5] M. Cappiello, T. Gramchev and L. Rodino, Sub-exponential decay and uniform
holomorphic extensions for semilinear pseudodifferential equations. Comm.
Partial Differential Equations 35 (2010) n. 5, 846–877.

[6] M. Cappiello, L. Rodino, SG-pseudodifferential operators and Gelfand-Shilov
spaces, Rocky Mountain J. Math. 36 (2006) 4, 1117–1148.

[7] A. Erdélyi, W. Magnus, F. Oberhettinger, F.G. Tricomi, Higher transcendental
functions, 2, Bateman Project, California Inst. Technology, McGraw-Hill, 1953.

[8] I. M. Gelfand, G. E. Shilov, Generalized functions, II-III, Academic Press,
NewYork London, 1968.

[9] B. Helffer, Théorie spectrale pour des opérateurs globalement elliptiques,
Astérisque 112, Soc. Math. de France, 1984.

[10] L. Hörmander The Analysis of Linear Partial Differential Operators, vol I–III,
Springer-Verlag, Berlin Heidelberg NewYork Tokyo, 1983, 1985.

[11] M. Langerbruch, Hermite functions and weighted spaces of generalized func-
tions, Manuscripta Math. 119 (2006), 269–285.

[12] F. Nicola, L. Rodino Global pseudo-differential calculus on Euclidean spaces,
Pseudo-Differential Operators. Theory and Applications 4 Birkhäuser Verlag,
Basel, 2010.

[13] F. W. J. Olver, Asymptotics and special functions Reprint of the 1974 original,
Academic Press, New York, 1997.

[14] S. Pilipović, Generalization of Zemanian spaces of generalized functions which
elements have series expansion, SIAM J. Math. Anal. 17 (1986), 477–484.

[15] M. Reed, B. Simon, Methods of modern mathematical physics, 1, Academic
Press Inc., San Diego, 1980.

23



[16] M. Shubin, Pseudodifferential operators and the spectral theory, Springer Series
in Soviet Mathematics, Springer Verlag, Berlin 1987.

[17] M. Signahl, J. Toft Mapping properties for the Bargmann transform on mod-
ulation spaces, J. Pseudo-Differ. Oper. Appl. 3 (2012), 1–30.

[18] J. Toft, The Bargmann transform on modulation and Gelfand-Shilov spaces,
with applications to Toeplitz and pseudo-differential operators, J. Pseudo-
Differ. Oper. Appl. 3 (2012), 145–227.

[19] M.W. Wong, Weyl transform, Springer-Verlag, Berling, 1988.

Dipartimento di Matematica “G. Peano", Università di Torino, Via
Carlo Alberto 10, Torino, Italy

E-mail address: marco.cappiello@unito.it

Dipartimento di Matematica “G. Peano", Università di Torino, Via
Carlo Alberto 10, Torino, Italy

E-mail address: luigi.rodino@unito.it

Department of Mathematics, Linnæus University, Växjö, Sweden
E-mail address: joachim.toft@lnu.se

24


