

AperTO - Archivio Istituzionale Open Access dell'Università di Torino

miR-214 as a Key Hub that Controls Cancer Networks: Small Player, Multiple Functions

This is the author's manuscript	
Original Citation:	
Availability:	
This version is available http://hdl.handle.net/2318/152450	since 2016-06-20T17:06:12Z
Published version:	
DOI:10.1038/jid.2014.479	
Terms of use:	
Open Access	
Anyone can freely access the full text of works made available as under a Creative Commons license can be used according to the to of all other works requires consent of the right holder (author or protection by the applicable law.	erms and conditions of said license. Use

(Article begins on next page)

miR-214 as a Key Hub that Controls Cancer Networks: Small Player, Multiple Functions

Elisa Penna^{1,2}, Francesca Orso^{1,2,3} and Daniela Taverna^{1,2,3}

MicroRNAs are short regulatory RNAs that are able to post-transcriptionally modulate gene expression and that have crucial roles in the control of physiological and pathological processes including cancer onset, growth, and progression. miR-214, located inside the sequence of the long noncoding Dmn3os transcript, contributes to the regulation of normal and cancer cell biology, even if it operates in a context-dependent and sometimes contradictory manner. miR-214 is deregulated in several human tumors including melanoma, breast, ovarian, gastric, and hepatocellular carcinomas. miR-214's pleiotropic and tumor-specific contribution to various cancer formation and progression hallmarks is achieved via its several target genes. In fact, miR-214 behaves as a key hub by coordinating fundamental signaling networks such as PTEN/AKT, β-catenin, and tyrosine kinase receptor pathways. Interestingly, miR-214 also regulates the levels of crucial gene expression modulators: the epigenetic repressor Ezh2, "genome guardian" p53, transcription factors TFAP2, and another microRNA, miR-148b. Thus, miR-214 seems to have essential roles in coordinating tumor proliferation, stemness, angiogenesis, invasiveness, extravasation, metastasis, resistance to chemotherapy, and microenvironment. The sum of current literature reports suggests that miR-214 is a molecular hub involved in the control of cancer networks and, as such, could be a potential diagnostic/prognostic biomarker and target for therapeutic intervention.

Journal of Investigative Dermatology (2015) 135, 960–969; doi:10.1038/jid.2014.479; published online 11 December 2014

INTRODUCTION

MicroRNAs (miRs) are a family of small, 20–25-nucleotidelong noncoding RNAs with the ability to post-transcriptionally downregulate the expression of specific target genes. At least a thousand miRs are predicted to operate in humans, regulating

¹Molecular Biotechnology Center (MBC), Torino, Italy; ²Department of Molecular Biotechnology and Health Sciences, Torino, Italy and ³Center for Molecular Systems Biology, University of Torino, Torino, Italy

Correspondence: Daniela Taverna, MBC and Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, 10126 Torino, Italy.

E-mail: daniela.taverna@unito.it


Abbreviations: DNM3, Dynamin-3 gene; miR, microRNA

Received 15 May 2014; revised 29 October 2014; accepted 29 October 2014; published online 11 December 2014

multiple physiological and pathological cellular processes. Bioinformatic predictions indicate that miRs are expected to regulate the expression of around 50% of all protein-coding genes, thus controlling the activity of a large fraction of the entire transcriptome (Inui et al., 2010). miR biogenesis and action mechanisms have been extensively reviewed in the study by Bartel, (2009). miR-mediated gene expression control is achieved by specific base pair binding to the 3'UTRs of their target mRNAs, causing either mRNA degradation or translation inhibition (Filipowicz et al., 2008; Bartel, 2009; Inui et al., 2010). A single 3'UTR can contain numerous different miR binding sites, and therefore the crucial impact miRs have on biological processes is mainly because of the fact that each miR can simultaneously regulate several targets with disparate functions, making them fundamental regulators of tumor onset, growth, and progression (Inui et al., 2010).

Cancer cells are characterized by peculiar hallmarks acquired during the multisteps of tumor progression. These include sustained proliferation, resistance to cell death, metabolism reprograming, host microenvironment interactions, angiogenesis, invasion, and seeding to distant organs (Hanahan and Weinberg, 2011). miR deregulation has a crucial role in cancer as it interferes with these specific hallmarks meaning miRs can either act as oncogenes or tumor suppressors in the early disease stages (Croce, 2009) or control the invasive and metastatic progression of cancer in the latter. Examples of miRs that control malignancy are miR-10b, miR-373/520c, miR-9 (pro-metastatic miRs), miR-335, the miR-200 family, and miR-31 (anti-metastatic miRs; Ma et al., 2007; Huang et al., 2008; Korpal et al., 2008; Tavazoie et al., 2008; Valastyan et al., 2009; Ma et al., 2010b). Relevantly, certain miRs are involved in specific tumor types, for instance the let-7 family, miR-34 family, miR-137, miR-182, miR-221/222, and miR-214 control melanoma progression (Mueller and Bosserhoff, 2009; Penna et al., 2011).

This review focuses on the role of miR-214 in tumor progression. miR-214 is involved in numerous physiological and pathological processes including several cancers. The human miR-214 gene is located in the chromosomal region 1q24.3, in intron 14 of the Dynamin-3 gene (*DNM3*). As shown in Figure 1, an almost 8 kb-long noncoding RNA, named *DNM3os*, originates from intron 14 of *DNM3* in humans and mice. This transcript contains the sequences for miR-214 and miR-199a-2, two clustered miRs that are approximately 6 kb apart. Another small RNA sequence, that of miR-3120, is also present in this genomic region; however, it is on the reverse strand (Loebel *et al.*, 2005; Watanabe *et al.*, 2008; Lee *et al.*, 2009; Yin *et al.*, 2010; Scott *et al.*, 2012).

Figure 1. Genomic location of human miR-214. miR-214 and miR-199a-2 are 6 kb apart, located inside the 7.9 kb-long noncoding RNA precursor, *DNM3os*, in intron 14 of the Dynamin-3 (DNM3) gene (1q24.3). miR-3120 overlaps the miR-214 locus but in its complementary strand.

Twist-1, ZEB1, Ezh2, NFkB, and SMAD4 have been reported to control miR-214 and/or DNM3os transcription (Kong et al., 2008; Juan et al., 2009; Lee et al., 2009; Yin et al., 2010; Duan et al., 2012; Williams et al., 2012). miR-214 is highly conserved among species, which indicates that it is involved in broad physiological functions. In fact, it coordinates the cell fate, differentiation and morphogenesis of muscles, the skeleton, nervous system, retina, and pancreas (Flynt et al., 2007; Joglekar et al., 2007; Decembrini et al., 2009; Chen et al., 2010a; Shi et al., 2013). High miR-214 expression is visible early in mouse embryogenesis in the heart, cerebellum, midbrain, nasal process, and limb buds and reaches a peak at E12.5. It is downregulated after E15.5 and further decreases in postnatal tissues, although its expression is detected in some adult organs, including the lungs, heart, and kidneys (Watanabe et al., 2008; Aurora et al., 2012). Despite the fact that miR-214 and miR-199a-2 belong to the same cluster and are mostly co-expressed during development (Watanabe et al., 2008), the large distance between them in the locus and their different seed sequences suggest distinct regulatory mechanisms and biological functions. Disruption of the entire mouse DNM3os locus leads to skeletal abnormalities and death within 1 month after birth (Watanabe et al., 2008). However, ubiquitous miR-214-specific knockout mice are viable and fertile, while displaying heart defects and cardiac contractility loss following ischemia-reperfusion injury (Aurora et al., 2012), whereas bone-specific miR-214-overexpressing mice show defective osteogenic differentiation and bone formation (Wang et al., 2013c). A specific miR-199a knockout mouse model is, however, necessary to clarify the contributions of miR-214 and miR-199a and to determine whether the differences between DNM3os and miR-214-null mice are due to the combination of these two miRs or due to the specific functions of the long noncoding RNA.

If we consider the fact that embryonic stemness and differentiation programs are often reactivated during tumor progression, the hypothesis that miR-214 has a role in tumorigenesis is well-grounded.

MIR-214 DOUBLE-FACED DEREGULATION IN CANCER

miR-214 is deregulated in several human cancers and displays contrasting behavior, thus suggesting that cell context is crucial for miR-214 function (Table 1).

Cutaneous cancers

There are three main types of skin cancers; basal cell carcinoma, Squamous Cell Carcinoma (SCC), and malignant

melanoma. miR-214 is often altered in these, but particularly in melanoma, which is the least common but often most fatal of dermatologic tumors.

Although normal melanocytes display low miR-214 levels, the expression of this small RNA is high in nevi, which present abnormal, although benign, melanocyte proliferation and frequently contain genetic mutations (Grichnik, 2008; Glud et al., 2009; Philippidou et al., 2010; Chen et al., 2010b; Penna et al., 2011). Importantly, miR-214 is highly expressed in primary malignant cutaneous melanomas (Molnar et al., 2008; Segura et al., 2010; Penna et al., 2011, 2013), although showing low expression levels in in situ noninvasive melanomas (Penna et al., 2011). Moreover, miR-214 correlates significantly more with acral than with non-acral melanoma subtypes (Chan et al., 2011) and is heavily expressed and associated with poor prognosis and elevated metastatic risk in ocular melanomas (Worley et al., 2008). However, miR-214 levels may be slightly lower in metastases than in primary tumors, thus suggesting that this miR-214 increase has an important role at the time of radial to vertical/ invasive melanoma growth (Penna et al., 2011). Nevertheless, miR-214 upregulation in melanoma metastases is also associated with longer post-recurrence survival (Segura et al., 2010). It is also important to note that miR-214 resides in a genomic region that is frequently amplified in melanoma, as demonstrated by Comparative Genomic Hybridization (CGH) in the study by Zhang et al., (2006), whereas no reports indicate any correlation between miR-214 expression and typical melanoma genetic lesions, such as BRAF or KRAS mutations, to our knowledge. miR-199a-2, located in the same cluster as miR-214, is also amplified (Zhang et al., 2006) and deregulated (Pencheva et al., 2012) in melanoma. Patients with high miR-199a-3p and miR-199a-5p levels in primary melanomas show shorter metastasis-free survival compared with patients expressing low levels of these miRs (Pencheva et al., 2012). Accordingly, high miR-199a levels in ocular melanomas correlate with metastatic risk (Worley et al., 2008). As described in the following sections, miR-214 and miR-199a's involvement in driving melanoma metastasis has been clearly demonstrated (Penna et al., 2011; Pencheva et al., 2012; Penna et al., 2013).

Although miR-214 is well expressed in epidermal keratinocytes and hair follicles and is relevant in skin morphogenesis (Ahmed *et al.*, 2012), contrasting observations have been reported regarding SCC and basal cell carcinoma. In fact, miR-214 is upregulated in oral and tongue SCC (Scapoli *et al.*, 2010; Yu *et al.*, 2010), whereas it was found to be significantly

	miR-214 expression in	miR-214 correlation with		
Tumor	tumor vs. normal tissue	metastasis or poor prognosis	Validated miR-214 targets	References
Melanoma	Up Down	Yes Yes	TFAP2, ITGA3	Penna <i>et al.,</i> 2011 Worley <i>et al.,</i> 2008 Segura <i>et al.,</i> 2010
Pancreas	Up	_	ING4	Zhang <i>et al.,</i> 2010 Volinia <i>et al.,</i> 2006
Stomach	Up	Yes	PTEN	Volinia <i>et al.,</i> 2006 Ueda <i>et al.,</i> 2010 Yang <i>et al.,</i> 2013
Prostate	Up	_	_	Volinia et al., 2006
Nasopharygeal	Up	_	LTF, BIM	Deng <i>et al.,</i> 2013 Zhang <i>et al.,</i> 2014
Oral/tongue squamous	Up	_	_	Yu <i>et al.,</i> 2010 Scapoli <i>et al.,</i> 2010
Osteosarcoma	Up	Yes	LZTS1	Wang <i>et al.,</i> 2014c Xu and Wang, 2014
T-cell lymphoma	Up	Yes	_	Narducci et al., 2011
Lung	Up	_	_	Yanaihara et al., 2006
Hepatocellular	Down	Yes	HDGF, XBP1, EZH2, FGFR1, β-catenin	Shih <i>et al.,</i> 2012 Xia <i>et al.,</i> 2012 Wang <i>et al.,</i> 2013b
Uterus cervix	Down	Yes	PLXNB1, GALNT7, MEK3, JNK1	Yang <i>et al.,</i> 2009 Qiang <i>et al.,</i> 2011
Adrenocortical	Down	_	_	Tombol et al., 2009
Esophageal	Down	_	_	Huang et al., 2012
Cutaneous squamous	Down	_	ERK1	Yamane et al., 2013
Myeloma	Down	_	ASF1B, GANKYRIN	Gutierrez et al., 2010
Bladder	Down	Yes	_	Ratert et al., 2013
Glioma	Down	Yes	UBC9	Wang et al., 2014b
Colorectal	Down	Yes	FGFR1	Chen et al., 2014
Rhabdomyosarcoma	Down	_	NRAS	Huang et al., 2014
Ovary	Up Down	Yes Yes	PTEN, p53	Yang <i>et al.,</i> 2008 Marchini <i>et al.,</i> 2011 Iorio <i>et al.,</i> 2007
Breast	Up Down	Yes Yes	EZH2	Derfoul <i>et al.</i> , 2011 Schwarzenbach <i>et al.</i> , 2012 Blenkiron <i>et al.</i> , 2007

MicroRNA-214 (miR-214) altered expression (up- or downregulation) in different types of human cancers. Where possible, the correlation with metastasis/poor prognosis and malignancy-involved validated targets is indicated.

downregulated in esophageal and cutaneous SCC, leading to abnormal keratinocyte proliferation (Huang *et al.*, 2012; Yamane *et al.*, 2013). miR-214 expression seems not to be involved in basal cell carcinoma, however (Sand *et al.*, 2012).

Various non-cutaneous tumors

miR-214 is upregulated in pancreatic (Volinia et al., 2006; Zhang et al., 2010), prostate (Volinia et al., 2006), stomach (Volinia et al., 2006; Ueda et al., 2010; Li et al., 2011; Yang et al., 2013; Wang et al., 2014a), nasopharyngeal (Deng et al., 2013; Zhang et al., 2014), and lung (Yanaihara et al., 2006) tumors, as well as in osteosarcomas (Xu and Wang, 2014;

Wang et al., 2014c) and in a leukemic variant of cutaneous T-cell lymphomas, the Sezary syndrome (Narducci et al., 2011), as compared with healthy tissues. High miR-214 expression has been associated with unfavorable prognosis in overall survival and clinical staging, invasiveness, metastasis, and poor response to therapy (Ueda et al., 2010; Narducci et al., 2011; Yang et al., 2013; Wang et al., 2014c). Conversely, noteworthy miR-214 downregulation occurs in hepatocellular (Duan et al., 2012; Shih et al., 2012; Wang et al., 2012a, 2013b), uterus cervix (Yang et al., 2009), adrenocortical (Tombol et al., 2009), bladder (Ratert et al., 2013), colorectal (Chen et al., 2014), and cholangio (Li et al.,

2012) carcinomas, as compared with healthy tissues, as well as in multiple myelomas (Gutierrez *et al.*, 2010), gliomas (Wang *et al.*, 2014b), and in lung adenocarcinoma-derived brain metastases (Zhao *et al.*, 2013). In these neoplasias, miR-214 reduction is often associated with malignancy, metastasis, or poor survival/recurrence (Qiang *et al.*, 2011; Li *et al.*, 2012; Xia *et al.*, 2012; Ratert *et al.*, 2013; Wang *et al.*, 2013b; Chen *et al.*, 2014).

miR-214 displays more complex behavior in breast and ovary cancers, possibly due to high tumor heterogeneity and hormone responsiveness. The miR-214 locus is frequently amplified in these tumors, as shown by CGH (Zhang et al., 2006); however, it has been found to have been deleted in 24% of a small group of breast cancer cases (Derfoul et al., 2011). miR-214 is less expressed in large cohorts (Dvinge et al., 2013) of breast tumor samples than in normal tissues, whereas its upregulation has been found in Luminal A, Normal-like and ER-,PR-,HER2+/- breast cancer subtypes (Blenkiron et al., 2007; Sempere et al., 2007). Similarly, miR-214 is overexpressed in ovary cancers and significantly associated with high grade and late/metastatic tumor stages, as well as with overall and progression-free survival and postsurgical/chemotherapy recurrence (Yang et al., 2008; Marchini et al., 2011). However, miR-214 downregulation has also been described in neoplastic, as compared with normal, ovaries, as well as in ovary cancer-derived effusions as compared with primary tumors (Iorio et al., 2007; Vaksman et al., 2011).

These data, taken as a whole, suggest that miR-214 deregulation could have a relevant impact on malignancy, even if it can operate in opposite manners in different tumors. Therefore, it should be evaluated for diagnostic/therapeutic purposes.

CIRCULATING MIR-214 AS A DIAGNOSTIC MARKER

Interestingly, miR-214 has been observed to be a circulating miR, and its serum levels have shown diagnostic potential. In fact, analyses of miR-214 levels in the serum of over 100 breast cancer patients were able to discriminate between malignant and benign tumors, as well as healthy controls, whereas levels were significantly decreased in post-operative sera but increased in association with metastatic spread to regional lymph nodes (Schwarzenbach et al., 2012). miR-214 blood serum expression was also able to identify patients carrying malignant peripheral nerve sheath tumors (Weng et al., 2013). Similarly, the analysis of circulating exosomes isolated from ovarian carcinoma patients revealed the presence of miR-214 (overexpressed in the primary tumor mass), together with 7 other miRs, which strongly supports the case for miR-214's diagnostic power (Taylor and Gercel-Taylor, 2008). The same situation was observed when exosomes from lung cancer patients were analyzed (Rabinowits et al., 2009). Furthermore, urinary miR-214 has been proven to be a diagnostic biomarker for bladder and prostate cancers (Kim et al., 2013; Srivastava et al., 2013). These observations reinforce the potential of extracellular miR-214 use as a diagnostic or prognostic biomarker.

MIR-214 FUNCTIONS AND TARGETS IN TUMOR PROGRESSION

Altered miR-214 expression in cancer has led numerous researchers to investigate its tumor-specific functions and to identify its targets in the various tumor formation and progression steps. miR-214's pleiotropic roles and direct targets are summarized in Figure 2 and discussed below.

Proliferation, cell cycle, and survival

Altered levels of miR-214 in tumors seem to hint at a possible influence on proliferation and cell cycle control; however, existing data are controversial. No positive miR-214 cell viability or growth regulation was observed in melanomas (Penna et al., 2011), lung (Fei et al., 2008), or pancreatic (Zhang et al., 2010) carcinomas. By contrast, miR-214 was found to promote AKT signaling, proliferation, and survival in gastric tumors via PTEN and in nasopharyngeal carcinomas via lactoferrin and Bim targeting (Deng et al., 2013; Yang et al., 2013; Zhang et al., 2014), and to favor osteosarcoma growth via LZTS1 repression (Xu and Wang, 2014). On the other hand, miR-214 inhibits proliferation in breast or hepatic carcinomas via Ezh2, β-catenin, and XBP1 (an ER-stressinduced pro-survival factor) targeting; miR-214 expression also reduces hepatoma xenograft growth (Derfoul et al., 2011; Duan et al., 2012; Shih et al., 2012; Xia et al., 2012; Wang et al., 2012a). Furthermore, proliferation is decreased by miR-214 in rhabdomyosarcomas via N-Ras oncogene suppression (Huang et al., 2014), in cervical cancers via MEK3 and JNK1, GALNT7 and Plexin-B1 downregulation (Cheng et al., 2005; Yang et al., 2009; Qiang et al., 2011; Peng et al., 2012), and in squamous cell carcinoma cells via ERK1 inhibition (Yamane et al., 2013). In myelomas, miR-214 targets ASF1B and gankirin, thus inducing p53, p21, and Bax upregulation and resulting in the inhibition of DNA replication and apoptosis (Misiewicz-Krzeminska et al., 2013). A link between miR-214 and Receptor Tyrosine Kinases (RTKs) was also observed. In fact, miR-214 targets FGFR1 in hepatocellular and colorectal carcinomas, thus influencing cell growth (Wang et al., 2013b; Chen et al., 2014), and the ErbB3 cis-interactor Necl-2, leading to enhanced ErbB2/3 signaling in colon carcinomas (Momose et al., 2013).

Angiogenesis

Tumor vascularisation has a central role to play in cancer progression. Indeed, neo-angiogenesis within the tumor mass provides cancer cells with the blood vessels necessary for growth and, in the meanwhile, facilitates the intravasation and dissemination of metastatic cells. On the other hand, hypoxic conditions, caused by insufficient or aberrant vascularization, often contribute to the selection of more malignant tumor cell subpopulations (Carmeliet and Jain, 2011). Interestingly, miR-214 has a key role in angiogenesis. It is expressed in endothelial cells (Wurdinger *et al.*, 2008; Rippe *et al.*, 2012) and inhibits HUVEC angiogenesis and vascular network formation by targeting Quaking and, consequently, reduces the secretion of pro-angiogenic growth factors and cytokines, including VEGF, CCL5, and CXCL5 (van Mil *et al.*, 2012). In addition, miR-214 downregulates the eNOS (nitric oxide

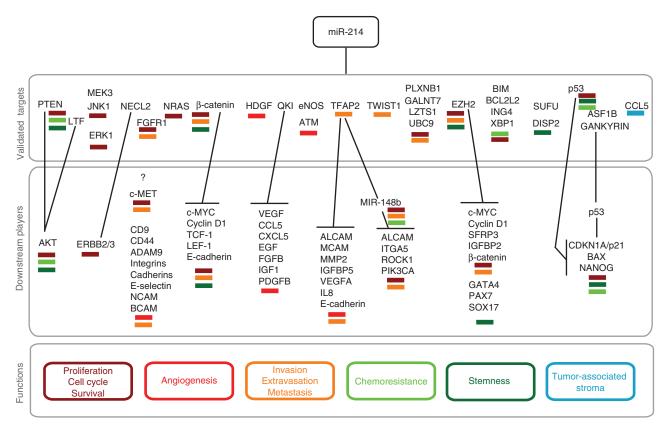


Figure 2. miR-214 controls cancer networks. miR-214 direct target genes and indirect downstream players are shown, together with their multiple functions in tumor cells (different colors).

synthase) enzyme, which is essential for endothelial cell migration (Chan et al., 2009). By contrast, adult endothelial cells (HMEC-1) secrete miR-214-containing exosomes which, in turn, stimulate a pro-angiogenic program in neighboring cells via ATM downregulation (van Balkom et al., 2013). Considering the cross talk between tumor and endothelial cells within a tumor mass, the existence of a pivotal role for miR-214 can be envisaged in tumor vascularization. Indeed, miR-214 downregulation in hepatocellular carcinoma contributes to tumor angiogenesis, whereas its ectopic overexpression reduces tumor growth and vascularity. This occurs via its direct target, hepatoma-derived growth factor (HDGF; Shih et al., 2012), thus demonstrating that miR-214 has an antiangiogenic role in hepatocarcinomas, in which miR-214 downregulation is associated with worse clinical outcome.

Migration, invasion, extravasation, and metastasis

miR-214 upregulation in melanoma cell lines significantly promotes tumor cell migration, invasion, adhesion to extracellular matrices, transendothelial migration, and survival to anoikis *in vitro*, as well as extravasation from blood vessels and metastasis formation in mice. This occurs without affecting cell proliferation and tumor growth via the simultaneous coordination of a network including over 70 genes (Penna *et al.*, 2011). In particular, miR-214 acts by directly targeting transcription factors TFAP2, well-established melanoma tumor suppressors, and upregulating ALCAM, an adhesion receptor

known as a melanoma progression marker. ALCAM upregulation occurs via TFAP2 and miR-148b, a small RNA that is downregulated by miR-214. Rescuing experiments have demonstrated that TFAP2 or miR-148b downmodulation and ALCAM upregulation control miR-214-dependent melanoma metastatic traits and metastasis formation (Penna et al., 2011, 2013), thus highlighting the importance of a critical pathway that involves these players. Importantly, several miR-148b target genes, including ALCAM, ROCK1, PIK3CA, and ITGA5, are upregulated by miR-214, because of miR-148b downmodulation, which could account for additional miR-214 pro-malignant functions (Penna et al., 2013; Orso et al., unpublished data). Moreover, the miR-214-dependent modulation of other genes in this network may influence melanoma progression, as well. These include genes that regulate adhesion, movement, invasion, and matrix degradation (integrins, cadherins, MCAM, NCAM, BCAM, PAK2, MMP2, ADAMs, TIMPs and the MET oncogene), others that are implicated in interactions with endothelial cells and extravasation (E-Selectin, CD9, IL-8, SEMA3A, VEGFR2, VEGFA and ALCAM itself), and still others that are members of the TGFβ, Wnt, and Notch pathways and that are potentially involved in the epithelial-to-mesenchymal transition. These findings appear to indicate a clear pro-invasive and prometastatic role played by miR-214 in melanoma. Nevertheless, other authors have observed, in a similar context, the existence of a significant role for the small RNA that is clustered

with miR-214, miR-199a-2. Indeed, both miR-199a-5p and miR-199a-3p have been demonstrated to strongly drive melanoma invasion and metastatic colonization and to enhance angiogenesis by synergistically targeting ApoE and DNAJA4 and thus controlling the LPR1 and LPR8 pathways (Pencheva *et al.*, 2012). It is possible that miR-214 and miR-199a operate in an alternative or synergistic manner in melanoma progression, and detailed experiments need to be performed to unravel the precise functions of these two clustered miRs.

miR-214 significantly encourages migration and invasion in gastric cancer by targeting PTEN (Yang et al., 2013), whereas it favors osteosarcoma invasion by silencing LZTS1 (Xu and Wang, 2014), and, furthermore, nasopharyngeal carcinoma metastasis formation has been found to be promoted via lactoferrin repression in a mouse xenograft model (Deng et al., 2013). miR-214 has been shown to display proinvasive or pro-metastatic properties in mammary tumor cells (Penna et al., 2011), although a deeper analysis of miR-214 functions in breast cancer is still pending. Indeed, Derfoul and colleagues have reported opposite data: decreased miR-214 levels in mammary carcinoma cells correlate with increased cell invasion via the accumulation of miR-214 target, Ezh2, a known marker of malignancy that coincides with the histone H3K27 trimethylation catalytic subunit of the Polycomb repressive complex 2, which epigenetically regulates chromatin and thereby influences gene expression (Derfoul et al., 2011; Crea et al., 2012). Similarly, miR-214 suppresses cell invasion by downregulating Ezh2, β-catenin, and FGFR1 in hepatocellular carcinoma cells; the high expression of these genes correlates with low miR-214 levels and increased malignancy (Xia et al., 2012; Wang et al., 2013b). Importantly, sustained β-catenin and/or Ezh2 expression in breast or hepatic tumors leads to malignancy as the levels of their downstream genes, such as c-Myc, cyclin D1, TCF-1, LEF-1, E-cadherin, SFRP3, IGFBP2, and even β-catenin itself, are affected (Derfoul et al., 2011; Xia et al., 2012; Wang et al., 2012a). Interestingly, Ezh2 repression by miR-214 in esophageal squamous carcinoma cells also results in migration and invasion inhibition (Huang et al., 2012). Furthermore, miR-214 has been shown to inhibit invasion via Plexin-B1 and GALNT7 targeting in cervical cancers (Qiang et al., 2011; Peng et al., 2012), via FGFR1 repression in colorectal tumors (Chen et al., 2014) and via Twist-1 (a master regulator of metastasis) downregulation in intrahepatic cholangiocarcinomas (Li et al., 2012).

Chemoresistance

Despite the controversial findings concerning the role of miR-214 in proliferation, one of the first miR-214 functions described was its ability to reduce apoptotic cell death, contributing to decreased chemotherapy sensitivity, the main cause of treatment failure and disease progression. In particular, miR-214 has been shown to inhibit cisplatin-induced apoptosis in human ovarian cancers primarily by targeting PTEN and enhancing the AKT pathway and survival (Yang et al., 2008). Moreover, miR-214 has been proven to contribute to cisplatin chemoresistance in tongue squamous cell carcinomas (Yu et al., 2010). Accordingly, miR-214 is

significantly upregulated in gefitinib-resistant EGFR-mutant non-small cell-lung cancer cells. PTEN targeting also has a major role in this case. In fact, miR-214 knockdown is sufficient to normalize AKT pathway activation and to resensitize cells to the therapy (Wang et al., 2012b). Furthermore, miR-214 overexpression in pancreatic cancer cells decreases sensitivity to gemcitabine, the first line treatment for advanced pancreatic cancers, probably via its direct target ING4, a gene involved in cell cycle arrest, DNA repair, and apoptosis (Zhang et al., 2010). Moreover, high miR-214 levels have been associated with poor chemotherapy response in pediatric osteosarcomas (Wang et al., 2014c) and with increased T-cell lymphoma cell survival and apoptotic resistance (Narducci et al., 2011). Finally, miR-214 has been predicted to control paclitaxel sensitivity in laryngeal cancer cells (Xu et al., 2013). The only study that has published contrary results was performed in cervical cancer cells where miR-214 enhances cisplatin-induced cytotoxicity, via the downregulation of Bcl2l2 (Wang et al., 2013a). In melanomas, miR-214 reduces apoptosis and facilitates survival in adhesion-lacking (anoikis) conditions (Penna et al., 2011), which would seem to suggest a potential role in chemoresistance; however, the details of its actual involvement are still to be explored.

Cancer stemness

miR-214 has a key role in normal cell differentiation by targeting Ezh2 (see above), which leads to the consequent derepression of the master developmental regulators Gata-4, Pax7, and Sox17 (Juan et al., 2009). As developmental pathways are often reactivated during tumorigenesis and stemness markers are observed in tumor stem cells (Nguyen et al., 2012), the involvement of miR-214 in cancer stem cells has been investigated and confirmed. In fact, miR-214 has been shown to regulate ovarian cancer stem cell properties by directly repressing p53 and indirectly upregulating Nanog, leading to increased stem cell population and self-renewal (Xu et al., 2012). However, lower miR-214 expression has been reported in ovarian cancer stem cells than in mature cells, and here the miR-214-controlled PTEN-AKT pathway is seen to be a major regulator of stemness (Yin et al., 2010). Interestingly, miR-214 was found to be the most highly expressed of a list of 37 differentially expressed small noncoding RNAs in an analysis of miR expression in purified CD44 + CD24 - lin - breast cancer stem cells (Shimono et al., 2009). miR-214 expression has also been found to be significantly increased in pancreatic cancer cell-derived holoclones, which are capable of longterm survival, tumor initiation, and chemoresistance (Tan et al., 2011). In contrast, miR-214 has been demonstrated to suppress stem-like traits in human hepatocellular carcinoma cells by directly targeting Ezh2 and β-catenin signaling pathways (Xia et al., 2012). These findings indicate that miR-214 has contrasting functions in controlling cancer stemness, depending on its role in specific malignancies.

Tumor-associated stroma

Cancer-associated fibroblasts (CAFs) have a major role in the tumor microenvironment; however, the conversion of quiescent fibroblasts into CAFs is still quite a mystery. miR-214 is relevant in this process as ovarian cancer cells, in fact, induce miR-214 downregulation in normal tumor-adjacent fibroblasts, thus reprograming them into CAFs with increased chemokine secretion. A particular example is CCL5, which is a direct miR-214 target (Mitra *et al.*, 2012). On the other hand, miR-214 is upregulated in gastric cancer–derived mesenchymal stem cells, which are involved in invasion (Wang *et al.*, 2014a).

CONCLUDING REMARKS

In conclusion, miR-214 appears to be a pleiotropic hub that participates in the control of cancer cell signaling networks. In fact, it contributes to the coordination of essential signaling pathways, such as the PTEN/AKT, β-catenin, or receptor tyrosine kinase pathways, as well as crucial gene expression modulators, including Ezh2, p53, TFAP2, and miR-148b. The fact that miR-214 displays specific and even contrasting functions in different tumor types is most likely due to differential mRNA targeting and/or target gene expression in different cancer cell contexts. In particular, as miR-214 broadly controls gene expression by regulating transcription factors and other miRs, disparities in the expression of subsets of these downstream players in different tumors, or tumor cell populations, may account for the versatility of miR-214 actions. Thus, miR-214 may have contrasting roles according to co-expression with its own direct or indirect target genes or with other miRs (for instance miR-148b or the clustered miR-199a-2) and their targets. This may also explain the switch between proliferation/ survival phenotypes in certain cancers to movement/invasion traits in others. Importantly, some known miR-214-regulated genes (e.g., TFAP2 and ALCAM) display contrasting behavior in different tumor types in which miR-214 also has contrasting functions. For instance, although TFAP2 factors are well-defined tumor suppressors in melanoma and are often lost during disease progression (Bar-Eli, 2001), their role in breast tumors is more complex. In fact, TFAP2A is frequently upregulated in ErbB2/HER2-positive breast carcinomas and induces ErbB2/ HER2 transcription (Bosher et al., 1996; Turner et al., 1998; Shiu et al., 2014). However, other studies have observed reduced TFAP2 levels in high grade and metastatic breast cancers (Pellikainen et al., 2002; Sotiriou et al., 2006). Moreover TFAP2C overexpression in a MMTV/Neu transgenic mouse model resulted in reduced tumorigenesis (Jager et al., 2005). Similarly, high ALCAM positivity is a clinical marker for melanoma thickness and invasiveness (van Kempen et al., 2000). ALCAM upregulation, as opposed to normal mammary tissue, has furthermore been observed in intraductal/invasive breast carcinomas (Burkhardt et al., 2006) and correlates with metastasis, as well (Piao et al., 2012). However, low ALCAM levels have also been associated with mammary nodal infiltration, metastatic dissemination, and worse clinical outcome (King et al., 2004; Jezierska et al., 2006).

Tumor mouse models are essential to an improved definition of miR-214 involvement in cancer, and as such other tissue-specific miR-214-deleted or miR-214-overexpressing mice need to be established and analyzed for this purpose, in addition to existing animal models (Aurora *et al.*, 2012; Wang *et al.*, 2013c). Additional investigations must carefully

evaluate miR-214 genomic locus and transcriptional/post-transcriptional events if we want to understand how miR-214 deregulation occurs in cancer. Furthermore, circulating miR-214 has been proven to be a potential biomarker (Schwarzenbach *et al.*, 2012), and therefore its diagnostic/prognostic value should be explored in depth and in various tumors. Finally and more importantly, as miR-based *in vivo* therapy attempts have already been successful (Care *et al.*, 2007; Elyakim *et al.*, 2010; Wiggins *et al.*, 2010; Ma *et al.*, 2010a), the potential use of miR-214 as a therapy target merits careful investigation.

CONFLICT OF INTEREST

The authors state no conflict of interest.

REFERENCES

- Ahmed M, Emelianov V, Sharov A *et al.* (2012) MicroRNA-214 controls skin and hair follicle development via modulating the activity of Wnt, Edar and Bmp signalling pathways. *J Investig Dermatol* 132:S104–10
- Aurora AB, Mahmoud AI, Luo X et al. (2012) MicroRNA-214 protects the mouse heart from ischemic injury by controlling Ca(2)(+) overload and cell death. J Clin Invest 122:1222–32
- Bar-Eli M (2001) Gene regulation in melanoma progression by the AP-2 transcription factor. *Pigment Cell Res* 14:78–85
- Bartel DP (2009) MicroRNAs: target recognition and regulatory functions. *Cell* 136:215–33
- Blenkiron C, Goldstein LD, Thorne NP *et al.* (2007) MicroRNA expression profiling of human breast cancer identifies new markers of tumor subtype. *Genome Biol* 8:R214
- Bosher JM, Totty NF, Hsuan JJ *et al.* (1996) A family of AP-2 proteins regulates c-erbB-2 expression in mammary carcinoma. *Oncogene* 13:1701–7
- Burkhardt M, Mayordomo E, Winzer KJ et al. (2006) Cytoplasmic overexpression of ALCAM is prognostic of disease progression in breast cancer. J Clin Pathol 59:403–9
- Care A, Catalucci D, Felicetti F *et al.* (2007) MicroRNA-133 controls cardiac hypertrophy. *Nat Med* 13:613–8
- Carmeliet P, Jain RK (2011) Principles and mechanisms of vessel normalization for cancer and other angiogenic diseases. *Nat Rev Drug Discov* 10:417–27
- Chan E, Patel R, Nallur S et al. (2011) MicroRNA signatures differentiate melanoma subtypes. Cell Cycle 10:1845–52
- Chan LS, Yue PY, Mak NK et al. (2009) Role of microRNA-214 in ginsenoside-Rg1-induced angiogenesis. Eur J Pharm Sci 38:370–7
- Chen DL, Wang ZQ, Zeng ZL *et al.* (2014) Identification of miR-214 as a negative regulator of colorectal cancer liver metastasis via regulation of FGFR1 expression. *Hepatology* 60:598–609
- Chen H, Shalom-Feuerstein R, Riley J et al. (2010a) miR-7 and miR-214 are specifically expressed during neuroblastoma differentiation, cortical development and embryonic stem cells differentiation, and control neurite outgrowth in vitro. Biochem Biophys Res Commun 394:921–7
- Chen J, Feilotter HE, Pare GC et al. (2010b) MicroRNA-193b represses cell proliferation and regulates cyclin D1 in melanoma. Am J Pathol 176:2520–9
- Cheng AM, Byrom MW, Shelton J *et al.* (2005) Antisense inhibition of human miRNAs and indications for an involvement of miRNA in cell growth and apoptosis. *Nucleic Acids Res* 33:1290–7
- Crea F, Fornaro L, Bocci G et al. (2012) EZH2 inhibition: targeting the crossroad of tumor invasion and angiogenesis. Cancer Metastasis Rev 31:753–61
- Croce CM (2009) Causes and consequences of microRNA dysregulation in cancer. Nat Rev Genet 10:704–14
- Decembrini S, Bressan D, Vignali R *et al.* (2009) MicroRNAs couple cell fate and developmental timing in retina. *Proc Natl Acad Sci USA* 106:21179–84

- Deng M, Ye Q, Qin Z *et al.* (2013) miR-214 promotes tumorigenesis by targeting lactotransferrin in nasopharyngeal carcinoma. *Tumour Biol* 34: 1793–800
- Derfoul A, Juan AH, Difilippantonio MJ *et al.* (2011) Decreased microRNA-214 levels in breast cancer cells coincides with increased cell proliferation, invasion and accumulation of the Polycomb Ezh2 methyltransferase. *Carcinogenesis* 32:1607–14
- Duan Q, Wang X, Gong W et al. (2012) ER stress negatively modulates the expression of the miR-199a/214 cluster to regulates tumor survival and progression in human hepatocellular cancer. PLoS One 7:e31518
- Dvinge H, Git A, Graf S *et al.* (2013) The shaping and functional consequences of the microRNA landscape in breast cancer. *Nature* 497:378–82
- Elyakim E, Sitbon E, Faerman A *et al.* (2010) hsa-miR-191 is a candidate oncogene target for hepatocellular carcinoma therapy. *Cancer Res* 70:8077–87
- Fei J, Lan F, Guo M *et al.* (2008) Inhibitory effects of anti-miRNA oligonucleotides (AMOs) on A549 cell growth. *J Drug Target* 16:688–93
- Filipowicz W, Bhattacharyya SN, Sonenberg N (2008) Mechanisms of posttranscriptional regulation by microRNAs: are the answers in sight? *Nat Rev Genet* 9:102–14
- Flynt AS, Li N, Thatcher EJ et al. (2007) Zebrafish miR-214 modulates Hedgehog signaling to specify muscle cell fate. *Nat Genet* 39:259–63
- Glud M, Klausen M, Gniadecki R et al. (2009) MicroRNA expression in melanocytic nevi: the usefulness of formalin-fixed, paraffin-embedded material for miRNA microarray profiling. J Invest Dermatol 129:1219–24
- Grichnik JM (2008) Melanoma, nevogenesis, and stem cell biology. *J Invest Dermatol* 128:2365–80
- Gutierrez NC, Sarasquete ME, Misiewicz-Krzeminska I *et al.* (2010) Deregulation of microRNA expression in the different genetic subtypes of multiple myeloma and correlation with gene expression profiling. *Leukemia* 24:629–37
- Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. *Cell* 144:646–74
- Huang HJ, Liu J, Hua H *et al.* (2014) MiR-214 and N-ras regulatory loop suppresses rhabdomyosarcoma cell growth and xenograft tumorigenesis. *Oncotarget* 5:2161–75
- Huang Q, Gumireddy K, Schrier M *et al.* (2008) The microRNAs miR-373 and miR-520c promote tumour invasion and metastasis. *Nat Cell Biol* 10: 202–10
- Huang SD, Yuan Y, Zhuang CW et al. (2012) MicroRNA-98 and microRNA-214 post-transcriptionally regulate enhancer of zeste homolog 2 and inhibit migration and invasion in human esophageal squamous cell carcinoma. Mol Cancer 11:51
- Inui M, Martello G, Piccolo S (2010) MicroRNA control of signal transduction. Nat Rev Mol Cell Biol 11:252–63
- Iorio MV, Visone R, Di Leva G et al. (2007) MicroRNA signatures in human ovarian cancer. Cancer Res 67:8699–707
- Jager R, Friedrichs N, Heim I et al. (2005) Dual role of AP-2gamma in ErbB-2induced mammary tumorigenesis. Breast Cancer Res Treat 90:273–80
- Jezierska A, Olszewski WP, Pietruszkiewicz J *et al.* (2006) Activated leukocyte cell adhesion molecule (ALCAM) is associated with suppression of breast cancer cells invasion. *Med Sci Monit* 12:BR245–56
- Joglekar MV, Parekh VS, Hardikar AA (2007) New pancreas from old: microregulators of pancreas regeneration. Trends Endocrinol Metab 18:393–400
- Juan AH, Kumar RM, Marx JG et al. (2009) Mir-214-dependent regulation of the polycomb protein Ezh2 in skeletal muscle and embryonic stem cells. Mol Cell 36:61–74
- Kim SM, Kang HW, Kim WT *et al.* (2013) Cell-free microRNA-214 from urine as a biomarker for non-muscle-invasive bladder cancer. *Korean J Urol* 54:791–6
- King JA, Ofori-Acquah SF, Stevens T et al. (2004) Activated leukocyte cell adhesion molecule in breast cancer: prognostic indicator. Breast Cancer Res 6:R478–87
- Kong W, Yang H, He L *et al.* (2008) MicroRNA-155 is regulated by the transforming growth factor beta/Smad pathway and contributes to epithelial cell plasticity by targeting RhoA. *Mol Cell Biol* 28:6773–84

- Korpal M, Lee ES, Hu G et al. (2008) The miR-200 family inhibits epithelial-mesenchymal transition and cancer cell migration by direct targeting of E-cadherin transcriptional repressors ZEB1 and ZEB2. J Biol Chem 283:14910–4
- Lee YB, Bantounas I, Lee DY et al. (2009) Twist-1 regulates the miR-199a/214 cluster during development. Nucleic Acids Res 37:123–8
- Li B, Han Q, Zhu Y et al. (2012) Down-regulation of miR-214 contributes to intrahepatic cholangiocarcinoma metastasis by targeting Twist. FEBS J 279:2393–8
- Li X, Zhang Y, Zhang H et al. (2011) miRNA-223 promotes gastric cancer invasion and metastasis by targeting tumor suppressor EPB41L3. Mol Cancer Res 9:824–33
- Loebel DA, Tsoi B, Wong N *et al.* (2005) A conserved noncoding intronic transcript at the mouse Dnm3 locus. *Genomics* 85:782–9
- Ma L, Reinhardt F, Pan E et al. (2010a) Therapeutic silencing of miR-10b inhibits metastasis in a mouse mammary tumor model. Nat Biotechnol 28:341–7
- Ma L, Teruya-Feldstein J, Weinberg RA (2007) Tumour invasion and metastasis initiated by microRNA-10b in breast cancer. *Nature* 449:682–8
- Ma L, Young J, Prabhala H *et al.* (2010b) miR-9, a MYC/MYCN-activated microRNA, regulates E-cadherin and cancer metastasis. *Nat Cell Biol* 12:247–56
- Marchini S, Cavalieri D, Fruscio R et al. (2011) Association between miR-200c and the survival of patients with stage I epithelial ovarian cancer: a retrospective study of two independent tumour tissue collections. Lancet Oncol 12:273–85
- Misiewicz-Krzeminska I, Sarasquete ME, Quwaider D et al. (2013) Restoration of microRNA-214 expression reduces growth of myeloma cells through positive regulation of P53 and inhibition of DNA replication. *Haematologica* 98:640–8
- Mitra AK, Zillhardt M, Hua Y et al. (2012) MicroRNAs reprogram normal fibroblasts into cancer-associated fibroblasts in ovarian cancer. Cancer Discov 2:1100–8
- Molnar V, Tamasi V, Bakos B *et al.* (2008) Changes in miRNA expression in solid tumors: an miRNA profiling in melanomas. *Semin Cancer Biol* 18:111–22
- Momose K, Minami A, Shimono Y *et al.* (2013) miR-214 and hypoxia down-regulate Necl-2/CADM1 and enhance ErbB2/ErbB3 signaling. *Genes Cells* 18:195–202
- Mueller DW, Bosserhoff AK (2009) Role of miRNAs in the progression of malignant melanoma. *Br J Cancer* 101:551–6
- Narducci MG, Arcelli D, Picchio MC *et al.* (2011) MicroRNA profiling reveals that miR-21, miR486 and miR-214 are upregulated and involved in cell survival in Sezary syndrome. *Cell Death Dis* 2:e151
- Nguyen LV, Vanner R, Dirks P et al. (2012) Cancer stem cells: an evolving concept. Nat Rev Cancer 12:133–43
- Pellikainen J, Kataja V, Ropponen K et al. (2002) Reduced nuclear expression of transcription factor AP-2 associates with aggressive breast cancer. Clin Cancer Res 8:3487–95
- Pencheva N, Tran H, Buss C et al. (2012) Convergent multi-miRNA targeting of ApoE drives LRP1/LRP8-dependent melanoma metastasis and angiogenesis. Cell 151:1068–82
- Peng RQ, Wan HY, Li HF et al. (2012) MicroRNA-214 suppresses growth and invasiveness of cervical cancer cells by targeting UDP-N-acetyl-alpha-Dgalactosamine:polypeptide N-acetylgalactosaminyltransferase 7. J Biol Chem 287:14301–9
- Penna E, Orso F, Cimino D et al. (2011) microRNA-214 contributes to melanoma tumour progression through suppression of TFAP2C. EMBO J 30:1990–2007
- Penna E, Orso F, Cimino D *et al.* (2013) miR-214 coordinates melanoma progression by upregulating ALCAM through TFAP2 and miR-148b downmodulation. *Cancer Res* 73:4098–111
- Philippidou D, Schmitt M, Moser D et al. (2010) Signatures of microRNAs and selected microRNA target genes in human melanoma. Cancer Res 70:4163–73
- Piao D, Jiang T, Liu G et al. (2012) Clinical implications of activated leukocyte cell adhesion molecule expression in breast cancer. Mol Biol Rep 39:661–8

- Qiang R, Wang F, Shi LY *et al.* (2011) Plexin-B1 is a target of miR-214 in cervical cancer and promotes the growth and invasion of HeLa cells. *Int J Biochem Cell Biol* 43:632–41
- Rabinowits G, Gercel-Taylor C, Day JM et al. (2009) Exosomal microRNA: a diagnostic marker for lung cancer. Clin Lung Cancer 10:42–6
- Ratert N, Meyer HA, Jung M *et al.* (2013) miRNA profiling identifies candidate mirnas for bladder cancer diagnosis and clinical outcome. *J Mol Diagn* 15:695–705
- Rippe C, Blimline M, Magerko KA et al. (2012) MicroRNA changes in human arterial endothelial cells with senescence: relation to apoptosis, eNOS and inflammation. Exp Gerontol 47:45–51
- Sand M, Skrygan M, Sand D et al. (2012) Expression of microRNAs in basal cell carcinoma. Br J Dermatol 167:847–55
- Scapoli L, Palmieri A, Lo Muzio L et al. (2010) MicroRNA expression profiling of oral carcinoma identifies new markers of tumor progression. Int J Immunopathol Pharmacol 23:1229–34
- Schwarzenbach H, Milde-Langosch K, Steinbach B et al. (2012) Diagnostic potential of PTEN-targeting miR-214 in the blood of breast cancer patients. Breast Cancer Res Treat 134:933–41
- Scott H, Howarth J, Lee YB *et al.* (2012) MiR-3120 is a mirror microRNA that targets heat shock cognate protein 70 and auxilin messenger RNAs and regulates clathrin vesicle uncoating. *J Biol Chem* 287:14726–33
- Segura MF, Belitskaya-Levy I, Rose AE et al. (2010) Melanoma MicroRNA signature predicts post-recurrence survival. Clin Cancer Res 16:1577–86
- Sempere LF, Christensen M, Silahtaroglu A et al. (2007) Altered MicroRNA expression confined to specific epithelial cell subpopulations in breast cancer. Cancer Res 67:11612–20
- Shi K, Lu J, Zhao Y *et al.* (2013) MicroRNA-214 suppresses osteogenic differentiation of C2C12 myoblast cells by targeting Osterix. *Bone* 55:487–94
- Shih TC, Tien YJ, Wen CJ et al. (2012) MicroRNA-214 downregulation contributes to tumor angiogenesis by inducing secretion of the hepatoma-derived growth factor in human hepatoma. J Hepatol 57:584–91
- Shimono Y, Zabala M, Cho RW et al. (2009) Downregulation of miRNA-200c links breast cancer stem cells with normal stem cells. *Cell* 138:592–603
- Shiu KK, Wetterskog D, Mackay A *et al.* (2014) Integrative molecular and functional profiling of ERBB2-amplified breast cancers identifies new genetic dependencies. *Oncogene* 33:619–31
- Sotiriou C, Wirapati P, Loi S *et al.* (2006) Gene expression profiling in breast cancer: understanding the molecular basis of histologic grade to improve prognosis. *J Natl Cancer Inst* 98:262–72
- Srivastava A, Goldberger H, Dimtchev A *et al.* (2013) MicroRNA profiling in prostate cancer–the diagnostic potential of urinary miR-205 and miR-214. *PLoS One* 8:e76994
- Tan L, Sui X, Deng H et al. (2011) Holoclone forming cells from pancreatic cancer cells enrich tumor initiating cells and represent a novel model for study of cancer stem cells. PLoS One 6:e23383
- Tavazoie SF, Alarcon C, Oskarsson T *et al.* (2008) Endogenous human microRNAs that suppress breast cancer metastasis. *Nature* 451:147–52
- Taylor DD, Gercel-Taylor C (2008) MicroRNA signatures of tumor-derived exosomes as diagnostic biomarkers of ovarian cancer. *Gynecol Oncol* 110:13–21
- Tombol Z, Szabo PM, Molnar V et al. (2009) Integrative molecular bioinformatics study of human adrenocortical tumors: microRNA, tissue-specific target prediction, and pathway analysis. Endocr Relat Cancer 16:895–906
- Turner BC, Zhang J, Gumbs AA *et al.* (1998) Expression of AP-2 transcription factors in human breast cancer correlates with the regulation of multiple growth factor signalling pathways. *Cancer Res* 58:5466–72
- Ueda T, Volinia S, Okumura H et al. (2010) Relation between microRNA expression and progression and prognosis of gastric cancer: a microRNA expression analysis. Lancet Oncol 11:136–46
- Vaksman O, Stavnes HT, Kaern J et al. (2011) miRNA profiling along tumour progression in ovarian carcinoma. J Cell Mol Med 15:1593–602
- Valastyan S, Reinhardt F, Benaich N *et al.* (2009) A pleiotropically acting microRNA, miR-31, inhibits breast cancer metastasis. *Cell* 137:1032–46

- van Balkom BW, de Jong OG, Smits M *et al.* (2013) Endothelial cells require miR-214 to secrete exosomes that suppress senescence and induce angiogenesis in human and mouse endothelial cells. *Blood* 121:3997–4006. S1-15
- van Kempen LC, van den Oord JJ, van Muijen GN *et al.* (2000) Activated leukocyte cell adhesion molecule/CD166, a marker of tumor progression in primary malignant melanoma of the skin. *Am J Pathol* 156: 769–74
- van Mil A, Grundmann S, Goumans MJ et al. (2012) MicroRNA-214 inhibits angiogenesis by targeting Quaking and reducing angiogenic growth factor release. *Cardiovasc Res* 93:655–65
- Volinia S, Calin GA, Liu CG et al. (2006) A microRNA expression signature of human solid tumors defines cancer gene targets. Proc Natl Acad Sci USA 103:2257–61
- Wang F, Liu M, Li X et al. (2013a) MiR-214 reduces cell survival and enhances cisplatin-induced cytotoxicity via down-regulation of Bcl2l2 in cervical cancer cells. FEBS Lett 587:488–95
- Wang J, Li J, Wang X *et al.* (2013b) Downregulation of microRNA-214 and overexpression of FGFR-1 contribute to hepatocellular carcinoma metastasis. *Biochem Biophys Res Commun* 439:47–53
- Wang M, Zhao C, Shi H et al. (2014a) Deregulated microRNAs in gastric cancer tissue-derived mesenchymal stem cells: novel biomarkers and a mechanism for gastric cancer. Br J Cancer 110: 1199–210
- Wang S, Jiao B, Geng S *et al.* (2014b) Combined aberrant expression of microRNA-214 and UBC9 is an independent unfavorable prognostic factor for patients with gliomas. *Med Oncol* 31:767
- Wang X, Chen J, Li F et al. (2012a) MiR-214 inhibits cell growth in hepatocellular carcinoma through suppression of beta-catenin. *Biochem Biophys Res Commun* 428:525–31
- Wang X, Guo B, Li Q et al. (2013c) miR-214 targets ATF4 to inhibit bone formation. Nat Med 19:93–100
- Wang YS, Wang YH, Xia HP et al. (2012b) MicroRNA-214 regulates the acquired resistance to gefitinib via the PTEN/AKT pathway in EGFR-mutant cell lines. Asian Pac J Cancer Prev 13:255–60
- Wang Z, Cai H, Lin L et al. (2014c) Upregulated expression of microRNA-214 is linked to tumor progression and adverse prognosis in pediatric osteosarcoma. Pediatr Blood Cancer 61:206–10
- Watanabe T, Sato T, Amano T *et al.* (2008) Dnm3os, a non-coding RNA, is required for normal growth and skeletal development in mice. *Dev Dyn* 237:3738–48
- Weng Y, Chen Y, Chen J *et al.* (2013) Identification of serum microRNAs in genome-wide serum microRNA expression profiles as novel noninvasive biomarkers for malignant peripheral nerve sheath tumor diagnosis. *Med Oncol* 30:531
- Wiggins JF, Ruffino L, Kelnar K *et al.* (2010) Development of a lung cancer therapeutic based on the tumor suppressor microRNA-34. *Cancer Res* 70:5923–30
- Williams KC, Renthal NE, Gerard RD *et al.* (2012) The microRNA (miR)-199a/ 214 cluster mediates opposing effects of progesterone and estrogen on uterine contractility during pregnancy and labor. *Mol Endocrinol* 26:1857–67
- Worley LA, Long MD, Onken MD et al. (2008) Micro-RNAs associated with metastasis in uveal melanoma identified by multiplexed microarray profiling. Melanoma Res 18:184–90
- Wurdinger T, Tannous BA, Saydam O et al. (2008) miR-296 regulates growth factor receptor overexpression in angiogenic endothelial cells. Cancer Cell 14:382–93
- Xia H, Ooi LL, Hui KM (2012) MiR-214 targets beta-catenin pathway to suppress invasion, stem-like traits and recurrence of human hepatocellular carcinoma. PLoS One 7:e44206
- Xu CX, Xu M, Tan L et al. (2012) MicroRNA miR-214 regulates ovarian cancer cell stemness by targeting p53/Nanog. J Biol Chem 287: 34970–8
- Xu CZ, Xie J, Jin B et al. (2013) Gene and microRNA expression reveals sensitivity to paclitaxel in laryngeal cancer cell line. Int J Clin Exp Pathol 6:1351–61

- Xu Z, Wang T (2014) miR-214 promotes the proliferation and invasion of osteosarcoma cells through direct suppression of LZTS1. Biochem Biophys Res Commun 449:190–5
- Yamane K, Jinnin M, Etoh T *et al.* (2013) Down-regulation of miR-124/-214 in cutaneous squamous cell carcinoma mediates abnormal cell proliferation via the induction of ERK. *J Mol Med* 91:69–81
- Yanaihara N, Caplen N, Bowman E et al. (2006) Unique microRNA molecular profiles in lung cancer diagnosis and prognosis. Cancer Cell 9:189–98
- Yang H, Kong W, He L et al. (2008) MicroRNA expression profiling in human ovarian cancer: miR-214 induces cell survival and cisplatin resistance by targeting PTEN. Cancer Res 68:425–33
- Yang TS, Yang XH, Wang XD et al. (2013) MiR-214 regulate gastric cancer cell proliferation, migration and invasion by targeting PTEN. Cancer Cell Int 13:68
- Yang Z, Chen S, Luan X *et al.* (2009) MicroRNA-214 is aberrantly expressed in cervical cancers and inhibits the growth of HeLa cells. *IUBMB Life* 61:1075–82

- Yin G, Chen R, Alvero AB *et al.* (2010) TWISTing stemness, inflammation and proliferation of epithelial ovarian cancer cells through MIR199A2/214. *Oncogene* 29:3545–53
- Yu ZW, Zhong LP, Ji T et al. (2010) MicroRNAs contribute to the chemoresistance of cisplatin in tongue squamous cell carcinoma lines. Oral Oncol 46:317–22
- Zhang L, Huang J, Yang N et al. (2006) microRNAs exhibit high frequency genomic alterations in human cancer. Proc Natl Acad Sci USA 103: 9136–41
- Zhang XJ, Ye H, Zeng CW *et al.* (2010) Dysregulation of miR-15a and miR-214 in human pancreatic cancer. *J Hematol Oncol* 3:46
- Zhang ZC, Li YY, Wang HY *et al.* (2014) Knockdown of miR-214 promotes apoptosis and inhibits cell proliferation in nasopharyngeal carcinoma. *PLoS One* 9:e86149
- Zhao C, Xu Y, Zhang Y et al. (2013) Downregulation of miR-145 contributes to lung adenocarcinoma cell growth to form brain metastases. Oncol Rep 30:2027–34