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ABSTRACT. This paper contributes the economics of knowledge with the analysis of the knowledge 

cost function and sheds light on the determinants of the large variance in the cost of knowledge across 

firms. The amount and the structure of external knowledge and the internal stocks of knowledge that 

firms can access and use in the generation of new technological knowledge help firms to reduce the 

costs of knowledge. The empirical section is based upon a panel of companies listed on UK and the 

main continental Europe financial markets (Germany, France, Italy and the Netherlands) for the 

period 1995 – 2006, for which information about patents have been gathered. The econometric 

analysis of the costs of knowledge considers the unit costs of patents on the right hand side, and on 

the left hand side next to R&D expenditures, the stock of knowledge internal and external to each 

firm. In order to articulate the different facets of the external knowledge that is made accessible by 

proximity with firms co-localized in the same region (NUTS2), we further include other variables 

proxying for regional variety, complementarity and similarity. The results confirm the Marshallian 
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hypothesis that the size and the composition of the stock of external knowledge play a key role in 

reducing the actual cost of the generation of new technological knowledge at the firm level. The 

results shed a new light about the Schumpeterian hypothesis. The evidence suggests, in fact, that the 

size of the stock of internal knowledge helps reducing the costs of knowledge, while they increase 

along with the size of R&D expenditures and employment.  

 

JEL CODES: O30 

 

KEY WORDS: KNOWLEDGE AS AN OUTPUT AND AN INPUT; KNOWLEDGE STOCK; 

EXTERNAL KNOWLEDGE. 
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1. INTRODUCTION 

The study of the cost of knowledge seems an important area of investigation that has received, so far, 

quite surprisingly, very little attention. After the introduction of the knowledge generation function it 

is now necessary to introduce and analyze the knowledge cost function. 

 

The identification of the knowledge generation function has been a major progress in the economics 

of knowledge (Weitzman, 1998; Crépon, Duguet, Mairesse, 1998 ). Finally technological knowledge 

can be analyzed as the output of a dedicated economic activity. Working along these lines increasing 

evidence shows that the unit costs of knowledge differ widely across firms. Some firms are able to 

generate new technological knowledge with low levels of current expenditures in R&D. Others 

experience very high levels of current expenditures. As a matter of fact the costs of knowledge differ 

and their variance becomes a fascinating area of research. The new appreciation of the role of 

knowledge indivisibility in the generation of new knowledge enables to better grasping the specific 

effects of knowledge externalities and knowledge cumulability on the costs of knowledge (Antonelli 

and Colombelli, 2015).  

 

The rest of the paper is structured as it follows. Section 2 recalls the recent advances of the new 

economics of knowledge and applies them to grasping the determinants of the heterogeneity of firms 

in terms of unit costs of their knowledge. Section 3 provides an empirical investigation based on the 

econometric estimate of a knowledge cost function based upon a panel of companies listed on UK 

and the main continental Europe financial markets (Germany, France, Italy and the Netherlands) for 

the period 1995 – 2006, for which information about patents have been gathered. The conclusions 

summarize the results and discuss the implications of the analysis. 

 

2. KNOWLEDGE AS AN INPUT AND OUTPUT 



 4 

After a long period of time during which the early economics of knowledge has investigated in depth 

the determinants and the effects of the characteristics of knowledge as a good - with special attention 

to its limited appropriability, non-rivalry in use and non-tradeability - the new economics of 

knowledge pays much attention to the characteristics of the knowledge generation process. In this 

context, it has grasped the implications of another bundle of characteristics of knowledge as an 

economic good that received lesser attention: knowledge indivisibility, in terms of both knowledge 

cumulability and knowledge complementarity. The twin character of knowledge - at the same time 

an input and an output - and its limited exhaustibility enable to grasp a key aspect of the knowledge 

generation process. Its generation consists in the recombination of knowledge items that enter the 

process as inputs (Weitzman, 1996 and 1998).  

 

Because of knowledge complementarity and knowledge cumulability, next to current R&D activities, 

both the external knowledge generated by third parties but not fully appropriated and the internal 

stocks of knowledge generated by each firm in the past, are now recognized as relevant inputs into 

the generation of knowledge as an output. The knowledge generated as the output of a dedicate 

activity is itself a necessary condition and hence an input for both the introduction of an innovation 

and the generation of further knowledge (David, 1993). This has led to the analysis of the generation 

of technological knowledge as a specific economic activity (Crépon, Duguet, Mairesse, 1998 ;  Nesta, 

Saviotti, 2005; Lööf and Heshmati, 2002).  

 

A second important step in this enquiry can be done with the analysis of the knowledge cost function. 

This approach enables to identify the determinants of the great variance in the costs of knowledge. 

Specifically the study of the knowledge cost function helps grasping to what extent the cost of 

knowledge is affected by the availability of the full range of the inputs and their costs (Antonelli and 

David, 2015). 
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As soon as it becomes evident that R&D activities are not the single input into the knowledge 

generation process (Gunday et al., 2011), the stocks and composition of existing knowledge both 

internal and external to each firm, as indispensable and strictly complementary inputs, acquire a new 

relevance (Antonelli and Colombelli, 2015). Knowledge inputs such as the amount of external 

knowledge that can be accessed by firms to generate new knowledge are distributed unevenly across 

space. Major institutional and structural characteristics affect the actual amount of external 

knowledge that each firm can access and use as an input. The costs of these inputs differ in turn 

because of the variance in the access conditions to the external knowledge available (Cohen and 

Levinthal, 1989 and 1990) and because of the different characteristics of the local pools of external 

knowledge (Saviotti, 2007; Quatraro, 2010 and 2012). For the same token firms differ widely with 

respect to the size and the characteristics of the stocks of internal knowledge that can be used to 

generate new knowledge (Jones, 1995). Knowledge inputs and outputs vary across firms also because 

firms differ in their specific competence in managing the knowledge generation process (Nelson, 

1982).  

 

The inclusion in the knowledge cost function of these variables stems from the identification of the 

recombinatorial character of the knowledge generation process and enables to appreciate the role of 

knowledge indivisibility, as articulated in knowledge cumulability and knowledge complementarity 

in its generation (Weitzman, 1996 and 1998). Let us consider them in turn. 

 

Knowledge cumulability – and its limited exhaustibility – implies that the stock of existing knowledge 

can be used again and again and plays a central role as an input into the generation of new knowledge. 

The stock of knowledge qualifies and identifies the knowledge base of each firm. The inclusion of 

this variable enables to grasp the path dependent character of the knowledge generation. The 

generation of new technological knowledge at each point in time, by each agent, in fact, is strongly 

influenced by the accumulation of knowledge in the past. The current levels of R&D expenditures of 
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each agent do play a role but only in a context that is shaped by the past of each firm (Antonelli, 2011; 

Belenzon, 2012). 

 

The appreciation of knowledge complementarity enables to put in context the role of knowledge 

externalities. A large literature had explored the role of technological spillovers as a major input into 

the generation of new technological knowledge (Colombelli et al., 2013). In this approach external 

knowledge plays an important and yet supplementary role in the generation of new technological 

knowledge (Griliches, 1979, 1990, 1992). Moreover its recipients are mainly viewed as the passive 

beneficiary of knowledge leaking from other firms (Feldman, 1999). A large body of empirical 

evidence has subsequently confirmed that external knowledge is an essential input into the generation 

of new knowledge (Adams, 1990; Smit et al., 2013; Marrocu et al., 2012).  

 

The composition of the knowledge pools to which co-localized firms have access also plays an 

important role in assessing the levels of absorption activities (Grillitsch et al., 2013; Camagni and 

Capello, 2013). Technological knowledge cannot be regarded as a homogeneous pile but rather as a 

composite bundle of highly differentiated and idiosyncratic elements that are qualified by specific 

relations of interdependence and interoperability. This approach enables to identify the extent to 

which the generation of new technological knowledge in a field depends upon the contributions of 

knowledge inputs stemming from other fields: a new knowledge item exhibits high levels of 

compositeness when it relies upon a large number of other knowledge fields (Antonelli, 2011). The 

quality of the local pools of knowledge in other words matters as well as its sheer size. The larger is 

the coherence of the local knowledge base and shorter is the distance between different types of 

knowledge, the higher is the probability that they can be combined together (Saviotti, 2004 and 2007; 

Krafft, Quatraro, Saviotti, 2009; Quatraro 2010). 
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The interplay between the stock and composition of internal knowledge, which also increases a firm’s 

absorptive capacity, and the actual levels of knowledge externalities helps increasing the amount of 

knowledge that each firm can generate with a given amount of R&D activities and competence 

acquired by means of internal learning processes. 

 

The analysis of a knowledge cost function that takes into account the role of the internal stocks of 

knowledge and of the local pools of external knowledge, enables to consider again and yet from quite 

a different perspective two standard assumptions of the economics of innovations i.e. the well-known 

Schumpeterian and Marshallian hypotheses. Let us consider them in turn.  

 

a) the Schumpeterian hypothesis. Joel Mokyr (1990:267) has recently masterly summarized 

Schumpeterian hypothesis as follows: ‘large firms with considerable market power, rather than 

perfectly competitive firms are the ‘most powerful engine of technological progress’’. Schumpeter 

with his Capitalism, Socialism and Democracy went actually so far as to claim that perfect 

competition is not only impossible but inferior’ (Schumpeter 1942:106). The Schumpeterian 

hypothesis has fed a long lasting theoretical debate and the large empirical evidence provided 

controversial evidence on the actual advantages of large firms with respect to smaller ones in the rates 

of generation of technological knowledge and the eventual introduction of innovations. The results 

of the empirical studies in different sectors, historic periods, countries and regions have not provided 

conclusive evidence (Link, 1980; Link and Siegel, 2007). The recent advances of the economics of 

knowledge enable to focus the Schumpeterian hypotheses on the knowledge generation activity and 

on the long lasting effects of the limited divisibility and exhaustibility of knowledge. The 

Schumpeterian hypothesis, in other words, would apply only to the size of the stock of knowledge 

and not to the sheer size of firms in terms of employment  
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Following this approach, we put forward the specific hypothesis that the size of firms exerts negative 

- cost-reducing - effects when it is measured in terms of internal knowledge stock rather than in terms 

of sheer size. For a given size in terms of employment, firms with a larger stock of internal knowledge 

have lower unit knowledge costs than firms with smaller internal stocks. The advantage of 

incumbents, in other words, stems specifically from the effects of knowledge cumulability and non-

exhaustibility and is specific to the size of the stock of knowledge.  

 

b) the Marshallian hypothesis. According to the standard application in the economics of knowledge 

of the Marshallian hypothesis, firms located in large industrial districts with a strong knowledge base 

have better chances to access knowledge spillovers and feed their own knowledge generation process. 

In large districts with a rich knowledge base firms have better access to external knowledge and can 

substitute it to expensive R&D activities. Knowledge externalities are pecuniary rather than pure: 

relevant search and absorption costs are necessary in order to use knowledge spilling from third 

parties as an input into the generation of new knowledge. For this reason, not only the size of the 

knowledge base, but also its nature is of some significance. Indeed, the generation of technological 

knowledge stems from a variety of competences: knowledge is not a homogenous good and therefore 

its intrinsic heterogeneous nature cannot be neglected. We thus argue that not only the amount of 

knowledge available at the local level, also the characteristics of that knowledge have an impact on 

the costs of knowledge. More precisely, the larger is the size and the coherence of the local knowledge 

pools and its complementarity with the internal knowledge base and the lower the search costs 

(Antonelli, 2008). On the other side, the higher is the variety and the dissimilarity in the combination 

of technologies in the firm region the higher is the cost associated to the firm knowledge output. 

When the local knowledge which firms may access is distributed across a wide range of technology 

domains and is featured by technologies which are far away from one another in the technological 

space, the absorption costs increase. Following these arguments along the lines of the Marshallian 

tradition of analysis, we put forward two hypotheses: i) we expect a negative correlation between the 
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size of the regional stock of knowledge and the firm cost of knowledge; ii) knowledge externalities 

are all the more effective the larger are the levels of coherence and the lower the levels of variety and 

dissimilarity of the local knowledge base. We thus expect that the unit knowledge costs decrease with 

the regional levels of knowledge coherence and increase with the regional levels of variety and 

dissimilarity. 

 

The following knowledge cost function (1) provides the general frame of our approach: 

 

CKit=(R&Dit   KNOWLEDGEBASEit  EXTERNAL KNOWLEDGEit)           (1)                                     

 

Equation (1) provides a suitable specification of the knowledge cost function, that accommodates, 

next to the role of R&D expenditures, the appreciation of the knowledge base of each firms in terms 

of the levels of the stock of knowledge in the generation of new knowledge, and the identification of 

the key role of knowledge external to each firm but available in regional proximity. Specifically we 

expect that unit knowledge costs are lower the larger is the size of the stock of internal knowledge , 

and the larger is the pool of external knowledge that firms can access and its consistence with the 

stock of internal knowledge. 

 

3. EMPIRICAL EVIDENCE 

3.1 Dataset 

Our source of data is the IPER1 database, which collects information on 3382 active companies listed 

on the following European markets: UK, Germany, France, Italy and the Netherlands. These countries 

where selected not only for their economic size and importance but also as they represent the main 

                                                 
1 The implementation of the IPER database has been financed by the Collegio Carlo Alberto, under 

the IPER project. 
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European financial markets. The variety in terms of size, sectors, regions and countries of this set of 

companies seems to provide a reliable representation of the European business sector. The IPER 

database has been built by matching information from multiple sources of data. Our main source of 

market and accounting data is Thomson Datastream, which delivers worldwide economic and 

financial time series data. To obtain additional relevant variables, we include in the dataset 

information collected from AMADEUS by Bureau Van Dijk, which contains financial information 

on European companies. In order to match information from the two databases described above, we 

used the ISIN code, the International Securities Identification Number (ISIN) which uniquely 

identifies a security. 

 

We also use data from the OECD REGPAT database, which provides regional information on the 

addresses of patent applicants and inventors as well as on technological classes cited in patents 

granted by the European Patent Office (EPO) and the World Intellectual Property Organization 

(WIPO), under the Patent Co-operation Treaty (PCT), from 1978 to 2006. The use of patents as the 

single indicator of the knowledge output is, indeed, a limit of the analysis. A large literature has 

identified the limits of patents as the exclusive source of information on the actual amount of 

knowledge generated: not all firms patent their ‘inventions’; small firms rely less than large ones on 

patents to increase the appropriability of their inventions; patents are used more to secure property 

rights of inventions that apply to product rather than process inventions; firms in fashion industries 

rarely patent their distinctive knowledge. The awareness of these limits has not prevented the use of 

patents in the large empirical literature that relies on the legacy of Zvi Griliches (1984 and 1990). 

 

In order to match the firm level data with data on patents, we draw on the work of Thoma et al. (2010), 

which develops a method for harmonization and combination of large-scale patent and trademark 

datasets with other sources of data, through standardization of applicant and inventor names. The new 

evidence about the actual meaning of patent citations, often included by patent officers to better 



 11 

specify the borders of the domain of the intellectual property right, rather than its quality, suggests to 

use the raw evidence of the number of patents with no attempt to try and elaborate misleading quality 

indicators (Van Zeebroeck, 2011; Van Zeebroeck and van Pottelsberghe 2011). 

 

Finally, we pooled the dataset by adding industry level information from the STAN database, which 

provides information at the industry level for the OECD countries. As STAN is based on the ISIC 

revision 3 sectoral classifications and Thomson Datastream uses the four digit level ICB industry 

classification, we provide in Appendix A the sectoral concordance table used to link the two 

classifications. 

 

Our final dataset includes active companies listed on the main European financial market that 

submitted at least one patent application to the EPO in the period analysed.  Table 1 reports the sample 

distribution by macro-sector classes. High and medium-high technology firms account for around 

31.6% and 45.4% of observations, respectively. Medium low and low technology firms account for 

4.5% and 8.9% respectively, while knowledge intensive firms represent 9.4% of observations.  

 

Table 1 about here 

 

 

3.2 The Econometric Analysis: Methodology and Variables 

The econometric analysis is organized on a baseline equation and a number of complementary 

specifications that explore in detail the different facets of the basic hypotheses. Our baseline 

estimating equation is the following (2): 

 

𝑃𝐶𝑜𝑠𝑡𝑖𝑡 = 𝛽1 + 𝛽2𝑅&𝐷𝑖𝑡−1 +  𝛽3𝑃𝑆𝑡𝑜𝑐𝑘𝑖𝑡−1 + 𝛽4𝐴𝐺𝐸𝑖𝑡−1 + 𝛽5𝑅𝑒𝑔𝑃𝑆𝑡𝑜𝑐𝑘𝑖𝑡−1+𝛽6𝑅𝑒𝑔𝑇𝑉𝑖𝑡−1 +

𝛽7𝑅𝑒𝑔𝐶𝐷𝑖𝑡−1 + 𝛽8𝑅𝑒𝑔𝐶𝑂𝐻𝑖𝑡−1 + ∑ ρ𝑖 + ∑ ψ𝑡 + 𝜀𝑖𝑡                                                                        (2) 
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In equation (2) all explanatory variables are lagged one year so as to mitigate endogeneity problems. 

Given the panel nature of our dataset and to control for unobserved firm-specific characteristics, 

Equation (2) has been estimated using a fixed effects estimator. The Hausman test confirms that fixed 

effects perform better than the random effects estimator. 

 

In Equation (2) the dependent variable for the firm i at time t is the cost of knowledge output measured 

by the logarithm of the ratio between the firm current R&D expenditures and the number of patents 

delivered. This measure is a good proxy of the actual cost for producing new technological 

knowledge. Yet, it is worth noting that the cost of external interactions based on knowledge is not 

directly accounted for. The unit cost of knowledge is explained by two sets of independent variables 

that are respectively: A) the knowledge base of each firm as defined by the internal expenses in R&D, 

the size of the internal knowledge stock and the age of the firm and B) the size the local pools of 

external knowledge and the composition of in terms of variety, complementarity and similarity 

(dissimilarity). As to the latter set of variables, variety aims to capture the technological 

differentiation within the knowledge base of a region; coherence measures the extent to which the 

pieces of knowledge that firms combine to generate new technological knowledge are complementary 

to one another; finally, similarity (dissimilarity) measures the extent to which the pieces of knowledge 

used by firms are close (distant) one another in the technology space (Krafft et al. 2014). 

 

More precisely, on the right hand side, the first set of variables considers R&D, i.e. the current 

research efforts and activities funded by each firm at time t-1, measured as the ratio of R&D 

expenditures (R&Dexp) to total assets (in logarithms). In order to appreciate the effects of the stocks 

of internal knowledge of firms, the model includes the variable PStock measured as the ratio between 

the number of patents held by each firm (CumPatStock) and total assets (in logarithms). CumPatStock 
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is computed by applying the permanent inventory method (PIM) to patent applications. We calculate 

it as the cumulated stock of patent applications using a rate of obsolescence of 15% per annum2: 

 

𝐶𝑢𝑚𝑃𝑎𝑡𝑆𝑡𝑜𝑐𝑘𝑖𝑡−1 = ℎ𝑖𝑡−1
̇ + (1 − 𝜎)𝐶𝑢𝑚𝑃𝑎𝑡𝑆𝑡𝑜𝑐𝑘𝑖𝑡−2      

  (3) 

where 1−

•

ith  is the flow of patent applications (in logarithm) and δ is the rate of obsolescence. Next to 

the stock of patents we include the age of firms. This variable aims at grasping the effects of the 

accumulation of competence by means of learning processes. Age is measured by the years since 

foundation and is expressed in logarithm; it aims at grasping the effects of the accumulation of tacit 

knowledge and competence, based upon learning processes that do affect the generation of patentable 

knowledge.  

 

To articulate the different facets of the knowledge that is external to each firm and made accessible 

by proximity with firms co-localized in the same region, in the second basket of variables, we include 

first a variable aimed at grasping the effects of the size of the knowledge pools into which firms are 

embedded: RegPStock, that is the log of patents stock in the same region (NUTS2) of firm i at time 

t-1. The method used for computing this variable is the same used for PStock (i.e. (PIM).  

 

Next, we include other variables proxying for variety, complementarity and similarity. These 

indicators rest on the recombinant knowledge approach. In order to provide an operational translation 

of such concepts one needs to identify both a proxy for the bits of knowledge and a proxy for the 

elements that make their structure. We consider patents as a proxy for knowledge, and then look at 

                                                 
2 A 15% obsolescence rate is the most common value used in the literature (see, for example, Nesta, 2008; Colombelli et 

al. 2013). As a robustness check we also experimented with alternative obsolescence rates. We found that the 

obsolescence rate value makes little difference in empirical estimations. 
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technological classes to which patents are assigned as the constituting elements of its structure, i.e. 

the nodes of the network representation of recombinant knowledge. Each technological class j is 

linked to another class m when the same patent is assigned to both of them. The higher is the number 

of patents jointly assigned to classes j and m, the stronger is this link. Since technological classes 

attributed to patents are reported in the patent document, we will refer to the link between j and m as 

the co-occurrence of both of them within the same patent document.  

 

On this basis we calculated the following three key characteristics of firms’ knowledge bases, all 

these variables are expressed in logarithms: 

a) Knowledge variety (KV) measures the degree of technological diversification of the 

knowledge base. It is based on the informational entropy index. We thus include in equation (2) 

RegTV, as a measure of the regional total variety, RegRTV and RegUTV, measuring the related and 

unrelated variety respectively, (see Appendix B for the methodological details). Unrelated variety 

measures the technological diversification of the knowledge base which is likely to be affected by 

radically new type of knowledge, while related variety measures the technological diversification of 

the knowledge base which is likely to be affected by incremental recombination of already existing 

types of knowledge. 

b) Knowledge coherence (COH) measures the degree of complementarity among technologies. 

It is measured by means of the RegCOH index (see Appendix B). 

c) Cognitive distance (CD) expresses the dissimilarities amongst different types of knowledge 

and is measured using the RegCD variable (see Appendix B). 

The inclusion of these variables marks an important step forward in the operational translation of 

knowledge creation processes. In particular, they allow for a better appreciation of the collective 

dimension of knowledge dynamics. Knowledge is indeed viewed as the outcome of a combinatorial 

activity in which intentional and unintentional exchange among innovating agents provides the access 

to external knowledge inputs (Fleming and et al., 2007).  
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The recombinant knowledge approach provides indeed a framework to represent the internal structure 

of regional knowledge bases as well as to enquire into the effects of their evolution Antonelli, Krafft, 

Quatraro, 2010). If knowledge stems from the combination of different technologies, knowledge 

structure can be represented as a web of connected elements. The nodes of this network stand for the 

elements of the knowledge space that may be combined with one another, while the links represent 

their actual combinations. The frequency with which two technologies are combined together 

provides useful information on the basis of which one can characterize the internal structure of the 

knowledge base according to the average degree of complementarity and proximity of the 

technologies which knowledge bases are made of, as well as to the variety of the observed pairs of 

technologies.  

 

The dynamics of technological knowledge can therefore be understood as the patterns of change in 

its own internal structure, i.e. in the patterns of recombination across the elements in the knowledge 

space. This allows for qualifying both the cumulative character of knowledge creation and the key 

role played by the properties describing knowledge structure (Saviotti, 2004 and 2007; Colombelli, 

Krafft, Quatraro, 2013; Quatraro, 2010). We finally include time dummies in order to control for time 

effects.  

 

In order to check further the robustness of our empirical analysis with respect to the role of the 

external knowledge, we also estimated an extended model including the patenting activities of firms 

localized outside the firm’s region (WRegPStock). Here WRegPStock aims at capturing the role of 

the sources of external knowledge that are far away from firm i. The variable WRegPStock has been 

computed as the log of patents stock (PIM) in the NUTS2 regions of the EU-24 member states, 

weighted using a row-normalized inverse distance matrix so as to appreciate the contribution of 

knowledge produced in regions close to firm’s i region at time t-1. Moreover, as a further robustness 
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check, we also estimated additional models including firm Size among the covariates. The inclusion 

of a variable that accounts for the sheer size (i.e. the logarithm of employees number for firm i at time 

t-1) enables to appreciate the estimated parameters as the direct effect of the variables proxying for 

the internal knowledge base, after taking into account the effects of the size of the firm. 

 

For each variable the measurement method is defined in Table 2, while descriptive statistics are 

reported in Table 3. The correlation matrix for the extended model can be found in Table 4. As 

reported in the table, correlations among some independent variables are relatively high. In particular, 

RegPStock is highly correlated with the three knowledge variety measures. Not surprisingly, the 

different measures of knowledge variety are highly correlated one each other. To further detect 

multicollinearity among covariates, we also checked the variance-inflation factor (VIF) for each 

covariate. If RegPStock is regressed on all the other covariates, including each of the three knowledge 

variety measures in different regressions, the VIF assumes values in the range 1.35-1.38, much less 

than the accepted cut-off value of 10 (Neter et al., 1990). Finally, when RegPStock is regressed on all 

the other covariates, including both RegRTV and RegUTV, the VIF value equals 1.43. Yet, in our 

empirical analysis we ran different regression models. First, the three specifications of knowledge 

variety are included in different regression models. Subsequently, we include the two components of 

knowledge variety (RegRTV and RegUTV) in the same model. Moreover, we ran different regression 

models excluding knowledge stock from the vector of covariates. Finally, also a relatively high 

correlation is observed between internal R&D and the stock of patents. However, if R&D and PStock 

are regressed on all the other covariates the VIF assumes values in the range 2.61-2.84, much less 

than the cut-off value of 10. Yet, we also ran different regression models excluding R&D from the 

vector of covariates as a robustness check. 

 

Table 2, 3 and 4 about here 
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3.3 Results 

The results of the fixed effects regression estimations for Equation (2) are reported in Table 5. The 

Hausman test, comparing the results obtained with the fixed effects model with those obtained from 

the random effects regression model, indicates that the fixed effects model is a better fit for our 

regressions. In order to cope with multicollinearity among the knowledge-related variables, column 

1 shows the results for the baseline equation that only includes variables measuring theinternal 

activities performed by each firm in terms of R&D expenditure, patents stock and age. Columns 2 to 

5 include also the variables proxying for the size and composition of the external pool of knowledge. 

More precisely, the results of the model including the RegTV variable are presented in column 2. 

Columns 3 and 4 show the results for the RegRTV and RegUTV variables, respectively, while column 

5 includes the two latter variables in the same model. 

 

Table 5 about here 

 

The results about the internal stock of knowledge help to confirm and qualify the Schumpeterian 

hypothesis.  The stock of patents (PStock) of each firm exerts in fact a strong negative and significant 

effect (p<0.01 in all estimations) on the costs of knowledge. This is fully consistent with expectations, 

as the dependent variable is a measure of the unit costs of knowldge, which is likely to decrease as 

the stock of internal knowledge that firms can mobilize and use to generate new technological 

knowledge increases, other things being equal. Knowledge cumulability and non exhaustibility exert 

a strong non-ergodic effect that favors incumbents that can rely upon their internal knowledge in the 

recombinant knowledge generation process. We interpret these results in light of the Schumpeterian 

hypothesis. The characteristics of knowledge, combined with the recombinant feature of the 

knowledge generation process, favor incumbents that can prolong through time the benefits of earlier 

‘inventions’. 
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The intensity of R&D expenses is positively and significantly related with the cost of knowledge in 

all the estimations. This is quite in line with the expectations, being R&D intensity a measure of the 

technological efforts of the firm. The size of the estimated parameter however seems most important. 

It is consistently much lower than 1 with a range comprised between 0,190 and 0.211 according to 

the different specifications. This suggests that the unit costs of knowledge increase, albeit much less 

than proportionately, with the levels of R&D intensity. The results of Table 10 (see below, more in 

detail) where the base line model is implemented with the absolute levels of R&D expenses and the 

explicit integration of the size of firms, provide further evidence that confirm our new interpretation 

of the Schumpeterian hypothesis: while the size of the stock of internal knowledge helps reducing the 

unit cost of knowledge, the size of R&D expenditures and the absolute size of firms in terms of 

employment have a positive impact on the unit cost of knowledge. For a given size of the stock of 

internal knowledge larger firms have higher knowledge unit costs than smaller firms. 

 

The results of the other variables are most important as they confirm the Marshallian hypotheses that, 

knowledge costs decline with the size of the local pools of external knowledge. Moreover they 

confirm that, not only the size of the knowledge base, but also its nature is of some significance. 

 

The results of the variables that account for the size and composition of the regional knowledge base 

differ whether they concern the size of the external stock, measured using the stock of patents of the 

firms localized in the region or the knowledge structure in terms of variety (RegTV), complementarity 

(RegCD) and similarity (RegCOH). If we focus on column 2, results show that the size of the regional 

knowledge stock (RegPStock) exerts a negative and significant effect on the cost of knowledge. This 

would suggest that companies that can access large pools of external knowledge save on the costs of 

their internal knowledge generating activities. As far as knowledge variety is concerned, results show 

that RegTV is positively and significantly related to the firm cost of knowledge. Let us recall that this 

index provides a measure of the diversification of observed combinations of technologies in regions’ 
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knowledge bases. The results thus indicate that the higher is the variety in the combination of 

technologies in the firm region the higher is the cost associated to the firm knowledge output. This 

might be due to the fact that firms need to put higher efforts in trying and experimenting new 

combinations of technologies distributed across a wide range of technology domains. When we 

disentangle the effects of related and unrelated variety we find that only the latter (RegUTV) is 

significant (as shown in columns from 3 to 5). The procedure by which the index is derived (see 

Appendix B) reveals that the concepts of ‘related’ and ‘unrelated’ variety refer basically to the 

belonging of technologies to the same technological domain, as defined by the classification system 

used (in our case the International Patent Classification). The positive and significant impact of 

RegUTV on the cost of knowledge would imply that an increase in the regional variety of technologies 

that belong to very different technological domains is likely to increase the costs of knowledge 

generating activities at the firm level. The unit cost of knowledge increases as an effect of the higher 

volume of resources that the firm needs to commit in order to search and absorb the locally available 

external knowledge.  

 

The evidence concerning the effect of regional cognitive distance confirms such result. The 

coefficient is indeed positive and significant across all of the four models in which it is included. The 

cognitive distance may be interpreted as an index of the average dissimilarity amongst the different 

technological competences that make up the regional knowledge base. When the local knowledge 

which firms may access, is featured by technologies which are far away from one another in the 

technological space, firms need to strengthen their absorptive capacity by widening the scope of 

technological domains that they can master in order to take advantages of knowledge spillovers in 

the generation of new knowledge. This implies increasing volumes of firm-level R&D expenditures 

per single patent. 
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As a robustness check, we further estimated an extended model including the patenting activities of 

firms localized outside the firm’s region (WRegPStock). Table 6 reports the results of the fixed effects 

regression estimations for the equations including WRegPStock. These results confirm the robustness 

of our analysis as regards the variables included in the baseline model. Yet, WRegPStock turns out 

not to be significantly related to the cost of knowledge.  

 

Table 6 about here 

To further check the robustness of our analysis and to explore the different facets of the hypothesis 

we run additional models. Table 7 shows results for the equation excluding RegPStock from the 

covariates. Indeed, by looking at Table 4, one may notice that such variable has high correlation with 

regional total, related and unrelated variety. This may affect the significance level of RegPStock. For 

this reason, we also run the regressions by dropping regional knowledge stock, so as to check the 

robustness of the results concerning the variety measures. The results actually do not change.  

 

In order to control for the relatively high correlation between R&D and PStock, Table 8 reports results 

for the regression models which exclude R&D from the vector of covariates. The results  confirm the 

robustness of our model.  

 

Finally, as a further robustness check and to better test the Schumpeterian hypothesis about the 

positive effects of the size of firms, we also estimated additional models including firm Size among 

the covariates. Table 9 shows results for an extended version of our baseline model which, next to 

R&D intensity, includes firm Size as an independent variable. Here, again, the estimated parameter 

of R&D intensity, now taking into account the inclusion of the variable Size, is positive albeit well 

below 1. The results of Table 10 provide the definitive test of our hypothesis and conclude the 

investigation about the effects of the size of the firm on the cost of knowldge. The results for this 

alternative specification - which includes firm Size and where R&D expenditures and patent stocks 
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are measured in absolute terms instead that being measured as a ratio over total assets - confirm that 

even when the size of the firm (in terms of  employment) is directly included in the estimation model, 

the value of the estimated parameter of R&D expenditures in absolute terms is positive albeit well 

<1. With respect to the results of the estimates of the base line model conducted on the R&D intensity 

the increase is confirmed although the estimated parameter now varies in a range comprised between 

0.288 and 0.312. Also Size is found to be positive related to the cost of knowledge. 

 

The results of both the variables that accounts for the size of the firm and its R&D expenditures in 

absolute terms confirm our interpretation of  the Schumpeterian hypothesis. The size of firms helps 

reducing knowledge unit costs only if it is measured in terms of the stock of internal knowledge. 

When the size is measured in terms of the amount of R&D expenditures and employment, under the 

control of specific variables that account for the size of the internal knowledge stock, knowledge unit 

costs increase.  The Schumpeterian hypothesis is not confirmed with respect to the sheer size when 

knowledge generation costs are considered.  

 

These results lead to articulate the distinction between knowledge generation and knowledge 

exploitation (March, 1991). Further work might investigate the relationship between the sheer size of 

firms and knowledge exploitation. Our results suggest that for given levels of the internal stock of 

knowledge larger firms are less efficient in the generation of new knowledge. It becomes most 

important to understand whether larger firms might be more efficient in the exploitation of knowledge 

 

4. CONCLUSIONS AND IMPLICATIONS FOR FURTHER RESEARCH 

 

The economics of knowledge has made a major progress with the identification of the knowledge 

generation function. This empirical evidence has shown that the relationship between inputs and 

outputs of the innovative activity across firms exhibits a huge variance. With given levels of R&D 
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inputs, the actual amount of knowledge generated by each firm differs widely. A second, important 

step along this line of analysis can be done with the analysis of the knowledge cost function. This 

approach can help understanding why the cost of knowledge is far from homogeneous. This evidence 

has been rarely detected in the literature and poorly investigated.  

 

The study of the knowledge cost function enables to analyze the role of the different cost items that 

concur to the definition of the knowledge output. This innovative approach enables to explore in a 

novel perspective two important hypotheses that are at the core of the economics of knowledge. 

Namely the so-called Schumpeterian hypothesis according to which firms with larger stock of internal 

knowledge are superior in the generation of new knowledge and the so-called Marshallian hypotheses 

according to which knowledge externalities exert positive effects according not only to the density of 

the local pools of knowledge, but also to their levels of coherence.   

 

The empirical analysis of the costs of knowledge, based upon a panel of companies listed on UK and 

the main continental Europe financial markets (Germany, France, Italy and the Netherlands) for the 

period 1995 – 2006, for which information about patents have been gathered, has considered the unit 

costs of patents on the right hand side, and on the left hand side next to R&D expenditures, the stock 

of internal knowledge as well as the stock and the composition of external knowledge.  

 

The results confirm that the size and the composition of the stock of internal knowledge play a key 

role in assessing the actual capability of each firm to generate new technological knowledge and 

hence in reducing the costs of knowledge. These results are important  as they contribute to cast a 

new perspective about the Schumpeterian hypothesis. The size of firms exerts positive –reducing- 

effects on knowledge unit costs only when it is measured by the stock of knowledge. The sheer size 

of firms, in terms of R&D expenditures and employment, under the control of the size of the internal 

stock of knowledge, exerts positive – increasing - effects on knowledge unit costs.  For given levels 
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of the size of the stock of internal knowledge, larger firms have larger knowledge unit costs than 

small firms. The sheer size of firms does not help reducing knowledge costs generation. This result 

pushes to reformulate the Schumpeterian hypothesis introducing the distinction between knowledge 

generation and exploitation. We have demonstrated that the sheer size does not help increasing the 

cost-efficiency of firms: additional work should be made to investigate whether the sheer size of firms 

may favor the exploitation of knowledge.  

 

The results about the role of the size and composition of external knowledge fully confirm the 

Marshallian hypothesis, stressing the important role of the composition of the local knowledge pools.  

 

These results bear important implications for technology policy at the regional level as well as for the 

strategic management of the firm. Technology policy represents indeed one of the key levers that 

policymakers may use to trigger local development. Due to the collective and systemic nature of 

knowledge generation activities, the choice of the correct policy mix is of crucial importance. The 

promotion of specific technological domains at the local level may affect the effectiveness of 

knowledge generation processes of incumbents firms. In this direction the attempts to foster the 

emergence of technologies which are not consistent with the competences accumulated in the region 

are likely to increase the average level of unrelated variety and dissimilarity, and as a consequence, 

increase the average cost per patent. The implementation of technology policies that focus the local 

knowledge endowments and try to upgrade it may be more effective than the pursuit of technological 

goals that are unrelated with the local pools of competence. 

 

From the managerial viewpoint, the results of our analysis confirm the intuition of Edith Penrose 

about the central role of the stock of knowledge internal to each firm. The results confirm that also 

the composition of the bundle of technological activities carried out at the local level plays an 

important role. This has two important implications for decision-making. First, footloose firms should 
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take into account, in their decisions concerning the location of their R&D laboratories, the local mix 

of technological competences, so as to select sites with the size and the mix of the local knowledge 

pools that are more consistent with the technological strategies of the firm. . Second, firms, with a 

given rooted location, should choose, among different possible technological strategies, those that are 

more compatible and consistent with the specific composition of the local knowledge pools. The 

location in areas featured by a bundle of technological competencies consistent with the innovation 

strategies of the firm is indeed likely to make the search process for new combinations of technologies 

more effective and hence new knowledge less costly.  
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Table 1 Sample distribution in macrosectors 

 

Macro-sector Percent Cum. 

High-technology manufactures - HT 31.6 31.6 

Medium-high technology manufactures - MHT 45.4 77.0 

Medium-low technology manufactures - MLT 4.5 81.5 

Low technology manufactures - LT 8.9 90.4 

Knowledge intensive sectors - KIS 9.4 99.8 

Less knowledge intensive sectors - LKIS 0.2 100.0 

Total 100.0   
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Table 2 Variables measurement method 

 

VARIABLES  

PCOST Log (R&D / N Patents) for firm i at time t 

R&D Log (R&D / Total assets) for firm i at time t-1 

R&Dexp Log (R&D) for firm i at time t-1 

PStock Log of (Patents stock (PIM) / Total assets) for firm i at time t-1 

CumPatStock Log of (Patents stock (PIM)) for firm i at time t-1 

Age Log of years since foundation for firm i at time t-1 

Size Log of employees number for firm i at time t-1 

RegPStock Log of patents stock (PIM) in the same region (NUTS2) of firm i at time t-1 

WRegPStock Log of patents stock (PIM) belonging to EU-24 member states other than that 

of firm i at time t-1, weighted using a row-normalized inverse distance matrix 

RegTV Log of total variety in the region (NUTS2) of firm i at time t-1 

RegRTV Log of related variety in the region (NUTS2) of firm i at time t-1 

RegUTV Log of unrelated variety in the region (NUTS2) of firm i at time t-1 

RegCD Log of cognitive distance in the region (NUTS2) of firm i at time t-1 

RegCOH Log of knowledge coherence in the region (NUTS2) of firm i at time t-1 
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Table 3 Descriptive statistics 

 

Variable Obs Mean Std.Dev. Min Max 

      
PCOST 870 9.330 1.725 2.996 15.547 

R&D 870 -3.340 1.097 -7.777 0.420 

R&Dexp 870 10.888 2.146 2.996 15.824 

PStock 870 -11.247 1.914 -18.732 -6.587 

CumPatStock 870 2.981 1.756 -0.650 7.519 

Age 870 3.425 1.185 0 5.541 

Size 854 8.920 2.296 1.386 13.090 

RegPStock 870 8.845 1.347 4.853 10.892 

WRegPStock 870 7.627 0.268 6.988 8.268 

RegTV 870 2.182 0.131 1.653 2.397 

RegRTV 870 1.882 0.155 1.232 2.129 

RegUTV 870 0.822 0.110 0.269 0.991 

RegCD 870 -0.264 0.020 -0.368 -0.223 

RegCOH 870 1.782 0.546 0.660 3.846 
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Table 4 Correlation matrix 

 

PCOST R&D PStock Age RegPStock WRegPStock RegTV RegRTV RegUTV RegCD RegCOH 

PCOST 1.000 
    

 
     

R&D 0.041 1.000 
   

 
     

PStock -0.628 0.493 1.000 
  

 
     

Age 0.126 -0.207 -0.188 1.000 
 

 
     

RegPStock 0.224 -0.063 -0.162 0.034 1.000  
     

WRegPStock 0.025 0.033 0.215 -0.095 -0.045 1.000 
     

RegTV 0.149 0.019 -0.107 -0.020 0.821 0.025 1.000 
    

RegRTV 0.149 -0.002 -0.119 -0.015 0.814 0.056 0.982 1.000 
   

RegUTV 0.097 0.098 -0.014 -0.033 0.513 -0.116 0.660 0.509 1.000 
  

RegCD 0.175 -0.159 -0.064 0.010 -0.039 0.461 -0.153 -0.118 -0.224 1.000 
 

RegCOH 0.084 0.052 -0.023 -0.029 0.288 -0.267 -0.125 -0.146 0.019 -0.120 1.000 
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Table 5 Results - Baseline model 

Fixed effects (1) (2) (3) (4) (5) 

      

VARIABLES PCost PCost PCost PCost PCost 

      

R&D 0.211*** 0.197** 0.208*** 0.196** 0.190** 

 (0.0763) (0.0768) (0.0766) (0.0769) (0.0770) 

PStock -0.489*** -0.463*** -0.463*** -0.471*** -0.468*** 

 (0.0605) (0.0613) (0.0615) (0.0614) (0.0614) 

Age  0.0145 0.0971 0.0787 0.0985 0.110 

 (0.160) (0.163) (0.163) (0.163) (0.163) 

RegPStock  -0.631* -0.557 -0.331 -0.496 

  (0.374) (0.379) (0.356) (0.379) 

RegTV  2.512**    

  (1.152)    

RegRTV   1.306  1.151 

   (0.920)  (0.921) 

RegUTV    1.837** 1.745** 

    (0.866) (0.869) 

RegCD  8.910** 8.625** 9.248** 9.236** 

  (4.156) (4.162) (4.166) (4.164) 

RegCOH  0.275 0.203 0.0814 0.216 

  (0.238) (0.240) (0.214) (0.240) 

Constant 6.951*** 8.953** 11.45*** 10.40*** 9.602** 

 (0.881) (3.987) (3.722) (3.773) (3.826) 

      

Observations 870 870 870 870 870 

R-squared 0.386 0.395 0.393 0.395 0.396 

Number of id 171 171 171 171 171 

Standard errors in parentheses 

*** p<0.01, ** p<0.05, * p<0.1 
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Table 6 Results - Extended model 

 (1) (2) (3) (4) (5) 

      

VARIABLES PCost PCost PCost PCost PCost 

      

R&D 0.211*** 0.192** 0.201*** 0.186** 0.183** 

 (0.0763) (0.0772) (0.0771) (0.0774) (0.0775) 

PStock -0.489*** -0.459*** -0.458*** -0.465*** -0.464*** 

 (0.0605) (0.0616) (0.0617) (0.0616) (0.0616) 

Age 0.0145 0.0904 0.0711 0.0910 0.103 

 (0.160) (0.163) (0.163) (0.163) (0.163) 

RegPStock  -0.582 -0.494 -0.288 -0.440 

  (0.381) (0.386) (0.358) (0.386) 

WRegPStock  -1.513 -1.918 -2.260 -1.736 

  (2.259) (2.262) (2.203) (2.259) 

RegTV  2.332**    

  (1.184)    

RegRTV   1.126  0.990 

   (0.944)  (0.945) 

RegUTV    1.785** 1.718** 

    (0.868) (0.870) 

RegCD  8.297* 7.872* 8.347* 8.545** 

  (4.257) (4.256) (4.257) (4.261) 

RegCOH  0.258 0.180 0.0782 0.194 

  (0.239) (0.242) (0.214) (0.241) 

Constant 6.951*** 20.65 26.12 27.57 22.90 

 (0.881) (17.93) (17.69) (17.16) (17.72) 

      

Observations 870 870 870 870 870 

R-squared 0.386 0.395 0.393 0.396 0.397 

Number of id 171 171 171 171 171 

 

Standard errors in parentheses 

*** p<0.01, ** p<0.05, * p<0.1 
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Table 7 Alternative specifications 

 (1) (2) (3) (4) (5) 

      

VARIABLES PCost PCost PCost PCost PCost 

      

R&D 0.211*** 0.197** 0.207*** 0.193** 0.188** 

 (0.0763) (0.0769) (0.0767) (0.0768) (0.0770) 

PStock -0.489*** -0.475*** -0.473*** -0.478*** -0.478*** 

 (0.0605) (0.0610) (0.0611) (0.0610) (0.0610) 

Age 0.0145 0.0518 0.0411 0.0777 0.0786 

 (0.160) (0.161) (0.161) (0.161) (0.161) 

RegTV  1.897*    

  (1.094)    

RegRTV   0.841  0.731 

   (0.865)  (0.864) 

RegUTV    1.881** 1.837** 

    (0.865) (0.867) 

RegCD  7.752* 7.679* 8.633** 8.431** 

  (4.104) (4.116) (4.113) (4.120) 

RegCOH  0.182 0.115 0.0603 0.139 

  (0.231) (0.233) (0.213) (0.232) 

Constant 6.951*** 4.470 7.192*** 7.243*** 5.733** 

 (0.881) (2.974) (2.337) (1.651) (2.431) 

      

Observations 870 870 870 870 870 

R-squared 0.386 0.393 0.391 0.394 0.395 

Number of id 171 171 171 171 171 

 

 
Standard errors in parentheses 

 

*** p<0.01, ** p<0.05, * p<0.1 
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Table 8 Alternative specifications 

Fixed effects (1) (2) (3) (4) (5) 

      

VARIABLES PCost PCost PCost PCost PCost 

      

PStock -0.446*** -0.424*** -0.421*** -0.433*** -0.431*** 

 (0.0587) (0.0596) (0.0598) (0.0598) (0.0598) 

Age  -0.00375 0.0818 0.0598 0.0841 0.0978 

 (0.161) (0.163) (0.163) (0.163) (0.164) 

RegPStock  -0.632* -0.548 -0.292 -0.479 

  (0.376) (0.381) (0.357) (0.380) 

RegTV  2.846**    

  (1.149)    

RegRTV   1.487  1.291 

   (0.922)  (0.923) 

RegUTV    2.109** 1.997** 

    (0.863) (0.866) 

RegCD  8.573** 8.226** 8.969** 8.965** 

  (4.171) (4.179) (4.181) (4.178) 

RegCOH  0.340 0.261 0.120 0.269 

  (0.237) (0.240) (0.215) (0.240) 

Constant 6.774*** 7.877** 10.67*** 9.495** 8.625** 

 (0.883) (3.981) (3.728) (3.772) (3.820) 

      

Observations 870 870 870 870 870 

R-squared 0.380 0.389 0.386 0.389 0.391 

Number of id 171 171 171 171 171 
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Table 9 Alternative specifications 

 

 (1) (2) (3) (4) (5) 

      

VARIABLES PCost PCost PCost PCost PCost 

      

R&D 0.211*** 0.195** 0.207*** 0.197** 0.189** 

 (0.0794) (0.0798) (0.0796) (0.0798) (0.0800) 

PStock -0.476*** -0.444*** -0.444*** -0.454*** -0.449*** 

 (0.0647) (0.0660) (0.0661) (0.0660) (0.0660) 

Age -0.0991 0.00278 -0.0175 0.00831 0.0197 

 (0.182) (0.185) (0.185) (0.186) (0.186) 

Size  0.242** 0.250** 0.247** 0.238** 0.247** 

 (0.117) (0.117) (0.118) (0.117) (0.117) 

RegPStock  -0.743* -0.669* -0.423 -0.614 

  (0.387) (0.392) (0.368) (0.392) 

RegTV  2.713**    

  (1.167)    

RegRTV   1.469  1.313 

   (0.932)  (0.933) 

RegUTV    1.868** 1.764** 

    (0.878) (0.880) 

RegCD  8.274** 7.949* 8.661** 8.626** 

  (4.211) (4.218) (4.225) (4.222) 

RegCOH  0.278 0.207 0.0708 0.223 

  (0.244) (0.246) (0.221) (0.246) 

Constant 5.314*** 7.648* 10.29*** 9.439** 8.481** 

 (1.206) (4.149) (3.889) (3.928) (3.984) 

      

Observations 854 854 854 854 854 

R-squared 0.386 0.395 0.393 0.395 0.396 

Number of id 171 171 171 171 171 

 

 
Standard errors in parentheses 

 

*** p<0.01, ** p<0.05, * p<0.1 
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Table 10 Alternative specifications 

Fixed effects (1) (2) (3) (4) (5) 

      

VARIABLES PCost PCost PCost PCost PCost 

      

R&Dexp 0.312*** 0.296*** 0.309*** 0.293*** 0.288*** 

 (0.0780) (0.0784) (0.0781) (0.0788) (0.0788) 

CumPatStock -0.436*** -0.398*** -0.395*** -0.413*** -0.407*** 

 (0.0720) (0.0737) (0.0739) (0.0740) (0.0741) 

Age -0.0863 0.0222 0.00277 0.0267 0.0377 

 (0.183) (0.186) (0.186) (0.187) (0.187) 

Size 0.315** 0.312** 0.302** 0.307** 0.316** 

 (0.123) (0.124) (0.124) (0.124) (0.124) 

RegPStock  -0.812** -0.748* -0.505 -0.687* 

  (0.391) (0.396) (0.372) (0.397) 

RegTV  2.541**    

  (1.173)    

RegRTV   1.382  1.233 

   (0.936)  (0.938) 

RegUTV    1.723* 1.621* 

    (0.889) (0.892) 

RegCD  9.419** 9.101** 9.758** 9.744** 

  (4.211) (4.216) (4.225) (4.223) 

RegCOH  0.258 0.194 0.0614 0.205 

  (0.245) (0.248) (0.222) (0.247) 

Constant 7.204*** 10.67*** 13.05*** 12.42*** 11.57*** 

 (1.193) (4.001) (3.748) (3.776) (3.829) 

      

Observations 854 854 854 854 854 

R-squared 0.380 0.389 0.387 0.389 0.390 

Number of id 171 171 171 171 171 

Standard errors in parentheses 

*** p<0.01, ** p<0.05, * p<0.1 
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Appendix A  

 

Sectoral classification and concordance 

 

Macro sectors Sector 
STAN 

(ISIC 3) 
Datastream 

 Pharmaceuticals  2423 4577 

High-technology manufactures Office, accounting and computing machinery 30 9572, 9574 

HT Radio, television and communication equipment 32 
2737, 3743, 3745,3747,9576, 

9578 

 Medical, precision and optical instruments 33 4535, 4537, 4573 

 Aircraft and spacecraft 353 2713, 2717 

 Chemicals excluding pharmaceuticals 24ex2423 1353, 1357 

Medium-high technology manuf. Machinery and equipment, n.e.c. 29 573, 583, 2757 

MHT Electrical machinery and apparatus, nec 31 2733, 3722 

 
Motor vehicles, trailers and semi-trailers and 

other transport equipment, aircraft excluded 

34, 351, 

352-359 
2753, 3353, 3355 

 Coke, refined petroleum products and nuclear fuel 23 533, 537, 577, 587 

Medium-low technology manuf. 
Rubber, plastics products and other non-metallic 

mineral products 
25-26 2353, 2723, 3357 

MLT Basic metals and fabricated metal products 27-28 1753, 1755, 1757 

 Food products and beverages 15 3533, 3535, 3537, 3577 

 Tobacco products 16 3785 

Low technology manufactures Textiles, textile products, leather and footwear 17-19 3763, 3765 

LT Pulp, paper and paper products 21 1737 

 Printing and publishing 22 5557 

 Manufacturing nec and recycling 36-37 2727, 3724, 3726, 3767 

 Post and telecommunications 64 5553, 6535, 6575 

 Financial intermediation (excl insurance, pension) 65 8355, 8773, 8779 

Knowledge intensive sectors Insurance and pension funding 66 8532, 8534, 8536, 8538, 8575 

KIS Activities related to financial intermediation 67 8775, 8777, 8985, 8995 

 Real estate activities 70 
8633, 8637, 8671, 8672, 8673, 

8674, 8675, 8676, 8677, 8771 

 Renting of m&eq and other business activities 71-74 
2791, 2793, 2795, 2799, 5555, 

9533, 9535, 9537 

 Health and social work 85 4533 

 Recreational cultural and sporting activities 92 5752, 5755 
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Appendix B 

Knowledge variety measured by the informational entropy index 

 

Knowledge variety is measured using the information entropy index3. Entropy measures the degree 

of disorder or randomness of the system; systems characterized by high entropy are characterized by 

high degrees of uncertainty (Saviotti, 1988). The entropy index measures variety. Information entropy 

has some interesting properties (Frenken and Nuvolari, 2004) including multidimensionality.  

Consider a pair of events (Xl, Yj), and the probability of their co-occurrence plj. A two dimensional 

total variety (TV) measure can be expressed as follows: 
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Let the events Xl and Yj be citation in a patent document of technological classes l and j respectively. 

Then plj is the probability that two technological classes l and j co-occur within the same patent. The 

measure of multidimensional entropy, therefore, focuses on the variety of co-occurrences or pairs of 

technological classes within patent applications. 

The total index can be decomposed into ‘within’ and ‘between’ parts whenever the events being 

investigated can be aggregated into a smaller number of subsets. Within-entropy measures the 

average degree of disorder or variety within the subsets; between-entropy focuses on the subsets, 

measuring the variety across them.  

It can be easily shown that the decomposition theorem holds also for the multidimensional case 

(Frenken and Nuvolari, 2004). Let the technologies i and j belong to the subsets g and z of the 

classification scheme respectively. If one allows lSg and jSz (g = 1,…,G; z = 1,…, Z), we can write:  
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3 For the sake of clarity the region and time indexes are omitted. 
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Which is the probability to observe the couple lj in the subsets g and z, while the intra subsets variety 

can be measured as follows: 
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The (weighted) within-group entropy can be finally written as follows: 
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Between group (or unrelated variety) can instead be calculated by using the following equation: 
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According to the decomposition theorem, we can rewrite the total entropy H(X,Y) as follows: 
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When considering the International Patent Classification (IPC), the whole set of technological classes 

can be partitioned on the basis of macro technological fields. For example, two 4-digit technologies 

A61K and H04L belong respectively to the macro classes A and H. In our notation, H04L would be 

the technology l and H the macroset Sg. Similarly A61K would be the technology j and A the macroset 

Sz.  

Within-group entropy (or related variety) measures the degree of technological differentiation within 

the macro-field, while between-group variety (or unrelated variety) measures the degree of 

technological differentiation across macro-fields. The first term on the right-hand-side of equation 

(2) is the between-entropy, the second term is the (weighted) within-entropy. 

We can label between- and within-entropy respectively as unrelated technological variety (UTV) and 

related technological variety (RTV), while total information entropy is referred to as general 

technological variety (Frenken et al., 2007; Boschma and Iammarino, 2009). This means that we 

consider variety as a global entity, but also as a new combination of existing bits of knowledge versus 
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variety as a combination of new bits of knowledge. When variety is high (respectively low), this 

means that the search process has been extensive (respectively partial). When unrelated variety is 

high compared to related variety, the search process is based essentially on the combination of novel 

bits of knowledge rather than new combinations of existing bits of knowledge.4 

 

The knowledge coherence index 

 

Agents grounded in local contexts need to combine or integrate many different pieces of knowledge 

to produce a marketable output. Competitiveness requires new knowledge and knowledge about how 

to combine old and new pieces of knowledge. We calculate the coherence of NUTS3 regions’ 

knowledge bases, defined as the average relatedness or complementarity of a technology chosen 

randomly within the firm’s patent portfolio with respect to any other technology (Nesta and Saviotti, 

2005; Nesta, 2008; Quatraro, 2010)5.  

                                                 
4 It must be noted that by measuring the degree of technological differentiation, the calculation of 

information entropy is affected by the number of technological classes observed, but not necessarily 

by the number of technological classes in the classification itself. Indeed, the introduction of new 

technological classes that are not observed does not affect the calculations in that they would be 

events with zero probability. Entropy rises or falls according to the number of technological classes 

that are actually observed in the patent sample. It reaches the maximum if all events are equiprobable, 

i.e. if all technological classes show the same relative frequency. If probabilities are unevenly 

distributed, one can have very low values of information entropy even if a very large number of 

technologies is observed.  

5 The function used to measure coherence is completely different from the one used to measure 

informational entropy. The fact that in both cases the co-occurrence of technological classes enters 

the calculations does not mean that both functions must lead to the same result. The informational 
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Obtaining the knowledge coherence index requires a number of steps. First of all, we need to calculate 

the weighted average relatedness WARl of technology l with respect to all other technologies in the 

regional patent portfolio. This measure builds on the measure of technological relatedness τlj (Nesta 

and Saviotti, 2005). We start by calculating the relatedness matrix. The technological universe 

consists of k patent applications across all sampled firms. Let Plk = 1 if the patent k is assigned the 

technology l [l= 1, …, n], and 0 otherwise. The total number of patents assigned to technology l is 

= k lkl PO . Similarly, the total number of patents assigned to technology j is = k jkj PO . Since 

two technologies can occur within the same patent,  jl OO , and thus the observed the number 

of observed co-occurrences of technologies l and j is = k jklklj PPJ . Applying this relationship to all 

                                                 

entropy function measures the variety of the set, corresponding to the number of distinguishable 

entities it contains. The coherence function was introduced by Teece et al (1994) to measure the 

coherence of a firm based on its products. Nesta and Saviotti (2005) have subsequently adapted it to 

measure the coherence of the knowledge base of a firm. The coherence function measures the extent 

to which the distinguishable entities in the set (in our case the types of knowledge corresponding to 

different technological classes) are used together irrespective of the number of entities contained in 

the set. The two functions are in principle independent since they use the same type of data to calculate 

different properties of the same system. The mathematical independence of the two functions does 

not imply that the evolution of the corresponding properties is independent. Thus, if new 

technological classes are introduced into the knowledge base of a sector (an increase in the number 

of distinguishable entities of the set) there is no reason to expect the capacity of firms to combine the 

new types of knowledge to be created instantly. We expect that as new types of knowledge are 

introduced into the knowledge base of a sector, the firms will slowly learn to combine them thus 

leading to a temporary fall in coherence. 
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possible pairs yields a square matrix  (n  n) in which the generic cell is the observed number of 

co-occurrences:  
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We assume that the number xij of patents assigned to technologies i and j is a hypergeometric random 

variable of the mean and variance: 
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If the observed number of co-occurrences Jij is larger than the expected number of random co-

occurrences ij, then the two technologies are closely related: the fact that the two technologies occur 

together in the number of patents xij is not common or frequent. Hence, the measure of relatedness is 

given by the difference between the observed and the expected numbers of co-occurrences, weighted 

by their standard deviation: 

lj

ljlj

lj
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Note that this measure of relatedness has no lower or upper bounds:  +− ;lj . Moreover, the 

index shows a distribution similar to a t-test, so that if  96.1;96.1 +−lj , we can safely assume the 

null hypothesis of non-relatedness of the two technologies i and j. The technological relatedness 

matrix ’ can be considered a weighting scheme to evaluate the technological portfolio of regions. 

Following Teece et al. (1994), WARl is defined as the degree to which technology l is related to all 

other technologies jl in the region’s patent portfolio, weighted by patent count Pjt: 
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Finally the coherence of the region’s knowledge base at time t is defined as the weighted average of 

the WARlt measure: 
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Note that this index implemented by analysing the co-occurrence of technological classes within 

patent applications, measures the degree to which the services rendered by the co-occurring 

technologies are complementary, and is based on how frequently technological classes are combined 

in use. The relatedness measure τlj indicates that utilization of technology l implies use also of 

technology j in order to perform specific functions that are not reducible to their independent use. 

This makes the coherence index appropriate for the purposes of this study and marks a difference 

from entropy, which measures technological differentiation based on the probability distribution of 

pairs of technological classes across the patent sample6. 

                                                 
6 To make it clear, informational entropy is a diversity measure which allows to accounting for 

variety, i.e. the number of categories into which system elements are apportioned, and balance, i.e. 

the distribution of system elements across categories. (Stirling, 2007). In this sense entropy does not 

say anything about the relationships between technological classes, but provides a measure of the 

diversity of technological co-occurrences, suggesting whether in a sector most of the observed co-

occurrences focus on a specific couple or on the contrary whether the observed co-occurrences relate 

to a large number couples. In this framework, related and unrelated variety provide a measure of the 

extent to which observed variety applies to couples of technologies that belong to the same macro 

domain or to different macro-domains. One would expect established technologies to be characterized 

by relatively low variety of co-occurrences, insofar as the recombination focus on a relatively small 

numbers of technological classes that have proved to be particularly fertile. On a different ground, 
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If the coherence index is high, this means that the different pieces of knowledge have been well 

combined or integrated during the search process. Due to a learning dynamics, agents in the regions 

have increased capability to identify the bits of knowledge that are required jointly to obtain a given 

outcome. In a dynamic perspective, therefore, increasing values for knowledge coherence are likely 

to be associated with search behaviours mostly driven by organized search within well identified 

areas of the technological landscape. Conversely, decreasing values of knowledge coherence are 

likely to be related to search behaviours mostly driven by random screening across untried areas of 

the technological landscape in the quest for new and more profitable technological trajectories. 

The cognitive distance index 

 

We need a measure of cognitive distance (Nooteboom, 2000) to describe the dissimilarities among 

different types of knowledge. A useful index of distance can be derived from technological proximity 

proposed by Jaffe (1986, 1989), who investigated the proximity of firms’ technological portfolios. 

Breschi et al. (2003) adapted this index to measure the proximity between two technologies7.  

                                                 

the coherence index is based on a normalized measure of how much each observed technology is 

complementary to all other technologies in the analyzed patents. In this sense it cannot be understood 

as a measure of diversity. The relatedness index indeed provides a measure of the degree to which 

two technologies are actually jointly used as compared to the expected joint utilization. The index 

allows to establishing a relationship of complementarity between the technologies in the analyzed 

patents. Based on the relatedness measure (tau), the coherence index provides an aggregate 

description of the degree to which the observed technologies in a given sector are complementary to 

one another. 

7 Cognitive distance is the inverse of similarity or the equivalent of dissimilarity. The measure of 

similarity has been introduced by biologists and ecologists to measure the similarity of biological 

species and to understand to what extent they could contribute to biodiversity. The same measure has 
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Let us recall that Plk = 1 if the patent k is assigned the technology l [l= 1, …, n], and 0 otherwise. The 

total number of patents assigned to technology l is = k lkl PO . Similarly, the total number of patents 

assigned to technology j is = k jkj PO . We can, thus, indicate the number of patents that are 

classified in both technological fields l and j as: 𝑉𝑙𝑗 = ∑ 𝑃𝑙𝑘𝑃𝑗𝑘𝑘 . By applying this count of joint 

occurrences to all possible pairs of classification codes, we obtain a square symmetrical matrix of co-

occurrences whose generic cell Vlj reports the number of patent documents classified in both 

technological fields l and j. 

Technologiocal proximity is proxied by the cosine index, which is calculated for a pair of 

technologies l and j as the angular separation or uncentred correlation of the vectors Vlm and Vjm. The 

similarity of technologies l and j can then be defined as follows: 

                                                 

been applied by Jaffe (1986) to the similarity of technologies. It is not the only possible measure of 

similarity but it is the most frequently used one. The rational for its use is starts from the assumption 

that when two technologies, i and j, can be combined with a third technology k, they are similar. We 

call this measure cognitive distance both because  the two terms are used as synonyms in the 

biological literature and, even more so, because cognitive distance is a concept used by Bart 

Nooteboom (2000) which has a number of very  interesting implications for firm behavior and 

performance. In particular, the cognitive distance between different firms is expected to affect the 

probability that they form technological alliances. Intuitively, the need for a firm to learn a completely 

new technology (discontinuity) will lead to the incorporation into the firm's knowledge base of new  

patent classes, which would make the  knowledge base recognizably different from what it was at 

previous times. The dissimilarity of the knowledge base can be expected to keep rising with respect 

to the pre-discontinuity knowledge base until the technology lifecycle has achieved maturity, at which 

stage the knowledge base of the firm will have stabilized, thus leading to a fall in cognitive distance. 
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The idea behind the calculation of this index is that two technologies j and l are similar to the extent 

that they co-occur with a third technology m. Such measure is symmetric with respect to the direction 

linking technological classes, and it does not depend on the absolute size of technological field. The 

cosine index provides a measure of the similarity between two technological fields in terms of their 

mutual relationships with all the other fields. Slj is the greater the more two technologies l and j co-

occur with the same technologies. It is equal to one for pairs of technological fields with identical 

distribution of co-occurrences with all the other technological fields, while it goes to zero if vectors 

Vlm and Vjm are orthogonal (Breschi et al., 2003)8. Similarity between technological classes is thus 

calculated on the basis of their relative position in the technology space. The closer technologies are 

in the technology space, the higher is Slj and the lower their cognitive distance (Engelsman and van 

Raan, 1991; Jaffe, 1986; Breschi et al., 2003). 

The cognitive distance between j and l can be therefore measured as the complement of their index 

of technological proximity:  

ljlj S1d −=          (12) 

Having calculated the index for all possible pairs, it needs to be aggregated at the regional level to 

obtain a synthetic index of distance amongst the technologies in the firm’s patent portfolio. This is 

done in two steps. First we compute the weighted average distance of technology l, i.e. the average 

distance of l from all other technologies.  
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8 For Engelsman and van Raan (1991), this approach produces meaningful results particularly at a 

‘macro’ level, i.e. for mapping the entire domain of technology.  
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where Pj is the number of patents in which the technology j is observed. The average cognitive 

distance at time t is obtained as follows: 
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The cognitive distance index measures the inverse of the similarity degree among technologies. When 

cognitive distance is high, this is an indication of the increased difficulty or cost the firm faces to 

learn the new type of knowledge which is located in a remote area of the technological space. 

Increased cognitive distance is related to the emergence of discontinuities associated with 

paradigmatic shifts in the sector knowledge base. It signals the combination of core technologies with 

unfamiliar technologies. 

 

 

 

 


