
18 November 2024

AperTO - Archivio Istituzionale Open Access dell'Università di Torino

Original Citation:

The Loop-of-Stencil-Reduce paradigm

Publisher:

Published version:

DOI:10.1109/Trustcom.2015.628

Terms of use:

Open Access

(Article begins on next page)

Anyone can freely access the full text of works made available as "Open Access". Works made available
under a Creative Commons license can be used according to the terms and conditions of said license. Use
of all other works requires consent of the right holder (author or publisher) if not exempted from copyright
protection by the applicable law.

Availability:

IEEE

This is the author's manuscript

This version is available http://hdl.handle.net/2318/1523738 since 2016-11-19T16:52:40Z

The Loop-of-Stencil-Reduce paradigm

M. Aldinucci∗, M. Danelutto†, M. Drocco∗, P. Kilpatrick‡, G. Peretti Pezzi§ and M. Torquati†
∗Computer Science Department, University of Turin, Italy.
†Computer Science Department, University of Pisa, Italy.

‡Computer Science Department, Queen’s University Belfast, UK.
§Swiss National Supercomputing Centre, Switzerland.

Abstract—In this paper we advocate the Loop-of-stencil-
reduce pattern as a way to simplify the parallel programming
of heterogeneous platforms (multicore+GPUs). Loop-of-Stencil-
reduce is general enough to subsume map, reduce, map-reduce,
stencil, stencil-reduce, and, crucially, their usage in a loop. It
transparently targets (by using OpenCL) combinations of CPU
cores and GPUs, and it makes it possible to simplify the
deployment of a single stencil computation kernel on different
GPUs. The paper discusses the implementation of Loop-of-stencil-
reduce within the FastFlow parallel framework, considering a
simple iterative data-parallel application as running example
(Game of Life) and a highly effective parallel filter for visual
data restoration to assess performance. Thanks to the high-level
design of the Loop-of-stencil-reduce, it was possible to run the
filter seamlessly on a multicore machine, on multi-GPUs, and on
both.

Keywords—skeletons, fastflow, parallel patterns, multi-core,
OpenCL, GPUs, heterogeneous platforms

I. INTRODUCTION

Since their appearance in the High-Performance Com-
puting arena, GPUs have been widely perceived as data-
parallel computing machines. This belief stems from their
execution model, which prohibits any assumption about work-
items/threads execution order (or interleaving) in a kernel
execution. This in turn requires the avoidance of true data
dependencies among different parallel activities. It quickly
became clear that the best approach to programming GPUs
is to “think data-parallel” by way of “data-parallel building
blocks” [1], i.e. data parallel skeletons [2]. For this reason,
GPUs kernels are typically designed to employ the map-reduce
parallel paradigm, where the reduce is realised as a sequence
of partial (workgroup-level) GPU-side reduces, followed by
a global host-side reduce. Thanks to GPUs’ globally shared
memory, a similar pattern can be used to map computation
over stencils (i.e. data overlays with non-empty intersection),
provided they are accessed in read-only fashion to enforce
deterministic behaviour. Often, this kind of kernel is called in
host code in a loop body (e.g. up to a convergence criterion).

In this work we introduce the Loop-of-stencil-reduce pat-
tern, as an abstraction of this general parallelism exploita-
tion pattern in heterogeneous platforms. Specifically, Loop-of-
stencil-reduce is designed as a FastFlow [3] pattern, which can
be nested in other stream parallel patterns, such as farm and
pipeline, and implemented in C++ and OpenCL.

We advocate Loop-of-stencil-reduce as a comprehensive
meta-pattern for programming of GPUs because it is suffi-
ciently general to subsume map, reduce, map-reduce, stencil,
stencil-reduce, and, crucially, their usage in a loop, i.e. im-
plementing the previously mentioned “data-parallel building

blocks”. Also, as discussed in Sec. III, it is more expressive
than previously mentioned patterns.

Moreover, it simplifies GPU exploitation. In particular,
it takes care of device detection, device memory allocation,
host-to-device (H2D) and device-to-host (D2H) memory copy
and synchronisation, reduce algorithm implementation, man-
agement of persistent global memory in the device across
successive iterations, and enforces data race avoidance due to
stencil data access in iterative computations. It can transpar-
ently exploit multiple CPUs or GPUs (sharing host memory)
or a mix of them. Also, the same host code can exploit both
a CUDA and OpenCL implementation (whereas the kernel
functions should match the selected language).

While this paper builds on previous results [4], it advances
them in several directions:

1) The Loop-of-stencil-reduce pattern is an evolution of the
stencil-reduce pattern [4]. Specifically, Loop-of-stencil-
reduce has been refined to explicitly include the iter-
ative behaviour and the optimisations enabled by the
knowledge of iterative behaviour. They are related to the
GPU persistent global memory usage, stencil and reduce
pipelining.

2) The Loop-of-stencil-reduce pattern has been uniformly
implemented in OpenCL and CUDA, whereas stencil-
reduce was implemented only in CUDA and using
CUDA-specific features not supported in OpenCL, such
as Unified Memory. Its implementation in OpenCL is
particularly important in the perspective of using the
pattern in heterogeneous platforms including different
hardware accelerators, such as FPGAs and DSPs.

3) Support for the exploitation of iterative, locally-
synchronous computations (by way of halo-swap) across
multiple GPUs has been introduced, whereas in previous
works usage of multiple GPUs is possible only on inde-
pendent kernel instances.

The structure of the paper is as follows: in the next
section related work is presented; and a recap of the FastFlow
programming framework is given. Section III introduces the
Loop-of-stencil-reduce design principles, its API, and its im-
plementation within the FastFlow framework. Experimental
results are discussed in Sec. IV: the performances of different
deployments of an effective but computationally-demanding
video restoration application [5] are presented. Section V
presents concluding remarks.

II. RELATED WORK

Algorithmic skeletons have been around since the ’90s
as an effective means of parallel application development.

An algorithmic skeleton is a general-purpose, parametric
parallelism-exploitation pattern [6].

Most skeletal frameworks (or indeed, high-level parallel
programming libraries) eventually exploit either low-level tools
such as NVidia CUDA or OpenCL to target hardware accel-
erators. CUDA is known to be more compliant to C++ and
often more efficient than OpenCL. On the other hand, OpenCL
is implemented by different hardware vendors such as Intel,
AMD, and NVIDIA, making it highly portable and allowing
the code written in OpenCL to be run on different graphical
accelerators.

OpenMP is a popular thread-based framework for multi-
core architectures mostly targeting data parallel programming.
OpenMP supports, by way of language pragmas, the low-
effort parallelisation of sequential programs; however, these
pragmas are mainly designed to exploit loop-level data par-
allelism (e.g. do independent). OpenMP does not natively
support either farm or Divide&Conquer patterns, even though
they can be implemented by using tasking features. Intel
Threading Building Blocks (TBB) [7] is a C++ template library
which provides easy development of concurrent programs by
exposing (simple) skeletons and parallel data structures used
to define tasks of computations.

Also, several programming frameworks based on algorith-
mic skeletons have been recently extended to target hetero-
geneous architectures. In Muesli [8] the programmer must
explicitly indicate whether GPUs are to be used for data par-
allel skeletons. StarPU [9] is focused on handling accelerators
such as GPUs. Graph tasks are scheduled by its run-time
support on both the CPU and various accelerators, provided
the programmer has given a task implementation for each
architecture.

Among related works, the SkePU programming framework
is the most similar to the present work [2]. It provides pro-
grammers with GPU implementations of several data parallel
skeletons (e.g. Map, Reduce, MapOverlap, MapArray) and
relies on StarPU for the execution of stream parallel skeletons
(pipe and farm). The FastFlow stencil operation we introduce
in this paper behaves similarly to the SkePU overlay skeleton
(in some ways it was inspired by it). The main difference is
that the SkePU overlay skeleton relies on a SkePU-specific data
type and, to the best of our knowledge, it is not specifically
optimised for being used inside a sequential loop. Another
similar work in terms of programming multi-GPU systems is
SkelCL, a high-level skeleton library built on top of OpenCL
code which uses container data types to automatically optimize
data movement across GPUs [10].

Also, the FastFlow parallel programming environment has
recently been extended to support GPUs via CUDA [4] and
OpenCL (as described in the present work). FastFlow CPU im-
plementations of patterns are realised via non-blocking graphs
of threads connected by way of lock-free channels [11], while
the GPU implementation is realised by way of the OpenCL
bindings and offloading techniques. Also, different patterns can
be mapped onto different sets of cores or accelerators and so, in
principle, can use the full available power of the heterogeneous
platform.

III. THE Loop-of-stencil-reduce META-PATTERN IN
FASTFLOW

In the following the semantics and the FastFlow im-
plementation of Loop-of-stencil-reduce are introduced. The
well-known Conway’s Game-of-life is used as simple but
paradigmatic example of locally synchronous data-parallel
applications (running on multiple devices).

A. Semantics of the Loop-of-stencil-reduce meta-pattern

Let map f [a0, a1, . . . an] = [f(a0), f(a1), . . . f(an−1)]
and reduce ⊕ [a0, a1, . . . an−1] = a0 ⊕ a1 ⊕ . . . an−1, where
f : T → T is the elemental function, ⊕ : T × T → T
the combinator (i.e. a binary associative operator) and a =
[a0, a1, . . . an−1] ∈ Tn an array of atomic elements. Let
stencil g k a′ = [g(S0), g(S1), . . . g(Sn−1)], where Si =
[a′i−k, . . . a

′
i+k] is the i-th neighbourhood, and a′ is the infinite

extension of a (i.e. ⊥ where a is not defined). In this work
we consider a more general formulation of the stencil pattern,
namelly: stencil g k a′ = [g(a′, 0), g(a′, 1), . . . g(a′, n)], which
allows the function g to access an arbitrary neighbourhoods of
elements from the input array. Notice that in both formulations
some care must be taken to deal with undefined values a′i = ⊥.

We remark that, under a functional perspective, map and
stencil patterns are very similar, the only difference being
the fact that the stencil elemental function takes as input a
set of atomic elements rather than a single atomic element.
Nevertheless, from a computational perspective the difference
is substantial, since the semantics of the map leads to in-place
implementation, which is in general impossible for stencil.
These parallel paradigms have been proposed as patterns both
for multicore and distributed platforms, GPUs, and hetero-
geneous platforms [12], [2]. They are well-known examples
of data-parallel patterns, since the elemental function of a
map/stencil can be applied to each input element independently
of the others, and also applications of the combinator to
different pairs in the reduction tree of a stencil can be done
independently, thus naturally inducing a parallel implementa-
tion.

The basic building block of Loop-of-stencil-reduce is the
stencil-reduce pattern [4], which applies a reduce pattern to
the result of a stencil application (i.e. functional composition).
The stencil-reduce computation is iteratively applied, using
the output of the stencil at the i-th iteration as the input of
the (i + 1)-th stencil-reduce iteration. Moreover, it uses the
output of the reduce computation at the i-th iteration, together
with the iteration number, as input of the iteration condition,
which decides whether to proceed to iteration i + 1 or stop
the computation. We remark that, under a pure functional
perspective, the Loop-of-stencil-reduce can be simply regarded
as a chain of functional compositions. A 2-D formulation
follows directly by replacing arrays with matrices. Since the
stencil pattern is a generalisation of map, it follows that
any combination of the aforementioned patterns (e.g. map-
reduce, Loop-of-map-reduce etc.) is subsumed by Loop-of-
stencil-reduce.

B. The Game of Life example

We use Conway’s Game of Life cellular automaton [13] as
a running example in order to show the expressiveness ofLoop-

1 state [0] <− NxN random binary matrix //seed
2 gen <− 0
3 do {
4 in <− state[gen]
5 out <− state[gen+1]
6 for i in 1 to N
7 for j in 1 to N
8 // count alive neighbours
9 n alive <− 0

10 if (i>0 & j>0) //top−left
11 n alive <− n alive + in[i−1,j−1]
12 ...
13 if (i<N−1 && j<N−1) //bootom−right
14 n alive <− n alive + in[i+1, j+1]
15 // apply rules
16 out[i , j] <− n alive = 3 | (in[i , j] & n alive = 2)
17 gen <− gen + 1
18 // count total alive cells
19 total alive <− sum(out)
20 } while(total alive > 0 && gen < G)

Figure 1 – Game of Life pseudocode.

1 function gol kernel2D (in , i , j , N)
2 // count alive neighbours
3 n alive <− 0
4 if (i>0 & j>0) //top−left
5 n alive <− n alive + in[i−1,j−1]
6 ...
7 if (i<N−1 && j<N−1) //bottom−right
8 n alive <− n alive + in[i+1, j+1]
9 // apply rules

10 return n alive = 3 | (in [i , j] & n alive = 2)
11

12 function reduce kernel (x, y)
13 return x + y
14

15 function iter condition (reduce var , iteration)
16 return (reduce var > 0 && iteration < G)

Figure 2 – Formulation of Game of Life in terms of Loop-of-stencil-reduce.

of-stencil-reduce. The universe of the game is a matrix of
cells (for simplicity, we consider a finite non-toroidal world),
where each cell can be in two states: alive or dead. The first
generation is created by applying a set of transition rules to
every cell in the initial matrix. The process is iterated for
generating generation i+1 from generation i, until either every
cell is dead or an upper bound G on the number of iterations
has been reached. During a transition from one generation to
the next, the events on each cell occur simultaneously in an
atomic step of time (tick), and so each generation is a pure
function of the preceding one. At each tick, each cell interacts
with its eight neighbours and might turn into a live or dead cell
depending on the number of live cells in its neighbourhood.

Fig. 1 presents the pseudocode of a sequential algorithm for
Game of Life. The initial N×N binary matrix is randomly ini-
tialised (line 1); then a do-while loop iterates over generations,
until either all cells are dead or the generation index reaches the
limit G (lines 3–20); at each iteration, for each cell at position
(i, j), the number of live neighbours is computed (lines 9–
14); an if-clause for each neighbour avoids accessing undefined
values (see III-A) by excluding out-of-borders positions (lines
10, 13); the Game of Life rule is applied to decide if the cell
has to live or die at the next generation (line 16); finally, the
total count of live cells is computed (line 19) for checking the
iteration condition (line 20).

The building blocks of the Loop-of-stencil-reduce meta-
pattern can be easily extracted from the above pseudo-code in
order to build a Loop-of-stencil-reduce formulation of Game
of Life, which is illustrated in Fig. 2:

• stencil elemental function (lines 1–10);
• reduce combinator (lines 7–10);
• iteration condition (lines 15–16).

C. The FastFlow Loop-of-stencil-reduce API

In FastFlow, the Loop-of-stencil-reduce is aimed at sup-
porting CPU only and CPU+GPU platforms by using OpenCL
(or CUDA). The FastFlow framework provides the user with
constructors for building Loop-of-stencil-reduce instances, i.e.
a combination of parametrisable building blocks:

• the OpenCL code of the elemental function of the stencil;
• the C++ and OpenCL codes of the combinator function;
• the C++ code of the iteration condition.

The language for the kernel codes implementing the elemental
function and the combinator – which constitute the business
code of the application – can be device-specific or coded
in a suitably specified C++ subset (e.g. REPARA C++ open
specification [14]). Functions are provided that take as input
the business code of a kernel function (elemental function
or combinator) and translate it into a fully defined OpenCL
kernel, which will be offloaded to target accelerator devices
by the FastFlow runtime. Note that, from our definition of
elemental function (Sec. III-A), it follows that the Loop-of-
stencil-reduce programming model is data-oriented rather than
thread-oriented, since indexes refer to the input elements rather
than the work-items (i.e. threads) space, which is in turn the
native programming model in OpenCL.

In order to build a Loop-of-stencil-reduce instance, the
user also has to specify two additional parameters controlling
parallelism: 1) the number of accelerator devices to be used
(e.g. number of GPUs in a multi-GPU platform) and, 2) the
maximum size of the neighbourhood accessed by the elemental
function when called on each element of the input. Note that
the second parameter could be determined by a static analysis
on the kernel code in most cases of interest, i.e. ones exhibiting
a static stencil (e.g. Game of Life) or dynamic stencil with
reasonable static bounds (e.g. Adaptive Median Filter, [5]).
Once built, a Loop-of-stencil-reduce instance can process tasks
by applying the iterative computation described in Sec. III-A
to the input of the task, by way of the user-defined building
blocks. An instance can run either in one-shot (i.e. single
task) or streaming (i.e. multi-task) mode. In streaming mode,
independent tasks can be offloaded to different GPUs, thus
exploiting inter-task parallelism.

Moreover, intra-task parallelism can be employed by of-
floading a single task to a Loop-of-stencil-reduce instance
deployed onto different GPUs. Although this poses some chal-
lenges at the FastFlow implementation level (see Sec. III-E), at
the API level it requires almost negligible refactoring of user
code. That is, when defining the OpenCL code of the elemental
function, the user is provided with local indexes over the index
space of the device-local sub-input – to be used when accessing
the input – along with global indexes over the index space of
the whole input – to be used to e.g. check the absolute position
with respect to input size.

1 std :: string stencilf = ff stencilKernel2D OCL(
2 ”unsigned char” , ”in” , // element type and input
3 ”N”, ”M”, // rows and columns
4 ”i” , ”j” , ”i ” , ”j ” , // row−column global and local indexes
5 std :: string (””) +
6 /∗ begin OpenCL code ∗/
7 ”unsigned char n alive = 0;\n”
8 + ”n alive += i>0 && j>0 ? in[i −1][j −1] : 0;\n”
9 ...

10 + ”n alive += i<N−1 && j<M−1 ? in[i +1][j +1] : 0;\n”
11 + ” return (n alive == 3 || (in [i][j] && n alive == 2));”
12 /∗ end OpenCL code ∗/);
13

14 std :: string reducef = ff reduceKernel OCL(
15 ”unsigned char” , ”x”, ”y”, ” return x + y;”) ;
16

17 ff :: ff stencilReduceLoop2DOCL<golTask> golSRL(
18 stencilf , reducef , 0, iterf , /∗ building blocks ∗/
19 N, N, /∗ matrix size ∗/
20 NACC, 3, 3);

Figure 3 – Implementation of Game of Life on top of the Loop-of-stencil-
reduce API in FastFlow.

Fig. 3 illustrates a Game of Life implementation on top
of the Loop-of-stencil-reduce API in FastFlow. Source-to-
source functions are used to generate OpenCL kernels for both
stencil elemental function (lines 1–12) and reduce combinator
(lines 14–15). The source codes – OpenCL versions of the
pseudocode in Fig. 2 – are wrapped into fully defined, efficient
OpenCL kernels. The user, in order to enable exploitation of
intra-task parallelism, has to use local indexes i and j to
access elements of the input matrix. C++ codes for iteration
condition and reduce combinator are not reported, as they
are trivial single-line C++ lambdas. The constructor (lines
17–19) builds a Loop-of-stencil-reduce instance by taking the
user-parametrised building blocks as input, plus the identity
element for the reduce combinator (0 for the sum) and the
parameters for controlling intra-task parallel behaviour, namely
the number of devices to be used over a single-task (NACC)
and the 2D maximum sizes of the neighbourhood accessed
by the elemental function (Game of Life is based on 3-by-3
neighbourhoods). Finally, the constructor is parametrised with
a template type golTask which serves as an interface for basic
input-output between the application code and the Loop-of-
stencil-reduce instance.

FastFlow does not provide any automatic facility to convert
C++ code into OpenCL code. It does, however, facilitate this
task via a number of features including:

• Integration of the same pattern-based parallel program-
ming model for both CPUs and GPUs. Parallel activities
running on CPUs can be either coded in C++ or OpenCL.

• Setup of the OpenCL environment.
• Simplified data feeding to both software accelerators and

hardware accelerators (with asynchronous H2D and D2H
data movements).

• Orchestration of parallel activities and synchronisations
within kernel code (e.g. reduce tree), synchronisations
among kernels (e.g. stencil and reduce in a loop), manage-
ment of data copies (e.g. halo-swap buffers management).

• Transparent usage of multiple GPUs on the same box
(sharing the host memory).

1 while cond
2 before (...) // On host, iteration initialisation , possibly in parallel

on CPU cores
3 prepare (...) // On device, swap I/O buffers , set kernel args , d2d−sync

overlays
4 stencil <SUM kernel,MF kernel> (input, env) // On GPU, stencil and

partial reduce
5 reduce op data // On host, final reduction
6 after (...) // On host, iteration finalisation , possibly in parallel on

CPU cores
7 read(output) // d2h−copy output

Figure 4 – Loop-of-stencil-reduce pattern general schema.

D. Loop-of-stencil-reduce expressiveness

In the shared-memory model, Loop-of-stencil-reduce ex-
hibits an expressiveness similar to that of the well-known map-
reduce paradigm, where the map is apply-to-all to a set of
elements (list, array) and computations of different elements
are independent. In fact there exists a quite straightforward way
to express one in terms of the other. The Loop-of-stencil-reduce
pattern can be trivially configured to behave as map-reduce
(i.e. the set of neighbours per element is the element itself).
Also, there are several methods to exploit a stencil with a map
on a GPU, such as using the map pattern over overlays or
exploiting shared global memory. This requires a specific data
structure to manage overlays (sharing or copies). This approach
is exploited in the SkePU framework via MapOverlap and
MapArray, respectively [2].

We advocate Loop-of-stencil-reduce adoption because it
explicitly exposes data dependencies at the pattern declaration
level (see Fig. 3, line 20). This naturally describes a wide class
of data parallel applications. Also, making the stencil explicit
at the API level enables the kernel developer to reason about
optimisations related to local memory, memory alignment, and
static optimisation of halo buffers in the distributed memory
space of multiple GPUs.

E. The FastFlow implementation

The iterative nature of the Loop-of-stencil-reduce compu-
tation presents challenges for the management of the GPU’s
global memory across multiple iterations, i.e. across different
kernel invocations.

The general schema of the Loop-of-stencil-reduce pattern
is described in Fig. 4. Its runtime is tailored to efficient loop-
fashion execution. When a task is submitted to be executed by
the devices onto which the pattern is deployed, the runtime
takes care of allocating on-device global memory buffers
and filling them with input data via H2D copies. The naive
approach for supporting iterative computations on a hardware
accelerator device equipped with some global memory (e.g.
GPU) would consist in putting a global synchronisation barrier
after each iteration of the stencil, reading the result of the
stencil back from the device buffer (full size D2H copy),
copying back the output to the device input buffer (full size
H2D copy) and proceeding to the next iteration. FastFlow
in turn employs device memory persistence on the GPU
across multiple kernel invocations, by just swapping on-device
buffers. In the case of multi-device intra-task parallelism
(Sec. III-C), small device-to-device copies are required after

each iteration, in order to keep halo borders aligned, since no
device-to-device copy mechanism is available (as of OpenCL
2.0 specification, device-to-device transfers). Global memory
persistence is quite common in iterative applications because
it drastically reduces the need for H2D and D2H copies,
which can severely limit the speedup. This also motivates the
explicit inclusion of the iterative behaviour in the Loop-of-
stencil-reduce pattern design which is one of the differences
with respect to solutions adopted in other frameworks, such as
SkePU [2].

As a further optimisation, FastFlow exploits OpenCL
events to keep Loop-of-stencil-reduce computation as asyn-
chronous as possible. No dependencies exist between stencil
and reduce computations at different iterations. Put another
way, stencil and reduce computations can be pipelined (i.e.
stencil at iteration i + 1 can run in parallel with reduce at
iteration i). Moreover, in the case of multi-GPU intra-task
parallelism, sub-tasks running on different GPUs at the same
iteration are independent of each other, and so can run in
parallel. By exploiting the OpenCL events API, an almost
arbitrary graph of task dependencies can be implemented, thus
fully exploiting all the available parallelism among operations
composing a Loop-of-stencil-reduce computation.

We remark that providing the user with the low-level,
platform-specific optimisation mentioned above, is one of
the key features of the skeleton-based parallel programming
approach.

IV. EXPERIMENTAL EVALUATION

Here we present a preliminary assessment of the Loop-of-
stencil-reduce FastFlow implementation on top of OpenCL.
For this two applications are used: the Game of Life ap-
plication, described in Sec. III-B; and the two-phase video
restoration algorithm. For more details on the video restoration
algorithm we refer to [5], [4].

All experiments were conducted on an Intel worksta-
tion with 2 eight-core double-context (2-way hyper-threading)
Xeon E5-2660 @2.2GHz, 20MB L3 shared cache, 256K L2,
and 64 GBytes of main memory (also equipped with two
NVidia Tesla M2090 GPUs) with Linux x86 64.

a) Game of Life: Table I reports execution times of
different deployments of the Game of Life application on 1) a
CPU deployment with multiple threads running on the cores
of a multi-core CPU and relying on the OpenCL runtime
for exploiting parallelism; 2) a 1xGPU deployment running
on a single M2090 NVidia GPU; 3) a 2xGPU deployment
exploiting intra-task parallelism (as discussed in Sec. III-E)
over two M2090 devices. First, performance usually benefits
from offloading data-parallel computations onto GPU devices,
as demonstrated by the fact that in all cases execution times
on the GPU are faster than the respective execution times
on CPU. The main factor limiting the GPU-vs-CPU speedup
is the ratio of the time spent in H2D and D2H memory
transfers over the effective computing time. If few iterations
and/or small matrices are considered, then the overhead due
to memory transfer becomes relevant and limits the impact
of parallelism, in accordance with Amdahl’s law. The same
considerations apply to the impact of intra-task parallelism
(2xGPU vs 1xGPU). The benefit of exploiting two boards are

N CPU (ms) 1xGPU (ms) 2xGPUs (ms)

10 iterations

1024 584.57 103.37 166.36
4096 1153.42 201.80 208.46
16384 9716.16 1599.54 1358.74

100 iterations

1024 842.10 162.97 195.61
4096 4516.16 955.80 626.84
16384 90665.99 13842.12 7121.55

1000 iterations

1024 4390.96 694.86 569.50
4096 39598.45 8653.62 4546.43
16384 1419309.97 135491.15 68224.51

Table I – Execution times of different deployments of the Game of Life
application. Parameters of the reported experiments are the number
of rows of the population matrix (N) and the number of Loop-of-
stencil-reduce iterations, which was fixed to a constant for each run.

%-noise CPU 1xGPU 2xGPUs intra-frame 2xGPUs

Throughput (fps) of video stream restoration

10 1.01 5.37 8.26 8.30
50 0.30 3.20 5.39 5.44
90 0.25 2.74 4.73 4.76

Execution time (ms) of single image restoration

10 120.32 76.89
50 223.17 135.22
90 264.01 157.83

Table II – (upper) Performance of different deployments of the restore stage
over a VGA-resolution (640 × 480) video stream, under different
levels of noise affecting pixels. (lower) Performance of single-GPU
and multi-GPU restore stages on a high-resolution (16384×16384)
image

limited if the population matrix is too small, since the amount
of memory to be transferred D2D after each iteration in general
scales up with a fraction of the input size. In particular, for
the Game of Life application, the amount of memory to be
transferred is O(N), thus it scales up with the square root of
the input size N × N . When the overhead becomes almost
negligible (e.g. last row of Table I), intra-task parallelism
provides almost ideal speedup.

b) Two-phase video restoration: Two kinds of experi-
ment are reported:

1) Performance over a video stream of different deployments
(i.e. different parallelisation schemas) of the restore stage.

2) Performance on a single image of both single-device and
multi-device configuration of the Loop-of-stencil-reduce.

Table II shows the observed results. The upper part reports
the throughput (i.e. frames per second) obtained by running
different deployments of the restore stage over a video stream
under different noise-level conditions, which in turn require
different numbers of iterations for convergence. The “CPU”
deployment is the baseline: each frame is passed through a
Loop-of-stencil-reduce OpenCL version of the filter, deployed

onto the (cores of the) CPU. Defining a single video frame as
a task, this configuration exploits intra-task data parallelism
on each frame. The baseline is compared against different
GPU deployments of the Loop-of-stencil-reduce. The “1 GPU”
version exploits the same intra-task parallelism as the baseline
version but runs on the GPU. The “2 GPUs intra-task” version
exploits intra-task data parallelism by splitting single frames
on two GPUs, and finally the “2 GPUs” version exploits the
“1 GPU” version on successive (independent) frames of the
video stream, each offloaded to one of the two GPUs (by way
of a FastFlow farm pattern).

The performance ratio among different versions is consis-
tent with a hand-tuned development “1 GPU” [5]. For appli-
cations of this kind, the GPU deployment is not surprisingly
several times faster. The deployment on 2 GPUs exhibits 65%
more throughput with respect to the single GPU version. Also,
the 2 GPUs version on the same video frame exhibits almost
the same performance as the 2 GPUs version working on
independent kernels, suggesting that the Loop-of-stencil-reduce
succeeds in keeping the halo swap overhead quite limited.

The lower part of Table II reports the execution time of
the filter when applied to a single large image. Here there is
no opportunity to exploit parallelism among different frames.
In this case, using a multi-device deployment of the OpenCL
Loop-of-stencil-reduce restore stage can lead to the full ex-
ploitation of the aggregated computational power of multiple
GPUs, as shown by the almost linear speedup observed.

V. CONCLUSIONS AND FUTURE WORKS

In this work we have presented Loop-of-stencil-reduce, a
parallel pattern specifically targeting high-level programming
for heterogeneous platforms. The Loop-of-stencil-reduce pat-
tern abstracts a common data parallel programming paradigm,
which is general enough to subsume several popular patterns
such as map, reduce, map-reduce. It significantly simplifies the
development of code targeting both multicore and GPUs by
transparently managing device detection, device memory allo-
cation, H2D/D2H memory copy and synchronisation, reduce
algorithm implementation, management of persistent global
memory in the device across successive iterations, and data
race avoidance. The same code using Loop-of-stencil-reduce
can be deployed on multiple GPUs and on combinations of
CPU cores and GPUs. It should be noticed, however, that this
latter deployment requires a careful (and not always possible)
planning of load to be distributed to GPU cores and GPUs due
to their difference in performance [15].

The Loop-of-stencil-reduce pattern has been tested on a
real-world application, i.e. an image restoration application,
which is typically too slow to be actually usable when im-
plemented on a single CPU or even on a 32-core platform.
Also, the application requires access to the image along three
successive filtering iterations to determine the convergence of
the process, thus needing a quite complex design with large
temporary data sets that should be moved across different
memories as little as possible. The presented design based on
FastFlow Loop-of-stencil-reduce makes it possible to easily
implement the application with comparable performance to
hand-optimised OpenCL code.

Despite the fact that currently the Loop-of-stencil-reduce
pattern is provided to programmers by way of C-style macros,
we have already planned to substantially improve the em-
bedding of the Loop-of-stencil-reduce pattern into the C++
language by way of C++ demacrofication process [16] and/or
the C++11 attributes mechanism. This process is already on-
going within the REPARA project.

ACKNOWLEDGMENT

This work has been supported by the EU FP7 REPARA
project (no. 609666) and by the NVidia GPU Research Center.

REFERENCES

[1] J. Owens, SuperComputing 07, High Performance Computing with
CUDA tutorial, 2007.

[2] J. Enmyren and C. W. Kessler, “SkePU: a multi-backend skeleton
programming library for multi-gpu systems,” in Proc. of the fourth Intl.
workshop on High-level parallel programming and applications, ser.
HLPP ’10. New York, NY, USA: ACM, 2010, pp. 5–14.

[3] M. Danelutto and M. Torquati, “Structured parallel programming with
”core” fastflow,” in Central European Functional Programming School,
ser. LNCS. Springer, 2015, vol. 8606, pp. 29–75.

[4] M. Aldinucci, G. Peretti Pezzi, M. Drocco, C. Spampinato, and
M. Torquati, “Parallel visual data restoration on multi-GPGPUs using
stencil-reduce pattern,” International Journal of High Performance
Computing Application, 2015.

[5] M. Aldinucci, C. Spampinato, M. Drocco, M. Torquati, and S. Palazzo,
“A parallel edge preserving algorithm for salt and pepper image
denoising,” in Proc of 2nd Intl. Conference on Image Processing Theory
Tools and Applications (IPTA). IEEE, 2012, pp. 97–102.

[6] M. Cole, Algorithmic Skeletons: Structured Management of Parallel
Computations, ser. Research Monographs in Par. and Distrib. Comput-
ing. Pitman, 1989.

[7] Intel Corp., Threading Building Blocks, 2014. [Online]. Available:
http://www.threadingbuildingblocks.org/

[8] S. Ernsting and H. Kuchen, “Data parallel skeletons for gpu clusters
and multi-gpu systems,” in Proc. of PARCO 2011. IOS Press, 2011.

[9] C. Augonnet, S. Thibault, R. Namyst, and P.-A. Wacrenier, “StarPU:
a unified platform for task scheduling on heterogeneous multicore ar-
chitectures,” Concurrency and Computation: Practice and Experience,
vol. 23, no. 2, pp. 187–198, 2011.

[10] S. Breuer, M. Steuwer, and S. Gorlatch, “Extend ing theSkelCL
Skeleton Library for Stencil Computations on Multi-GPU Systems,” in
Proceedings of the 1st International Workshop on High-Performance
Stencil Computations, A. Größlinger and H. Köstler, Eds., Vienna,
Austria, Jan. 2014, pp. 15–21.

[11] M. Aldinucci, M. Danelutto, P. Kilpatrick, and M. Torquati, “Fastflow:
high-level and efficient streaming on multi-core,” in Programming
Multi-core and Many-core Computing Systems, ser. Parallel and Dis-
tributed Computing, S. Pllana and F. Xhafa, Eds. Wiley, 2015, ch. 13.

[12] H. González-Vélez and M. Leyton, “A survey of algorithmic skele-
ton frameworks: High-level structured parallel programming enablers,”
Software: Practice and Experience, vol. 40, no. 12, 2010.

[13] M. Gardner, “Mathematical games: the fantastic combinations of John
Conway’s new solitaire game ‘Life’,” Scientific American, vol. 223,
no. 4, pp. 120–123, oct 1970.

[14] J. D. Garcia, “REPARA C++ open specification,” REPARA EU FP7
project, Tech. Rep. ICT-609666-D2.1, 2-14.

[15] J. Shen, A. L. Varbanescu, and H. Sips, “Look before you leap:
Using the right hardware resources to accelerate applications,” in Proc.
of 16th IEEE Intl Conference on High Performance Computing and
Communications (HPCC 2014). IEEE, 2014, pp. 383–391.

[16] A. Kumar, A. Sutton, and B. Stroustrup, “Rejuvenating C++ programs
through demacrofication,” in 28th IEEE International Conference on
Software Maintenance, ICSM 2012, Trento, Italy, September 23-28,
2012. IEEE Computer Society, 2012, pp. 98–107.

