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Abstract  

Colorectal cancers (CRC) that are sensitive to the anti EGFR antibodies cetuximab or panitumumab 

almost always develop resistance within several months of initiating therapy. We report the emergence 

of polyclonal KRAS, NRAS and BRAF mutations in CRC cells with acquired resistance to EGFR 

blockade. Regardless of the genetic alterations, resistant cells consistently displayed MEK and ERK 

activation, which persisted after EGFR blockade. Inhibition of MEK1/2 alone failed to impair the growth 

of resistant cells in vitro and in vivo. An RNA interference screen demonstrated that suppression of 

EGFR together with silencing of MEK1/2 was required to hamper the proliferation of resistant cells. 

Indeed, concomitant pharmacological blockade of MEK and EGFR induced prolonged ERK inhibition 

and severely impaired the growth of resistant tumor cells. Heterogeneous and concomitant mutations in 

KRAS and NRAS were also detected in plasma samples from patients who developed resistance to 

anti-EGFR antibodies. A mouse xeno-transplant from a CRC patient who responded and subsequently 

relapsed upon EGFR therapy showed exquisite sensitivity to combinatorial treatment with MEK and 

EGFR inhibitors. Collectively, these results identify genetically distinct mechanisms that mediate 

secondary resistance to anti-EGFR therapies, all of which reactivate ERK signaling. These 

observations provide a rational strategy to overcome the multifaceted clonal heterogeneity that 

emerges when tumors are treated with targeted agents. We propose that MEK inhibitors, in combination 

with cetuximab or panitumumab, should be tested in CRC patients who become refractory to anti-EGFR 

therapies.  



Introduction  

The development of secondary (acquired) resistance is a common feature of anticancer treatment. The 

identification of mechanisms underlying secondary resistance can lead to rational development of 

additional lines of therapy. However, recent evidence indicates that a variety of resistance mechanisms 

to targeted drugs can emerge. When BRAF mutant melanomas are exposed to BRAF inhibitors, 

surviving cells display NRAS, MEK1/2 or COT mutations, PDGFRB overexpression, BRAF gene 

amplification or expression of BRAF truncated forms (1-5). Similarly, lung cancers carrying EGFR 

mutations escape treatment with the highly specific inhibitors erlotinib and gefitinib, through EGFR 

secondary mutations (T790M), MET amplification, HER2 amplification, MAPK1 amplification, PIK3CA 

mutations, AXL up-regulation and other mechanisms (6-12).  

These discoveries suggest that every patient with a malignancy that becomes refractory to a targeted 

therapy should ideally undergo a tumor biopsy, allowing the assessment of the mechanism(s) of 

resistance through extensive costly molecular analyses. Even if this level of sophistication could be 

eventually achieved in the clinical setting, advanced stage patients often have multiple metastatic 

lesions in different organs. It is likely that the biopsied lesion would not be representative of the 

heterogeneity of the entire disease burden at relapse (13).  

The realization that relapsed tumors are highly molecularly heterogeneous poses a formidable 

therapeutic challenge, as it would seem quite difficult to overcome the multiple resistance mutations 

that arise in individual patients. We hypothesized that the plethora of molecular determinants causative 

of secondary resistance would ultimately converge downstream in the signaling cascade, at a limited 

number of critical points.  

In order to test this assumption, we studied secondary resistance to the monoclonal antibodies 

cetuximab and panitumumab. These drugs are mostly effective in colorectal cancer (CRC) patients who 

do not carry mutations in KRAS, NRAS or BRAF (14, 15). In these individuals, response to EGFR 

blockade can result in remarkable tumor regressions, but these are short lived (16) and progression 

occurs within months (17).  

We initially identified several cell lines with molecular features representing a subset of patients who 

respond to cetuximab and/or panitumumab. These were then treated with anti-EGFR antibodies until 

resistant derivatives emerged. In accordance with our recent report, resistant cells frequently displayed 

KRAS mutations (18). We noted, however, that the resistant cell population was heterogeneous, and 

not all cells carried KRAS mutations. This phenomenon is reminiscent of what we and others have 

found in clinical samples from patients who respond and then progress upon treatment with cetuximab 

or panitumumab (18, 19). This prompted us to define additional mechanisms of resistance to EGFR 

blockade and to assess the pathway they control, as this is a prerequisite to overcome acquired 

resistance.  



Results  

Distinct genetic events drive acquired resistance to anti-EGFR therapy in CRC cells  

To generate models of acquired resistance to anti-EGFR targeted therapies, we took advantage of a 

panel of CRC cell lines that we found to be highly sensitive to cetuximab and/or panitumumab. These 

included DiFi, LIM1215, HCA-46, NCIH508 and OXCO-2 cells. Mutational profiling showed that these 

cell lines are wild type for KRAS (exons 2, 3, 4), NRAS (exons 2, 3), HRAS (exons 2, 3), BRAF (exon 

15), and PIK3CA (exons 9, 20), with the exception of NCIH508 which carries a PIK3CA exon 9 mutation 

(p.E545K). These findings in cell lines are consistent with the clinical observations about the genetic 

status of CRC patients most likely to respond to cetuximab and panitumumab (20, 21).  

Cells were exposed to cetuximab or panitumumab until resistant populations emerged. Derivative cells 

resistant to cetuximab (referred to as R-cetux) or panitumumab (which we called R-panit) displayed 

cross-resistance to both monoclonal antibodies, consistent with what has been reported in patients 

treated with panitumumab after previous cetuximab-based treatment (22)(Figure 1A). 

In order to define the molecular mechanisms underlying acquired resistance, we initially performed 

Sanger sequencing of candidate genes, which are known to confer primary resistance to EGFR 

blockade in CRC (20). These included KRAS, BRAF, NRAS, and PIK3CA. Mutational profiling of the 

resistant populations revealed molecular alterations in KRAS, BRAF and NRAS, but not in PIK3CA 

(Fig.1B). OXCO-2 and LIM1215 resistant populations contained multiple mutations. Most of the 

changes affected residues known to activate the corresponding protein, such as KRAS position 12, 

BRAF position 600 and NRAS positions 12 and 61 (Fig.1B and Fig. S1 A-B). A recent study indicated 

that CRC tumors resistant to cetuximab may acquire a secondary mutation in the extracellular domain 

of EGFR (S492R), which would prevent drug binding (23). Sequencing of the EGFR ectodomain in 

genomic DNA and cDNA obtained from resistant clones ruled out the presence of this mutation. 

Previous reports showed that gene amplification of KRAS, HER2 or MET can also confer resistance to 

anti-EGFR targeted therapies (18, 24-27). To assess whether gene copy variations could have 

emerged during drug selection, real-time quantitative PCR was performed on the same panel of 

candidates. This analysis revealed amplification of KRAS in DiFi R-cetux, HCA-46 R1-cetux and 

NCIH508 R-cetux and to a lesser extent in NCIH508 R-panit cell lines. Amplification of the MET or 

HER2 genes was not observed (Fig S2 A-B). We did not detect an increase in KRAS gene copy number 

in any of the parental lines. However, we previously reported that very rare cells in the DiFi population 

display KRAS overexpression by immunohistochemical analysis (18). We cannot exclude that a few 

KRAS-amplified cells (below the limit of detection of the RT-PCR assay) also exist in the other parental 

cell lines. To further address this aspect, we performed IHC (with KRAS antibodies) and FISH analysis 

(with a KRAS gene probe) of HCA-46 and NCIH508 parental and resistant cell populations. IHC and 

FISH confirmed the presence of KRAS-amplified cells in the resistant population and indicated that the 



parental cells do not display this molecular alteration (Fig S3 A-B).  

To formally assess whether different genetic alterations occurred in a mutually exclusive pattern, we 

cloned the populations of resistant cells. We found that single colonies could not be efficiently isolated 

from HCA-46 and NCIH508 cell lines. We therefore focused on LIM1215 R1-cetux, LIM1215 R2-cetux, 

and OXCO-2 R1-cetux cells, which proved capable of generating individual clones upon limiting 

dilution. All LIM1215 R2-cetux derivative clones (70/70) carried the KRAS G13D mutation, confirming 

that the resistant population was homogeneous. On the contrary, out of 13 clones derived from 

LIM1215 R1-cetux, 4 carried the KRAS G12R, 4 displayed the KRAS K117N variant (28) and the 

remaining 5 clones carried the NRAS G12C mutation. OXCO-2 R-cetux derived clones (66 clones in 

total) showed either KRAS G13D (42 clones) or BRAF V600E mutations (24 clones). To obtain more 

accurate quantification of the percentage at which each allele was present in the resistant populations, 

we performed BEAMing analysis on a subset of the resistant derivatives (Table S1).    

The resistance protocol was then repeated starting from an independent batch of parental cells 

(LIM1215, OXCO-2, HCA-46) to assess the reproducibility of the approach and to evaluate the 

emergence of additional variants. LIM1215 R4-cetux again displayed a mixed population of KRAS 

G13D and KRAS G12D. OXCO-2 R2-cetux contained NRAS G12C, G12D and G13D. HCA-46 R2--

cetux displayed KRAS G13D mutation.   

Overall these results suggest that: i) Multiple genetic mechanisms can drive resistance to EGFR 

blockade and ii) several sub-clones often coexist in the population which emerges after selection with 

anti-EGFR therapies.  

 

Genetic alterations in EGFR signaling biochemically converge to activate MEK and ERK  

 

As described above, escape from EGFR blockade in CRC cells is associated with the emergence of 

distinct alterations in several genes. We hypothesized that the plethora of molecular determinants 

causative of acquired drug resistance would ultimately converge at a limited number of signaling 

switches which, in turn, could be rationally targeted by further lines of therapy. To test this assumption, 

we performed biochemical analysis of the resistant derivatives. For these studies, we elected to use 

LIM1215 R-panit (KRAS G13D, NRAS G12C), OXCO-2 R1-cetux (KRAS G12D, BRAF V600E), HCA46 

R-panit (KRAS G12C) and NCIH508 R-cetux (KRAS amplified), because they are representative of the 

distinct resistance mechanisms which emerged upon selection with cetuximab and panitumumab (Fig. 

1B). We started by assessing levels of RAS activation using a CRAF pull down assay. We found that 

resistant cells displayed increased GTP-bound KRAS as compared to the matched parental cells (Fig. 

S4). We next assessed the phosphorylation status of EGFR and its downstream effectors MEK and 

ERK by Western blot analysis. We found that MEK and/or ERK were consistently activated in resistant 

cells as compared to their parental counterparts (Fig. 2 A, B, C and D). Of relevance, sustained MEK or 

ERK activation was present in the resistant derivatives independent of the genetic mechanism of 



resistance. These results revealed that CRC cells become refractory to anti-EGFR therapies by 

increasing signaling output through the MEK-ERK pathway.  

Resistant cells are sensitive to concomitant silencing of the EGFR and MEK1/2 genes  

We assessed whether the genetic alterations associated with the emergence of resistance to anti-

EGFR drugs might underlie functional dependencies, which could be exploited to design therapeutic 

strategies for tumors with secondary resistance to cetuximab and panitumumab.  

As a first step, we employed a siRNA mediated functional screening to identify genes that alone or in 

combination could suppress the growth of resistant cells. The RNA interference assay was devised to 

interrogate candidate genes known to be involved in resistance to cetuximab or panitumumab and/or 

effectors of EGFR-initiated signaling. These included KRAS, NRAS, HRAS, BRAF, CRAF, MEK1/2, 

HER2, HER3, PIK3CA and AKT1 (Fig. 3A). To confirm the specificity and the efficacy of the assays, 

siRNA-mediated suppression was followed by western blotting with antibodies against the individual 

targeted gene products. As shown in figure S5, individual siRNA effectively and specifically suppressed 

the designated target gene. The siRNA-mediated functional screen revealed that resistant cells were 

usually dependent upon the expression of the genes whose alterations emerged during the selection 

procedure. For example, KRAS mutant/amplified cells (LIM1215-R panit, HCA46-R panit and 

NCIH508R-cetux) were sensitive to KRAS suppression (Fig 3A). Of note, LIM1215 R-panit did not show 

growth impairment upon NRAS silencing despite harboring an NRAS mutation. This result is consistent 

with our observations that NRAS mutant cells are a minor sub-clone in the bulk population as assessed 

by BEAMing analysis (Table S1). OXCO-2 R1-cetux cells, which are a mixture of KRAS and BRAF 

mutant cells, were greatly sensitive to combined suppression of KRAS+BRAF (Fig. 3B).  The finding 

that siRNA-mediated suppression of MEK1/2 only marginally affected the growth of resistant cells was 

unexpected.  We therefore assessed whether pimasertib, a selective allosteric MEK inhibitor, which is 

being tested in clinical trials (29, 30), might have similar impact. Consistently with the result obtained by 

siRNA analysis, we found that pharmacological inhibition of MEK was unable to successfully block the 

growth of resistant cells (Fig. S6).  

Resistance to EGFR blockade is reversed by concomitant inhibition of EGFR and MEK  

We reasoned that dependencies due to activation of signaling pathways associated with drugs 

inhibiting the EGF receptor might become apparent only when the receptor itself was concomitantly 

targeted. To directly test this hypothesis, we performed siRNA-mediated suppression of signaling 

effectors in association with silencing of the EGF receptor. Concomitant silencing of EGFR and MEK1/2 

was the only combination capable of reducing the survival fraction below 50% in all four cell models 

(Fig. 3B). Parallel experiments in which concomitant targeting of the EGFR and MEK was achieved by 

combining siRNA suppression and pharmacological treatment confirmed these results (Fig. S7).  



The finding that cells that developed resistance to EGFR blockade display constitutive activation of 

MEK but are only modestly affected by MEK inhibition is intriguing. To study this further, we performed 

biochemical analyses in the presence of EGFR and MEK inhibitors (cetuximab and pimasertib, 

respectively) alone or in combination. To verify the kinetics of this effect, we performed time course 

pharmacological treatments. Notably, we found that in the absence of cetuximab the MEK inhibitor 

pimasertib leads to efficient phospho-ERK suppression. This is transient, however, and after a few 

hours ERK became phosphorylated again (Fig. 4). Concomitant with ERK reactivation we observed 

increased phosphorylation of EGFR. Phosphorylation of the receptor increased over time and was 

maximal after 6-12 hours depending on the cell model. When the same experiment was performed in 

the presence of cetuximab, EGFR phosphorylation was suppressed and this was accompanied by 

prolonged abrogation of ERK phosphorylation (Fig. 4). Importantly, these results are consistent across 

multiple cell models of acquired resistance to EGFR blockade, irrespectively of their mutational status.  

Concomitant inhibition of EGFR and MEK1/2 with cetuximab and pimasertib was effective not only in 

transient cell growth experiments but also when the drugs were tested in long term proliferation assays 

(Fig. 5A). We next assessed the efficacy of the concomitant EGFR-MEK blockade in vivo. Pools of 

OXCO-2 and NCIH508 cetuximab-resistant cells were injected in nude mice. After tumors were 

established, mice were treated with vehicle, cetuximab and/or pimasertib alone, or the combination of 

the two agents. OXCO-2 R1-cetux tumors treated with cetuximab proliferated at a comparable rate to 

vehicle-treated xenografts. Pimasertib as a single agent delayed tumor growth without inducing 

regression. In contrast, the combination of cetuximab and pimasertib induced a remarkable reduction in 

tumor volume compared to baseline. Similar results were obtained in NCIH508 R-cetux xenografts (Fig. 

5B and Table S2). Importantly, the two models confirmed that combinatorial treatment is effective in 

inducing tumor shrinkage in cetuximab-resistant cells irrespective of their mechanism of resistance.  

 
 

Plasma samples from patients who develop resistance to EGFR blockade display KRAS and NRAS 

mutations 

 

The cell-based findings suggested that upon EGFR blockade, multiple resistant clones emerge, and 

that resistance is often driven by genetically distinct mechanisms.  In order to assess the clinical 

relevance of these findings, we examined samples from metastatic CRC patients who received anti-

EGFR antibodies. We hypothesized that distinct genetic events would also be observed in samples 

(biopsies) from CRC patients who initially responded and then became refractory to either cetuximab or 

panitumumab. Needle biopsies are particularly difficult to obtain in this setting for a number of reasons, 

including the intrinsic risk of this invasive procedure (31). The scenario is further complicated by the fact 

that patients with metastatic CRC usually have multiple lesions. Therefore, biopsies represent only a 

snapshot of the overall disease and, accordingly, are not well suited to monitor the emergence of 



resistant clones, which can be located in distant metastatic lesions. To overcome these limitations, at 

least in part, we have implemented a ‘liquid biopsy’ approach to analyze circulating free tumor DNA, 

because it is more likely to capture the overall genetic complexity of tumors in patients with advanced 

disease. We exploited the highly sensitive BEAMing technique to measure tumor-derived DNA 

mutations in the blood of patients (18, 19, 32, 33). We obtained plasma samples from 4 patients who 

responded and then became refractory to either cetuximab or panitumumab. BEAMing probes designed 

to identify the same somatic variants that were found in cell lines were used to monitor for KRAS, BRAF 

and NRAS mutations in plasma. Notably, in two cases (patients #1 and #2) multiple KRAS variants 

were detected at relapse but not at baseline, suggesting the emergence of several independent clones 

during treatment (Fig. 6A). In patient #2, the concomitant presence of KRAS and NRAS mutations was 

observed in the relapse sample (Fig. 6B). The same occurred at relapse in patient #3 (Fig 6C). In the 

last patient (#4), mutations in KRAS, NRAS and BRAF were not found at progression (the baseline 

plasma was not available for patients #3 and 4). These results suggest that therapy with anti-EGFR 

antibodies selects multiple clones carrying heterogeneous patterns of mutations, a situation akin with 

what we observed in preclinical models. Analogous results were obtained by Bettegowda and 

colleagues as described in the companion manuscript (34). 

 

A patient-derived CRC xenograft with acquired resistance is sensitive to EGFR and MEK inhibition  

 

Using an approach we previously optimized (27), we generated a mouse xeno-transplant (patient -

derived xenograft, or PDX) from a lung metastasis of a CRC patient who responded and subsequently 

relapsed upon anti-EGFR therapy (cetuximab). This tumor carried a KRAS mutation (A146T) which is 

identical to one of the KRAS variants we found in LIM1215 R3-cetux cells (Fig.1B). After implantation 

and engraftment of the patient sample in a NOD-SCID mouse, the tumor was passaged and expanded 

for two generations. The morphological features of the biopsy obtained from the lung metastasis and a 

specimen from the xenotransplant grown in NOD-SCID mice were compared. As shown in Figure 6D, 

xenografted tumors retained the histopathological characteristics of their original patient counterpart. 

We also confirmed the presence of the KRAS mutation in the xenopatient by Sanger and BEAMing 

analysis. The xenografted tumor was serially transplanted until production of four cohorts, each 

consisting of 6 mice. These were randomized to vehicle alone, cetuximab monotherapy, pimasertib 

monotherapy and their combination. Notably, cetuximab or the MEK inhibitor pimasertib had limited 

effectiveness, while combinatorial (cetuximab-pimasertib) treatment prominently impaired tumor growth 

and induced moderate shrinkage (Fig. 6E ,S8 and Table S2).   



Discussion  

Recent evidence that cancer genomes (especially in the case of metastatic tumors) are highly 

heterogeneous (13) may explain why treatment with individual drugs (such as BRAF inhibitors or anti-

EGFR antibodies) is only transiently effective. A cancer detectable by CT scanning contains billions of 

cells. Mathematical models indicate that in a single tumor mass (for example a CRC liver metastasis) 

there are hundreds to thousands of cells that are already resistant to a given targeted agent even 

before treatment is initiated (19). At first glance, overcoming resistance therefore appears to be an 

insurmountable task. We decided to focus on metastatic CRC (35) and the anti-EGFR monoclonal 

antibodies cetuximab and panitumumab as a model system to study how, at least in principle, this 

problem could be tackled. We reasoned that although alterations in multiple genes could confer 

resistance to EGFR blockade, their activation may ultimately converge downstream in the signaling 

pathway that was initially targeted (in this case the EGFR-MAPK pathway). Accordingly, this work was 

initiated based on two premises: i) tumors that develop resistance to EGFR blockade would be 

genetically heterogeneous and ii) activation of pathways conferring resistance would eventually 

converge on key downstream effector(s). Starting from several CRC cellular models that are highly 

sensitive to cetuximab and/or panitumumab, we obtained resistant derivatives by continuous drug 

exposure. In most cases, KRAS alterations (mutation or amplification) could be detected at resistance, 

in accordance with what has previously been reported (18, 19). Using several methodologies 

(sequencing and cloning), we found that the resistant populations were often highly heterogeneous and 

contained several KRAS alleles. Furthermore, we discovered that in addition to KRAS, NRAS and 

BRAF activating mutations could also be detected in several cellular models. This led us to postulate 

that the same might occur in patients. We reasoned that tissue biopsies would only offer a snapshot of 

the overall tumor mass, and might therefore be ill-suited to capture the multiclonal feature of the 

resistant disease. We therefore analyzed circulating free DNA, a form of liquid biopsy, which allows 

tumors to be genotyped using a blood sample from patients. Notably, we found that plasma samples of 

patients treated with anti-EGFR antibodies carried multiple distinct KRAS and NRAS alleles. These 

results, together with those described in a related manuscript in which circulating free DNA from 

patients treated with anti-EGFR antibodies was also analyzed (34), provide evidence that alterations in 

multiple genes are concomitantly associated with acquired resistance to EGFR blockade. The finding 

that within a single patient, resistance to EGFR blockade can be associated with mutations in several 

genes (such as KRAS and NRAS) underscores the molecular heterogeneity of resistant tumors. It 

should be acknowledged, however, that a large number of samples from resistant patients will be 

required to establish the prevalence and the extent of this phenomenon. 



These results also highlight a striking overlap between genes that, when mutated, drive the so-called 

primary (de novo) resistance and those that allegedly sustain secondary (acquired) resistance. It was 

previously reported that alterations in KRAS, BRAF, NRAS, MET and HER2 can drive both de novo and 

acquired resistance (17, 20, 24-27). Both inter- and intra-patient tumor genetic heterogeneity have been 

observed, with the extent of the latter likely reflecting the point at which the alteration was acquired 

during tumorigenesis. For example, de novo KRAS mutations occur early during tumor progression, 

whereas the emergence of KRAS mutations upon EGFR targeting occurs when the tumor is treated 

(usually at the stage of metastatic disease). In this case the drug pressure is applied simultaneously, 

often to multiple metastases, which are genetically highly heterogeneous. Consequently, the spectrum 

of alleles driving secondary resistance appears evident even when only a few patients are examined. 

Overall, these results support the concept that primary and acquired resistances are driven by the same 

alterations.  

We formulated the hypothesis that the molecular alterations emerging after treatment with a targeted 

agent would activate genes involved in the same pathway that was besieged by the selective pressure. 

We further assumed that the signals sustained by the mutant proteins would ultimately converge on a 

distinct downstream effector. Notably, these data mirror what was previously reported in cellular models 

and clinical samples of BRAF-mutant melanoma in which, independently of the mechanisms driving 

acquired resistance, reactivation of MAPK signaling is almost invariably detected (36, 37). Accordingly, 

clinical trials based on re-challenging melanomas with anti-MEK drugs have been designed (38). 

Collectively, biochemical analyses and reverse genetic experiments corroborate this hypothesis. We 

report that, regardless of the gene/mutation that confers resistance, the net output is invariably 

sustained activation (constitutive phosphorylation) of MEK and ERK, thus defining an example of 

convergent evolution. These data provide a rationale for overcoming resistance to EGFR antibodies 

using MEK inhibitors, many of which have already reached the clinic (30). Importantly, we found that 

blockade of MEK is not sufficient to inhibit the proliferation of resistant cells. Using siRNA screening and 

pharmacological treatments we found that cells which acquired resistance to cetuximab or 

panitumumab (through KRAS, BRAF or NRAS mutations) are dependent upon concomitant blockade of 

EGFR and MEK. Importantly, the requirement for EGFR-MEK concomitant blockade is evident not only 

in vitro but also in vivo, as shown by mouse xenograft experiments. Biochemical time course analysis 

showed that MEK inhibition leads to transient ERK inactivation, which is followed by phosphorylation of 

the receptor. The latter is blocked by the addition of cetuximab, thus explaining why the double hit 

(EGFR-MEK) is required. The mechanism of EGFR feedback activation after MEK blockade is 

reminiscent of what is observed when BRAF-mutant colorectal cancers are treated with BRAF or MEK 

inhibitors (39). Importantly, while our work suggests that MEK/ERK reactivation is linked to re-

phosphorylation of the EGFR receptor, the moderate intensity of EGFR phosphorylation suggests that 

additional signaling routes may also contribute. To overcome the limits of our study, further 

investigations are needed to elucidate the precise biochemical players underlying the effectiveness of 



the EGFR-MEK combination. However, the data generated in cell models were confirmed in a tumor 

xenograft derived from a patient who responded and then relapsed upon cetuximab therapy, thus 

supporting the clinical relevance of the findings.   

 

Overall, the results presented in this manuscript define genetic alterations linked to secondary 

resistance to anti-EGFR monoclonal antibodies in preclinical models and CRC patients. Considering 

that in the clinical setting anti-EGFR antibodies are often used in combination with chemotherapy (40, 

41), it will be of high interest to explore whether and to what extent treatment with chemotherapy affects 

the emergence of genetic alterations upon EGFR blockade. Thus, our study provides a rationale for 

clinical trials involving concomitant inhibition of EGFR and MEK in CRC patients who develop acquired 

resistance to cetuximab and panitumumab.   

 

 

Materials and Methods 

 

 Study Design 

  

This study was designed to define the mechanisms of acquired resistance to EGFR blockade in CRC 

and to define pharmacological strategies to overcome acquired resistance to cetuximab and 

panitumumab. In the first section of this study, CRC cell lines that developed acquired resistance to 

anti-EGFR therapies were molecularly characterized. In the second part, a subset of these cell models 

was analyzed at a biochemical level and with siRNA screening to identify signaling nodes that sustain 

resistance and can be pharmacologically targeted. Western blot analyses were performed at least 

twice, starting with independent cell lysates. SiRNA screening was performed using a pool of four 

different siRNAs for each target gene, and the results represent an average of three independent 

experiments. In the third section of the study, cell lines with acquired resistance to EGFR blockade were 

treated with drugs targeting proteins involved in signaling pathways. In vitro drug inhibition assays were 

performed in triplicates or quadruplicates.  Cell lines were implanted in immunocompromised mice, 

which were then randomized to establish homogeneous treatment arms before drug administration. In 

the fifth section of the study we used the highly sensitive BEAMing technology to detect genetically 

heterogeneous KRAS and RAS mutations in plasma samples from four CRC patients who relapsed 

after anti-EGFR treatment. In the last section we established a tumor xenograft from a patient who 

relapsed after responding to EGFR blockade, which was then used to assess the combinatorial 

treatment initially tested in cell lines. The tumor sample was initially engrafted in one NOD-SCID 

mouse. After expansion in a large cohort of mice, xenografted tumors were randomized to establish 

homogeneous treatment arms for drug administration.  



 

 
Statistical analysis  

All data from the proliferation assay are presented as the mean ± SD of at least three independent 

experiments, each with three experimental replicates. SiRNA screenings are presented as the mean ± 

SD of three independent experiments, each with four experimental replicates. In vivo experimental data 

points represent mean ± SEM of the measurements of each mouse tumor. 
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Figure legends  

Figure 1: CRC cell lines resistant to cetuximab or panitumumab carry KRAS, NRAS or BRAF mutations. 

(A) DiFi, HCA-46, LIM1215, NCIH508 and OXCO-2 cetuximab (R-cetux) and panitumumab (R-panit) 

resistant cells were treated with cetuximab (Cmab, in black) or with panitumumab (Pmab, in grey) for 

one week, with increasing concentrations of the two drugs. Parental cells treated with cetuximab (red 

circles) or with panitumumab (red triangles) were included as controls. The name of the EGFR-targeted 

monoclonal antibody (anti-EGFR moAB) employed in each viability assay is indicated in parentheses. 

Cell viability was measured by the ATP assay. Data points represent means ± SD of three independent 

experiments. (B) List of genes and molecular alterations detected in cetuximab and panitumumab 

resistant derivatives. LIM1215 R1- and R4-cetux, LIM1215 R-panit, NCIH508 R-panit, OXCO-2 R1-

cetux, OXCO-2 R2-cetux and OXCO-2 R-panit contain multiple mutations in the same cell population. 

The nomenclature -R1 -R2 -R3 -R4 indicate cetuximab resistant populations, independently derived 

from the parental cell line. 

Figure 2: Genetic alterations in the EGFR signaling cascade biochemically converge to activate MEK 

and ERK. The indicated cell lines were analyzed for EGFR-MAPK pathway activation. Parental and 

resistant cells were treated with cetuximab (Cmab, 1.4 µM) or panitumumab (Pmab, 1.4 µM), after 

which whole-cell extracts were subjected to Western blot analysis and compared to untreated cells with 

phospho-EGFR (Tyr 1068), total EGFR, total MEK1/2 and phospho-MEK1/2, total ERK1/2 and 

phospho-ERK1/2 antibodies. Vinculin was included as a loading control. The genetic status of the 

resistant derivatives is listed below the blots.  

Figure 3: Cell lines with acquired resistance to anti-EGFR antibodies are sensitive to suppression of 

EGFR and MEK1/2. (A) siRNA suppression screening of genes involved in the EGFR pathway was 

performed using the indicated cell lines. The genetic status of the individual cell models is shown below 

the graph. Effective impairment of cell proliferation was arbitrarily set at less than 50% (dashed line). 

The survival fraction was determined by ATP assay. Data points represent means ± SD of three 

independent experiments. (Black: HER family receptors; Red: Ras family members; Grey: Ras 

downstream effectors). (B) Dual silencing of EGFR together with individual EGFR pathway effectors. 

Effective impairment of cell proliferation was arbitrarily set at less than 50% (dashed line). The survival 

fraction was assayed by the ATP assay. Data points represent means ± SD of three independent 

experiments (Black: combination of EGFR+RAS effectors; Grey: combination of KRAS+BRAF; Red: 

combination of KRAS+MEK-1/2).   



Figure 4: MEK inhibition induces EGFR activation, resulting in ERK activation. Resistant cells were 

treated with pimasertib (50 nM) with or without cetuximab (340 nM) at the indicated time points, after 

which whole-cell extracts were subjected to Western blot analysis. Whole-cell extracts were blotted with 

phospho-EGFR (Tyr1068), total EGFR, phospho-MEK1/2, total MEK1/2, phospho-ERK and total ERK. 

Actin was included as a loading control. NT: not treated. 

Figure 5: Resistance to EGFR therapy is reversed by pharmacological inhibition of EGFR and MEK. (A) 

The indicated cell lines were treated for two weeks with increasing concentrations of cetuximab and 

pimasertib. At the end of the assay, cells were fixed and stained with crystal violet solution. The genetic 

status of each individual cell model is indicated. NT: not treated. (B) Combinatorial treatment with 

cetuximab plus pimasertib is effective in inducing tumor shrinkage in vivo. OXCO-2 R1-cetux and 

NCIH508 R-cetux were injected subcutaneously in nude mice and then treated with cetuximab or 

pimasertib as monotherapy, with the combination of the two drugs, or with vehicle. N=7 mice per group 

for OXCO-2 R1-cetux and 4 mice per group for NCIH508 R-cetux. 

Figure 6: Circulating DNA in patients resistant to anti-EGFR therapy displays KRAS and NRAS 

mutations. (A-C) BEAMing analysis of circulating tumor DNA of four patients with acquired resistance to 

cetuximab (patient #1) or panitumumab (patients #2, #3, #4) displays complex patterns of KRAS and 

NRAS mutations. (D-E) Mouse xenografts from a tumor at relapse after anti-EGFR therapy respond to 

combined EGFR-MEK inhibition. (D) Xenografted tumors retained the histopathologic characteristics of 

original samples. Hematoxylin and eosin stains of the biopsy taken from the original colorectal cancer 

lung metastasis and a histological sample derived from the same lesion engrafted in a NOD-SCID 

mouse. Scale bar, 50 µm. (E) Waterfall plot showing the percent change in volume for the individual 

tumors in each arm at the time of sacrifice. Tumor volumes were normalized individually to their 

volumes at treatment day 1.  
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Supplementary Materials and Methods 

 

Cell culture and generation of resistant cells  

DiFi cells were cultured in F12 medium (Invitrogen) supplemented with 5% FBS; 

LIM1215 cells were cultured in RPMI-1640 medium (Invitrogen) supplemented with 

5% FBS and insulin (1 µg/ml); OXCO-2 cells were cultured in Iscove’s medium 

(Invitrogen) supplemented with 5% FBS; NCIH508 cells were cultured in RPMI-1640 

medium (Invitrogen) supplemented with 5% FBS, and HCA-46 cells were cultured in 

DMEM medium (Invitrogen) supplemented with 5% FBS. The generation of DiFi and 

LIM1215 cetuximab-resistant derivatives is described elsewhere (18). OXCO-2, 

NCIH508 and HCA-46 cetuximab-resistant derivatives were generated after 3-9 

months of continuous exposure to the drug at a concentration of 0.3 µM for NCIH508 

and 1.4 µM for OXCO-2 and HCA-46. LIM1215, DiFi, OXCO-2 and HCA-46 

panitumumab-resistant derivatives were generated by 3-9 months of continuous 

exposure to the drug at a constant concentration of 1.4 µM. The NCIH508 cell line 

was purchased from American Type Culture Collection (LGC Standards Srl). The 

HCA-46 cell line was obtained from ECACC (distributed by Sigma-Aldrich Srl). The 

DiFi and OXCO-2 cell lines were a kind gift from Dr. J. Baselga in November 2004 

(Oncology Department of Vall d'Hebron University Hospital, Barcelona, Spain) and Dr 

V. Cerundolo in March 2010 (Weatherall Institute of Molecular Medicine, University of 

Oxford, UK), respectively. The LIM1215 parental cell line has been described 

previously (41) and was obtained from Prof. Robert Whitehead, Vanderbilt University, 

Nashville, with permission from the Ludwig Institute for Cancer Research, Zurich, 

Switzerland. The genetic identity of the cell lines used in this study was confirmed by 

STR profiling (Cell ID, Promega).  

 

Drug assays  

Cetuximab and panitumumab were obtained from the Pharmacy at Niguarda Ca’ 

Granda Hospital, Milan, Italy. Pimasertib was purchased from Selleck Chemicals. 

Cell lines were seeded in 100 μL medium at the following densities (2x103 for DiFi 

and 1.5 x10
3
 for LIM1215, HCA-46, NCIH508 and OXCO-2) in 96-well culture 

plates. After serial dilutions, drugs in serum-free medium were added to cells, and 

medium-only wells were included as controls. Plates were incubated at 37°C in 5% 

CO2 for 6 days, after which cell viability was assessed by ATP content using the 



CellTiter-Glo® Luminescent Assay (Promega). For long-term proliferation assays, 

cells were seeded in 24-well plates (5 x103 cells per well) and cultured in the 

absence and presence of drugs as indicated. Wells were fixed with 3% 

paraformaldehyde and stained with 1% Crystal Violet-Methanol solution (Sigma-

Aldrich) after two weeks. All assays were performed independently at least three 

times.  

Mutational analysis  

For Sanger Sequencing, all samples were subjected to automated sequencing by ABI 

PRISM 3730 (Applied Biosystems). Primer sequences are listed in supplementary 

materials as table S3. The following genes and exons were analyzed: KRAS (exons 

2, 3 and 4), NRAS (exons 2 and 3), HRAS (exons 2 and 3), PIK3CA (exons 9 and 

20), BRAF (exon 15), EGFR (ectodomain). All mutations were confirmed twice, 

starting from independent PCR reactions.  

BEAMing procedure  

The BEAMing procedure is based on the initial description (42) with further 

optimizations in our laboratory as described below. DNA was extracted from plasma 

using the QIAamp Circulating Nucleic Acid Kit (QIAGEN) according to the 

manufacturer’s instructions. BEAMing was performed as described previously (18). 

The first amplification was performed in a 50-μL PCR reaction containing DNA 

isolated from 1 ml of plasma, 1X Phusion high-fidelity buffer, 1.5 U of Hotstart 

Phusion polymerase (NEB, BioLabs), 0.5 μM of each primer with tag sequence, 0.2 

mM of each deoxynucleoside triphosphate, and 0.5 mM MgCl2. Amplification was 

carried out using the following cycling conditions: 98°C for 45 sec; 2 cycles of 98°C 

for 10 sec, 67°C for 10 sec, 72°C for 10 sec; 2 cycles of 98°C for 10 sec, 64°C for 10 

sec, 72°C for 10 sec; 2 cycles of 98°C for 10 sec, 61°C for 10 sec, 72°C for 10 sec; 

31 cycles of 98°C for 10 sec, 58°C for 10 sec, 72°C for 10 sec. PCR products were 

diluted and quantified using the PicoGreen double-stranded DNA assay (Invitrogen). 

A clonal bead population was generated by performing an emulsion PCR (emPCR). 



A 150 μl PCR mixture was prepared containing 18 pg template DNA, 40 U of 

Platinum Taq DNA polymerase (Invitrogen), 1X Platinum buffer, 0.2 mM dNTPs, 5 

mM MgCl2, 0.05 μM Tag1 (tcccgcgaaattaatacgac), 8 μM Tag2 (gctggagctctgcagcta) 

and 6x107 magnetic streptavidin beads (MyOne, Invitrogen) coated with Tag1 

oligonucleotide (dual biotin-TSpacer18-tcccgcgaaattaatacgac). The 150 μl PCR 

reactions were distributed into the wells of a 96-well PCR plate together with 70 μl of 

the Emulsifier oil (7% ABIL WE09-EVONIK, 73% Tegosoft DEC-EVONIK, 20% 

Mineral oil PCR reagent-SIGMA).The water-in-oil emulsion was obtained by pipetting. 

The PCR cycling conditions were: 94°C for 2 min; 50 cycles of 94°C for 10 sec, 58°C 

for 15 sec, 70°C for 15 sec. All primer and probe sequences are listed in 

supplementary materials as table S4.  

 
Gene copy number analysis qPCR 

 

Parental and resistant cell lines were trypsinized, washed with PBS and centrifuged; 

pellets were lysed and DNA was extracted using Wizard SV Genomic kit (Promega) 

according to the manufacturer’s directions.  Real time PCR was performed with 30 ng 

of DNA per single reaction using GoTaq QPCR Master Mix (Promega) with an ABI 

PRISM® 7900HT apparatus (Applied Biosytems). Sample analysis was normalized to 

a control diploid cell line, HCEC (43). All primer sequences are listed in 

supplementary materials as table S5.  

 
 

siRNA screening  

The siRNA targeting reagents were purchased from Dharmacon, as a SMARTpool of 

four distinct siRNA species targeting different sequences of the target transcript. The 

list of siRNAs is shown in Table S6. Cell lines were grown and transfected with 

SMARTpool siRNAs using Dharmafect 4 (DF4) (Dharmacon), Lipofectamine 2000 or 

RNAiMAX (Invitrogen). Each plate included the following controls: mock control 

(transfection lipid only), siControl Pool1 (Dharmacon), all Stars reagent (Qiagen) as 

negative control; Polo-like Kinase 1 (PLK1) (Dharmacon) served as a positive control. 

RNAi screening conditions were as described (44). After five days, cell viability in 

each well was estimated with a luminescent assay measuring cellular ATP levels 

(CellTiter-Glo® Luminescent Assay (Promega).  

 



Immunoblot analysis  

Prior to biochemical analysis, all cells were grown in their specific media 

supplemented with 5% FBS. Total cellular proteins were extracted by solubilizing the 

cells in boiling SDS buffer (50 mM Tris-HCl, pH 7.5, 150 mM NaCl, and 1% SDS) or 

in cold EB buffer (50 mM Hepes pH 7.4, 150 mM NaCl, 1% Triton X-100, 10% 

glycerol, 5 mM EDTA, 2 mM EGTA; all reagents were from Sigma-Aldrich, except for 

Triton X-100 from Fluka) in the presence of 1 mM sodium orthovanadate, 100 mM 

sodium fluoride and a mixture of protease inhibitors (pepstatin, leupeptin, aprotinin, 

STI and phenylmethylsulfonyl fluoride). Extracts were clarified by centrifugation, and 

protein concentration was determined using BCA protein assay reagent kit (Thermo). 

Western blot detection was performed with enhanced chemiluminescence system 

(GE Healthcare) and peroxidase conjugated secondary antibodies (Amersham). The 

following primary antibodies were used for western blotting (all from Cell Signaling 

Technology, except where indicated): anti-phospho- p44/42 ERK (thr202/tyr204); 

anti-p44/42 ERK; anti-phospho-MEK1/2 (Ser217/221), anti-MEK1/2; anti-KRAS 

(Santa Cruz); anti-EGFR (clone13G8, Enzo Life Sciences); anti-phospho EGFR 

(tyr1068); anti–actin and anti-vinculin (Sigma-Aldrich). 

 

Ras activation assay  

 

GST-RAF1-RAS binding domain fusion proteins were expressed in Escherichia coli 

by induction with 0.2 mM isopropyl-1-thioβ-D-galactopyranoside (IPTG) for 4 h at 

30°C. The expressed fusion proteins were isolated from bacterial lysates by affinity 

chromatography with glutathione agarose beads. 600 μg of whole-cell cleared lysate 

was incubated with 10 μg of GST-RAF CRIB (cdc42 and Rac-interactive binding) for 

90 min at 4°C. The complexes were collected by centrifugation and washed three 

times with lysis buffer. Proteins were separated by SDS-PAGE followed by Western 

blot. The KRAS protein was detected with Anti-K-Ras mAb (Abnova clone 3B10-2F2, 

cat. H00003845-M01). Total lysates (20 μg) from the above cells were immunoblotted 

with anti-vinculin antibody (Sigma-Aldrich) as a loading control.  

 

 

Xenograft studies  

All animals were manipulated according to protocols approved by the Ethical 

Commission of the Institute for Cancer Research and Treatment and by the Italian 



Ministry of Health. All experiments were performed in accordance with relevant local 

and national guidelines and regulations. Ten million NCIH508 R-cetux and OXCO-2 

R-cetux cells were injected subcutaneously into the right posterior flank of 7-week-old 

CD-1 Nude Mice (Charles River Laboratories). When tumors reached an approximate 

volume of 400-450 mm3, mice were randomized into 4 groups (7 mice each for 

OXCO-2 R1-cetux and 4 mice each for NCIH508 R-cetux) and treated with vehicle 

alone, cetuximab, pimasertib, or the combination of both drugs. Caliper 

measurements were taken once a week. Cetuximab was given by intraperitoneal 

injection at 0.5 mg/kg twice a week, and pimasertib was administered by gavage at 

50 mg/kg/day. Pimasertib was suspended in distilled sterile water containing 0.5% 

carboxymethylcellulose (Sigma Aldrich) and 0.25% Tween 80 (Sigma Aldrich).   

Patients  

Plasma samples from CRC patients treated with cetuximab or panitumumab were 

obtained from Ospedale Niguarda Ca’ Granda, Milan, under the Institutional Review 

Board–approved study #1014/09. All patients provided written informed consent and 

received EGFR-targeted treatment in the chemorefractory setting as per label 

indication. Patient #1 received cetuximab and irinotecan, achieving RECIST partial 

response (liver metastases) lasting 10 months. Patient #2, #3 and #4 received 

panitumumab monotherapy, achieving RECIST partial response (liver metastases) 

lasting 7, 5 and 12 months, respectively.   

Patient derived xenograft (PDX)  

 

The patient  was diagnosed with pT4bN1bM0 colorectal cancer in 2011 and 

subsequently underwent adjuvant FOLFOX, which was prematurely stopped after 3 

cycles because of severe hematological, gastrointestinal and cutaneous toxicity due 

to the presence of the dihydropyrimidine dehydrogenase genotype IVS14+1GA, 

associated with impairment of enzyme function and thus poor tolerability to 5-

fluorouracil. After 5 months from diagnosis, relapse of disease occurred in 

peritoneum, pelvis, liver, spleen and lungs, and therefore treatment with cetuximab in 

combination with irinotecan was started. The patient achieved RECIST partial 

response in all sites of disease, which was maintained up to 7 months, when 

progression of the tumor occurred at all sites. Tumor biopsy of a lung lesion 

displaying progression was then performed, and the specimens were used to screen 

for molecular alterations for clinical studies and to generate a tumor-derived xenograft 



(xenopatient) through a protocol approved by the Institutional Review Board of 

Ospedale Niguarda Ca’ Granda (194/2010). The metastatic lesion biopsy was cut into 

two pieces, and a fragment was implanted in a NOD-SCID mouse. After engraftment, 

the tumor was passaged and expanded for two generations until production of four 

cohorts, each consisting of 6 mice. These were randomized to vehicle alone, 

cetuximab monotherapy, pimasertib monotherapy, or their combination. Treatments 

started at week 3 and lasted six weeks. Animals receiving vehicle, cetuximab, or 

pimasertib alone had to be euthanized before six weeks for ethical reasons. Caliper 

measurements were taken once a week. Cetuximab was given by intraperitoneal 

injection at 0.5 mg/kg twice a week, and pimasertib was administered by gavage at 

50 mg/kg/day. Pimasertib was resuspended in distilled sterile water containing 0.5% 

carboxymethylcellulose (Sigma Aldrich) and 0.25% Tween 80 (Sigma Aldrich). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Figure S1 Figure S1

Figure S1: Mutational profiling of candidate genes in resistant cells. LIM1215 R-panit (A) and OXCO-2 R1-

cetux (B) KRAS, NRAS and BRAF Sanger sequencing electropherograms revealed concomitant presence 

of KRAS and NRAS mutations in LIM1215 R-panit and concomitant KRAS and BRAF mutations in OXCO-

2 R1-cetux.
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Figure S1: Mutational profiling of candidate genes in resistant cells. LIM1215 R-panit (A) 

and OXCO-2 R1-cetux (B) KRAS, NRAS and BRAF Sanger sequencing 

electropherograms revealed concomitant presence of KRAS and NRAS mutations in 

LIM1215 R-panit and concomitant KRAS and BRAF mutations in OXCO-2 R1-cetux. 



Figure S2 

 Figure S2

A B

Figure S2: Gene copy number (GCN) analysis in resistant cells . Copy number of  the EGFR,KRAS, 

HER2 and MET loci was determined by real-time quantitative PCR using gDNA extracted from DiFi, HCA-

46, LIM1215, NCIH508 and OXCO-2 parental and cetuximab resistant cells (A) or panitumumab resistant 

cells (B). Primers designed to span centromeric regions of chromosomes 7 ,12  and 17 were exploited to 

normalize data for aneuploidy. Genomic DNA from a diploid cell line (HCEC) was used as a reference 

control.
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Figure S2: Gene copy number (GCN) analysis in resistant cells. Copy number of  the 
EGFR, KRAS, HER2 and MET loci was determined by real-time quantitative PCR using 
gDNA extracted from DiFi, HCA-46, LIM1215, NCIH508 and OXCO-2 parental and 
cetuximab-resistant cells (A) or panitumumab-resistant cells (B). Primers designed to 
span centromeric regions of chromosomes 7, 12, and 17 were exploited to normalize data 
for aneuploidy. Genomic DNA from a diploid cell line (HCEC) was used as a reference 

control. 
 
 
 



Figure S3 

 
Figure S3

Figure S3: KRAS amplification in parental and resistant NCIH508 and HCA-46 cell lines: (A)

Immunoistochemical analysis of KRAS expression on cytoclots from NCIH508 and HCA46 parental

and resistant cells. Scale bar, 50 µm. (B) FISH analysis of the KRAS gene on cytoclots from NCIH508

and HCA46 parental and resistant cells. In red Chr12 centromeric probe (CEP12) which allows the

determination of the total number of chromosome 12 in order to distinguish polisomy from real gene

amplification. In green KRAS gene probe. Scale bar, 10 µm.

 
Figure S3: KRAS amplification in parental and resistant NCIH508 and HCA-46 cell lines. 
(A) Immunohistochemical analysis of KRAS expression on cytoclots from NCIH508 and 
HCA46 parental and resistant cells. Scale bar, 50 µm. (B) FISH analysis of the KRAS 
gene on cytoclots from NCIH508 and HCA46 parental and resistant cells. The red signal 
represents the Chr12 centromeric probe (CEP12), which allows the determination of the 
total number of chromosome 12 in order to distinguish polisomy from real gene 
amplification; the green signal represents the KRAS gene probe. Scale bar, 10 µm. 
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 Figure S4

Figure S4: Measurement of RAS activation in resistant cells. Active KRAS (GTP-KRAS) was assessed by GST-

Raf1 pull-down in LIM1215, OXCO-2, HCA-46 and NCIH508 parental and resistant cells. Whole-cell extracts 

were blotted with KRAS antibody. Actin is shown as a loading control.
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Figure S4: Measurement of RAS activation in resistant cells. Active KRAS (GTP-KRAS) 
was assessed by GST-Raf1 pull-down in LIM1215, OXCO-2, HCA-46 and NCIH508 
parental and resistant cells. Whole-cell extracts were blotted with KRAS antibody. Actin is 
shown as a loading control. 
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Figure S5

Figure S5: Biochemical validation of siRNA mediated gene knockdown .(A) LIM1215 R-panit were treated with 

siRNA targeting KRAS, NRAS and BRAF and MEK1/2 for 72 hours, after which whole-cell extract were subjected 

to Western blot analysis. Whole-cell extract were blotted with BRAF, MEK1/2, KRAS and NRAS.(B) LIM1215 R-

panit cells were treated with siRNA for genes involved in EGFR signaling(EGFR, HER2, HER3, HRAS, CRAF, 

AKT and PI3K) for 72 hours, after which whole-cell extract were subjected to Western blot analysis. Whole-cell 

extract were blotted with EGFR, HER2, HER3, HRAS, CRAF, AKT antibodies. To evaluate PI3K Knock down, we 

used phospho-AKT S473 as the main downstream effector. Actin was included as a loading control.
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 Figure S5: Biochemical validation of siRNA mediated gene knockdown. (A) LIM1215 R-
panit were treated with siRNA targeting KRAS, NRAS, BRAF, and MEK1/2 for 72 hours, 
after which whole-cell extracts were subjected to western blot analysis. Whole-cell 
extracts were blotted with antibodies against BRAF, MEK1/2, KRAS, and NRAS. (B) 
LIM1215 R-panit cells were treated with siRNA for genes involved in EGFR signaling 
(EGFR, HER2, HER3, HRAS, CRAF, AKT, and PI3K) for 72 hours, after which whole-cell 
extracts were subjected to western blot analysis. Whole-cell extracts were blotted with 
antibodies against EGFR, HER2, HER3, HRAS, CRAF, and AKT. To evaluate PI3K 
knock down, we used phospho-AKT S473 as the main downstream effector. Actin was 
included as a loading control. 
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Figure S6

Figure S6: Pharmacological inhibition of MEK in cells resistant to anti-EGFR blockade. LIM1215 R-panit,  

OXCO-2 R1-cetux, HCA-46 R-panit and NCIH508 R-cetux were treated with increasing concentrations of the 

MEK inhibitor pimasertib for one week. Cell viability was assayed by the ATP assay. Data points represent 

means  SD of three independent experiments.
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Figure S6: Pharmacological inhibition of MEK in cells resistant to anti-EGFR blockade. 
LIM1215 R-panit, OXCO-2 R1-cetux, HCA-46 R-panit, and NCIH508 R-cetux were 
treated with increasing concentrations of the MEK inhibitor pimasertib for one week. Cell 
viability was assayed by the ATP assay. Data points represent means ± SD of three 
independent experiments. 
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Figure S7: Pharmacological inhibition of EGFR or MEK1/2 with cetuximab or pimasertib. 
Silencing of EGFR or MEK1/2 (through siRNA) plus cetuximab or pimasertib in LIM1215 
R-panit, OXCO-2 R1-cetux, HCA-46 R-panit and NCIH508 R-cetux cell lines is shown, 
together with the genetic status of the individual cell models. Cell lines treated with drugs 
alone are included as control. Survival fraction was assayed by the ATP assay. Data 
points represent means ± SD of three independent experiments. NT: not treated. 
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Figure S8

Figure  S8: Sensitivity to combinatorial EGFR and MEK inhibition in a mouse xenograft from a metastatic 

CRC patient who relapsed after anti-EGFR therapy. (A) After engraftment in mouse, the tumor was serially 

transplanted for two generations until production of four cohorts, each consisting of 6 mice. These were 

randomized to vehicle alone, cetuximab monotherapy, pimasertib monotherapy and their combination. 

Treatments started at week 3 (the arrow indicates the timepoint at which treatment was started) and lasted 

six weeks. Animals in the arms of vehicle, cetuximab and pimasertib alone had to be euthanized before six 

weeks for ethical reasons. Tumor volumes are shown as mean SEM (n=6 mice per group). (B) Percentage 
of tumor growth or shrinkage during treatment compared to tumor volume at treatment start for each 

individual mouse. Data points are shown as mean SEM (n=6 mice per group).
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Figure  S8: Sensitivity to combinatorial EGFR and MEK inhibition in a mouse xenograft 
from a metastatic CRC patient who relapsed after anti-EGFR therapy. (A) After 
engraftment in mouse, the tumor was serially transplanted for two generations until 
production of four cohorts, each consisting of 6 mice. These were randomized to vehicle 
alone, cetuximab monotherapy, pimasertib monotherapy, and their combination. 
Treatments started at week 3 (the arrow indicates the timepoint at which treatment was 
started) and lasted six weeks. Animals treated with vehicle, cetuximab, or pimasertib 
alone had to be euthanized before six weeks for ethical reasons. Tumor volumes are 
shown as mean±SEM (n=6 mice per group). (B) Percentage of tumor growth or shrinkage 
during treatment compared to tumor volume at treatment start for each individual mouse. 
Data points are shown as mean±SEM (n=6 mice per group). 



 

 Table S1 Table S1

Cell lines KRAS BRAF NRAS

G12C G12D G13D V600E G12C

LIM1215 R-panit 0.00 0.00 17.78 0.00 0.52

HCA-46 R-panit 6.67 0.01 0.00 0.00 0.00

NCIH508 R-cetux 0.00 0.00 0.00 0.00 0.00

OXCO-2 R1-cetux 0.00 35.20 0.00 9.81 0.00

Supplementary Table 1:Frequencies of mutant alleles in resistant cell lines assessed by BEAMing. Genomic 

DNA extracted from resistant cell lines were analyzed with BEAMing probes for KRAS G12C, G12D, G13D, 

BRAF V600E and NRAS G12C. Numbers represent the percentage of mutated alleles.

 
 
Supplementary Table 1: Frequencies of mutant alleles in resistant cell lines assessed by 
BEAMing. Genomic DNA extracted from resistant cell lines was analyzed with BEAMing 
probes for KRAS G12C, G12D, G13D, BRAF V600E, and NRAS G12C. Numbers 
represent the percentage of mutated alleles. 
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Primer Name gene/exon

F10 FORW BRAF ex15 TGCTTGCTCTGATAGGAAAATG

F11 REV BRAF ex15 AGCATCTCAGGGCCAAAAAT

F12 SEQ FOR BRAF ex15 TGTTTTCCTTTACTTACTACACCTCA

225 FORW KRAS EX2 GGTGGAGTATTTGATAGTGTATTAACC

226 REV KRAS EX2 AGAATGGTCCTGCACCAGTAA

227 SEQ FOR KRAS EX2 TCATTATTTTTATTATAAGGCCTGCTG

Krasex3_for FORW KRAS EX3 AAAGGTGCACTGTAATAATCCAGAC

Krasex3_rev REV KRAS EX3 ATGCATGGCATTAGCAAAGA

Krasex3_seq SEQ FOR KRAS EX3 CCAGACTGTGTTTCTCCCTTC

M04 FORW + SEQ KRAS EX4 TGGACAGGTTTTGAAAGATATTTG

M05 REV KRAS EX4 ATTAAGAAGCAATGCCCTCTCAAG

M18 FORW + SEQ NRAS exon2 GTACTGTAGATGTGGCTCGC

M19 REV NRAS exon2 AGAGACAGGATCAGGTCAGC

M29 FOR NRAS exon3 CTTATTTAACCTTGGCAATAGCA

M22 REV + SEQ NRAS exon3 GATTCAGAACACAAAGATCATCC

F16 FORW PI3K  EX9 GGGAAAAATATGACAAAGAAAGC

M17 REV PI3K  EX9 CTGCTTTATTTATTCCAATAGGTATGG

F18 SEQ FOR PI3K  EX9 TAGCTAGAGACAATGAATTAAGGGAAA

F19 FORW PI3K  EX20 CTCAATGATGCTTGGCTCTG

F20 REV PI3K  EX20 TGGAATCCAGAGTGAGCTTTC

F21 SEQ FOR PI3K  EX20 TTGATGACATTGCATACATTCG

M24 FORW HRAS exon2 GGCAGGAGACCCTGTAGGA

M25 REV + SEQ HRAS exon2 AGCCCTATCCTGGCTGTGT

M27 FORW + SEQ HRAS exon3 AGAGGCTGGCTGTGTGAACT

M28 REV HRAS exon3 ATGCGCAGAGAGGACAGGA

EGFR_ex12_ F FORW EGFR ex12 CCTCAAGGAGATAAGTGATGGAG

EGFR_ex12_R REV EGFR ex12 AAAGGACCCATTAGAACCAACTC

sequence

 
 

 
Supplementary Table  3: List of primers for gene amplification and sequencing 
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PRIMER NAME SEQUENCE

GENE AND 

EXON

TAG1 TCCCGCGAAATTAATACGAC

TAG2 GCTGGAGCTCTGCAGCTA

TAG1 FOR BEADS DUAL BIOTIN-T-SPACER18-TCCCGCGAAATTAATACGAC

KRAS EX2 FOR GCTGGAGCTCTGCAGCTATGACTGAATATAAACTTGTGGTAGTTG KRAS EX 2

KRAS EX2 REV TCCCGCGAAATTAATACGACCATATTCGTCCACAAAATGATTC KRAS EX 2

KRAS EX3 FOR GCTGGAGCTCTGCAGCTAAGACTGTGTTTCTCCCTTCTCAG KRAS EX 3

KRAS EX3 REV TCCCGCGAAATTAATACGACCTCATGTACTGGTCCCTCATTG KRAS EX 3

KRAS EX4 FOR GCTGGAGCTCTGCAGCTACAGGACTTAGCAAGAAGTTATGGA KRAS EX 4

KRAS EX4 REV TCCCGCGAAATTAATACGACGGACACTGGATTAAGAAGCAATG KRAS EX 4

KRAS EX2 UNIVERSAL ALEXA 532 ALEXA 532-TGACGATACAGCTAATTCA KRAS EX 2

KRAS 35 WILD-TYPE_ALEXA647 ALEXA647-GGAGCTGGTGGCGTA KRAS EX 2

KRAS 38 WILD-TYPE_ALEXA647 ALEXA647-AGCTGGTGGCGTAGGC KRAS EX 2

KRAS MUTANT 34GA_ALEXA488 ALEXA488-GGAGCTAGTGGCGTA KRAS EX 2

KRAS MUTANT 34GC_ALEXA488 ALEXA488-GGAGCTCGTGGCGTA KRAS EX 2

KRAS MUTANT 34GT_ALEXA488 ALEXA488-GGAGCTTGTGGCGTA KRAS EX 2

KRAS MUTANT 35GA_ALEXA488 ALEXA488-GGAGCTGATGGCGTA KRAS EX 2

KRAS MUTANT 35GC_ALEXA488 ALEXA488-GGAGCTGCTGGCGTA KRAS EX 2

KRAS MUTANT 35GT_ALEXA488 ALEXA488-GGAGCTGTTGGCGTA KRAS EX 2

KRAS MUTANT 38GA_ALEXA488 ALEXA488-AGCTGGTGACGTAGGC KRAS EX 2

KRAS EX3 UNIVERSAL ALEXA532 ALEXA532-GGAAGCAAGTAGTAATTGA KRAS EX 3

KRAS EX3 WT 183(61)_ALEXA647 ALEXA647-GCAGGTCAAGAGGAGT KRAS EX 3

KRAS EX3 MUT 183AT(61)_ALEXA488 ALEXA488-GCAGGTCATGAGGAGT KRAS EX 3

KRAS EX4 UNIVERSAL ALEXA532 ALEXA532-CAGGTAAGTAACACTGAA KRAS EX 4

KRAS EX4 WT 436GA(146)_ALEXA647 ALEXA647-AACATCAGCAAAGACA KRAS EX 4

KRAS EX4 MUT 436GA(146)_ALEXA488 ALEXA488-AACATCAACAAAGACA KRAS EX 4

NRAS EX3 FOR GCTGGAGCTCTGCAGCTACAAGTGGTTATAGATGGTGAAACC NRAS EX 3

NRAS EX3 REV TCCCGCGAAATTAATACGACTTATTGATGGCAAATACACAGAGG NRAS EX 3

NRAS EX2 FOR GCTGGAGCTCTGCAGCTAGGTTTCCAACAGGTTCTTGC NRAS EX 2

NRAS EX2 REV TCCCGCGAAATTAATACGACTGGTGGGATCATATTCATCTACA NRAS EX 2

NRAS EXON3 UNIVERSAL_ALEXA532 ALEXA 532_GACCAATACATGAGGAC NRAS EX 3

NRAS EXON3 WT (Q61_CAA)_ALEXA647ALEXA 647_AGCTGGACAAGAAGAGT NRAS EX 3

NRAS EXON3 MUT (Q61R_CGA)_ALEXA488ALEXA 488_AGCTGGACGAGAAGAGT NRAS EX 3

NRAS EX3 MUT (Q61H_183AT)_ALEXA488ALEXA488-AGCTGGACATGAAGAGT NRAS EX 3

NRAS EX3 MUT (Q61H_183AC)_ALEXA488ALEXA488-AGCTGGACACGAAGAGT NRAS EX 3

NRAS EX3 MUT (Q61L_182AT)_ALEXA488ALEXA488-AGCTGGACTAGAAGAGT NRAS EX 3

NRAS EXON2 UNIV (34-35)_ALEXA532 ALEXA532-AATGACTGAGTACAAACTG NRAS EX 2

NRAS EX2 WT (34 & 35)_ALEXA 647 ALEXA647-GGTTGGAGCAGGTGGTGTTGG     NRAS EX 2

NRAS EX2 MUT (G12S_34GA)_ALEXA488ALEXA488-GGTTGGAGCAAGTGGTGTTGG     NRAS EX 2

NRAS EX2 MUT (G12C_34GT)_ALEXA488ALEXA488-GGTTGGAGCATGTGGTGTTGG     NRAS EX 2

NRAS EX2 MUT (G12D_35GA)_ALEXA488ALEXA488-GGTTGGAGCAGATGGTGTTGG     NRAS EX 2

NRAS EX2 WT (37 & 38)_ALEXA 647 ALEXA647-TGGAGCAGGTGGTGTTGGGAA     NRAS EX 2

NRAS EX2 MUT (G13R_37GC)_ALEXA488ALEXA488-TGGAGCAGGTCGTGTTGGGAA     NRAS EX 2

NRAS EX2 MUT (G13D_38GA)_ALEXA488ALEXA488-TGGAGCAGGTGATGTTGGGAA     NRAS EX 2

BRAF EX15_FOR GCTGGAGCTCTGCAGCTATCATAATGCTTGCTCTGATAGGA BRAF EX15

BRAF EX15_REV TCCCGCGAAATTAATACGACCCTCAATTCTTACCATCCACAAA BRAF EX15

BRAF WT_T1799A_(V600E)_ALEXA647 ALEXA647-AGCTACAGTGAAATCTC BRAF EX15

BRAF MUT_T1799A_(V600E)_ALEXA488 ALEXA488-AGCTACAGAGAAATCTC BRAF EX15

BRAF UNIVERSAL_(V600E)_ TAMRA TAMRA-ACTTACTACACCTCAGA BRAF EX15

EGFR_EX12_1ST PCR F GCTGGAGCTCTGCAGCTACCTCAAGGAGATAAGTGATGGAG EGFR EX 12

EGFR_EX12_1ST PCR REV(2) TCCCGCGAAATTAATACGACGACTTACTGCAGCTGTTTTCACC EGFR EX 12

EGFR WT C1722C (S492R)_ALEXA647 ALEXA 647-ATTATAAGCAACAGAGGT EGFR EX 12

EGFR MUT C1722A (S492R)_ALEXA488 ALEXA488-ATTATAAGAAACAGAGGT EGFR EX 12

EGFR UNIVERSAL (S492R)_TAMRA TAMRA-TTGTGCTATGCAAATACA EGFR EX 12  
 

Supplementary Table  4: List of primers and probes for BEAMing analysis 
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Table S4

Supplementary Table 4: List of primers for gene copy number analysis by real-time PCR

Gene Direction Sequenza 5'-3' HUMAN

gEGFR F Forward TGGGCAACCCCGAGTATCT 

gEGFR R Reverse CTAATTTGGTGGCTGCCTTTCT

gKRAS F Forward CTGAGCTCCCCAAATAGCTG

gKRAS R Reverse AGGTTAGGGCTAGGCACCAT

gMET F Forward TGTTTTAAGATCTGGGCAGTG

gMET R Reverse AATGTCACAACCCACTGAGG

gHER2 F Forward GTGAGTGATGGGGCTGAGTT

gHER2 R Reverse CCAGGGAGGAGTGAGTTGTC

gSTSG30022 chr7 F Forward CCTTCAAGAGAAAGACGACAG

gSTSG30022 chr7 R Reverse AGGACTTATAAAAGGCAAGGG

gD12S1595 chr12 F Forward GGGATCTTATGATGTGTCAGG

gD12S1595 chr12 R Reverse ACTCTTGGTCTCAGTCTGCC

ULK2_chr17 F Forward TTTGTGTGTGTGACGGAGTCT

ULK2_chr 17 R Reverse TTTGTGTGTGTGACGGAGTCT
 

 
Supplementary Table 5: List of primers for gene copy number analysis by real-time PCR 
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Table S5

Supplementary Table 5: List of siRNAs

GENE PRODUCT NAME CAT.NO

KRAS siGENOME siRNA Reagents - Human M-005069-00-0005

MAP2K1 siGENOME siRNA Reagents - Human M-003571-01-0005

MAP2K2 siGENOME siRNA Reagents - Human M-003573-03-0005

BRAF siGENOME siRNA Reagents - Human M-003460-03-0005

RAF1 siGENOME siRNA Reagents - Human M-003601-02-0005

EGFR siGENOME siRNA Reagents - Human M-003114-03-0005

HER2 siGENOME siRNA Reagents - Human M-003126-04-0005

HER3 siGENOME siRNA Reagents - Human M-003127-03-0005

AKT1 siGENOME siRNA Reagents - Human M-003000-03-0005

NRAS siGENOME siRNA Reagents - Human M-003919-00-0005

HRAS siGENOME siRNA Reagents - Human M-004142-00-0005

PI3K siGENOME siRNA Reagents - Human M-003201-04-0005

 
 
Supplementary Table 6: List of siRNA 
 


