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ABSTRACT.  

 

This study aims at developing an innovative theranostic approach for lung tumour and metastases 

treatment, based on Boron Neutron Capture Therapy (BNCT). It relies on to the use of Low Density 

Lipoproteins (LDL) as carriers able to maximize the selective uptake of boron atoms in tumor cells 

and, at the same time, to quantify the in vivo boron distribution by Magnetic Resonance Imaging 

(MRI). Tumour cells uptake was initially assessed by ICP-MS and MRI on four types of tumour (TUBO, 

B16-F10, MCF-7, A549) and one healthy (N-MUG) cell lines. Lung metastases were generated by 

intravenous injection of a Her2+ breast cancer cell line (i.e. TUBO) in BALB/c mice and transgenic 

EML4-ALK mice were used as primary tumour model. After neutron irradiation, tumour growth was 

followed for 30-40 days by MRI. Tumour masses of boron treated mice increased markedly slowly 

than the control group. 

 

 

 

 

 

 

Keywords: 

 

Low Density Lipoproteins (LDL), Boron Neutron Capture Therapy (BNCT), MRI, theranostic agents, 

carboranes. 



3 

Background 

Lung cancer remains the leading cause of cancer-related mortality (www.who.int/cancer/en) causing 

1.59 million death worldwide per year. Lungs are the most common sites of metastatic disease and 

tumour relapse after the treatment of the primary mass. Since lung tumours are largely disseminated 

in the pulmonary parenchyma, their excision is often difficult and not resolving causing a median 

survival time of less than one year. For these reasons it is important to develop less invasive 

treatments able to discriminate between healthy and pathological tissues at cellular level. Boron 

neutron capture therapy (BNCT) is an experimental binary radiation therapy currently under intense 

scrutiny for the treatment of cancer, especially head and neck recurrent tumours1, skin melanomas2, 

liver metastatic diseases3 and brain tumours4. It is based on thermal neutron capture by 10B nuclei 

previously delivered to tumour cells. The neutron capture event results in the formation of excited 

11B that decay emitting highly ionising 4He2+ and 7Li3+ ions. Cell death is triggered by the release of the 

energy of these charged particles which create ionisation tracks along their trajectories in a range of 

approximately 5–9 µm. Thus it is possible to destroy tumour cells without affecting adjacent healthy 

cells if 10B atoms are selectively accumulated in the intracellular space. It has been estimated that 

approximately 10-30 g of boron per gram of tumour mass is needed to attain an acceptable 

therapeutic advantage, provided the availability of a suitable neutron source and considering an 

acceptable irradiation time5,6. This fact makes BNCT a promising option for the treatment of 

disseminated tumours, such as pulmonary metastases that cannot be treated by methods requiring a 

precise localization of the pathological tissue, like surgery, conventional photon-therapies or heavy 

ion-therapy. The selective delivery to tumour cells is crucial to increase the amount of internalized 

boron maintaining, at the same time, a low concentration in surrounding healthy tissues and in blood 

to minimize damage. Currently, two BNCT drugs are available for clinical investigation namely: i)L-

para-boronophenylalanine (BPA), structurally related to the amino acid phenylalanine, that has been 

used in clinical trials to treat glioblastoma, head and neck recurrent cancer and melanoma7 and ii) 

sodium mercaptoundecahydro-closo-dodecaborate (BSH) that has been investigated for the 

http://www.who.int/cancer/en
http://en.wikipedia.org/wiki/%CE%9Cm
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treatment of malignant glioma8. Despite their clinical use, both BPA and BSH show low selectivity and 

great efforts have been made by several research groups to develop new and more selective boron 

delivery agents. To this purpose, polynuclear boron derivatives, especially carboranes, have been 

extensively investigated9. Carboranes are icosahedral cages containing 10 boron atoms and they have 

been used to design boron delivery vehicles due to their high boron content, chemical versatility and 

in vivo stability10-11. Carborane based agents may be functionalized with small targeting moieties 

including amino acids, vitamins, carbohydrates, porphyrinates, ect.12 to achieve tumour selectivity. A 

different strategic concept for selectively introducing boron into tumour cells is based on the 

covalent binding of multiple carborane cages to monoclonal antibodies13 or their incorporation into 

large entities such as, liposomes14-15, low-density lipoproteins16-18 (LDL) or other nanoparticles. 

Despite the current availability of many carborane derivatives that have given significant results in 

preclinical studies, none has been translated to the clinical setting. A crucial issue to reach this goal is 

the assessment of the boron amount in the tumour tissue. This is important in order to proceed with 

the neutron irradiation, because successful results can only be expected if the boron concentration 

threshold has been reached, and if a proper dose prescription is performed according to the 

therapeutic goal and the sparing of the normal tissue. Currently, boron concentrations in tumour are 

estimated in clinical trials using empirical data models that depend on tumour-to-blood, tumour-to-

brain and brain-to-blood boron concentration ratios. One of the problems is that the uptake and 

distribution of boron varies among patients and that large uncertainties exist in the tumour-to-blood 

boron concentration ratio19. Only proper Neutron Capture Therapy (NCT) agent design, based on an 

improved knowledge of how molecules enter healthy and cancer cells, could allow the optimal 

intracellular concentration, needed to make NCT an effective therapy to cure cancer, to be reached. 

Furthermore, the access to not invasive and highly sensitive imaging techniques can allow the 

detection of tumour boron concentration in real time before neutron treatment. Some of these 

methodologies require the functionalization of the NCT agent with a proper imaging reporter, such as 

18F atoms for Positron Emission Tomography (PET), a Gd/Fe containing agent for Magnetic Resonance 
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Imaging (MRI) or 19F atoms for 19F-NMR. Both PET and MRI detection limits are below the boron 

threshold necessary to perform the therapy20. PET is more sensitive but it has the disadvantage of 

the administration of further radioactivity, while MRI appears to be a suitable technique to achieve 

the goal of the quantitative assessment of the NCT agent in tissues. Although its sensitivity is lower in 

comparison to nuclear and optical modalities, the high spatial resolution (<100um) of MRI provides 

detailed morphological and functional information, and the absence of ionizing radiation makes it 

safer than techniques based on the use of radioisotopes. MRI signal is dependent on the longitudinal 

(T1) and transverse (T2) proton relaxation times of water and in both clinical and experimental 

settings the endogenous contrast can be altered by the use of contrast agents (CA) that decrease T1 

and T2 of water protons in the tissues where they distribute.21 In a proton MR image there is a direct 

proportionality between the observed signal intensity (SI) enhancement and the concentration of the 

CA. Thus these agents can be used to carry out indirect boron quantification upon their linking to the 

neutron capture compound. Interestingly, a given cell can be visualised by MRI when the number of 

Gd3+ complexes is of the order of 108-109 per cell, i.e. a threshold close to the number of boron atoms 

necessary to provide an effective NCT treatment22. 

This study is aimed at testing the efficiency of a MRI theranostic agent for BNCT treatment of lung 

tumours and metastases. Lung metastases have been generated by intravenous injection of a Her2+ 

breast cancer cell line (TUBO)23. The Her2 overexpression has been detected in approximately 20% of 

human breast cancers and is associated with an aggressive course and with early development of 

metastases. Several anti-Her2 strategies has been approved revolutionizing the clinical outcome of 

Her2+ breast cancer, but in most cases, the succeeding onset of pharmacological resistance renders 

this treatments completely ineffective. In this context, the set-up of new strategies is urgently 

needed. As a model of primary tumour in the lung, we used a transgenic (Tg) mouse line model that 

ectopically expresses the oncogenic EML4-ALK fusion protein under a lung-specific SP-C promoter24 

specifically in lung alveolar epithelial cells. In all Tg mice, the EML4-ALK protein was expressed 

specifically in lung epithelial cells. All of the EML4-ALK transgenic mice developed many 
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adenocarcinoma nodules in both lungs with a 100% penetrance within a few weeks after birth, as a 

consequence of the potent oncogenic activity of the fusion kinase EML4-ALK. The dual MRI/BNCT 

agent used in this study is able to maximize the selective uptake of boron in tumor cells by targeting 

LDL receptors (LDLRs), and, at the same time, to quantify boron distribution in tumour and in other 

tissues by MRI17. LDLs have been identified as good carriers of boron cluster since the expression of 

LDLRs is up-regulated in many tumours25,26. Furthermore these nanoparticles can carry a high 

number of boron atoms without losing the specific internalization pathway. For NCT treatment, the 

AT101 ligand was chelated using GdCl3 enriched in the isotope 157 to exploit its high thermal neutron 

cross-sections of around 255000 barns27. This cross-section provides a roughly 65-fold improvement 

upon the one of 10B neutron capture. The nuclear reaction of 157Gd generates prompt γ-rays of broad 

energy spectrum in competition with Auger electrons and X-rays. Due to their very short ranges (less 

than 0.5 nm up to 1.4 m), 157Gd atoms would have to be localized at the nuclei of target cells, in 

contact with DNA, in order to induce sufficient damage to cause apoptosis and to obtain an effective 

treatment.  
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Methods. The 10B enriched ligand-C-[N-(DOTAMA-C6)carbamoylmethyl]C’-palmitamidomethyl-o-

carborane (10B enriched AT101) was synthesized following the previously reported procedure17 

described in Supplementary Material.  

Cell and animal irradiation were performed in the thermal column of the TRIGA Mark II reactor at 

University of Pavia (Italy). The experimental protocol is described in the supplementary materials. 

The irradiation facility was previously designed for TAOrMINA treatment28. TRIGA maximum power is 

250 kW and has a cross section of 40 × 20 cm2, a length of 1 m and it starts at about 1.3 m from the 

centre of the reactor core. The irradiation time has been fixed at 15 minutes at a reactor power of 30 

kW, corresponding to a thermal neutron fluence of 1.26·1012 cm-2 Animal studies were performed 

according to the national regulations and were approved by the local ethical committee. The 

preparation of the animal model is described in the Supplementary Materials. Boron concentration in 

tumour, tissues and organs was calculated using the equations29 reported in Supplementary Material. 

Mice models were prepared by injecting 50000 TUBO cells into the tail vein three weeks before the 

treatment. The first mice group (n=15) received AT101/LDL (0.1 mmol/kg Gd dose) 6h before 

irradiation. Group two (irradiated control group, n=15) received at the same time, the same volume 

of PBS. A third group of non-irradiated mice (n=10) was used as a reference to assess tumour growth 

in the absence of any treatment. The neutron field of the TRIGA Mark II is not collimated and this 

implies that during the lung irradiation, the whole body of the animal is indirectly exposed to the 

neutron field. In order to protect the healthy organs of the animal body a shield made of 95% 6Li-

enriched Li2CO3 powder was used as neutron absorber, due to the absence of secondary gamma 

radiation after 6Li neutron capture30.  

The simulation code Monte Carlo N-Particles (MCNP) was used to design the treatment plan. The 

simulation was validated with neutron flux measurements by the activation of Cu wires using the 

Westcott formalism31. In the adopted experimental set-up 5 mice are irradiated at the same time, 

each one protected by two units of Li2CO3 neutron shield to cover the head and the abdomen 
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regions. The units are kept separated of about 1 cm to guarantee the direct exposure of the tumours 

to the neutron flux. 

 

Results. 

LDL adduct preparation and characterization. The dual boron/Gd agent (AT101) used in this work 

(Figure 1A) and its LDL adducts have been prepared following the already published procedures17. 

Briefly, since AT101 forms stable, large sized micelles in aqueous solution, it was necessary to de-

assemble them by adding -cyclodextrin (-CD) before the incubation with LDL to yield the molecular 

dispersion of the amphiphilic complexes. The experimental work up consists of the step-wise 

addition of aliquots of the -CD/AT101 adduct to the aqueous solution of LDL particles in order to 

transfer AT101 complexes to LDLs (Figure 1B). The thermodynamic association constant (Ka) of 

AT101/LDL adducts was of 1.7x104 M-1 with an estimated number of 300 binding sites available to 

AT101 per protein17. The r1p (the observed relaxation rate of a water solution containing 1mM of a 

paramagnetic species) of the AT101/LDL adduct was 15.5 mM-1s-1 and the dynamic light scattering 

(DLS) measurements indicated that their size was almost the same (24±2 nm) as that found on the 

native LDL particles (23±1 nm).  

“In vitro” cellular uptake experiments and MRI analysis. Using the above reported method, an 

AT101/LDL adduct containing ca. 230 Gd complexes per protein was prepared. TUBO is a Her2+ 

established cell line derived from a spontaneous mammary tumor arising in a virgin transgenic BALB-

neuT female mouse. In these mice, the mammary carcinogenesis displays a histopathological course 

that closely recapitulates the one observed in human breast tumors32, making this mouse model, and 

the TUBO cells derived from it, an ideal tool to test anti-cancer therapies. As already reported, many 

tumor cells are characterized by an up-regulation of LDL transporters33. In order to evaluate the 

uptake capacity of LDLRs, TUBO cells have been incubated in the presence of increasing amounts of 
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the AT101/LDL theranostic agent for 16h at 37°C. After washing with cold PBS, cells have been 

collected and analyzed by ICP-MS to measure the Gd content. In order to consider the different 

number of cells present in each sample, the amount of Gd was normalized to the total protein 

concentration. The results obtained with TUBO cells (Figure 2A) have been compared with those 

obtained with murine melanoma (B16-F10), human breast cancer (MCF-7), human lung 

adenocarcinoma (A549) and with healthy mouse mammary gland cells (N-MUG) using the same 

incubation protocol. Figure 2A shows that the internalization of AT101/LDL by tumour cells (TUBO, 

B16-F10, MCF-7, A549) is significantly more efficient in the range of the concentrations considered 

than that observed with healthy N-MUG cells. Cell viability after AT101/LDL incubation have been 

assessed by MTT test. (Figure S1 Supplementary Materials) A LDL concentration of 25 g/ml in the 

culture medium was enough to internalize into the target cells a sufficient amount of boron to 

perform BNCT. In fact a Gd concentration of 1.7x10-9 moles/mg corresponds to an intracellular boron 

concentration of 28 ppm (by considering that 1 g of tissue contains 1x109 cells and that 1 mg of 

proteins correspond to 6x106 TUBO cells). This concentration is sufficient to attain a successful 

treatment if the boron concentration in the surrounding tissue is at least three times lower and if a 

sufficient neutron fluence can be delivered to patients in an acceptable irradiation time. To 

demonstrate that the uptake of the AT101/LDL adduct by TUBO cells involves LDLRs, a competition 

assay with native LDL was carried out. After 16h of cell incubation in the presence of the AT101/LDL 

adduct (20 g/mL), the uptake decreased by about 50% when the concentration of native LDL added 

to the culture medium was 200 g/mL. Furthermore, in order to exclude that the AT101/LDL uptake 

is the consequence of a difference in the endocytosis rates of these cell lines, a comparison of non-

targeted, Gd-DOTAMA(C18)34
2 containing stealth liposomes35 (LIPO) uptake has been carried out. 

Figure 2B shows that the amount of internalised Gd is significantly lower than that measured upon 

AT101/LDL incubation in all considered tumour cells (p<0.0006). On the contrary, the healthy N-MUG 

cells not showed a significant difference between LDL and LIPO (p= 0.1) indicating the not-specific 

endocytic uptake of both particles. In order to assess whether the amount of Gd internalized in 
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target cells is enough to permit MRI visualization, T1 weighted images of glass capillaries containing 

cellular pellets obtained by incubating  TUBO cells with increasing amounts of LDL/AT101 were 

acquired at 7 T (Figure 2C). The T1 weighted image shows clearly that the SI of cells incubated in the 

presence of LDL/AT101 is hyperintense in comparison with the control. As expected the SI is directly 

proportional to the LDL concentration.  

Evaluation of the AT101/LDL particle uptake “in vivo” in pulmonary metastasis.  

In order to generate the lung metastasis mice model, 50000 TUBO cells have been injected 

intravenously (iv) 3 weeks before MRI analysis and BNCT treatment. At this time all mice develop 

many pulmonary metastasis of 0.5-2 mm diameter. Tumour bearing mice (n=4) received (iv) a bolus 

of AT101/LDL at a dose of 0.1 mmolkg-1 as expressed in terms of Gd content. T1-weighted spin-echo 

MR-images were acquired before and 3, 6, and 24h after the CA administration. Representative 

examples of axial T1-images of lung metastases acquired before and 3h after LDL/AT101 injection are 

reported in Figure 3 A and B, respectively. Figure 3C reports the mean SI enhancement (%) at the 

different time intervals. As expected, high % SI enhancement are observed in the tumor region and in 

the liver due to the high LDLRs expression on both tumor cells and normal hepatocytes. On this basis, 

the liver has to be protected with a neutron shield during BNCT treatment.  

The boron concentrations calculated at 3, 6 and 24h post-injection, using the method reported 

above, in the tumour, muscle (surrounding lungs), and liver are reported in Table 1. The intra-tumour 

boron concentration was significantly above the established threshold of 20/30 ppm, which is 

suitable for efficient BNCT treatment. The ratio of the concentration of boron atoms derives from the 

comparison between the concentrations in the tumour and surrounding muscle. On the basis of 

these results 6h POST i.v. has been selected as the best time to perform BNCT. In fact, at this time, 

the high boron concentration in tumour (48 ppm) is combined with a high tumour/muscle boron 

ratio that is fundamental to avoid healthy tissues damage.  

BNCT treatment of TUBO cells “in vitro”. 
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For the BNCT studies the AT101 ligand has been chelated to Gd3+ enriched in the isotope 157. Seven 

T75 flasks, four with TUBO cells previously incubated for 16h in the presence of AT101/LDL (50g/ml 

protein concentration), and three with non-treated control cells were irradiated in the thermal 

column of the TRIGA Mark II reactor for 15 minutes. Boron concentration inside TUBO cells during 

the irradiation was of 36 ppm. At the end of irradiation the medium was removed and replaced with 

fresh DMEM and flasks were placed at 37 °C in a humidified atmosphere of 5% CO2. After 24h cells 

were detached, counted and re-plated to follow their proliferation. Two cell controls have been used 

in this experiment. The first did not receive any neutron irradiation and any boron containing 

compound and the second control was irradiated without the administration of the boron containing 

compound. The proliferation rate of the boron treated cells survived to the irradiation is significantly 

lower than the rates measured for both control cells. (Figure 4). On this basis one can conclude that 

the intracellular boron amount is sufficient to induce a dramatic toxic effect upon neutron flux 

exposure.  

Irradiation set-up and radiation dose calculations. 

Mice neutron irradiation was carried out using the same irradiation facility used for cells. To limit the 

neutrons dose absorbed by the liver and spleen, as AT101/LDL accumulate in these organs and to 

limit the neutron-induced radioactivity in the whole animal, neutron-absorbing shields made of 95% 

6Li-enriched Li2CO3 powder have been used leaving only the thorax region, in correspondence of 

lungs, exposed to the neutron flux. (Figure S2 supplementary materials). To know the radiation doses 

delivered in the tumour and in the healthy tissues/organs, a simulation program dedicated to 

neutron and photon transport in complex geometries (MCNP) was used. The radiation/material 

interaction is carefully reproduced thanks to point-wise nuclear cross data. Using B concentrations 

measured by MRI and MCNP simulation, the total dose (Dtot) absorbed by the tissues was calculated 

as well as the various dose components arising from: i) high Linear Energy Transfer (LET) protons 

emitted by neutron capture reaction on 14N and by elastic scattering on 1H (% protons); ii)secondary 
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radiations emitted by neutron capture reaction on 10B (therapeutic fraction; % 10B NCT); iii) γ-rays, 

including the photon contamination of the incident neutron beam (facility background) iv) 2.2 MeV 

γ-ray of thermal neutron capture reaction on 1H (% γ-rays) (Table 2 and 3).  

To carry out a safe treatment, preliminary irradiations of wild type BALB/c mice (n=15) were 

performed using the described shielding without the administration of the boron containing 

compound. The irradiation time was increased from 10 up to 20 minutes, while the reactor power 

was kept at 250 kW. From these results (reported as supplementary materials in Figure S3), the time 

for the NCT irradiation was fixed to 15 minutes, taking into account the toxicity just described and 

the presence, during a real NCT, of the enhancement capture agents in the tissues. To assess the 

safety of this treatment plan, the doses were compared to a tolerance limit of about 7 Gy delivered in 

a total body X- or γ-ray irradiation of the mouse36. The dose contribution due to the 92.3% 

enrichment in 157Gd was calculated as well. As anticipate, the biological effect was mainly expected 

from the Auger electrons which transport a very little fraction of the total energy emitted by 157Gd 

capture reaction. As consequence, the contribution of this radiation in term of absorbed dose is 

pretty low. The MCNP simulations reported an enhancement of the total doses showed in Table 2 of 

about 5-6% in the lung metastases, while the same increment can be as high as around 10% in 

healthy tissues, depending on Gd concentration and organ position and shielding. 

BNCT treatment of pulmonary metastasis. 

BALB/c mice (n=40) received an i.v. injection of 50000 TUBO cells 3 weeks before BNCT treatment. 

This led to the formation of several pulmonary metastasis that have been visualized by MRI using a 

T2-weighted RARE sequence. The number of metastasis varied markedly from mouse to mouse (from 

5 to 20). The intratumour boron concentration has been determined by MRI 3h after the AT101/LDL 

administration and was of 43±10 ppm whereas 16±5 boron ppm have been found in the surrounding 

healthy muscle. Two groups of animals (n=15 for each group) underwent the irradiation treatment. 

The first group received AT101/LDL at a Gd dose of 0.1 mmol/Kg corresponding to a boron dose of 
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10mg/Kg, 6h before neutron exposure. The second group (irradiated control group) received the 

same volume of PBS to assess the effect of neutron irradiation in the absence of AT101/LDL. A third 

group of non-irradiated mice (n=10) was used as a reference to assess tumour growth in the absence 

of any treatment and irradiation. Tumour size has been monitored by MRI using a T2-weighted RARE 

sequence. (Figure 5A-D) No growth of the tumour size was detected for irradiated and treated 

animals in the first 25 days after BNCT (Figure 5E). Only at longer times the tumour lesions slowly 

restarted their growth.  

BNCT treatment of EML4-ALK transgenic mice. 

EML4-ALK transgenic mice received the same treatment described above. At the day of irradiation, 

the tumour volumes of 6 weeks old EML4-ALK mice were between 0.5-15 mm3 (Figure 6A). Boron 

concentrations were calculated 3h before BCNT treatment by MRI measuring the SI enhancement in 

the tumour regions in the T1 weighted images before and after the AT101/LDL administration and 

they were of 52±12 and 16±5 ppm in the tumour and surrounding muscle, respectively. On this basis 

it is possible to conclude that also in this model the intratumour amount of boron was enough to 

expect a significant regression of the tumour mass upon the neutron exposure. A limited toxic effect 

on the surrounding muscle is expected thanks to the three times lower boron concentration detected 

in these healthy tissues. Two groups of mice have been considered in this study. The first group (n=5) 

received AT101/LDL in a Gd dose of 0.1 mmol/Kg, 6h before neutron exposure. The second group 

(irradiated control group; n=5) received the same volume of PBS in order to assess the effect of 

neutron irradiation in the absence of AT101/LDL. Figure 6B shows that the tumour growth of mice 

irradiated after boron treatment was negligible for the first 30 days.  
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Discussion. 

The proposed procedure, based on the destruction of the tumour bulk by BNCT using a boron/Gd 

dual nanosized delivery agent, opens a promising therapeutic opportunity for lung cancer treatments 

in particular in the presence of disseminated tumours. This approach has been tested on mammary 

metastases (obtained by injecting i.v. mammary carcinoma TUBO cells) and ALK-EML4 transgenic 

mouse models of lung carcinogenesis, that develop highly aggressive tumours with modality similar 

to that of human cancer. In this contest, the possibility to measure boron concentration indirectly by 

MRI exploiting the presence of the conjugated Gd CA, was fundamental to proceed with the best 

treatment duration, at the most advantageous time after boron administration and with a proper 

neutron fluence. In fact, successful results can only be expected if a sufficient dose is delivered to 

tumour while the dose absorbed to normal tissues is kept under the tolerance dose. In order to 

achieve this result, a combination of three factors is necessary: a suitable boron concentration in the 

tumour, a high tumour to normal tissue ratio and a sufficient neutron flux to irradiate animals in 

acceptable times. The observed tumour re-growth observed on both mice models about 25-30 days 

after the treatment may be accounted in terms of two possible explanations: i) it might be associated 

to the presence in the tumour mass of quiescent cells, for which a greater capacity to recover from 

radiation and chemotherapeutic agent-induced damage has been demonstrated 37,38. In addition, the 

higher resistance observed for these cells to targeted therapies could be the consequence of a lower 

expression of target receptors with respect to highly proliferating cells; ii) the neutron dose delivered 

to the lung tumour is not sufficient to kill all the cells. This may be due to the fact that the shielding 

set-up is a compromise between the need to protect the animal and the therapeutic effect gained by 

neutron irradiation. Actually, due to the proximity of lungs and liver, organs where AT101/LDL 

accumulates, it is difficult to design and locate the Lithium carbonate shield in a way that the healthy 

tissue is preserved while leaving the tumour exposed to neutron irradiation. This problem is 

essentially related to the small size of the animal and can be overcome in clinical applications where 

a collimated and selective neutron beam is used. Furthermore, as a consequence of the genetic 
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origin of the ALK-EML4 mice model, one week after neutron irradiation, a formation of new tumour 

masses was observed. At the time of irradiation these small tumour masses were completely absent 

and therefore not affected by the neutron treatment, or their diameter was < 0.2 mm and not 

detectable by MRI. The uptake of AT101/LDL administered intravascularly is reduced in the case of 

small lesions because they have not yet formed a distributed vascular system through which boron 

delivery takes place.  

Finally, from these results one can surmise that it may be a worth to seek for the combination of 

BNCT with the administration of chemotherapic agents as well as with a different therapeutic 

strategy such us photodynamic therapy. These treatments should be administered 30-40 days after 

neutron irradiation when the bulk tumour mass is significantly reduced. 
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Figure legends. 

Figure 1. A) Schematic representation of the dual boron/Gd agent (AT101). B) Schematic depiction of 

the formation of AT101/-CD and AT101/LDL adducts. 

Figure 2. A) “In vitro” uptake experiments onTUBO, B16-F10, MCF-7, A549 and N-MUG cell lines. 

Cells were incubated for 16 h at 37°C in the presence of increasing amounts of AT101/LDL (expressed 

as protein concentration g/ml). The amount of Gd taken-up by cells has been determined by ICP-MS 

and it was normalized to the protein content determined by the Bradford assay. Errors bars report 

the standard deviation (SD) of the data. B) Student two-tailed t test comparison of AT101/LDL and 

Gd-liposome (LIPO) cell uptake: TUBO (p = 0.0002); B16-F10 (p = 0.00004); MCF7 (p = 0.0006); A549 

(p=0.0001); N-MUG (p=0.1). Cells were incubated for 16 h at 37°C in the presence of 20 M Gd 

concentration in both LDL and LIPO conditions. A p value less than 0.05 was considered statistically 

significant. Data are expressed as means ± SD. C) T1-weighted spin-echo MR image of an agar 

phantom with glass capillaries containing unlabeled cells (1) and cells incubated with 10, 20, 30 and 

50 μg/mL of AT101/LDL (2–5, respectively) for 16 h at 37°C.  

Figure 3. MRI “in vivo” in BALB/c mice with pulmonary metastases after administration of the 

AT101/LDL nanoparticles. Representative T1-weighted MR images of BALB/c lungs acquired before (A) 

and 3 h after (B) the administration of AT101/LDL particles. C) A plot of MRI SI enhancements (%) 

measured in different organs vs time after the administration of the AT101/LDL adduct. Errors bars 

report the SD. 

Figure 4. Proliferation curve of: not irradiated (○), irradiated (▲) TUBO control cells, and irradiated 

() TUBO cells after B treatment. Cells were re-plated 24h after the BNCT treatment.  

Figure 5. Tumour-growth evaluation performed after neutron irradiation. T2-weighted RARE images 

acquired on lung metastases irradiated with neutrons without (A,B) or after (C,D) administration of 

AT101/LDL. A) and C) images were acquired at time 0 and B) and D) 25 days after neutron irradiation. 
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In all images the arrows indicate tumour regions. E) Tumour volumes increase measured by MRI on 

untreated control mice (∆), irradiated control mice () and irradiated and AT101/LDL treated mice 

(). Error bars indicate the SD.  

Figure 6. A) T2-weighted RARE coronal image of a representative 6 weeks old EML4-ALK mouse. 

Disseminated tumours are clearly visible in both lungs and they are indicated with arrows. B) Tumour 

volumes increase measured by MRI on irradiated control mice () and irradiated and AT101/LDL 

treated mice (). Error bars indicate the SD.  
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Table legends. 

Table 1. Biodistribution of boron atoms in lung metastases bearing mice 

Table 2. MCNP-simulated total absorbed dose (Dtot) and its components when animals are irradiated 

and treated with AT101/LDL adduct (mean neutron fluence of about 1.3·1012 cm-2) 

Table 3. MCNP-simulated total absorbed dose (Dtot) and its components when the animal undergoes 

neutron irradiation only (mean neutron fluence of about 1.3·1012 cm-2) 

 


