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Preface

The 8th Congress of Isaac (the International Society for Analysis, its Appli-
cations and Computation) took place at the People’s Friendship University of Russia,
Moscow between August 22nd and 27th 2011. There were a large number of parallel
sessions at the meeting, and we are grateful to the editors ofRendiconti del Seminario
Matematico di Torino, particularly Marino Badiale, for agreeing to publish a selection
of the talks from theStochastic Analysissession herein.

Just as analysis grew from the need to make fully rigorous sense of the calcu-
lus developed by Newton, Leibnitz and their followers in theseventeenth century, so
stochastic analysis developed from the equivalent programme for stochastic calculus
in the twentieth century. The giant on whose shoulders we allstand was Kyosi Itô
(1915-2008), who developed the key ideas of stochastic integral and stochastic differ-
ential equation (SDE) in the 1940s, as well as initiating many other important themes in
the subject. He was awarded the inaugural Gauss prize in honour of his achievements
in 2006. Itô worked primarily, but not exclusively, withBrownian motion, and this
quickly became the paradigm noise process for workers in thefield. Breakthroughs in
understanding the more general processes calledmartingalesin the 1960s and 1970s by
Kunita and Watanabe, and by Meyer (among others) led to the foundations of stochas-
tic analysis being based on the general notion ofsemimartingale. Applications to
engineering and science were quickly developed, through the extension of stochas-
tic analysis to stochastic control and stochastic filtering. The remarkable development
of mathematical finance since the 1990s stimulated a revivalof interest in the rich class
of semimartingales with jumps calledLévy processes, while interest in modelling with
self-similarity led to an extension of the calculus to include fractional Brownian mo-
tion, which is not a semimartingale.

Meanwhile, from the mid 1970s there were important theoretical advances such
as the systematic study of processes on manifolds –stochastic differential geometry,
and the creation of theMalliavian calculus, initially by Paul Malliavin (1925-2010),
which enabled the development of an internal differential calculus based on chaotic
expansions. In particular, Malliavin obtained a probabilistic proof of Hörmander’s
theorem that hypoelliptic diffusions have smooth densities. In the last twenty years or
so, the study of stochastic partial differential equations(SPDEs) has been a major focus
of attention, and this has led to a lot of interest in infinite–dimensional noise. Martin
Hairer was awarded a Fields medal in 2014 for a novel theory ofregularity structures
associated to non-linear SPDEs, and his work made great use of a new way of looking
at stochastic equations – therough pathtechnique of Terry Lyons.

Stochastic analysis reaches into many different areas of mathematics. Its roots
are in probability theory and mathematical analysis, but itinteracts with functional
analysis, differential geometry, partial differential equations, potential theory and many
areas of applied mathematics, such as numerical analysis. The papers in this volume
are good indicators of the breadth and scope of the subject.

Applebaum uses techniques from group representations to find necessary and
sufficient conditions for smoothness of densities on compact Lie groups. Belopskaya
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and Woyczynski present a probabilistic approach to existence and uniqueness of non-
linear, second-order parabolic PDEs, by setting up associated SDEs. Glikikh and Vi-
nokurova obtain existence to an SDE on the total space of a vector bundle, which
is nothing but Newton’s second law of motion from the point ofview of Nelson’s
theory of “stochastic mechanics”; a theory that provides a probabilistic approach to
the problem of quantisation. By investigating conservativity of the associated Markov
semigroup, Grigor’yan finds sufficient conditions for stochastic completeness of some
processes on metric measure spaces, including Brownian motion and jump processes
on manifolds, and random walks on graphs. Melnikova and Alshanskiy apply a theory
of random generalised functions, known as the “white noise”calculus, to obtain exis-
tence and uniqueness for a class of SPDEs. The COGARCH process is a continuous
time version of the GARCH process, which is an important volatility model in math-
ematical finance (for which Robert Engle won the 2003 Nobel Prize in Economics),
and Schnurr shows how to extract probabilistic informationfrom this process by using
the pseudo-differential operator representation of its generator. Finally Vives presents
a survey of Malliavin calculus for Lévy processes, including the nonanticipating Itô
formula.

David Applebaum (October 2014)
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D. Applebaum

SMOOTHNESS OF DENSITIES ON COMPACT LIE GROUPS

Abstract. We give necessary and sufficient conditions for both square integrability and
smoothness for densities of a probability measure on a compact connected Lie group.

Keywords and Phrases.Lie group, Haar measure, unitary dual, Fourier transform, con-
volution operator, Lie algebra, weight, Sugiura space, smooth density, central measure, in-
finitely divisible, deconvolution density estimator.

1. Introduction

The study of probability measures on groups provides a mathematical framework for
describing the interaction of chance with symmetry. This subject is broad and interacts
with many other areas of mathematics and its applications such as analysis on groups
[19], stochastic differential geometry [6], statistics [5] and engineering [4].

In this paper we focus on the important question concerning when a probability
measure on a compact group has a regular density with respectto Haar measure. We
begin by reviewing work from [1] where Peter-Weyl theory is used to find a necessary
and sufficient condition for such a measure to have a square-integrable density. This
condition requires the convergence of an infinite series of terms that are formed from
the (non-commutative) Fourier transform of the measure in question. We also describe
a related result from [2] where it is shown that square-integrability of the measure
is a necessary and sufficient condition for the associated convolution operator to be
Hilbert-Schmidt (and hence compact) on theL2-space of Haar measure.

In the second part of our paper we turn our attention to measures with smooth
densities. A key element of our approach is the important insight of Hermann Weyl
that the unitary dual̂G of the groupG can be parameterised by the space of highest
weights. This effectively opens up̂G to investigation by standard analytical methods.
We introduce Suguira’s space of rapidly decreasing functions of weights which was
shown in [18] to be topologically isomorphic toC∞(G). We are then able to prove that
a probability measure has a smooth density if and only if its Fourier transform lives in
Suguira’s space. This improves on results of [3] where the Sobolev embedding theorem
was used to find sufficient conditions for such a density to exist.

In the last part of the paper we give a brief application to statistical inference.
In [13], Kim and Richards have introduced an estimator for the density of a signal on
the group based on i.i.d. (i.e. independent and identicallydistributed) observations
of the signal after it has interacted with an independent noise. To obtain fast rates of
convergence to the true density, the noise should be in a suitable “smoothness class”
where smoothness is here measured in terms of the decay of theFourier transform of the
measure. We show that the “super-smooth” class is smooth in the usual mathematical
sense.
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2. Fourier Transforms of Measures on Groups

Throughout this paperG is a compact connected Lie group with neutral elemente and
dimensiond, B(G) is the Borelσ-algebra ofG andP (G) is the space of probability
measures on(G,B(G)), equipped with the topology of weak convergence. The role of
the uniform distribution onG is played bynormalised Haar measure m∈ P (G) and
we recall that this is a bi–invariant measure in that

m(Aσ) = m(σA) = m(A),

for all A∈ B(G),σ ∈ G. We will generally writem(dσ) = dσ within integrals.

Our main focus in this paper is thoseρ ∈ P (G) that are absolutely continuous
with respect tom and so they have densitiesf ∈ L1(G,m) satisfying

ρ(A) =
∫

A
f (σ)dσ,

for all A∈ B(G).

A key tool which we will use to study these measures is the non-commutative
Fourier transform which is defined using representation theory. We recall some key
facts that we need. A good reference for the material below about group representa-
tions, the Peter-Weyl theorem and Fourier analysis of square-integrable functions is
Faraut [7].

If H is a complex separable Hilbert space thenU(H) is the group of all unitary
operators onH. A unitary representationof G is a strongly continuous homomorphism
π from G toU(Vπ) for some such Hilbert spaceVπ. So we have for allg,h∈ G,:

• π(gh) = π(g)π(h),

• π(e) = Iπ (whereIπ is the identity operator onVπ),

• π(g−1) = π(g)−1 = π(g)∗.

π is irreducible if it has no non-trivial invariant closed subspace. Every group
has a trivial representationδ acting onVδ =C by δ(g) = 1 for all g∈ G and it is clearly
irreducible. Theunitary dualof G,Ĝ is defined to be the set of equivalence classes
of all irreducible representations ofG with respect to unitary conjugation. We will
as usual identify each equivalence class with a typical representative element. AsG
is compact, for allπ ∈ Ĝ,dπ := dim(Vπ) < ∞ so that eachπ(g) is a unitary matrix.
Furthermore in this casêG is countable.

For eachπ ∈ Ĝ, we define co-ordinate functionsπi j (σ) = π(σ)i j with respect to
some orthonormal basis inVπ.

THEOREM1 (Peter-Weyl).The set{
√

dππi j ,1≤ i, j ≤ dπ,π ∈ Ĝ} is a complete
orthonormal basis for L2(G,C).

The following consequences of Theorem 1 are straightforward to derive using
Hilbert space arguments.
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COROLLARY 1. For f ,g∈ L2(G,C)

• Fourier expansion.

f = ∑
π∈Ĝ

dπtr( f̂ (π)π),

where f̂ (π) :=
∫

G f (σ−1)π(σ)dσ is the Fourier transform of f .

• The Plancherel theorem.

|| f ||2 = ∑
π∈Ĝ

dπ||| f̂ (π)|||2

where||| · ||| is the Hilbert-Schmidt norm|||T||| := tr(TT∗)
1
2 .

• The Parseval identity.

〈 f ,g〉= ∑
π∈Ĝ

dπtr( f̂ (π)ĝ(π)∗).

If µ∈ P (G) we define itsFourier transformµ̂ to be

µ̂(π) =
∫

G
π(σ−1)µ(dσ),

for eachπ ∈ Ĝ. For example ifεe is a Dirac mass ate thenε̂e(π) = Iπ and

m̂(π) =
{

0 if π 6= δ
1 if π = δ . If µ has a densityf thenµ̂= f̂ as defined in Corollary

1. If we takeG to be thed-torusTd then Ĝ is the dual groupZd and the Fourier
transform is precisely the usual characteristic function of the measureµ defined by
µ̂(n) =

∫
Td e−in·xµ(dx) for n ∈ Zd, where· is the scalar product. Note that any non-

trivial compact connected abelian Lie group is isomorphic toTd for somed ∈ N.

Fourier transforms of measures on groups have been studied by many authors,
see e.g. [12, 10, 9, 16] where proofs of the following basic properties can be found.

For allµ,µ1,µ2 ∈ P (G),π ∈ Ĝ,

1. µ̂1∗µ2(π) = µ̂2(π)µ̂1(π),

2. µ̂ determinesµ uniquely,

3. ||µ̂(π)||∞ ≤ 1, where|| · ||∞ denotes the operator norm inVπ.

4. Let (µn,n∈ N) be a sequence inP (G). µn → µ (weakly) if and only ifµ̂n(π)→
µ̂(π) asn→ ∞.
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Remark. Most authors definêµ(π)=
∫

G π(σ)µ(dσ). This has the advantage that
Property 1 above will then read̂µ1∗µ2(π) = µ̂1(π)µ̂2(π) but the disadvantage that ifµ
has densityf thenµ̂(π) = f̂ (π)∗. It is also worth pointing out that the Fourier transform
continues to make sense and is a valuable probabilistic toolin the case whereG is a
general locally compact group (see e.g. [10, 9, 16].)

3. Measures with Square-Integrable Densities

In this section we examine the case whereµ has a square-integrable density. The fol-
lowing result can be found in [1] and so we only sketch the proof here.

THEOREM 2. The probability measure µ has an L2-density fµ if and only if

∑
π∈Ĝ

dπ|||µ̂(π)|||2 < ∞.

In this case
fµ = ∑

π∈Ĝ

dπtr(µ̂(π)π(·)).

Proof. Necessity is straightforward. For sufficiency defineg :=∑π∈Ĝdπtr(µ̂(π)π).
Then g ∈ L2(G,C) and by uniqueness of Fourier coefficientsĝ(π) = µ̂(π). Using
Parseval’s identity, Fubini’s theorem and Fourier expansion, we find that for each
h∈C(G,C):

∫
G

h(σ)g(σ)dσ = ∑
π∈Ĝ

dπtr(ĥ(π)µ̂(π)∗) =
∫

G
h(σ)µ(dσ).

This together with the Riesz representation theorem implies thatg is real valued and
g(σ)dσ = µ(dσ). The fact thatg is non-negative then follows from the Jordan decom-
position for signed measures. �

See [1] for specific examples. We will examine some of these inthe next section
from the finer point of view of smoothness.

To study random walks and Lévy processes inG we need the convolution oper-
atorTµ in L2(G,C) associated toµ∈ P (G) by

(Tµ f )(σ) :=
∫

G
f (στ)µ(dτ),

for f ∈ L2(G,C),σ ∈ G. For exampleTµ is the transition operator corresponding to the
random walk(µ∗n,n∈ N). The following properties are fairly easy to establish.

• Tµ is a contraction.

• Tµ is self-adjoint if and only ifµ is symmetric, i.e.µ(A) = µ(A−1) for all A ∈
B(G).
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The next result is established in [2].

THEOREM 3. The operator Tµ is Hilbert-Schmidt if and only if µ has a square-
integrable density.

Proof. Sufficiency follows from the standard representation of Hilbert-Schmidt
operators inL2-spaces. For necessity, suppose thatTµ is Hilbert-Schmidt. Then it has
a kernelk∈ L2(G×G) and

(Tµ f )(σ) =
∫

G
f (τ)kµ(σ,τ)dτ.

In particular for eachA∈ B(G),

µ(A) = Tµ1A(e) =
∫

A
kµ(e,τ)dτ.

It follows thatµ is absolutely continuous with respect tomwith density fµ = kµ(e, ·).�

Let (µt , t ≥ 0) be a weakly continuous convolution semigroup inP (G) and write
Tt := Tµt . Then(Tt , t ≥ 0) is a strongly continuous contraction semigroup onL2(G,C)
(see e.g. [11, 10, 14, 2].)

COROLLARY 2. The linear operator Tt is trace-class for all t> 0 if and only if
µt has a square-integrable density for all t> 0.

Proof. For eacht > 0, if µt has a square-integrable density thenTt = Tt
2
Tt

2
is

the product of two Hilbert-Schmidt operators and hence is trace class. The converse
follows from the fact that every trace-class operator is Hilbert-Schmidt. �

If for t > 0,µt has a square-integrable density and is symmetric, then by Theo-
rem 3,Tt is a compact self-adjoint operator and so has a discrete spectrum of positive
eigenvalues 1= e−tβ1 > e−tβ2 > · · ·> e−tβn → 0 asn→ ∞. Furthermore by Corollary
2, Tt is trace class and

Tr(Tt) =
∞

∑
n=1

e−tβn < ∞.

Further consequences of these facts including the application to small time asymptotics
of densities can be found in [2, 3].

4. Sugiura Space and Smoothness

In this section we will review key results due to Sugiura [18]which we will apply to
densities in the next section. In order to do this we need to know about weights on Lie
algebras and we will briefly review the necessary theory.
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4.1. Weights

Let g be the Lie algebra ofG and exp :g→ G be the exponential map. For each finite
dimensional unitary representationπ of G we obtain a Lie algebra representationdπ by

π(exp(tX)) = etdπ(X) for all t ∈ R.

Eachdπ(X) is a skew-adjoint matrix onVπ and

dπ([X,Y]) = [dπ(X),dπ(Y)],

for all X,Y ∈ g. A maximal torusT in G is a maximal commutative subgroup ofG. Its
dimensionr is called the rank ofG. Here are some key facts about maximal tori.

• Any σ ∈ G lies on some maximal torus.

• Any two maximal tori are conjugate.

Let t be the Lie algebra ofT. Then it is a maximal abelian subalgebra ofg. The matri-
ces{dπ(X),X ∈ t} are mutually commuting and so simultaneously diagonalisable, i.e.
there exists a non-singular matrixQ such that

Qdπ(X)Q−1 = diag(iλ1(X), . . . , iλdπ(X)).

The distinct real-valued linear functionalsλ j on t are called theweightsof π.

Let Ad be the adjoint representation ofG on g. We can and will choose anAd-
invariant inner product(·, ·) on g. This induces an inner product on t∗ the algebraic
dual of t which we also write as(·, ·). We denote the corresponding norm by| · |. The
weights of the adjoint representation acting ong equipped with(·, ·) are called the
roots of G. Let P be the set of all roots ofG. We choose a convention for positivity
of roots as follows. Pickv ∈ t such thatP ∩ {η ∈ t∗;η(v) = 0} = /0. Now define
P+ = {α ∈ P ;α(v) > 0}. We can always find a subsetQ ⊂ P+ so thatQ forms a
basis for t∗ and everyα ∈ P is an linear combination of elements ofQ with integer
coefficients, all of which are either nonnegative or nonpositive. The elements ofQ are
calledfundamental roots.

It can be shown that every weight ofπ is of the form

µπ = λπ − ∑
α∈Q

nαα

where eachnα is a non-negative integer andλπ is a weight ofπ called thehighest
weight. Indeed ifµπ is any other weight ofπ then|µπ| ≤ |λπ|. The highest weight of a
representation is invariant under unitary conjugation of the latter and so there is a one-
to-one correspondence betweenĜ and the space of highest weightsD of all irreducible
representation ofG. We can thus parameterisêG by D and this is a key step for Fourier
analysis on nonabelian compact Lie groups. In factD can be given a nice geometrical
description as the intersection of the weight lattice with the dominant Weyl chamber,
but in order to save space we won’t pursue that line of reasoning here. From now on we
will use the notationdλ interchangeably withdπ to denote the dimension of the space
Vπ whereπ ∈ Ĝ has highest weightλ. For a more comprehensive discussion of roots
and weights, see e.g. [8] and [17].
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4.2. Sugiura Theory

The main result of this subsection is Theorem 4 which is proved in [18].

Let Mn(C) denote the space of alln× n matrices with complex entries and
M (G) :=

⋃
λ∈D Md(λ)(C). We define theSugiura space of rapid decreaseto beS(D) :=

{F : D →M (G)} such that

(i) F(λ) ∈ Md(λ)(C) for all λ ∈ D,

(ii) lim |λ|→∞ |λ|k|||F(λ)|||= 0 for all k∈ N.

S(D) is a locally convex topological vector space with respect tothe seminorms
||F ||s= supλ∈D |λ|s|||F(λ)|||, wheres≥ 0. We also note thatC∞(G) is a locally convex
topological vector space with respect to the seminorms|| f |U = supσ∈G |U f (σ)| where
U ∈ U(g), which is the universal embedding algebra ofg acting onC∞(G) as poly-
nomials in left-invariant vector fields onG, as described by the celebrated Poincaré-
Birkhoff-Witt theorem.

THEOREM 4. [Sugiura] There is a topological isomorphism between C∞(G)

andS(D) which maps each f∈C∞(G) to its Fourier transformf̂ .

We list three useful facts that we will need in the next section. All can be found
in [18].

• Weyl’s dimension formulastates that

dλ =
∏α∈P+(λ+ρ,α)

∏α∈P+(ρ,α)
,

whereρ := 1
2 ∑α∈P+ is the celebrated “half-sum of positive roots”. From here

we can deduce a highly useful inequality. Namely there exists N > 0 such that

(1) dλ ≤ N|λ|m

wherem := #P+ = 1
2(d− r).

• Sugiura’s zeta functionis defined by

ζ(s) = ∑
λ∈D−{0}

1
|λ|s

and it converges ifs> r.

• Let (X1, . . . ,Xd) be a basis for̂G and let∆ ∈U(g) be the usual Laplacian onG
so that

∆ =
d

∑
i, j=1

gi j XiXj
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where(gi j ) is the inverse of the matrix whose(i, j)th component is(Xi ,Xj).
We may consider∆ as a linear operator onL2(G) with domainC∞(G). It is
essentially self-adjoint and

∆πi j =−κππi j

for all 1 ≤ i, j ≤ dπ,π ∈ Ĝ, whereκδ = 0 andπ 6= δ ⇒ κπ > 0. The numbers
(κπ,π ∈ Ĝ} are called theCasimir spectrumand if λπ is the highest weight cor-
responding toπ ∈ Ĝ then

κπ = (λπ,λπ +2ρ).

From here we deduce that there existsC> 0 such that

(2) |λπ|2 ≤ κπ ≤C(1+ |λπ|2).

4.3. Smoothness of Densities

We can now establish our main theorem.

THEOREM 5. µ∈ P (G) has a C∞ density if and only ifµ̂∈ S(D).

Proof. Necessity is obvious. For sufficiency its enough to showµ has anL2-
density. Chooses> r so that Suguira’s zeta function converges. Then using Theorem
2 and (1) we have

∑
λ∈D−{0}

dλ|||µ̂λ|||2 ≤ N ∑
λ∈D−{0}

|λ|m|||µ̂λ|||2

≤ N sup
λ∈D−{0}

|λ|m+s|||µ̂λ|||2 ∑
λ∈D−{0}

1
|λ|s

< ∞. �

We now investigate some classes of examples. We say thatµ∈ P (G) is central
if for all σ ∈ G,

µ(σAσ−1) = µ(A).

By Schur’s lemmaµ is central if and only if for eachπ ∈ Ĝ there existscπ ∈ C such
that

µ̂(π) = cπIπ.

Clearly m is a central measure. A standard Gaussian measure onG is central

where we say that a measureµ onG is astandard Gaussianif it can be realised asµ(B)1

in the convolution semigroup(µ(B)t , t ≥ 0) corresponding to Brownian motion onG (i.e.
the associated Markov semigroup of operators is generated by 1

2σ2∆ whereσ > 0.) For
a more general notion of Gaussianity see e.g. [10], section 6.2. To verify centrality,
take Fourier transforms of the heat equation to obtainµ̂(π) = e−

1
2σ2κπ Iπ for eachπ ∈ Ĝ.
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Following [3] we introduce a class of central probability measures onG which
we call theCIDR(G) classas they arecentral and are induced byinfinitely divisible
measures onR. Let ρ be a symmetric infinitely divisible probability measure onR so
we have the Lévy-Khintchine formula

∫
R

eiuxρ(dx) = e−η(u) for all u∈ R

whereη(u) =
1
2

σ2u2+
∫
R−{0}

(1−cos(u))ν(du),

with σ ≥ 0 andν a Lévy measure, i.e.
∫
R−{0}(1∧u2)ν(du)< ∞ (see e.g. [15].) We say

µ∈CIDR(G) if there existsη as above such that

µ̂(π) = e−η(κ
1
2
π )Iπ for eachπ ∈ Ĝ.

Examples of such measures are obtained bysubordination[15]. So let(γ f
t , t ≥ 0) be a

subordinator with Bernstein functionf so that for allu≥ 0
∫ ∞

0
e−usγ f

t (ds) = e−t f (u).

Let (µ(B)t , t ≥ 0) be a Brownian convolution semigroup onG (with σ =
√

2) so that
for eachπ ∈ Ĝ µ̂t(π) = e−tκπ Iπ. then we obtain a convolution semigroup of measures
(µf

t , t ≥ 0) in CIGR(G) by

µf
t (A) =

∫ ∞

0
µ(B)s (A)γ f

t (ds)

for eachA∈ B(G) and we have

µ̂f
t (π) = e−t f (κ(π))Iπ.

Examples (where we have takent = 1):

• Laplace Distributionf (u) = log(1+β2u),

µ̂(π) = (1+β2κπ)
−1Iπ.

• Stable-like distributionf (u) = bαu
α
2 (0< α < 2),

µ̂(π) = e−bακ
α
2

π Iπ.

We now apply Theorem 5 to present some examples of measures intheCIGR

class which have smooth densities (and one that doesn’t).

Example 1.η general withσ 6= 0 (i.e. non-vanishing Gaussian part)
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Using (1) and (2) we obtain

lim
|λ|→∞

|λ|k|||µ̂(λ)||| = lim
|λ|→∞

|λ|ke−ηκ
1
2
π d

1
2
λ

≤ lim
|λ|→∞

|λ|ke− σ2
2 κλd

1
2
λ

≤ N
1
2 lim
|λ|→∞

|λ|k+m
2 e−

σ2
2 |λ|2 = 0.

Example 2. Stable like laws are allC∞ by a similar argument.

Example 3. The Laplace distribution is notC∞. But it is L2 if r = 1 (e.g.
SO(3),SU(2),Sp(1).)

5. Deconvolution Density Estimation

We begin by reviewing the work of Kim and Richards in [13]. LetX,Y and ε be
G-valued random variables withY = Xε. Here we interpretX as a signal,Y as the ob-
servations andε as the noise which is independent ofX. If all three random variables
have densities, then with an obvious notation we havefY = fX ∗ fε. The statistical prob-
lem of interest is to estimatefX based on i.i.d. observationsY1, . . . ,Yn of the random
variableY. We assume that the matrix̂fε(π) is invertible for allπ ∈ Ĝ. Our key tool

is theempirical characteristic function̂fY
(n)
(π) := 1

n ∑n
i=1 π(Y−1

i ). We then define the
non-parametric density estimator(with smoothing parametersTn → ∞ asn → ∞) for
σ ∈ G,n∈ N:

f (n)X (σ) := ∑
π∈Ĝ:κπ<Tn

dπtr(π(σ) f̂Y
(n)
(π) f̂ε(π)−1).

The noiseε is said to besuper-smoothof orderβ > 0 if there existsγ > 0 and
a1,a2 ≥ 0 such that

|| f̂ε(π))−1||∞ = O(κ−a1
π exp(γκβ

π)) and|| f̂ε(π)||∞ = O(κa2
π exp(−γκβ

π))

asκπ → ∞. For example a standard Gaussian is super-smooth withai = 0 (i = 1,2).

For p> 0, the Sobolev spaceHp(G) := { f ∈ L2(G); || f ||p < ∞} where|| f ||2p =
∑π∈Ĝdπ(1+κπ)

p||| f̂ (π)|||2.

THEOREM6 (Kim, Richards).If fε super-smooth of orderβ and|| fX||Hs(G) ≤K

for some s> d
2 where K> 1 then the optimal rate of convergence of f(n)

X to fX is

(log(n))−
s

2β .

A natural question to ask is “how smooth is super-smooth?" and we answer this
as follows:
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PROPOSITION1. If f is super-smooth then it is smooth.

Proof. For sufficiently largeκπ and using (1) and (2) we find that

there existsC> 0 such that

||| f̂ (π)||| ≤ || f̂ (π)||∞|||Iπ|||

= d
1
2
π || f̂ (π)||∞

≤ N
1
2 |λπ|

m
2 Cκa2

π exp(−γκβ
π)

≤ K|λπ|
m
2 (1+ |λπ|2)a2 exp(−γ|λπ|2β)

from which it follows that f̂ ∈ S(D) and the result follows by Theorem 5.�.
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Ya. Belopolskaya∗ and W.A. Woyczynski

SDES, FBSDES AND FULLY NONLINEAR PARABOLIC

SYSTEMS

Abstract. In this article we describe two probabilistic approaches toconstruction of the
Cauchy problem solution for a class of nonlinear parabolic systems. Namely, we describe
probabilistic models associated with classical and viscosity solutions and use them to state
conditions on the problem data that ensure the existence anduniqueness of the required
solution of the PDE system.

Introduction

Systems of nonlinear second order parabolic equations appear in various fields of con-
trol theory, differential geometry, financial mathematicsand others. Here we consider
a class of nonlinear PDEs of the form

(1)
∂ul

∂s
+[Bu]l +g= 0, ul (T,x) = u0l (x), l = 1, . . . ,d1, where

[Bu]l = ai∇iul +
1
2

TrA∗∇2ul A+Bi
lm∇ium+clmum

and all coefficientsa,A,B,c and a scalar functiong depend onx,u,∇u and∇2ul . A is
an invertible operator and∗ denotes the transposition.

Here and below we assume a common convention about summationover all
repeating indices if the contrary is not mentioned.

We call a system (1) semilinear whena,A,B,c andg depend onx,u, quasilinear
when these parameters depend onx,u,∇u and fully nonlinear when they depend on
x,u,∇u and∇2u.

A construction of a stochastic problem associated with (1) strictly depends on
our understanding of a solution to a system, namely, on our intention to construct a
strong, weak or viscosity solution. In this paper we give some new results concerning
strong and viscosity solutions of (1) constructed via stochastic approaches.

1. Probabilistic approach to a strong solution of the Cauchyproblem for a PDE
system

Let (Ω,F ,P) be a probability space,w(t) ∈ Rd be a Wiener process defined on it and
Ft be a flow generated byw(t).

∗The first author gratefully acknowledges the financial support of RRBR Grant 12-01-00457-a and
project 1.370.2011 Minobrnauki.
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To construct a strong solution to (1) in a semilinear case we consider a stochastic
problem of the form

(2) dξ(t) = a(ξ(t),u(t,ξ(t))dt+A(ξ(t),u(t,ξ(t))dw(t), ξ(s) = x∈ R
d,

(3)
dη(t) = c(ξ(t),u(t,ξ(t))η(t)dt+C(ξ(t),u(t,ξ(t))(η(t),dw(t)), η(s) = h∈ R

d1,

(4) 〈h,u(s,x))〉= E[〈η(T),u0(ξ(T))〉+
∫ T

s
〈η(θ),g(ξ(θ),u(θ,ξ(θ)))〉],

whereBl
im =Cl

kmAk
i and〈h,u〉= ∑d1

k=1hkuk denotes the inner product inRd1.

Actually, we can setγ(t) = (ξ(t),η(t)) and present (2),(3) in the form

(5) dγ(t) = nu(γ(t))dt+Nu(γ(t))dW(t)), γ(s) = γ,

whereW(t) = (w(t),w(t))∗, nu(γ(t)) = n(γ(t),u(t,γ(t)), Nu(γ(t)) = N(γ(t),u(t,γ(t)),
and

Nu(x,h) =

(
A(x,u) 0

0 C(x,u)h

)
, nu(x,h) =

(
a(x,u) 0

0 c(x,u)h

)
.

Let X =Rd,Y =Rd1, Md =Rd⊗Rd, a(x,u)∈Rd,A(x,u)∈ Md, c(x,u)∈ Md1,
C(x,u) ∈ Md1 ⊗Rd providedx∈ X,u∈Y. We sayC 1,k holds if

i) a,A have sublinear growth inx∈Rd, c,C gandu0 are bounded inx and all of
them butu0 have polynomial growth inu∈ Rd1;

ii) a,A,c,C andu0,g areCk-smooth in all arguments in correspondent norms.

THEOREM1. AssumeC 1,1 holds. Then there exists a unique solution of (2)-(4).

Let C 1,k hold,k≥ 1. Along with (2),(3) we consider

(6) dζ(t) = ∇au(ξ(t))ζ(t)dt+∇Au(ξ(t))(ζ(t),dw(t)), ζ(s) = I ,

(7) dκ(t) = cu(ξ(t)κ(t)dt+Cu(ξ(t)(κ(t),dw(t))+

∇cu(ξ(t))(ζ(t),η(t))dt+∇Cu(ξ(t))(ζ(t),η(t),dw(t)), κ(s) = 0,

(8) 〈h,∇yu(s,x)〉= E[〈η(T),∇ζ(T)u0(ξ(T))〉+ 〈κ(T),u0(ξ(T))〉|Fs]+

E

[∫ T

s
[〈η(θ),∇ζ(θ)g(ξs,x(θ),u(θ,ξs,x(θ)))〉+ 〈κ(θ),g(ξ(θ),u(θ,ξ(θ)))〉]dθ|Fs

]
.

THEOREM 2. Let C 1,3 hold. Then there exists an interval[T1,T] on which the
Cauchy problem (1) has a unique solution u(s,x) which admits a probabilistic repre-
sentation of the form (4).
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In addition, ifN 1,2 is the set of scalar functions of the form

Ψ(s,x,h) = 〈h,u(s,x)〉

defined on[0,T]×X ×Y, differentiable ins∈ [0,T], and twice differentiable inz∈
X×Y, then a solution to (2) belongs toN 1,2 if Ψ0 ∈N 1,2.

Providedu(s,x) is a classical solution of (1), we can check thatΦ(s,x,h) =
〈h,u(s,x)〉 given by (4) satisfies the scalar Cauchy problem,

(9)
∂Φ
∂s

+ 〈n(γ),∇Φ〉+ 1
2

TrN∗(γ)∇2ΦN(γ)+G(γ,u) = 0, Φ(T,γ) = 〈h,u0(x)〉

w.r.t. Φ(t,γ) = 〈h,u(s,x)〉,γ = (x,h), whereG= 〈h,g〉.
Moreover, we can show that systems (2)-(4), (6)-(8), and (2)-(4) have a similar

structure. To this end we setΘ = Y⊕X ⋄Y, and letγ = (γ1,γ2) ∈ Θ have the form
γ1 = κ,γ2 = y⋄h. Then one can treat (2)-(4), (6)-(8) as a system that consists of (2) and

(10) dλ(t) = m(ξ(t))λ(t)dt+M(ξ(t))(λ(t),dW̃(t)), λ(s) = λ ∈ Θ.

HereW̃(t) = (w(t),w(t)⋄w(t))∗ and the coefficients have the form

m(x)

(
κ

ζ⋄η

)
=

(
c(x) ∇̂c(x)

0 ∇a(x)⊕c(x)

)(
κ

ζ⋄η

)
,

M(x)

(
κ

ζ⋄η

)
=

(
C(x) ∇̂C(x)

0 ∇M (x)⊕C(x)

)(
κ

ζ⋄η

)
,

where∇̂c(x)ζ⋄η = ∇c(x)(ζ,η), ∇̂C(x)ζ⋄η = ∇C(x)(ζ,η).
Along with (1) we will consider the Cauchy problem

(11)
∂vl

i

∂s
+[B(x)v]li +[[∇iB ]u]

l +∇gl (x,u) = 0, vl
i (T,x) = ∇iu

l
0(x)

w.r.t. vl
i = ∇iul , where[[∇iB ]u]l = vl

k∇iak(x)+Tr∇iA(x)∇vl A(x)+∇iBlk
mvm

k +∇icl
mum.

Here∇ig(x,u) = g1
i (x,u)+g2

m(x,u)∇ium and, givenα = (α1, . . . ,αk), we use nota-

tion g j
m(α) = ∂gm(α)

∂α j
, j = 1, . . . ,k. Actually, the system (1),(11) is a semilinear system

w.r.t. V(t,x) = (u(t,x),∇u(t,x)). This together with (10) allows us to apply the above
theorems to construct solutions both to SDEs (2), (10) and tothe Cauchy problem (1),
(11).

Note that another useful way to view (2),(3), (6),(7) is to consider them as an
SDE system w.r.t. components of a processβ(t) = (χ(t),ν(t)), where the processes
χ(t) andν(t) satisfy SDEs

(12) dχ(t) = b(χ(t))dt+B(χ(t))dW(t), χ(s) = χ = (x,y) ∈ H1,

(13) dν(t) = q(χ(t))ν(t)dt+Q(χ(t))ν(t)dW(t), ν(s) = ν = (0,h) ∈ H2,
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where

q(χ)
(

κ
h

)
=

(
c(x)κ

∇yc(x)h

)
, Q(χ)

(
κ
h

)
=

(
C(x)κ

∇yC(x)h

)
,

andb(χ) = (a(x),∇yA)∗,B(χ) = (A(x),∇yA(x))∗.

All the above constructions can be extended to the case when coefficientsa, A,
c, C, and the functiong, depend onx,u,∇u, and even∇2u. This allows us to include
a quasilinear or fully nonlinear system of the form (1) into asemilinear system with a
similar structure w.r.t. a functionU = (u,∇u,∇2u) or U = (u,∇u,∇2u,∇3u), respec-
tively, and to prove the existence and uniqueness of its solution on a small interval[τ,T]
depending on coefficients and functionsu0 andg, when they satisfyC 1,k with k= 5 or
k= 6. One can see the detailed proof of the above results in [4], [5].

2. Probabilistic approach to a viscosity solution of the Cauchy problem for a non-
linear PDE system

In this section we construct a viscosity solution of a fully nonlinear version of the
Cauchy problem (1) based on the BSDE theory developed in [6],[7] in combination
with the constructions described in the previous section.

To be more precise we first develop a modification of the approach of [7] that al-
lows us to construct a viscosity solution of a system of quasilinear parabolic equations
of the form (1) with coefficients depending onx,u,∇u andg= g(x,u,A∇u), and then
apply a differential prolongation procedure to a system of fully nonlinear parabolic
equations to include it into a system of quasilinear parabolic equations. This makes
it possible for us to apply the BSDE technique to construct a viscosity solution to a
system of fully nonlinear parabolic equations. The detailsof the corresponding con-
struction can be found in [4], [5].

Let us consider the Cauchy problem (1) in a larger system consisting of (1) and

(14)
∂vl

i

∂s
+[B(x)v]li +[[∇iB ]u]

l +∇gl (x,u,A∇u,∇2ul ) = 0, vl
i (T,x) = ∇iu

l
0(x)

w.r.t. vl
i = ∇iul , where[[∇iB ]u]l = vl

k∇iak〉+Tr∇iA∇vl A+∇iBlk
mvmk+∇icl

mum,

∇ig(x,u,A∇u,∇2ul ) = g1
i (x,u,A∇u,∇2ul )+g2

m(x,u,A∇u,∇2ul )∇ium+

g3
jm(x,u,A∇u,∇2ul )∇i(A∇u) jm+g4

lk j(x,u,∇u,∇2ul )∇2
k juli .

At this point we need to examine a fully coupled system of forward-backward
SDEs (FBSDEs) associated with (1), (14), state conditions on their coefficients and
functionsg andu0 to ensure the existence and uniqueness of a solution to the resulting
FBSDE system and, finally, check that our results lead to construction of a viscosity
solution of (1).

Let V(s,x,y) = (u(s,x), p(s,x,y)), p(s,x,y) = 〈y,∇u(s,x)〉. Then (1), (14) may
be rewritten as



FBSDEs and nonlinear parabolic systems 213

(15)
∂Vm

∂s
+GVm+Ĉi

lmM
k
i ∇kVl + ĉlmVl +Gm(x,y,V,∇V) = 0, where

(16) GVm =
1
2

TrM ∗(x,V,∇V)∇2VmM (x,V,∇V)+ 〈m(x,V,∇V),∇Vm〉,

m=

(
a
a

)
,

1
2
[M ∗M ] jk =

(
A jk +

∂g
∂q jk

0

0 A jk +
∂g

∂q jk

)
,

G(x,y,V,∇Vl ) =

(
g(x,u, p,∇pl )

g1(x,y,u, p,∇pl )

)
,

andĈ, ĉ depend onC,c,a,A and their derivatives.

Assume thatC 1,2 holds. Then (1) and (15) have similar structures.

Consider the Cauchy problem for (15) with the Cauchy data

(17) V(T,x,y) =V0(x,y) = (u0(x),∇yu0(x)).

SetH1 = X×X, H2 =Y×Y, H3 = M×MX andχ(t) = (ξ(t),ζ(t)) ∈ H1,
β(t) = (η(t),κ(t)) ∈ H2, Y(t) = (y(t), p(t)) ∈ H2, Z(t) = (p(t),q(t)) ∈ H3.

Assume thatλ(t) satisfies an equation of the form (10) associated with (15),
(17). Consider a stochastic processΠ(t) = Φ(t,β(t)), where

Φ(t,β(t)) = Φh
1(t,ξ(t))+Φh

2(t,χ(t)) =

[〈η(t),u0(ξ(t))〉]+ [〈κ(t),u0(ξ(t))〉+ 〈η(t),∇ζ(t)u0(ξ(t))〉]

and notice thatΦh
2(t,χ(t)) is linear inh andy. From Ito’s formula, and (12), we deduce

that the stochastic differential of the processỸ(t) = Φh
2(t,χ(t)) = 〈ν(t),V(t,χ(t))〉 has

the form

(18) dỸ(t) =−G̃(χ(t),V(t,χ(t)),∇V(t,χ(t))ζ(t))dt+

〈∇Φh
2(t,χ(t)),M (χ(t))dW(t)〉,

whereG(χ,V,∇V) = (g(x,u,∇u,∇2u),∇yg(x,u,∇u,∇2u),

G̃(χ(t),V(t,χ(t)),∇ζ(t)V(t,χ(t)) = 〈β,Ξ∗(s, t)G(χ(t),V(t,χ(t)),∇ζ(t)V(t,χ(t)))〉,

and

(19) 〈∇Φ2(t,χ(t)),M (t,χ(t))dW(t)〉= 〈∇C(ξ(t))(ζ(t),η(t),dw(t)),u(t,ξ(t))〉+

〈C(ξ(t))(κ(t),dw(t)),u(t,ξ(t))〉+ 〈η(t),∇u(t,ξ(t))∇M (ξ(t))(ζ(t),dw(t))〉.
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We deduce from (18), (19) that the processỸ(t) satisfies

(20) dỸ(t) =−G̃(χ(t),Ỹ(t), Z̃(t))dt+ 〈Z̃(t),dW(t)〉, Ỹ(T) = 〈β(T),V0(χ(T))〉,

and the processesY(t) = (Y1(t),Y2(t)),Z(t) = (Z1(t),Z2(t)) defined by

Ỹ(t) = 〈β(t),Y(t)〉= 〈β,Ξ∗(s, t)Y(t)〉= 〈κ(t),Y1(t)〉+ 〈η(t),Y2(t)〉=

〈κ,Ξ∗
1(s, t)Y1(t)〉+ 〈h,Ξ∗

2(s, t)Y2(t)〉, Z̃(t) = 〈β,Z(t)〉
satisfy the BSDE

(21) dY(t) =−G(χ(t),Y(t),Z(t))dt+ZdW(t), Y(T) = Ξ∗(s,T)V0(χ(T)).

Finally, we deduce that one can associate with (15), (17) thefollowing FBSDEs
w.r.t. Ft-measurable stochastic processesχ(t) = (ξ(t),ζ(t))∈ H1, Y(t) = (y(t), p(t))∈
H2, Z(t) = (p(t),q(t)) ∈ H3 = M×MX,

(22) dχ(t) = b(χ(t),Y(t),Z(t))dt+B(χ(t),Y(t),Z(t))dW(t), χ(s) = χ ∈ H1,

(23) dY(t) =−G(χ(t),Y(t),Z(t))dt+Z(t)dW, α =Y(T) = (α1,α2) ∈ H2.

Hereb= (a,∇A),B= (A,∇A), G= (g,g1) ∈ H2, andY(T) isFT -measurable.

LetM 2([0,T];Rd) denote the set of progressively measurable square integrable

stochastic processesξ(t) ∈ Rd, E
[∫ T

0 ‖ξ(τ)‖2dτ
]
< ∞, andS2([0,T],X) denote the

set of semimartingalesη(t) ∈ Rd, such thatE
[
sup0≤t≤T ‖η(t)‖2

]
< ∞.

A solution to FBSDE (22),(23) is a triple of progressively measurable processes
(χ(t),Y(t),Z(t)) in S2([0,T];H1)×S2([0,T];H2)×M 2([0,T];H3) such that

(24) χ(t) = χ+
∫ t

s
b(χ(τ),Y(τ),Z(τ))dτ+

∫ t

s
B(χ(τ),Y(τ),Z(τ))dW(τ),

and

(25) Y(t) = α+
∫ t

s
G(χ(τ),Y(τ),Z(τ))dτ−

∫ t

s
Z(τ)dW(τ), 0≤ t ≤ T,

with probability 1.

Now we are in the framework of the FBSDE theory and have to consider a fully
coupled system of forward-backward stochastic equations.To prove the existence and
uniqueness of a solution to (22), (23) we need some additional conditions that allow us
to apply the technique of homotopy prolongation [8].

We say thatC 2 holds whenC 1,1 holds and the random functionF(t,Y,Z) =
G(χ(t),Y,Z) ∈ H2 satisfies the standard conditions of the BSDE theory [6] which en-
sure the existence and uniqueness of a solution to a BSDE equation

dY(t) =−F(t,Y(t),Z(t))dt+Z(t)dW, α =Y(T) ∈ H2.
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Let

H1 = {χ(t)∈H1 : E sup
t∈[0,T]

‖χ(t)‖2 <∞}, H2 = {Y(t)∈H2 : E sup
t∈[0,T]

‖Y(t)‖2 <∞},

H3 = {Z(t) ∈ H3 : E
∫ T

0
|Z(t)|2dt < ∞}, H =H1×H2×H3

and‖ · ‖H denote the norm inH , that is, ifΘ = (χ,Y,Z) ∈H , then

‖Θ‖2
H = E

[
sup
[0,T]

‖χ(t)‖2+ sup
[0,T]

‖Y(t)‖2+
∫ T

0
|Z(t)|2dt

]
.

Denote byD =H1×H2×H3,D =M 2(0,T;D)∩H and, forΘ = (χ,κ,υ)∈ D,
let ϒ(Θ) = (−F(Θ),b(Θ),B(Θ)). We say thatC 3 holds if there exists a constantC> 0
such that functionsϒ : D → D andV0 satisfy the estimates

‖ϒ(Θ)−ϒ(Θ1)‖D ≤C‖Θ−Θ1‖D, ∀Θ,Θ1 ∈ D, P−a.s.

‖V0(χ)−V0(χ1)‖ ≤C‖χ−χ1‖, ∀χ,χ1 ∈ H1 P−a.s..

We say thatC 4 holds if there exists a constantC1 > 0 such that

〈〈ϒ(Θ)−ϒ(Θ1),Θ−Θ1〉〉 ≤ −C1‖χ−χ1‖2, ∀χ,χ1 ∈ H1,P−a.s.,

where〈〈·, ·〉〉 is an inner product iñD and

〈V0(χ)−V0(χ1),N[χ−χ1]〉 ≥C1‖χ−χ1‖2 χ,χ1 ∈ H1,P−a.s.

Let us start with a simple case as the starting point in the homotopy construction.

LEMMA 1. Let (b0,F0,B0) ∈D, κ0 ∈ L2(Ω,FT ,P). Then there exists a unique
solution(χ,Y,Z) ∈D of FBSDE

(26) dχ(t) = [Y(t)−b0(t)]dt+[Z(t)−B0(t)]dw(t), χ(0) = χ,

(27) dY(t) =−[F0(t)−χ(t)]dt+Z(t)dw(t), Y(T) = χ(T)+α, 0≤ t ≤ T.

Next, for a givenµ∈ [0,1], denote by

bµ(χ,Y,Z) = (1−µ)Y−µb(χ,Y,Z), Bµ(χ,Y,Z) = (1−µ)z−µB(χ,Y,Z),

Fµ(χ,Y,Z) = (1−µ)χ−µF(χ,Y,Z), Vµ
0 (χ) = µV0(χ)+(1−µ)χ.

From general results of BSDE theory and Lemma 1 we can deduce that at least for
µ= 0 there exists a unique solution of the FBSDE

(28) χ(t) = χ+
∫ t

0
[bµ(Θ(τ))−b0(τ)]dτ+

∫ t

0
[Bµ(Θ(τ))−B0(τ)]dW(τ),

(29) Y(t) = (Vµ
0 (χ(T))+κ0)−

∫ t

0
[Fµ(Θ(τ))−F0(τ)]dτ−

∫ t

0
Z(τ)dW(τ).
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LEMMA 2. Assume thatC 2-C 4 hold,(bµ,Bµ,Fµ) ∈D and, for µ= µ0 ∈ [0,1],
there exists a unique solutionΘµ0(t) = (χµ0(t),Yµ0(t),Zµ0(t)) ∈D of (28), (29). Then
there exists a constantδ0 ∈ [0,1), depending on C1,C2 and T such that there exists a
unique solution(χµ(t),Yµ(t),Zµ(t)) ∈D of (28), (29) for µ= µ0+δ, whereδ ∈ [0,δ0].

As a result we can deduce the following statement.

THEOREM 3. Assume thatC 1,1 – C 3 hold. Then there exists a unique so-
lution (χ,Y,Z) of (24)-(25). In addition, the function V(s,χ) = Y(s) is a continuous
viscosity solution of (15), V(s,χ) = (u(s,x),∇yu(s,x)) and its first component u(s,x) is
a viscosity solution of (1).

To verify thatV(s,χ) is a viscosity solution to (15) and henceu(s,x) is a vis-
cosity solution to (1) one needs comparison theorems which are well known for scalar
equations but are much less known for the case of nondiagonalsystems. Actually, we
can overcome this difficulty due to the special structure of the systems under considera-
tion, and our ability to reduce them to scalar equations in a new phase space (described
in Section 1).

Finally, applying Ito’s formula, it is not difficult to checkthat the following
inequalities hold

E

(∫ τ

s
Λl (θ,χ(θ),Y(θ),Zl (θ))dθ

)
≥ 0(≤ 0),

where

Λl (s,χ,Y,Z) = [
∂Φl

∂θ
+AΦl ](s,χ)−F l (χ,Y,Z),

Φ = (φ,∇yφ), andφ(s,x) ∈ Rd is a C3- smooth function such that(s,χ) is a point,
where a local maximum (minimum) ofV l (s,χ)−Φl (s,χ), l = 1, . . . ,d2 = 2d1 is at-
tained. Combining this with the comparison results we can prove the last statement of
the theorem.
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Yu. Gliklikh ∗ and N. Vinokurova

ON THE NEWTON-NELSON TYPE EQUATIONS ON VECTOR

BUNDLES WITH CONNECTIONS

Abstract. An equation of Newton-Nelson type on the total space of vector bundle with
a connection, whose right-hand side is generated by the curvature form, is described and
investigated. An existence of solution theorem is obtained.

Introduction

In [5] (see also [6]) a certain second order differential equation on the total space of
vector bundle with a connection was constructed and investigated. In some cases it
was interpreted as an equation of motion of a classical particle in the classical gauge
field. The form of this equation allowed one to apply the quantization procedure in
the language of Nelson’s Stochastic Mechanics (see, e.g., [8, 9]). In [7] this proce-
dure was realized for the vector bundles over Lorentz manifolds with complex fibers.
The corresponding relativistic-type Newton-Nelson equation (the equation of motion
in Stochastic Mechanics) was constructed and the existenceof its solutions under some
natural conditions was proved. The results of [7] were interpreted as the description of
motion of a quantum particle in the gauge field.

In this paper we consider the analogous non-relativistic Newton-Nelson equa-
tion in the situation where the base of the bundle is a Riemannian manifold and the
fiber is a real linear space. In this case some deeper results are obtained under some
less restrictive conditions with respect to the case of [7].

We refer the reader to [2, 6] for the main facts of the geometryof manifolds and
to [4, 6] for general facts of Stochastic Analysis on Manifolds.

1. Necessary facts from the Geometry of Manifolds

Recall that for every bundleE over a manifoldM, in each tangent spaceT(m,x)E to the
total spaceE there is a special sub-spaceV(m,x), calledvertical, that consists of the
vectors tangent to the fiberEm (called also vertical). In the case of principal or vector
bundle, a connectionH on E is a collection of sub-spaces in tangent spaces toE such
that T(m,x)E = H(m,x) ⊕V(m,x) at each(m,x) ∈ E and this collection possesses some
properties of smoothness and invariance (see, e.g., [6]).

Denote byM a Riemannian manifold with metric tensorg(·, ·). LetΠ :E →M
be a principal bundle overM with a structure groupG. By g we denote the Lie algebra
of G. Let a connectionH with connection formθ and curvature formΦ = Dθ be given

∗The research is supported in part by the RFBR Grants 10-01-00143 and 12-01-00183
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on E . HereD is the covariant differential (see, e.g., [2]). Recall thatthe 1-formθ
and the 2-formΦ are equivariant and take values in the algebrag of G and thatΦ is
horizontal (equals zero on vertical vectors).

We supposeG to be a subgroup ofGL(k,R) for a certaink. Let F be ak-
dimensional real vector space, on whichG acts from the left, and let onF an inner
producth(·, ·), invariant with respect to the action ofG, be given. We suppose that a
mappinge : F → g∗ (whereg∗ is the co-algebra) having constant values on the orbits
of G, is given. This mapping is calledcharge.

Consider the vector bundleπ : Q→M with standard fiberF , associated toE .
We denote byQm the fiber atm∈M . Consider the factorizationλ : E ×F → Q that
yields the bundleQ (see [2]). The tangent mappingTλ translates the connectionH from
the tangent spaces toE to tangent spaces toQ. This connection onQ is denoted byHπ.
Recall that the spaces of connection are the kernels of operator Kπ : TQ→ Q called
connector, that is constructed as follows. Consider the natural expansion of the tangent
vectorX ∈T(m,q)Q at(m,q)∈Q into horizontal and vertical componentsX =HX+VX,
whereHX ∈H

π
(m,q) andVX ∈V(m,q). Introduce the operatorp :V(m,q) →Qm, the natural

isomorphism of the linear tangent spaceV(m,q) = TqQm to the fiberQm of Q onto the
fiber (linear space)Qm. ThenKπX = pVX.

On the manifoldQ (the total space of bundle) we construct the Riemannian
metricgQ as follows: in the horizontal subspacesH

π we introduce it as the pull-back
Tπ∗g, in the vertical subspacesV – ash and define thatHπ areV orthogonal to each
other.

We denote the projection of tangent bundleTM to M by τ : TM → M and
by H

τ the Levi-Civita connection of metricg onM . Its connector is denoted byKτ :
T2M → TM . The construction ofKτ is quite analogous to that ofKπ whereQ is
replaced byTM andTQ by T2M = TTM .

Recall the standard construction of a connection on the total space of bundleQ,
based on the connectionsHπ andHτ (see, e.g., [3, 6]). The connectorKQ : T2Q→ TQ
of this connection has the form:KQ = KH +KV whereKH : T2Q → H

π and KV :
T2Q → V, and the latter connectors are introduced as:KH = Tπ−1 ◦Kτ ◦T2π where
T2π = T(Tπ) : T2Q→ T2M andTπ−1 is the linear isomorphism of tangent spaces to
M onto the spaces of connectionHπ; KV = p−1◦Kπ ◦TKπ.

Recall thatλ is a one-to-one mapping of the standard fiberF onto the fibers of
bundleQ, hence the chargee is well-defined on the entireQ. SinceTλ is also a one-to-
one mapping of the connections andΦ is equivariant, we can introduce the differential
form Φ̃ onQ with values ing as follows. Consider(m,q) = λ((m, p), f ) for (m, p) ∈E
and f ∈ F . ForX, Y ∈ T(m,q)Q we denote byHX andHY their horizontal components.
Then we definẽΦ(m,q)(X,Y) = Φ(m,p)(Tλ−1

HX,Tλ−1
HY).

Denote by• the coupling of elements ofg andg∗.Consider the vector((m,q),X)
tangent toQ at (m,q). It is clear thate((m,q))• Φ̃(m,q)(·,X) is an ordinary 1-form (i.e.,

differential form with values in real line). Denote bye((m,q))• Φ̃(m,q)(·,X) the tangent
vector to the total space ofQ physically equivalent to the forme((m,q))• Φ̃(m,q)(·,X)

(i.e., obtained by lifting the indices with the use of Riemannian metricgQ).
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LEMMA 1 ([5]). The vector fielde((m,q))• Φ̃(m,q)(·,X) is horizontal, i.e., it
belongs to the spaces of connectionH

π.

THEOREM 1 ([7]). Let (m(t),q(t)) be a smooth curve in Q. Let X(t) be the
parallel translation of the vector X∈ T(m(t0),q(t0))Q along(m(t),q(t)) with respect to
H

Q. (i) Both the horizontalHX(t) and verticalVX(t) components of X(t) are parallel
along(m(t),q(t)) with respect toHQ. (ii) The parallel translation of horizontal vectors
preserves constant the norms and scalar products with respect to gQ. (iii) The vector
field TπX(t) is parallel along m(t) onM with respect toHτ.

2. Mean derivatives on manifolds and vector bundles

Consider a stochastic processξ(t) with values inM , given on a certain probability

space(Ω,F,P). By N
ξ
t we denote the minimalσ-sub-algebra ofσ-algebraF generated

by the pre-images of Borel sets inM under the mappingξ(t) : Ω →M (the “present”

or “now” of ξ(t)) and byE(· | Nξ
t ) the conditional expectation with respect toNξ

t .

Recall that the conditional expectation of a random elementϑ with respect toNξ
t can

be represented asΘ(ξ(t)) whereΘ is the so-calledregressionintroduced by the formula
Θ(m) = E(θ | ξ(t) = m) (see, e.g., [10]).

Specify a point inM and consider the normal chartUm at this point with re-
spect to the exponential mapping of Levi-Civita connectiononM . In Um construct the
following regressions

YUm(t,m′) = lim
∆t↓0

E

(
ξ(t +∆t)−ξ(t)

∆t
| ξ(t) = m′

)
;(1)

Um∗ (t,m′) = lim
∆t↓0

E

(
ξ(t)−ξ(t −∆t)

∆t
| ξ(t) = m′

)
.(2)

Introduce X0(t,m) =YUm(t,m) and X0
∗ (t,m) =YUm∗ (t,m). Note that X0(t,m) and

X0
∗ (t,m) are vector fields onM , i.e., under the coordinate changes they transform like

cross-sections of the tangent bundleTM .

Forward and backward mean derivativesof ξ(t) are defined by the formulae
Dξ(t) = X0(t,ξ(t)) and D∗ξ(t) = X0

∗ (t,ξ(t)).
The vectorvξ(t) = 1

2(D+D∗)ξ(t) is called thecurrent velocityof ξ(t). From
the properties of conditional expectation it follows that there exists a Borel measurable
vector field (regression)vξ(t,m) onM such thatvξ(t) = vξ(t,ξ(t)).

Introduce the increment∆ξ(t) of processξ(t): ∆ξ(t) = ξ(t +∆t)−ξ(t) and the

so called quadratic mean derivativeD2 (see [1, 6])D2ξ(t) = lim
∆τ↓0

E(∆ξ(t)⊗∆ξ(t)
∆t |Nξ

t ). If

D2ξ(t) exists, it takes values in(2,0)-tensors.

Everywhere below we are dealing with processes, along whichthe parallel
translation with respect to an appropriate connection is well-posed. Here we useξ(·)
and parallel translation with respect to the connectionH

τ and such an assumption is
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true, for example, ifξ(t) is an Itô process onM , i.e., an Itô development of an Itô pro-
cess in a certain tangent space toM as it is defined in [6]. Denote byΓt,s the operator
of such parallel translation alongξ(·) of tangent vectors from the (random) pointξ(s)
of the process to the (random) pointξ(t).

For a vector fieldZ(t,m) on M the covariant forward and backward mean
derivativesDZ(t,ξ(t)) andD∗Z(t,ξ(t)) are constructed by the formulae

DZ(t,ξ(t)) = lim
∆t↓0

E

(
Γt,t+∆tZ(t +∆t,ξ(t +∆t))−Z(t,ξ(t))

∆t
|Nξ

t

)
;(3)

D∗Z(t,ξ(t)) = lim
∆t↓0

Eξ
t

(
Z(t,ξ(t))−Γt,t−∆tZ(t −∆t,ξ(t −∆t))

∆t
|Nξ

t

)
.(4)

From formulae (1), (2), (3) and (4) it evidently follows thatTπDZ(t,ξ(t)) = Dξ(t) and
TπD∗Z(t,ξ(t)) = D∗ξ(t).

Now consider a stochastic processη(t) in the total space of bundleQ and intro-
duce the processξ(t) = πη(t) onM . Denote byΓπ

t,s the parallel translation of random
vectors from the fiberQξ(s) to the fiberQξ(t) alongξ(·) with respect to connectionHπ.
For η(t) we introduce the covariant mean derivatives by formulae

Dη(t) = lim
∆t↓0

E

(
Γπ

t,t+∆tη(t +∆t)−η(t)
∆t

|Nξ
t

)
;(5)

D∗η(t) = lim
∆t↓0

E

(
η(t)−Γπ

t,t−∆tη(t −∆t)

∆t
|Nξ

t

)
.(6)

(analogs of (3) and (4)). As above,vη(t) = 1
2(D+D∗)η(t) is called thecurrent velocity

of η(t).
In order to define the mean derivatives of a vector field alongη(t) on Q we

use the parallel translationΓQ
t,s of vectors tangent toQ at η(s), to vectors tangent toQ

at η(t) alongη(·) with respect to connectionHQ. By analogy with formulae (3) and
(4) for a vector fieldZ(t,(m,q)) on Q we introduce the covariant mean derivatives by
formulae

DQZ(t,η(t)) = lim
∆t↓0

E

(
ΓQ

t,t+∆tZ(t +∆t,η(t +∆t))−Z(t,η(t))
∆t

|Nξ
t

)
;(7)

DQ
∗ Z(t,η(t)) = lim

∆t↓0
E

(
Z(t,η(t))−ΓQ

t,t−∆tZ(t −∆t,η(t −∆t))

∆t
|Nξ

t

)
.(8)

LEMMA 2. ΓQ
t,s translatesHπ

η(s) ontoH
π
η(t) andVη(s) ontoVη(t); the parallel

translation of horizontal components preserves the norms and inner products with re-
spect to gQ.

The assertion of Lemma 2 follows from Theorem 1 and from the fact that (see
[3, 6]) that the parallel translation along random processes can be described as the limit
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of parallel translations along the processes whose sample paths are piece-wise geodesic
approximations of the sample paths of the process under consideration.

By symbolsDH andDH
∗ we denote the derivatives introduced by formulae (7)

and (8), respectively, for the horizontal components of vectors (i.e., taking values in
H

π). By symbolsDV andDV
∗ we denote the derivatives for vertical components (i.e.,

taking values inV). Thus,DQ = DH +DV andDQ
∗ = DH

∗ +DV
∗ .

3. The Newton-Nelson equation on the total space of vector bundle

In the problem under consideration the Newton-Nelson equation takes the form

(9)

{
1
2(D

QD∗+DQ
∗ D)η(t) = e(η(t))• Φ̃η(t)(·,vη(t))

D2ξ(t) = ~

mI
,

whereξ(t) = πη(t) (cf. [8, 9]).

Expand the current velocityvη in the right-hand side of (9) into the sum of
vertical and horizontal components:vη = vH

η + vV
η , wherevH

η ∈ H
π andvV

η ∈ V. Since
Φ̃η(t)(·, ·) is linear in both arguments,̃Φη(t)(·,vη) = Φ̃η(t)(·,vH

η )+ Φ̃η(t)(·,vV
η). Then,

since the formΦ̃ is horizontal (see Lemma 1) we obtain thatΦ̃η(t)(·,vV
η) = 0. Thus, the

first equation of system (9) is equivalent to the following system:

1
2
(DHD∗+DH

∗ D)η(t) = e(η(t))• Φ̃η(t)(·,vH
η (t)),(10)

1
2
(DVD∗+DV

∗ D)η(t) = 0.(11)

For simplicity of presentation we denotee(η(t))• Φ̃η(t)(·,vH
η (t)) by α(t,η(t))v

H
η

where, by construction,α(t,(m′,q′))(·) is a linear operator inHπ
(m′,q′) ((1,1)-tensor).

Introduce the horizontal(1,2)-tensor field∇Hα(·, ·) = KHTα(·) on Q. The
vector tr∇Hα(α·, ·) is horizontal by construction.

THEOREM 2. Let for the tensor fieldα(t,(m,q))(·) there exist a constant C> 0

such that
∫ T

0 (‖α(t,x(t))(·)‖2 + ‖tr∇Hα(t,x(t))(α·, ·)‖2)dt < C for a certain T> 0 and
every continuous curve x(t) in Q given on t∈ [0,T]. Here‖α(t,x)(·)‖ is the operator
norm (all the norms are generated by gQ). Let also the connectionsHτ and H

π be
stochastically complete (see [6]). Then for every point(m,q) ∈ Q, every vectorβ0 ∈
H

π
(m,q) and every time instant t0 ∈ (0,T) there exists a stochastic processη(t) in Q such

that: (i) it is well-defined on[0,T]; (ii) η(0) = (m,q) and Dη(0) = β0; (iii) for all
t ∈ (t0,T) the processesη(t) and ξ(t) = πη(t) satisfy(9); (iv) along η(t) the charge
e(η(t)) is constant.

Proof. For simplicity and without loss of generality we suppose that ~

m = 1.

Consider on the space of continuous curvesC0([0,T],TmM) the filtrationPt

where for everyt ∈ [0,T] the σ-algebraPt is generated by cylinder sets with bases
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over[0, t]. Consider the Wiener measureν on the measure space(C0([0,T],TmM),PT)
and so the standard Wiener processWm(t) in TmM as the coordinate process on the
probability space(C0([0,T],TmM),PT ,ν). SinceHτ is stochastically complete, the Itô
developmentWM(t) of Wm(t) with respect toHτ on M is well-posed. SinceHπ is
also stochastically complete, the horizontal liftWQ(t) of WM(t) onto Q with respect
to H

π with initial condition (m,q) is also well-posed. A detailed description of the
construction of processesWM(t) andWQ(t) can be found in [6].

SinceTπ : Hπ
(m,q) → TmM is a linear isomorphism that defines the metric tensor

gQ in H
π
(m,q) by the pull back ofg from TmM, we can translate the Wiener measure and

the Wiener process fromTmM to H
π
(m,q). Denote byW(t) the Wiener process obtained

by this construction. This is a coordinate process on the space of continuous curves in
H

π
(m,q) with σ-algebraPT and Wiener measure.

For t0 ≥ 0 we introduce the real-valued functiont0(t) that equals1
t0

for t < t0
and 1

t for t ≥ t0. Its derivativet ′0(t) is equal to 0 fort < t0 and to− 1
t2

for t ≥ t0.

Now consider the following Itô equation inHπ
(m,q):

β(t) = β0+
1
2

∫ t

0
ΓQ

0,str ∇Hα(s,WQ(s))(α·, ·)ds+
∫ t

0
ΓQ

0,sα(s,WQ(s))dW(s)

−1
2

∫ t

0
t0(s)β(s)ds− 1

2

∫ t

0
t ′0(s)W(s)ds.(12)

Since equation (12) is linear inβ, it has a strong and strongly unique solutionβ(t).
Since this solution is strong, it can be given on the space of continuous curves inHπ

(m,q)
equipped with Wiener measure. Consider the following density on the latter space of

curvesθ(l)= exp
(
−1

2

∫ T
0 β(s)2ds+

∫ T
0 (β(s) ·dW(s))

)
. From the hypothesis and from

Lemma 2 it follows that it is well-posed. Introduce the measure that has this density
with respect to the Wiener measure. It is well-known that with the new measure the co-
ordinate process takes the formζ(t) =

∫ t
0 β(s)ds+w(t) wherew(t) is a certain Wiener

process adapted toPt . DenoteWQ(t), considered with respect to the new measure, by
the symbolη(t) and introduce the processξ(t) = πη(t); ξ(t) is obtained fromWM(t)
by the change of measure. Equation (12) turns into

β(t) = β0+
1
2

∫ t

0
ΓQ

0,str ∇Hα(s,η(t))(α·, ·)ds+
∫ t

0
ΓQ

0,sα(s,η(s))β(s)ds

+
∫ t

0

(
ΓQ

0,sα(s,η(s))(·)+
1
2

t0(s)

)
dw(s)− 1

2

∫ t

0
t0(s)β(s)ds− 1

2

∫ t

0
t ′0(t)ζ(t)ds.

By construction,η(0) = (m,q) andDη(t) = β0. The processη(t) satisfies (11)
also by construction. The fact that fort ∈ (t0,T) the processesη(t) andξ(t) = πη(t)
satisfy (10) and thatD2ξ(t) = I follows from the formulae for mean derivatives ob-
tained in [6, Chapters 12 and 18].

Evidentlyη(t) is the horizontal lift of the processξ(t)with respect to connection
H

π with the initial condition(m,q). Recall that the horizontal liftη(t) of ξ(t) is a
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parallel translation of(m,q) alongξ(·) with respect toHπ. Hence, it can be presented
in the form (ξ(t),bt( f )) wherebt is the horizontal lift ofξ(t) to E with respect to
connectionH and f is a certain vector in the standard fiberF . Thus, the sample paths
of η(t) belong to an orbit ofG and so the chargee is constant alongη(t).
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STOCHASTIC COMPLETENESS OF SYMMETRIC MARKOV

PROCESSES AND VOLUME GROWTH

Abstract. We discuss sufficient conditions for stochastic completeness of various types of
Markov processes (diffusions on Riemannian manifolds, jump processes, random walks on
graphs) in terms of the volume growth function of the underlying metric measure space.

1. Brownian motion on Riemannian manifolds

Let (M,g) be a Riemannian manifold andµ be the Riemannian measure onM. The
Laplace operator (or Laplace-Beltrami operator)∆ is defined to satisfy the Green for-
mula: for allu,v∈C∞

0 (M)

(1)
∫

M
∆u vdµ=−

∫
M
〈∇u,∇v〉dµ,

where∇ is the Riemannian gradient and〈·, ·〉 is the Riemannian inner product (see [2],
[6], [10]).

The symmetry of the operator∆ with respect toµ (that follows from (1)) allows
to extend it to a self-adjoint operator inL2 (M,µ). In general, this extension may not be
unique, but ifM is geodesically complete (which will be assumed throughout) then this
extension is unique, that is,∆ is essentially self-adjoint. With some abuse of notation,
the self-adjoint extension of∆ will be denoted by the same letter.

As one can see from (1), the operator∆ is non-positive definite, which implies
that the operatorPt := et∆ is a bounded self-adjoint operator for anyt ≥ 0. The fam-
ily {Pt}t≥0 is called theheat semigroupof ∆ for the reason that it resolves the heat
equation. More precisely, the following is true:

• for any f ∈ L2, the functionu(t,x)=Pt f (x) isC∞ smooth in(t,x)∈ (0,+∞)×M,

satisfies the heat equation∂u
∂t = ∆u and the initial conditionu(t, ·) L2

→ f ast →
0+ .

• If f ≥ 0 thenPt f ≥ 0; if f ≤ 1 thenPt f ≤ 1.

• The semigroup property:PtPs = Pt+s.

Furthermore, the operatorPt is in fact an integral operator with a kernelpt (x,y)
that is a smooth positive function oft > 0 andx,y∈ M such that

(2) Pt f (x) =
∫

M
pt (x,y) f (y)dµ(y)

227
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for all f ∈ L2. The functionpt (x,y) is called theheat kernelof ∆ (or of M). It is also the
minimal positive fundamental solution of the heat equationand the transition density
of Brownian motion onM. For example, ifM = Rn then

pt (x,y) =
1

(4πt)n/2
exp

(
−|x−y|2

4t

)
.

For general manifolds there is no explicit formula for the heat kernel.

The existence of the heat kernel allows to extend the domain of the operatorPt

from L2 to other spaces. For that, let us use now the identity (2) as the definition ofPt

where f is any function such that the integral converges. In particular, Pt extends to a
bounded operator onL∞.

DEFINITION 1. A manifold(M,g) is calledstochastically completeif Pt1≡ 1.

Note that in general we have 0≤ Pt1 ≤ 1. If Pt1 6≡ 1 then the manifoldM is
calledstochastically incomplete.

Easy examples of stochastically incomplete processes are given by diffusions in
bounded domains with the Dirichlet boundary condition. A byfar less trivial example
was discovered by R.Azencott [1] in 1974: he showed that Brownian motion on a
geodesically complete non-compact manifold can be stochastically incomplete. In his
example, the manifold has negative sectional curvature that grows to−∞ very fast
with the distance to an origin. The stochastic incompleteness occurs because negative
curvature plays the role of a drift towards infinity, and a very high negative curvature
produces an extremely fast drift that sweeps the Brownian particle to infinity in a finite
time.

The first sufficient condition for stochastic completeness of geodesically com-
plete manifolds in terms of lower bound of Ricci curvature was proved by S.-T. Yau
[15]. Below we present a condition in terms of the volume growth function.

Let us first state various equivalent conditions for the stochastic completeness.
Fix 0< T ≤ ∞, setI = (0,T) and consider the Cauchy problem inI ×M

(3)

{ ∂u
∂t = ∆u in I ×M,
u|t=0 = 0.

The problem (3) is understood in the classical sense, that is, u∈C∞(I×M) andu(t,x)→
0 locally uniformly inx∈ M ast → 0. We are interested in the uniqueness of the trivial
solutionu≡ 0 of (3).

THEOREM 1. (Khas’minskii [9])For anyα > 0 and T∈ (0,∞], the following
conditions are equivalent.

(a) M is stochastically complete.

(b) The equation∆v= αv in M has the only bounded non-negative solution v≡ 0.
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(c) The Cauchy problem in(0,T)×M has a unique bounded solution u≡ 0.

DEFINITION 2. Define thevolume function V(x, r) of a manifold(M,g) by
V (x, r) := µ(B(x, r)) , whereB(x, r) is the geodesic ball of radiusr centered atx.

Note that 0< V (x, r) < ∞ for all x ∈ M andr > 0 providedM is geodesically
complete.

THEOREM 2. Let (M,g) be a geodesically complete connected Riemannian
manifold. If, for some point x0 ∈ M,

(4)
∫ ∞ rdr

logV(x0, r)
= ∞,

then M is stochastically complete.

Condition (4) holds, in particular, if

(5) V(x0, r)≤ exp
(
Cr2)

for all r large enough or even if (5) holds for a sequence{rk} of valuesr that goes to∞
ask→ ∞.

Theorem 2 follows from the equivalence(a)⇔ (c) of Theorem 1 and the fol-
lowing more general result.

THEOREM 3. Let (M,g) be a complete connected Riemannian manifold, and
let u(x, t) be a solution to the Cauchy problem(3). Assume that, for some x0 ∈ M and
for all R> 0,

(6)
∫ T

0

∫
B(x0,R)

u2(x, t)dµ(x)dt ≤ exp( f (R)) ,

where f(r) is a positive increasing function on(0,+∞) such that

(7)
∫ ∞ rdr

f (r)
= ∞.

Then u≡ 0 in I ×M.

Condition (6) determines hence a uniqueness class for the Cauchy problem.
Clearly, (7) holds forf (r) =Cr2, but fails for f (r) =Cr2+ε with ε > 0.

Theorems 2 and 3 were proved in [4] (see also [5] and [6]). Without going into
details, let us emphasize, that the argument repeatedly uses the following property of
the geodesic distance functiond on the manifold:|∇d| ≤ 1.

Let us mention the following consequence forRn.

COROLLARY 1. If M =Rn and u(t,x) be a solution to(3) satisfying the condi-
tion

(8) |u(t,x)| ≤Cexp
(
C|x|2

)
for all t ∈ I , x∈ R

n,
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then u≡ 0. Moreover, the same is true if u satisfies instead of(8) the condition

(9) |u(t,x)| ≤Cexp( f (|x|)) for all t ∈ I , x∈ R
n,

where f(r) is a convex increasing function on(0,+∞) satisfying(7).

The class of functionsu satisfying (8) is called theTikhonov class, and the
conditions (9) and (7) define theTäcklind class. The uniqueness of the Cauchy problem
in Rn in each of these classes is a classical result of Tikhonov [13] and Täcklind [12],
respectively.

The hypothesis (4) of Theorem 2 is sufficient for the stochastic completeness of
M but not necessary. Moreover, there are examples of stochastically complete mani-
folds with arbitrarily large volume function.

Nevertheless, the condition (4) is sharp in the following sense: if f (r) is a
smooth positive convex function on(0,+∞) with f ′ (r)> 0 and such that

∫ ∞ rdr
f (r)

< ∞,

then there exists a geodesically complete but stochastically incomplete manifoldM
such that logV (x0, r) = f (r) , for somex0 ∈ M and large enoughr (see [5]).

2. Jump processes

Let (M,d) be a metric space such that all closed metric balls

B(x, r) = {y∈ M : d(x,y)≤ r}

are compact. In particular,(M,d) is locally compact and separable. Letµ be a Radon
measure onM with a full support.

Recall that aDirichlet form (E ,F ) in L2 (M,µ) is a symmetric, non-negative
definite, bilinear formE : F ×F → R defined on a dense subspaceF of L2 (M,µ),
which satisfies in addition the following properties:

• Closedness:F is a Hilbert space with respect to the following inner product:

(10) E1( f ,g) := E( f ,g)+( f ,g) .

• The Markov property: iff ∈F then alsõf := ( f ∧1)+ belongs toF andE( f̃ )≤
E ( f ) , whereE ( f ) := E ( f , f ) .

Then (E ,F ) has thegeneratorL that is a non-positive definite, self-adjoint
operator onL2 (M,µ) with domainD ⊂ F such thatE ( f ,g) = (−L f ,g) for all f ∈D
andg ∈ F . The generatorL determines theheat semigroup{Pt}t≥0 by Pt = etL in
the sense of functional calculus of self-adjoint operators. It is known that{Pt}t≥0 is
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strongly continuous, contractive, symmetric semigroup inL2, and isMarkovian, that
is, 0≤ Pt f ≤ 1 for anyt > 0 if 0 ≤ f ≤ 1.

The Markovian property of the heat semigroup implies that the operatorPt pre-
serves the inequalities between functions, which allows touse monotone limits to ex-
tendPt from L2 to L∞ (in fact, Pt extends to anyLq, 1≤ q ≤ ∞ as a contraction). In
particular,Pt1 is defined.

DEFINITION 3. The form(E ,F ) is calledconservativeor stochastically com-
pleteif Pt1= 1 for everyt > 0.

Assume in addition that(E ,F ) is regular, that is, the setF ∩C0 (M) is dense
both inF with respect to the norm (10) and inC0 (M) with respect to the sup-norm. By
a theory of Fukushima [3], for any regular Dirichlet form there exists a Hunt process
{Xt}t≥0 such that, for all bounded Borel functionsf onM,

(11) Ex f (Xt) = Pt f (x)

for all t > 0 and almost allx∈ M, whereEx is expectation associated with the law of
{Xt} started atx. Using the identity (11), one can show that the lifetime ofXt is almost
surely ∞ if and only if Pt1 = 1 for all t > 0, which motivates the term “stochastic
completeness” in the above definition.

One distinguishes local and non-local Dirichlet forms. TheDirichlet form(E ,F )
is calledlocal if E ( f ,g) = 0 for all functionsf ,g∈ F with disjoint compact support.
It is calledstrongly localif the same is true under a milder assumption thatf = const
on a neighborhood of suppg.

For example, the classical Dirichlet form on a Riemannian manifold

E ( f ,g) =
∫

M
∇ f ·∇gdµ

is strongly local. The domain of this form is the Sobolev spaceH1, the generator is the
self-adjoint Laplace-Beltrami operator∆, and the Hunt process is Brownian motion on
M.

A well-studied non-local Dirichlet form inRn is given by

(12) E ( f ,g) =
∫
Rn×Rn

( f (x)− f (y))(g(x)−g(y))

|x−y|n+α dxdy

where 0< α < 2. The domain of this form is the Besov spaceBα/2
2,2 , the generator is

(up to a constant multiple) the operator−(−∆)α/2 , where∆ is the Laplace operator in
Rn, and the Hunt process is the the symmetric stable process of indexα.

By a theorem of Beurling and Deny (cf. [3]), any regular Dirichlet form can be
represented in the form

E = E (c)+E ( j)+E (k),

whereE (c) is a strongly local part that has the form

E (c) ( f ,g) =
∫

M
Γ( f ,g)dµ,
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whereΓ( f ,g) is a so calledenergy density(generalizing∇ f ·∇g on manifolds);E ( j)

is a jump part that has the form

E ( j) ( f ,g) =
1
2

∫ ∫
M×M

( f (x)− f (y))(g(x)−g(y))dJ(x,y)

with some measureJ onM×M that is called ajump measure; andE (k) is a killing part
that has the form

E (k) ( f ,g) =
∫

M
f gdk

wherek is a measure onM that is called akilling measure.

In terms of the associated process this means thatXt is in some sense a mixture
of a diffusion process, jump process and a killing condition.

The log-volume test of Theorem 2 can be extended to strongly local Dirichlet
forms, provided the distance function satisfies the condition

(13) Γ(d(·,x0) ,d(·,x0))≤C,

for some pointx0 ∈ M and constantC, and the volume functionV (x, r) := µ(B(x, r))
satisfies (4). The method of the proof is basically the same asin Theorem 2 because
for strongly local forms the same chain rule and product rules are available, and the
condition (13) replaces the condition|∇d| ≤ 1 (see [11]).

Now let us turn to jump processes. For simplicity let us assume that the jump
measureJ has a densityj (x,y). Namely, letj(x,y) be is a non-negative Borel function
onM×M that satisfies the following two conditions:

(a) j (x,y) is symmetric: j (x,y) = j (y,x) ;

(b) there is a positive constantC such that

(14)
∫

M
(1∧d(x,y)2) j(x,y)dµ(y)≤C for all x∈ M.

DEFINITION 4. We say that a distance functiond is adaptedto a kernelj(x,y)
(or j is adapted tod) if (b) is satisfied.

For the purpose of investigation of stochastic completeness the condition(b)
plays the same role as (13) does for diffusion.

Consider the following bilinear functional

(15) E( f ,g) =
1
2

∫ ∫
M×M

( f (x)− f (y))(g(x)−g(y)) j(x,y)dµ(x)dµ(y)

that is defined on Borel functionsf andg whenever the integral makes sense. Define
the maximal domain ofE by

Fmax=
{

f ∈ L2 : E( f , f )< ∞
}
,
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whereL2 = L2(M,µ). By the polarization identity,E( f ,g) is finite for all f ,g∈ Fmax.
Moreover,Fmax is a Hilbert space with the following norm:

‖ f‖2
Fmax

= E1( f , f ) := ‖ f‖2
L2 +E( f , f ).

Denote by Lip0(M) the class of Lipschitz functions onM with compact support.
It follows from (14) that Lip0(M)⊂Fmax. Define the spaceF as the closure of Lip0(M)
in (Fmax,‖·‖Fmax

). Under the above hypothesis,(E ,F ) is a regular Dirichlet form in
L2(M,µ). The associated Hunt process{Xt} is a pure jump process with the jump
density j(x,y).

Many examples of jump processes are provided by Lévy-Khintchine theorem
where the Lévy measure corresponds toj (x,y)dµ(y). The condition (14) appears also
in Lévy-Khintchine theorem, so that the Euclidean distancein Rn is adapted to any
Lévy measure. An explicit example of a jump density inRn is

j(x,y) =
const

|x−y|n+α ,

whereα ∈ (0,2), which defines the Dirichlet form (12).

Sufficient condition for stochastic completeness of the Dirichlet form of jump
type is given in the following theorem that was proved in [7].

THEOREM 4. Assume that j satisfies(a) and (b) and let(E ,F ) be the jump
form defined as above. Fix a constant b< 1

2. If, for some x0 ∈ M and for all large
enough∗ r,

(16) V (x0, r)≤ exp(br logr) ,

then the Dirichlet form(E ,F ) is stochastically complete.

It is not known if the borderline value12 for b is sharp.

For example, (16) is satisfied if, for some constantC and all larger,

V (x0, r)≤ exp(Cr)

For the proof of Theorem 4 we split the jump kernelj(x,y) into the sum of two
parts:

j ′(x,y) = j(x,y)1{d(x,y)≤1} and j ′′(x,y) = j(x,y)1{d(x,y)>1}

and show first the stochastic completeness of the Dirichlet form(E ′,F ) associated with
j ′. For that we adapt the methods used for stochastic completeness for the local form.
The bounded range ofj ′ allows to treat the Dirichlet form(E ′,F ) as “almost” local:
if f ,g are two functions fromF such thatd(suppf ,suppg)> 1 thenE ( f ,g) = 0. The
condition (14) plays in the proof the same role as the condition (13) in the local case.
However, the lack of locality brings up in the estimates various additional terms that

∗In fact it suffices to have (16) forr = rk where{rk} is any sequence such thatrk → ∞ ask→ ∞.
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have to be compensated by a stronger hypothesis of the volumegrowth (16), instead of
the quadratic exponential growth in Theorem 2.

The tail j ′′ can regarded as a small perturbation ofj ′ in the following sense:
(E ,F ) is stochastically complete if and only if(E ′,F ) is so. The proof is based on
the fact that the integral operator with the kernelj ′′ is a bounded operator inL2 (M,µ),
because by (14) ∫

M
j ′′ (x,y)dµ(y)≤C.

It is not clear if the volume growth condition (16) in Theorem4 is sharp.

Let us briefly mention a recent result of Xueping Huang [8], that is analogous
of Theorem 3 about the uniqueness class for the Cauchy problem on a geodesically
complete manifold. X.Huang proved a similar theorem for theheat equation associated
with the jump Dirichlet form on graphs satisfying(a) and(b): namely, the associated
heat equation has the following uniqueness class

∫ T

0

∫
B(x,R)

u2 (t,x)dµ(x)dt ≤ exp(br logr)

whereb is as above any constant smaller than1
2. Moreover, he has shown that for

b> 2
√

2 this statement fails. The optimal value ofb remains unknown. Note that the
functionu in that example is unbounded, so that it cannot serve to show the sharpness
of the condition (16) in Theorem 4.

3. Random walks on graphs

Let us now turn to random walks on graphs. Let(X,E) be a locally finite, infinite,
connected graph, whereX is the set of vertices andE is the set of edges. We assume
that the graph is undirected, simple, without loops. Letµbe the counting measure onX.
Define the jump kernel byj(x,y) = 1{x∼y}, wherex∼ y means thatx,y are neighbors,
that is,(x,y) ∈ E. The corresponding Dirichlet form is

E ( f ) =
1
2 ∑
{x,y:x∼y}

( f (x)− f (y))2 ,

and its generator is
∆ f (x) = ∑

y∼x
( f (y)− f (x)).

The operator∆ is calledunnormalized(or physical)Laplace operator on(X,E). This
is to distinguish from thenormalizedor combinatorialLaplace operator

∆̂ f (x) =
1

deg(x) ∑
y∼x

( f (y)− f (x)),

where deg(x) is the number of neighbors ofx. The normalized Laplacian̂∆ is the
generator of the same Dirichlet form but with respect to the degree measure deg(x).
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Both ∆ and∆̂ generate the heat semigroupset∆ andet∆̂ and, hence, associated
continuous time random walks onX. It is easy to prove that̂∆ is a bounded operator in
L2(X,deg), which then implies that the associated random walk is always stochastically
complete. On the contrary, the random walk associated with the unnormalized Laplace
operator can be stochastically incomplete.

We say that the graph(X,E) is stochastically complete if the heat semigroup
et∆ is stochastically complete.

Denote byρ(x,y) the graph distance onX, that is the minimal number of edges
in an edge chain connectingx andy. Let Bρ(x, r) be closed metric balls with respect
to this distanceρ and setVρ(x, r) =

∣∣Bρ(x, r)
∣∣ where|·| := µ(·) denotes the number of

vertices in a given set.

The stochastic completeness can be determined in terms of the functionVρ as
follows.

THEOREM 5. If there is a point x0 ∈ X and a constant c> 0 such that

(17) Vρ(x0, r)≤ cr3

for all large enough r, then the graph(X,E) is stochastically complete.

Note that the cubic rate of the volume growth is sharp here. Indeed, Woj-
ciechowski [14] has shown that, for anyε > 0 there is a stochastically incomplete
graph that satisfiesVρ(x0, r)≤ cr3+ε. For any non-negative integerr, set

Sr = {x∈ X : ρ(x0,x) = r} .

In the example of Wojciechowski every vertex onSr is connected to all vertices onSr−1

andSr .

For this type of graphs, that are calledanti-trees, the stochastic incompleteness
is equivalent to the following condition ([14]):

(18)
∞

∑
r=1

Vρ(x0, r)

|Sr+1| |Sr |
< ∞.

Indeed, assuming (18), one constructs a non-trivial bounded solution to the equation
∆u−u= 0, which is enough to ensure the stochastic incompleteness (cf. Theorem 1).
For a radial functionu= u(r) this equation acquires the form

u(r +1) = u(r)+
1

|Sr+1| |Sr |
r

∑
i=0

|Si |u(i) .

Settingu(0)= 1 and solving this equation inductively inr, we obtain a positive solution
u(r) that increases inr. It follows that

u(r +1)≤
(

1+
1

|Sr+1| |Sr |
r

∑
i=0

|Si |
)

u(r)
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whence by induction

u(R)≤
R−1

∏
r=0

(
1+

Vρ (x0, r)

|Sr+1| |Sr |

)
.

The condition (18) implies that the product in the right handside is bounded so thatu
is a bounded function.

If |Sr | ≃ r2+ε thenVρ(x0, r)≃ r3+ε and the condition (18) is satisfied so that the
graph is stochastically incomplete.

The proof of Theorem 5 is based on the following ideas. First observe that the
graph distanceρ is in general not adapted. More precisely,ρ is adapted if and only if
the graph has uniformly bounded degree, which is not an interesting case.

Let us construct an adapted distance as follows. For any edgex∼ y define first
its lengthσ(x,y) by

σ(x,y) =
1√

deg(x)
∧ 1√

deg(y)
.

Then, for allx,y∈ X defined(x,y) as the smallest total length of all edges in an edge
chain connectingx andy. It is easy to verify thatd satisfies (14) withC= 1.

Next one proves that (17) forρ-balls implies that thed-balls have at most expo-
nential volume growth, so that the stochastic completenessfollows by Theorem 4.
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I. V. Melnikova and M. A. Alshanskiy ∗

GENERALIZED SOLUTIONS TO EQUATIONS WITH

MULTIPLICATIVE NOISE IN HILBERT SPACES

Abstract. We suggest a framework that allows to introduce multiplicative stochastic pertur-
bation of the Gaussian white noise type into a linear differential equation in a Hilbert space
and prove existence of the unique solution for the obtained stochastic problem in a certain
space of generalized functions.

1. Introduction

Our model problem is

∂u(t,s)
∂t

=−∂u(t,s)
∂s

+η(s)u(t,s), 0< s< 1, t > 0, u(t,0) = 0, u(0,s) = ϕ(s),

whereη ∈ L∞[0;1]. It can be written as the Cauchy problem for an operator-differential
equation in Hilbert spaceH = L2[0,1] in the following way:

(1)
du(t)

dt
= Au(t) , t > 0, u(0) = ϕ ,

where

(2) A= A0+B0 =− d
ds

+η(s), domA= {x∈ L2[0,1] ,
dx
ds

∈ L2[0,1] ,x(0) = 0}.

OperatorA0 is the generator of the right shift semigroup, which is aC0-semigroup inH.
Its perturbation byB0, which is bounded inH, givesA which is also the generator of a
C0-semigroup. Such problems arise for example in population dynamics. In this caseu
represents population density with respect to a certain numerical characteristic, say age,
or size of an individual,A0 is usually the generator of a shift-type semigroup,B0 is a
multiplication operator (or a sum of multiplication operators) that reflects the influence
of such phenomena as death and birth. We will be concerned with the situation when
B0 is subject to random fluctuations, so that instead ofη(s) we haveη(s) + ν(t,s),
whereν is a random process taking values in a certain space of functions on[0,1]. If
we want multiplication byη+ν to be a bounded operator inH, ν must be a sufficiently
smooth function ofs. We use multiplication by smoothed values of anH-valued white
noise. Namely, considerB(·) ∈ L

(
H;L(H)

)
defined by

(3) [B(x)y](s) := ε ·x(s)
∫ 1

0
ψ(s− τ)y(τ)dτ ,

∗This work was supported by the Ministry of Education and Science of Russian Federation (Program
1.1016.2011) and by RFBR, project 13-01-00090
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whereε > 0, ψ ∈C∞
0 (R). Thus we come to the following stochastic problem:

(4) dX(t) = AX(t)dt+B(X(t))dW(t) , t ≥ 0, X(0) = Φ .

whereW(t) is a cylindricalH-valued Wiener process on a probability space(Ω,F ,P)
with normal filtration{Ft}, Φ is anF0-measurable random variable.

In our work we introduce spaces ofH-valued generalized random variables
(S)−ρ(H), 0≤ ρ ≤ 1, so that (4) can be written as

(5)
dX(t)

dt
= AX(t)+B

(
X(t)

)
⋄W(t) , t ≥ 0, X(0) = Φ ,

whereW(t) is H-valued cylindrical singular white noise and "⋄" is the Wick product.
UsingS-transform we reduce the problem (5) to a deterministic one and thus prove the
existence and uniqueness of its solution in(S)−0(H).

2. Framework

Let (S ′,B(S ′),µ) be the white noise probability space, whereS ′ is the space of tem-
pered distributions over the space of rapidly decreasing functionsS , B(S ′) is theσ-
algebra of Borel subsets ofS ′ andµ is the white noise probability measure onB(S ′)
(Minlos – Sasonov measure) with

(6)
∫
S ′

ei〈ω ,θ〉dµ(ω) = e−
1
2 |θ|20 , θ ∈ S .

We denote by| · |0 =
√
(·, ·)0 the norm ofL2(R). Let (L2) be the space ofµ-square inte-

grableR-valued functions (random variables) onS ′ with norm‖·‖0. It follows from (6)
that for anyθ,η∈ S we have

(
〈·,θ〉,〈·,η〉

)
(L2)

= (θ,η)L2(R), ‖〈·,θ〉‖2
0 =E〈·,θ〉2 = |θ|20.

It follows from here that the mappingθ 7→ 〈·,θ〉 can be extended by continuity fromS
to the wholeL2(R), so that〈·,φ〉 ∈ (L2) is well defined for allφ ∈ L2(R) and (6) is still
valid for θ ∈ L2(R).

Let {ξk}∞
k=1 be the orthonormal basis ofL2(R), consisting of Hermite functions

ξk(x) =
e−

x2
2 hk−1(x)

π
1
4 ((k−1)!)

1
2

, wherehk(x) = (−1)ke
x2
2 dk

dxk e−
x2
2 are Hermite polynomials.

Let T ⊂
(
N∪{0}

)N
be the set of all finite multi-indices. Stochastic Hermite

polynomials, defined byhα(ω) := ∏k hαk(〈ω , ξk〉) ,ω ∈ S ′ ,α ∈ T , form an orthogonal
basis of(L2) with (hα , hβ)(L2) = δα,βα!, whereα! := ∏k αk!.

The Gelfand triple

(7) (S)ρ ⊂ (L2)⊂ (S)−ρ , (0≤ ρ ≤ 1)

is widely used in white noise analysis (see [1, 3]). Here(S)ρ = ∩p∈N(Sp)ρ with pro-
jective limit topology, where

(Sp)ρ =
{

ϕ = ∑
α∈T

ϕαhα ∈ (L2) : ∑
α∈T

(α!)1+ρ|ϕα|2(2N)2pα < ∞
}
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and the norm| · |p,ρ, generated by the scalar product

(ϕ,ψ)p,ρ = ∑
α∈T

(α!)1+ρϕαψα(2N)
2pα ,

(
2N
)pα

:= ∏
i∈N

(2i)pαi ;

(S)−ρ = ∪p∈N(S−p)−ρ with inductive limit topology, where(S−p)−ρ is the adjoint
to (Sp)ρ. The space(S−p)−ρ can be identified with the Hilbert space of all formal

expansionsΦ = ∑α∈T Φαhα such that∑α∈T (α!)1−ρ |Φα|2
(2N)2pα < ∞ with scalar product

(Φ,Ψ)−p,−ρ = ∑α∈T (α!)1−ρ ΦαΨα
(2N)2pα . We will denote| · |2−p,−ρ = (·, ·)−p,−ρ. For Φ =

∑α∈T Φαhα ∈ (S)−ρ, ϕ = ∑α∈T ϕαhα ∈ (S)ρ we have〈Φ,ϕ〉= ∑α∈T α!Φαϕα.

A set M ⊆ (S)ρ is called bounded if for any{ϕn} ⊆ M and for any{εn} ⊂ R

converging to 0, the sequence{εnϕn} converges to zero in(S)ρ. It is easy to see that
boundedness of a set in(S)ρ is equivalent to its boundedness in any(Sp)ρ.

Let H be a separable Hilbert space overC with scalar product(·, ·) and corre-
sponding norm‖ ·‖. Denote by(L2)(H) the space ofH-valued functions onS ′, square
Bochner integrable with respect toµ. Let {ej}∞

j=1 be an orthonormal basis inH. The

family {hαej}α∈T , j∈N is an orthogonal basis in(L2)(H). Any f ∈ (L2)(H) can be
expanded into Fourier seriesf = ∑α∈T , j∈N fα, jhαej = ∑α∈T fαhα = ∑∞

j=1 f jej , where
fα, j ∈ R, fα = ∑ j fα, jej ∈ H, f j = ∑α∈T fα, jhα ∈ (L2), and we have‖ f‖2

(L2)(H)
=

∑α∈T , j∈N α!| fα, j |2 = ∑α∈T α!‖ fα‖2
H = ∑∞

j=1‖ f j‖2
(L2)

.

Define the space(S)−ρ(H) of H-valued generalized functions over the space
(S)ρ of test functions as the space of all linear continuous operatorsΦ : (S)ρ → H with
the topology of uniform convergence on bounded subsets of(S)ρ. We will denote by
Φ[ϕ] the action ofΦ ∈ (S)−ρ(H) on a test functionϕ ∈ (S)ρ.

Now we describe the structure of(S)−ρ(H). It is easy to prove the following
proposition:

Proposition 1AnyΦ ∈ (S)−ρ(H) is bounded as an operator from(Sp)ρ to H for some
p∈ N.

Since(S)ρ is a countably Hilbert nuclear space, it follows from Proposition 1:

Corollary 1 Any Φ ∈ (S)−ρ(H) is a Hilbert–Schmidt operator from(Sp)ρ to H for
some p∈ N.

For anyΦ ∈ (S)−ρ(H) denote byΦ j the linear functional, defined on(S)ρ by
〈Φ j ,ϕ〉 := (Φ[ϕ],ej). Let Φ be Hilbert–Schmidt from(Sp)ρ to H, then allΦ j , j ∈ N,
belong to the corresponding(S−p)−ρ and thus we have

Φ j = ∑
α∈T

Φα, jhα , ∑
α∈T

(α!)1−ρ |Φα, j |2
(2N)2pα < ∞ .

For the Hilbert–Schmidt norm ofΦ as an operator from(Sp)ρ to H we have:

‖Φ‖2
HS,p,ρ = ∑

α∈T

∥∥∥∥∥Φ

[
hα

(α!)
1+ρ

2 (2N)pα

]∥∥∥∥∥

2

= ∑
α∈T , j∈N

(α!)1−ρ |Φα, j |2
(2N)2pα .
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Denote by HS
(
(Sp)ρ;H

)
the space of Hilbert–Schmidt operators from(Sp)ρ to H.It

is a separable Hilbert space. The family of operators{hα ⊗ ej}α∈T , j∈N, defined by
(hα ⊗ ej)ϕ :=

(
hα,ϕ

)
(L2)

ej , ϕ ∈ (Sp)ρ is an orthogonal basis of HS
(
(Sp)ρ;H

)
. It

follows from Proposition 1 that(S)−ρ(H) =
⋃
p∈N

HS
(
(Sp)ρ;H

)
. Any Φ ∈ (S)−ρ(H)

has the following decomposition:

Φ[·] = ∑
j∈N

〈Φ j , ·〉ej = ∑
α∈T , j∈N

Φα, j(hα ⊗ej) = ∑
α∈T

Φα(hα, ·)(L2) ,

whereΦ j = (Φ[·],ej) ∈ (S−p)−ρ for somep∈ N, Φα = ∑ j∈N Φα, jej ∈ H. We have

‖Φ‖2
HS,p,ρ = ∑

j∈N
|Φ j |2−p,−ρ = ∑

α∈T , j∈N
(α!)1−ρ |Φα, j |2

(2N)2pα = ∑
α∈T

(α!)1−ρ ‖Φα‖2

(2N)2pα < ∞ .

For all p1 < p2 andΦ ∈ HS
(
(Sp1)ρ;H

)
we evidently have

HS
(
(Sp1)ρ;H

)
⊆ HS

(
(Sp2)ρ;H

)
, ‖Φ‖HS,p1,ρ ≥ ‖Φ‖HS,p2,ρ.

A setM ⊆ (S)−ρ(H) is called bounded if for any sequence{Φn} ⊆ M and
any{εn} ⊂ R convergent to zero,{εnΦn} converges to zero in(S)−ρ(H). It is easy to
prove the following propositions:

Proposition 2A setM is bounded in(S)−ρ(H) if and only if for any bounded M⊂ (S)ρ
there exists K> 0 such that‖Φ[ϕ]‖ ≤ K for anyϕ ∈ M, Φ ∈M .

Proposition 3 If M is bounded in(S)−ρ(H), then there exist p∈ N and K> 0 such
that‖Φ[ϕ]‖ ≤ K|ϕ|p,ρ for all Φ ∈M , ϕ ∈ (S)ρ.

Thus, if a setM is bounded in(S)−ρ(H), then all elements ofM are bounded
operators from(Sp)ρ to H for somep∈ N andM is bounded inL

(
(Sp)ρ,H

)
. Conse-

quently we have

Proposition 4 If M is bounded in(S)−ρ(H), thenM ⊂ HS
(
(Sp)ρ;H

)
for some p∈N,

andM is bounded inHS
(
(Sp)ρ;H

)
.

The next proposition, which we state omitting the proof, gives characterization
of convergence in(S)−ρ(H).

Proposition 5 Let Φn = ∑α Φ(n)
α hα ,Φ = ∑α Φαhα ∈ (S)−ρ(H). The following asser-

tions are equivalent:

(i) {Φn} converges toΦ in (S)−ρ(H);

(ii) All elements of the sequence{Φn} andΦ belong toHS
(
(Sp)ρ;H

)
for some p∈N

and lim
n→∞

‖Φn− Φ‖HS,p,ρ = 0.

Let Φ(·) : R→ (S)−ρ(H). We will write Ψ = lim
t→t0

Φ(t) if Φ(tn)→ Ψ uniformly

on any bounded subset of(S)ρ for any sequencetn → t0. The derivativeΦ′(t0) will be
understood in the same way. It is easy to derive from Proposition 5 the following



Generalized solutions to equations with multiplicative noise in Hilbert spaces 243

Corollary 2 Let Φ(t) = ∑α Φα(t)hα ∈ (S)−ρ(H) for t ∈ [a,b] and let t0 ∈ [a,b].

1. lim
t→t0

Φ(t) = Φ(t0) in (S)−ρ(H) if and only if all Φ(t) , t ∈ [a,b], belong to

HS
(
(Sp)ρ;H

)
for some p∈ N and lim

n→∞
‖Φ(t)−Φ(t0)‖HS,p,ρ = 0;

2. Φ(t) is differentiable at t0 ∈ [a,b] if and only if
dΦ
dt

:= lim
t→t0

Φ(t)−Φ(t0)
t − t0

exists inHS
(
(Sp)ρ;H

)
for some p.

Example. (H-valued cylinder Wiener process and white noise).

Let n(·, ·) : N×N→ N be a bijection with

(8) n(i, j)≥ i j , i , j ∈ N .

Denoteεn := (0,0, . . . ,1
n
,0, . . .). The sequenceβ j(t) = ∑∞

i=1
∫ t

0 ξi(s)dshεn(i, j)
is a se-

quence of independent Brownian motions. Then theH-valued random process

W(t) = ∑
j∈N

β j(t)ej = ∑
n∈N

Wεn(t)hεn , Wεn(t) =
∫ t

0
ej(n) ξi(n)(s)ds∈ H ,

is a cylindrical Wiener process (herei(n) , j(n) ∈ N are such thatn(i(n), j(n)) = n).

It is easy to show thatW(t) /∈ (L2)(H) for all t ∈R. At the same time it follows

from the well known estimate
∫ t

0 ξi(s)ds= O(i−
3
4 ) and (8) that‖W(t)‖2

HS,1,ρ < ∞ . So

we haveW(t) ∈ HS
(
(S1)ρ;H

)
⊂ (S)−ρ(H).

Define theH-valued cylindrical white noise by

W(t) := ∑
i, j∈N

ξi(t)(hεn(i, j)
ej) = ∑

n∈N
Wεn(t)hεn , Wεn(t) = ξi(n)(t)ej(n) ∈ H .

Sinceξi(t)=O
(
i−

1
4
)
, we have‖W(t)‖2

HS,1,ρ<∞ , thus

W(t) ∈ HS
(
(S1)ρ;H

)
⊂ (S)−ρ(H).

Note that for allt ∈ R we have
d
dt

W(t) =W(t).

LetEθ := e〈·,θ〉−
1
2 |θ|20 . For anyθ ∈ S it is a random variable onS ′ belonging to

(S)ρ for 0≤ ρ < 1 with |Eθ|p,ρ ≤ 2ρ/2exp
[
(1−ρ)

2ρ−1
1−ρ |θ|

2
1−ρ
p

]
(see [1]). The following

expansion holds:

Eθ = ∑
α∈T

eαhα , eα =
1
α!

∞

∏
i=1

(θ,ξi)
αi
0 .

Let Φ ∈ (S)−ρ(H), 0≤ ρ < 1. Definethe S-transformof Φ by

(SΦ)(θ) = Φ[Eθ] , θ ∈ S .

The proof of the following characteristic theorem almost completely repeats the
proof of the corresponding theorem for theC-valued case (see, for example, [1]), and
is thus omitted.
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Theorem 1Let Φ ∈ (S)−ρ(H), 0≤ ρ < 1. Then F= SΦ satisfies the following condi-
tions:

(i) for any θ,ν ∈ S the function F(θ+zν) is entire analytic function of z∈ C.

(ii) There exist K> 0,a> 0, p∈ N, such that

(9) ‖F(θ)‖ ≤ K exp

[
a|θ|

2
1−ρ
p

]
, θ ∈ S .

If F : S → H satisfies(i) and (ii), then there exists a uniqueΦ ∈ (S)−ρ(H) such that

F = SΦ and for any q such that e2
(

2a
1−ρ

)1−ρ
∑∞

i=1(2i)−2(q−p) < 1, it holds

‖Φ‖HS,q,ρ ≤ K

(
1−e2

(
2a

1−ρ

)1−ρ ∞

∑
i=1

(2i)−2(q−p)

)−1/2

.

Example. For the above defined cylinder white noise we have:
(
SW(t)

)
(θ) =W(t)

[
Eθ
]
= ∑

i, j∈N
ξi(t)ej(θ,ξn(i, j))0 .

Let H1 and H2 be separable Hilbert spaces. Since the space HS(H1;H2) of
Hilbert–Schmidt operators acting fromH1 to H2 is a separable Hilbert space, we can
consider the space(S)−ρ

(
HS(H1;H2)

)
of HS(H1;H2)-valued generalized random vari-

ables over(S)ρ. ForS-transforms of anyΨ ∈ (S)−ρ
(
HS(H1;H2)

)
andΦ ∈ (S)−ρ(H1),

F(θ) = SΨ(θ)SΦ(θ) ∈ H2 is well defined for anyθ ∈ S . SinceSΨ(θ) andSΦ(θ) sat-
isfy conditions(i) and(ii) of Theorem 1, for anyθ,ν ∈ S the functionF(θ+zν) is an
entire analytic function ofz∈ C and

‖SΨ(θ)SΦ(θ)‖H2 ≤ ‖SΨ(θ)‖HS(H1;H2)‖SΦ(θ)‖H1 ≤ K1K2exp

[
(a1+a2)|θ|

2
1−ρ
p

]
,

whereK1,K2,a1,a2 are the constants from condition(ii) of Theorem 1 forΨ andΦ
correspondingly (we can obviously suppose the constantp in these conditions to be
the same). It follows thatF is anS-transform of a unique generalized random variable
Θ ∈ (S)−ρ(H2). This justifies the following definition.

Let Ψ∈ (S)−ρ
(
HS(H1;H2)

)
, Φ∈ (S)−ρ(H1). We will call Θ∈ (S)−ρ(H2) such

thatSΘ = SΨSΦ theWick productof Ψ andΦ and denote itΨ⋄Φ.

Let Q ∈ HS(H), HQ = Q
1
2 (H) with scalar product(u,v)HQ = (Q− 1

2 u,Q− 1
2 v).

For theH-valued cylindrical white noise, from the estimate

‖Wεn(i, j)
‖2

HQ

(
2N
)−2pεn(i, j) =

|ξi(t)|2

σ2
j

(
2n(i, j)

)2p ≤ |ξi(t)|2

σ2
j

(
2i j
)2p = O

(
σ−2

j i−2p− 1
2 j−2p) ,

it follows
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Proposition 6For any Q= ∑∞
j=1 σ2

j (ej ⊗ej) ∈ HS(H;H)∗, (i.e. ∑∞
j=1 σ2

j < ∞), if

(10)
∞

∑
j=1

σ−2
j j−2p < ∞ for some p∈ N ,

thenW(t) ∈ (S)−ρ(HQ) for all t ∈ R and anyρ ∈ [0;1].

It follows from proposition 6 that ifQ satisfies (10), then for any stochastic
processΨ(t) with values in(S)−ρ

(
HS(HQ;H)

)
the(S)−1(H)-valued random process

Ψ(t)⋄W(t) is well defined.

We will call an(S)−ρ
(
HS(HQ;H)

)
-valued random processΨ(t) Hitsuda–Sko-

rohod integrableon [0;T], if Ψ(t)⋄W(t) is integrable on[0;T] as an(S)−1(H)-valued

function and will call
∫ T

0
Ψ(t)⋄W(t)dt the Hitsuda–Skorohod integral ofΨ(t).

The Hitsuda–Skorohod integral is a generalization of the Ito integral
∫ T

0 Ψ(t)dW(t)
with respect to the cylindrical Wiener process. Namely, ifΨ(t)∈ (L2)

(
HS(HQ;H)

)
for

all t ∈ [0;T], Ψ(t) is adapted to the filtration generated byW(t) and
∫ T

0
‖Ψ(t)‖2

(L2)(HS(HQ;H))dt < ∞ ,

then ∫ T

0
Ψ(t)⋄W(t)dt =

∫ T

0
Ψ(t)dW(t)

Let H1 andH2 be separable Hilbert spaces. ForA∈ L(H1,H2) define

(11) AΦ := ∑
α∈T

AΦαhα , for Φ = ∑
α∈T

Φαhα ∈ (S)−ρ(H1) .

(See the proof in [5]). Defined in such a wayA is a linear continuous operator with
values in(S)−ρ(H2). If A is not bounded, define(domA) as the set of all∑α∈T Φαhα ∈
(S)−ρ(H1) such thatΦα ∈ domA for any α ∈ T and∑α∈T (α!)1−ρ ‖AΦα‖2

H2(
2N
)2pα < ∞ for

somep∈N. Then (11) defines a linear operator on(domA) with values in(S)−ρ(H2).
It is easy to verify that it is closed ifA is a closed operator fromH1 to H2, and to prove
the next proposition.

Proposition 7Let A: H1 →H2 be linear and closed. For anyΦ∈ (domA)⊆ (S)−ρ(H1)
we have

[
SΦ
]
(h) ∈ domA⊆ H1 and

[
SAΦ

]
(h) = A

[
SΦ
]
(h), h∈ S .

3. The Cauchy problem for a linear operator-differential equation with multi-
plicative noise

Consider the Cauchy problem (5) with a linear closed operator A acting inH, B(·) ∈
L
(
H,L(H)

)
, Φ ∈ (domA) ⊆ (S)−ρ(H). We obtain it by substituting the Hitsuda–

Skorohod integral for the Ito one in equation (4) and differentiating both sides of the
∗For v ∈ V, u ∈ U , whereV andU are Hilbert spaces, we denote byv⊗u the operator fromU to V,

defined by(v⊗u)h := v(u, h)U .
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equation with respect tot. Note that ifQ is a nuclear operator inH satisfying (10), then
sinceB

(
X(t)

)
∈ (S)−ρ

(
HS(HQ;H)

)
for anyX(t) ∈ (S)−ρ(H), the Wick product in (5)

is well defined. Our main result is the following theorem.

Theorem 2 Let A be the generator of a C0-semigroup in H, B be such that for each
y∈ H

(BI) kerB(·)y= {0};

(BII) B(domA)y⊆ domA;

(BIII) The operator C(·)y : H → L(H), defined by C(x)y := AB(x)y−B(Ax)y for x∈
domA, is bounded.

Then for anyΦ ∈ (domA) ⊆ (S)−0(H) the problem (5) has a unique solution in the
space(S)−0(H).

Proof. Note that by the uniform boundedness principle it follows from (BIII) that there
existsMAB > 0 such that

(12) ‖C(x)y‖ ≤ MAB‖x‖‖y‖ , x∈ domA, y∈ H .

Applying S-transform to (5) we obtain the next Cauchy problem:

(13)
d
dt

X̂(t,θ) = AX̂(t,θ)+B
(
X̂(t,θ)

)
Ŵ(t,θ) , t ≥ 0, X̂(0,θ) = Φ̂(θ) , θ ∈ S ,

whereX̂(t,θ) = S[X(t)](θ), Ŵ(t,θ) = S[W(t)](θ), Φ̂(θ) = SΦ(θ).
We first prove the uniqueness of solution. Note that ifX̂(·,θ) is a solution of

(13) for someθ ∈ S , it satisfies the equation

X̂(t,θ) =U(t)Φ̂(θ)+
∫ t

0
U(t −s)B(X̂(s,θ))Ŵ(s,θ)ds, t ≥ 0.

Thus it is sufficient to prove that equation

(14) X̂(t,θ)−
∫ t

0
U(t −s)B(X̂(s,θ))Ŵ(s,θ)ds= 0, t ≥ 0

has the only solution̂X(t,θ)≡ 0 for anyθ∈ S , where{U(t) , t ≥ 0} is theC0-semigroup
generated byA with M > 0, a∈ R such that

(15) ‖U(t)‖ ≤ Meat , t ≥ 0.

This can be proved using the Volterra equations technique and the fact thatŴ(s,θ) is
an infinitely differentiableH-valued function ofs and thus is bounded on any segment
of R.

To prove existence of solution consider the series

(16) T(t,θ) =
∞

∑
k=0

Tk(t,θ) , θ ∈ S ,
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where operatorsTk(t,θ), t ≥ 0, k= 0,1,2, . . . are defined as follows:

T0(t,θ) =U(t), Tk(t,θ)x=
∫ t

0
U(t −s)B

(
Tk−1(s,θ)x

)
Ŵ(s,θ)ds, x∈ H.

Proving first fort ≥ 0, θ ∈ S , k∈ N∪{0} andΦ ∈ (domA) the estimates

(17) ‖Tk(t,θ)‖L(H) ≤ Mk+1‖B‖keat|θ|k0

√
tk

k!
,

(18) ‖ATk(t,θ)Φ̂(θ)‖ ≤ Mk+1‖B‖k−1|θ|k0eat

√
tk

k!

(
‖B‖‖AΦ̂(θ)‖+kMAB‖Φ̂(θ)‖

)
,

whereM > 0 anda ∈ R are constants from (15),‖B‖ = ‖B‖L(H,L(H)), MAB is from
(12), we obtain by (17) for anyn,m∈ N

n+m

∑
k=n

‖Tk(t,θ)‖ ≤ Meat
n+m

∑
k=n

(
M
√

2‖B‖|θ|0
√

t
)k

√
k!

· 1√
2k

≤

≤ Meat

(
n+m

∑
k=n

(
2M2‖B‖2|θ|20t

)k

k!

)1/2(
n+m

∑
k=n

1
2k

)1/2

.

(19)

Hence (16) is absolutely convergent toT(t,θ) in L(H) for anyt ≥ 0, θ ∈ S .

For anyΦ ∈ (domA), by Proposition 7 and properties ofC0-semigroups we
obtain: T0(t,θ)Φ̂(θ) ∈ domA for all t ≥ 0 and θ ∈ S . It follows from (BII) that
B
(
domA

)
Ŵ(t,θ) ⊆ domA for all t ≥ 0 andθ ∈ S and by induction we obtain that

Tk(t,θ)Φ̂(θ) ∈ domA for all Φ ∈ (domA) ,k∈ N, t ≥ 0 andθ ∈ S . It also follows from
(BII) that B

(
Tk(s,θ)Φ̂(θ)

)
Ŵ(t,θ) ∈ domA. Moreover, we have

d
dt

U(t −s)B
(
Tk(s,θ)Φ̂(θ)

)
Ŵ(t,θ) = AU(t −s)B

(
Tk(s,θ)Φ̂(θ)

)
Ŵ(t,θ), t ≥ 0,θ ∈ S .

Thus for allΦ ∈ (domA) we have

(20)
d
dt

T0(t,θ)Φ̂(θ) = AT0(t,θ)Φ̂(θ) ,

d
dt

Tk(t,θ)Φ̂(θ) =
∫ t

0
AU(t −s)B

(
Tk−1(s,θ)Φ̂(θ)

)
Ŵ(s,θ)ds+

+B
(
Tk−1(t,θ)Φ̂(θ)

)
Ŵ(t,θ) .

(21)

SinceA is closed we can rewrite (21) as

(22)
d
dt

Tk(t,θ)Φ̂(θ) = ATk(t,θ)Φ̂(θ)+B
(
Tk−1(t,θ)Φ̂(θ)

)
Ŵ(t,θ) .
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Using (18) we obtain

m

∑
k=n+1

‖ATk(t,θ)Φ̂(θ)‖ ≤ Meat

(
m

∑
k=n+1

(
√

2M‖B‖|θ|L2(R)

√
t)k

√
k!

· 1√
2k

)
‖AΦ̂(θ)‖+

+
M
‖B‖eat

(
m

∑
k=n+1

(
√

2M‖B‖|θ|L2(R)

√
t)k

√
k!

· k√
2k

)
MAB‖Φ̂(θ)‖ ≤

≤ Meat

(
m

∑
k=n+1

(
2M2‖B‖2|θ|20t

)k

k!

)1/2

·
(

m

∑
k=n+1

1
2k

)1/2

‖AΦ̂(θ)‖+

+
M
‖B‖eat

(
m

∑
k=n+1

(
2M2‖B‖2|θ|20t

)k

k!

)1/2

·
(

m

∑
k=n+1

k2

2k

)1/2

MAB‖Φ̂(θ)‖ .

it follows from here that the series
∞

∑
k=0

ATk(t,θ)Φ̂(θ) converges inH for all θ ∈ S ,

Φ ∈ (domA). Taking sum of equalities (20) and (22) with respect to allk ∈ N we
obtain in the right hand side a series converging inH for all t ≥ 0, θ ∈ S . This proves
thatX̂(t,θ) = T(t,θ)Φ̂(θ) is a solution of (13).

It follows from (19) that

‖T(t,θ)‖ ≤
∞

∑
k=0

‖Tk(t,θ)‖ ≤ Meat
∞

∑
k=0

(
M
√

2‖B‖|θ|L2(R)

√
t
)k

√
k!

· 1√
2k

≤

≤ Meat

(
∞

∑
k=0

(
2M2‖B‖2|θ|20t

)k

k!

)1/2( ∞

∑
k=0

1
2k

)1/2

= M
√

2eat exp
(
M2‖B‖2|θ|20t

)
.

By (9) we have‖Φ̂(θ)‖ ≤ ‖Φ‖HS,p,0exp
(
|θ|2p
)
, θ ∈ S , for somep∈N. It follows that

for t ≥ 0 we have

‖X̂(t,θ)‖ ≤ M
√

2eat exp
((

M2‖B‖2t +1
)
|θ|2p
)
‖Φ‖HS,p,0 , θ ∈ S .

It follows from here that for eacht ≥ 0 X̂(t,θ) is anS-transform of a uniqueX(t) ∈
(S)−0(H), which is a unique solution of problem (13).

It is easy to see thatA andB defined by (2) and (3) respectively satisfy the con-
ditions of Theorem 2. Thus the stochastic perturbation of our model problem described
in introduction has a unique solution in(S)−0(L2[0;1]).



Generalized solutions to equations with multiplicative noise in Hilbert spaces 249

References

[1] K UO H.-H., White Noise Distribution Theory, CRC Press, 1996.

[2] DA PRATO G. AND ZABCZYK J., Stochastic equations in infinite dimensions, Encycl.
Math. and Appl. V 44. Cambridge Univ. Press, 1992.

[3] HOLDEN H., ØKSENDAL B., UBØE J., ZHANG T., Stochastic Partial Differential Equa-
tions. A Modelling, White Noise Functional Approach, Birkhauser, 1996.

[4] M ELNIKOVA I.V., FILINKOV A.I., A LSHANSKY M.A., Abstract Stochastic Equations II.
Solutions in Spaces of Abstract Stochastic Distributions, J. of Math. Sci.116 5 (2003),
3620–3656.

[5] A LSHANSKIY M.A., Itô and Hitsuda–Skorohod integrals in infinite dimensional case, Sib.
El. Math. Rep. (2014) (to appear).

AMS Subject Classification: 46F25; 47D06; 34K30; 60H40

Irina MELNIKOVA,
Institute of Mathematics and Computer Sciences, Ural Federal University
51, Lenina Av., 620083 Ekaterinburg, RUSSIA
e-mail:Irina.Melnikova@urfu.ru

Maxim ALSHANSKIY,
Institute of Radio-electronics and Informational Technologies, Ural Federal University
19, Mira St., 620002 Ekaterinburg, RUSSIA
e-mail:m.a.alshansky@urfu.ru

Lavoro pervenuto in redazione il 22.05.2013





Rend. Sem. Mat. Univ. Politec. Torino
Vol. 71, 2 (2013), 251 – 260

A. Schnurr∗

COGARCH: SYMBOL, GENERATOR AND

CHARACTERISTICS

Abstract. We describe the technique how to use the symbol in order to calculate the generator
and the characteristics of an Itô process. As an example we analyze the COGARCH process
which is used to model financial data.

1. Introduction

The COGARCH process was introduced by Klüppelberg et al. in [13] in order to model
financial data. It is a continuous time analog of the classic GARCH process (in discrete
time) and it is based on a single background driving Lévy process in contrast to the
well known model by Barndorff-Nielsen and Shephard [1]. Lévy processes are càdlàg
universal Markov processes which are homogeneous in timeand space. Our main
reference for this class of processes is [16]. For the Lévy triplet we write (ℓ,Q,N).

In the present paper we calculate the so calledsymbolof the COGARCH pro-
cess (and its volatility process). The origins of the symbols are in the theory of partial
differential equations, namely they appear in the Fourier representation of certain oper-
ators. The symbol found its way into probability theory for the following reason: sup-
pose we are given a Feller processX with associated semigroup(Tt)t≥0 and generator
(A,D(A)). Suppose further that the test functionsC∞

c (R
d) are contained in the domain

D(A). In this caseA is a pseudo-differential operator with symbol−q(x,ξ). For every
x∈Rd q(x, ·) is a continuous negative definite function in the sense of Schoenberg (cf.
[2] Chapter 2).

For a detailed, self contained treatment on the interplay between the process and
its symbol cf. the monograph [9]. In this context the following four questions are of
interest:
I) Given a process, (say as the solution of an SDE) what is its symbol? (E.g. [19])
II) Given a symbol, does there exist a corresponding process? ([6, 7, 11])
III) Which properties of the process can be characterized viathe symbol? ( [17, 18])
IV) For which bigger classes of processes is it possible (anduseful) to define a symbol?
([20, 21])
All four questions are a vital part of ongoing research. In the present paper we empha-
size, how one can calculate the symbol of a given process using a probabilistic formula
and derive directly the generator as well as the semimartingale characteristics.

The notation we are using is (more or less) standard. Vectorsare meant to be

∗Acknowledgments:Most of this work was done as a part of my PhD thesis, written under the guidance
of René L. Schilling to whom I am deeply grateful. Financial Support by the DFG-SFB 823 is gratefully
acknowledged. Furthermore I would like to thank an anonymous referee for carefully reading the manuscript
and offering useful suggestions which helped to improve the paper.
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column vectors and the transposed of a vectorv or a matrixQ is denoted byv′ respective
Q′.

Let us recall how the COGARCH process is defined:
we start with a Lévy processZ = (Zt)t with triplet (ℓ,Q,N). Fix 0< δ < 1, β > 0, λ ≥
0. Then the volatility process(σt)t≥0 is the solution of the SDE

dσ2
t = β dt+σ2

t

(
logδ dt+

λ
δ

d[Z,Z]disc
t

)

σ0 = S

whereS> 0 and

[Z,Z]disc
t = ∑

0<s≤t

(∆Zs)
2.

It turns out, that(σt)t≥0 is a time homogeneous Markov process.

Definition: The process

Gt := g+
∫ t

0
σs− dZt , g∈ R,

is calledCOGARCH process(starting ing).

We allow the process to start everywhere in order to bring ourmethods into
account. The pair(Gt ,σ2

t ) is a (normal) Markov process which is homogeneous in
time. It is homogeneous in space in the first component. Furthermore(Gt ,σ2

t ) is an
Itô process, which follows from Theorem 3.33 of [4] which characterizes Itô processes
as solutions of certain stochastic differential equationsand Proposition IX.5.2. of [10]
giving a representation of the semimartingale characteristics of a stochastic integral.

To avoid problems which might arise for processes defined onR×R+ we
consider in the following:(Gt ,Vt) = (Gt , log(σ2

t )), i.e.,V is the logarithmic squared
volatility.

2. The Symbol of a Stochastic Process

Definition: Let X be anRd-valued universal Markov process, which is conservative
and normal. Fix a starting pointx and defineT = Tx

R to be the first exit time from the
ball of radiusR> 0:

T := Tx
R := inf{t ≥ 0 : ‖Xt −x‖> R} underPx(x∈ R

d).(1)

We call the functionp : Rd ×Rd → C, given by

p(x,ξ) :=− lim
t↓0

E
x ei(XT

t −x)′ξ −1
t

,(2)

the(probabilistic) symbol of the process, if the limit exists for everyx,ξ andR and is
independent of the choice ofR.
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In [21] Theorem 4.4. we have shown that for Itô processes in the sense of Cinlar,
Jacod, Protter and Sharpe (cf. [5]) having differential characteristics which are finely
continuous (cf. [3]) and locally bounded the above limit exists and coincides for every
choice ofR. For the reader’s convenience we recall the the definition ofItô processes,
as it is used here:

Definition: A Markov semimartingaleX = (Xt)t≥0, i.e., a universal Markov
process which is a semimartingale with respect to every initial probabilityPx (x∈ R),
is calledItô processif it has characteristics of the form:

B j
t (ω) =

∫ t
0 ℓ

j(Xs(ω)) ds j= 1, ...,d

C jk
t (ω) =

∫ t
0 Q jk(Xs(ω)) ds j,k= 1, ...,d

ν(ω;ds,dy) = N(Xs(ω),dy) ds

whereℓ j ,Q jk : Rd →R are measurable functions,Q(x) = (Q jk(x))1≤ j,k≤d is a positive
semidefinite matrix for everyx∈ Rd, andN(x, ·) is a Borel transition kernel onRd ×
B(Rd\{0}). ℓ, Q and

∫
y6=0(1∧y2)N(·,dy) are calleddifferential characteristics.

Example 1: LetX be ad-dimensional Lévy process. It is a well known fact that
the characteristic function ofXt (t ≥ 0) can be written as

E
0exp(iX ′

t ξ) = exp(−tψ(ξ)).

The functionψ : Rd → C is called characteristic exponent. By an elementary calcula-
tion one obtainsp(x, ·) = ψ(·) for everyx∈ Rd.

Example 2: LetX be a rich Feller process, i.e., the test functionsC∞
c (R

d) are
contained in the domainD(A) of the generatorA. In this case the generator restricted
toC∞

c (R
d) is a pseudo-differential operator with (functional analytic) symbol−q(x,ξ).

In [21] we have shown thatX is an Itô process andp(x,ξ) = q(x,ξ) for everyx,ξ ∈Rd.

Example 3: Let(Zt)t≥0 be anRn-valued Lévy process. The solution of the
stochastic differential equation (x∈ Rd),

dXx
t = Φ(Xx

t−)dZt

Xx
0 = x,

whereΦ : Rd → Rd×n is Lipschitz continuous admits the symbol

p(x,ξ) = ψ(Φ(x)′ξ).

This was shown in [19].

3. Symbol, Generator and Characteristics

In the present section we calculate the symbol of the COGARCHprocess. Using the
close relationship between the symbol, the extended generator and the semimartingale
characteristics we are able to write down the latter two objects directly. Let us empha-
size that the symbol doesnot depend ong, since the process is homogeneous in the
first component.
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Theorem: The stochastic process(Gt ,Vt) = (Gt , log(σ2
t )) admits the symbol

p : R2×R2 → C given by

p

((
g
v

)
,ξ
)
=

−iξ1

(
ℓev/2+ev/2

∫
R\{0}

y· (1{|ev/2y|<1} ·1{|log(1+(λ/δ) y2)|<1}−1{|y|<1}) N(dy)

)

−iξ2

(
β
ev + logδ+

∫
R\{0}

log(1+
λ
δ

y2) · (1{|ev/2y|<1} ·1{|log(1+(λ/δ) y2)|<1}) N(dy)

)

+
1
2

ξ2
1evQ

−
∫
R2\{0}

(
ei(z1,z2)ξ −1− iz′ξ · (1{|z1|<1} ·1{|z2|<1})

)
Ñ

((
g
v

)
,dz

)
,

whereÑ is the image measure

Ñ

((
g
v

)
,dz

)
= N( fv ∈ dz)

under f : R→ R2 given by

fv(w) =

(
ev/2w

log(1+(λ/δ) w2)

)
.

Remark: It is not surprising, that the transformation of thejump measure de-
pends only onv since the process is space homogeneous in the first component.

Proof: Let T be the stopping time defined in (1). At first we use Itô’s formula:

Eg,vei(GT
t −g,VT

t −v)ξ −1
t

=
E0,vei(GT

t ,V
T
t −v)ξ −1

t

=
1
t
E

0,v
∫ t

0+
iξ1ei(GT

s−,V
T
s−−v)ξ dGT

s(I)

+
1
t
E

0,v
∫ t

0+
iξ2ei(GT

s−,V
T
s−−v)ξ dVT

s(II)

− 1
2t
E

0,v
∫ t

0+
ξ2

1ei(GT
s−,V

T
s−−v)ξ d[GT ,GT ]cs(III)

− 1
t
E

0,v
∫ t

0+
ξ1ξ2ei(GT

s−,V
T
s−−v)ξ d[GT ,VT ]cs(IV)

− 1
2t
E

0,v
∫ t

0+
ξ2

2ei(GT
s−,V

T
s−−v)ξ d[VT ,VT ]cs(V)

+
1
t
E

0,v ∑
0<s≤t

e(G
T
s−,V

T
s−−v)ξ

(
ei∆(GT

s ,V
T
s )ξ −1− (iξ1∆GT

s + iξ2∆VT
s )
)
.(VI)

We deal with this formula term-by-term. In the calculation of the first term we use

dGT
s = σs−1{s∈[[0,T]]} dZs.
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Recall that the integrand is bounded and for the Lévy processZ we have the Lévy-Itô-
decomposition:

Zt = ℓt +
√

QWt +
∫
[0,t]×{|y|<1}

y (µZ(ds,dy)−dsN(dy))

+ ∑
0<s≤t

∆Zs1{|∆Zs|≥1},

whereµZ denotes the jump measure of the process (cf. [10] Proposition II.1.16). The
integrals with respect to the martingale parts are againL2-martingales and the respec-
tive terms disappear. What remains from the first term is:

(3)
1
t
E

0,v
∫ t

0+
iξ1ei(GT

s−,V
T
s−−v)ξσs−1{s∈[[0,T]]} d

(
ℓs+ ∑

0<r≤s

∆Zr ·1{|∆Zr |≥1}

)
.

For the first part of this integrand we get:

1
t
E

0,v
∫ t

0+
iξ1ei(GT

s−,V
T
s−−v)ξσs−1{s∈[[0,T]]} d(ℓs)

= E
0,v 1

t

∫ t

0
iξ1ℓe

i(GT
s ,V

T
s −v)ξ1{s∈[[0,T[[}σs ds

= iξ1ℓ E
0,v

∫ 1

0
ei(GT

st,V
T
st −v)ξ1{st∈[[0,T[[}

︸ ︷︷ ︸
→1

σst︸︷︷︸
→S

ds

−→
t↓0

iξ1ℓS.

In the first equation we used the fact that we are integrating with respect to Lebesgue
measure. For this the countable number of jump times is a nullset. In the last step we
used Lebesgue’s theorem twice. A similar argumentation is used in the consideration
of the second and the third term. The jump term of (3) above will be compared to the
sixth term.

Using Itô’s formula we obtain for the second term

1
t
E

0,v
∫ t

0+
iξ2ei(GT

s−,V
T
s−−v)ξ

{
1

σ2
s−

d(σT
s )

2+d

(

∑
0<r≤s

logσ2
r − logσ2

r−− 1

σ2
r−

∆(σ2
r )

)}

and by plugging in the defining SDE for(σ2):

1
t
E

0,v
∫ t

0+
iξ2ei(GT

s−,V
T
s−−v)ξ1{s∈[[0,T]]}





(
β

σ2
s−

ds+
σ2

s−
σ2

s−
logδ ds

)

+
λ
δ

d

(

∑
0<r≤s

(∆Zr)
2)

)
+d

(

∑
0<r≤s

∆(logσ2
r )−

1

σ2
r−

∆(σ2
r )

)}
.

We postpone the jump parts and for the remainder term we get inthe limit, using a
similar argumentation as for the first term,

−→
t↓0

iξ2β/S2+ iξ2 logδ.
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For the third term we obtain in an analogous manner to the firstone

− 1
2t
E

0,v
∫ t

0+
ξ2

1ei(GT
s−,V

T
s−−v)ξ d[GT ,GT ]cs

=− 1
2t
E

0,v
∫ t

0+
ξ2

1ei(GT
s−,V

T
s−−v)ξ 1{s∈[[0,T]]}σ2

s− d[Z,Z]cs

=− 1
2t
E

0,v
∫ t

0
ξ2

1ei(GT
s−,V

T
s−−v)ξ 1{s∈[[0,T[[}σ2

s− d(Qs)

−→
t↓0

−1
2

ξ2
1S2Q.

The terms four and five are constant zero: since(t)t and ([Z,Z]t)t are both of finite
variation on compacts, the process(σ2

t )t has this property as well, by its very defi-
nition. Therefore it is a quadratic pure jump process (see [14] Section II.6). Using
Itô’s formula we obtain thatV = log(σ2) is again a quadratic pure jump process and
therefore

[VT ,VT ]cs = 0 and[VT ,GT ]cs = 0.

The only thing that remains to do is dealing with the various ‘jump parts’. From the
first term we left the following behind

1
t
E

0,v
∫ t

0+
iξ1ei(GT

s−,V
T
s−−v)ξσs−1{s∈[[0,T]]} d

(

∑
0<r≤s

∆Zr ·1{|∆Zr |≥1}

)

=
1
t
E

0,v ∑
0<s≤t

iξ1ei(GT
s−,V

T
s−−v)ξσs−1{s∈[[0,T]]}∆Zs ·1{|∆Zs|≥1}

and from the second one

1
t
E

0,v
∫ t

0+
iξ2ei(GT

s−,V
T
s−−v)ξ1{s∈[[0,T]]}

λ
δ

d

(

∑
0<r≤s

(∆Zr)
2

)

+
1
t
E

0,v
∫ t

0+
iξ2ei(GT

s−,V
T
s−−v)ξ1{s∈[[0,T]]} d

(

∑
0<r≤s

∆Vr −
1

σ2
r−

∆(σ2
r )

)

=
1
t
E

0,v ∑
0<s≤t

iξ2ei(GT
s−,V

T
s−−v)ξ1{s∈[[0,T]]}

λ
δ
(∆Zs)

2

+
1
t
E

0,v ∑
0<s≤t

iξ2ei(GT
s−,V

T
s−−v)ξ1{s∈[[0,T]]}

(
∆Vs−

1

σ2
s−

∆(σ2
s)

)
.

Adding these terms to term number six and using the equalities

∆GT
s = (σs−1{s∈[[0,T]]})∆Zs and(∆σT

s )
2 =

λ
δ
(σ2

s−1{s∈[[0,T]]})(∆Zs)
2

as well as

∆ log(σ2
s)

T = log

(
(σ2

s−)
T +∆(σ2

s)
T

(σ2
s−)T

)
= log

(
1+

∆(σ2
s)

T

(σ2
s−)T

)
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we obtain

1
t
E

0,v ∑
0<s≤t

ei(GT
s−,V

T
s−−v)ξ1{s∈[[0,T]]} ×

(
eiσs−∆Zsξ1+i log(1+(λ/δ)∆(Zs)

2)ξ2 −1− iξ1σs−∆Zs ·1{|∆Zs|<1}
)

=
1
t
E

0,v
∫
]0,t]×{y6=0}

ei(GT
s−,V

T
s−−v)ξ1{s∈[[0,T]]} ×

(
eiσs−yξ1+i log(1+(λ/δ)y2)ξ2 −1− iξ1σs−y·1{|y|<1}

)
µZ(·;ds,dy)

=
1
t
E

0,v
∫
]0,t]×{y6=0}

ei(GT
s−,V

T
s−−v)ξ1{s∈[[0,T]]} ×



(

eiσs−yξ1+i log(1+(λ/δ)y2)ξ2 −1− i

(
σs−y

log(1+ λ
δ y2)

)′
ξ ·1{|Sy|<1} ·1{

∣∣∣log(1+ λ
δ y2)

∣∣∣<1}

)

+

(
iξ1σs−y· (1{|Sy|<1} ·1{

∣∣∣log(1+ λ
δ y2)

∣∣∣<1})−1{|y|<1})

)

+

(
iξ2 log(1+

λ
δ

y2) ·1{|Sy|<1} ·1{
∣∣∣log(1+ λ

δ y2)
∣∣∣<1}

)

 µZ(·;ds,dy).

It is possible to calculate the integral with respect to the compensatorν(·;ds,dy) =
N(dy) ds instead of the measure itself ‘under the expectation’, since the integrands are
of classF2

p of Ikeda-Watanabe ([8]):

F2
p =

{
f (s,y,ω) : f is predictable,E

∫ t

0

∫
R

| f (s,y, ·)|2N(dy)dsfor everyt > 0

}
.

One obtains this, because 1{|Sy|<1} ·1{|log(1+(λ/δ) y2)|<1}−1{|y|<1} is zero near the origin

and bounded and log(1+ λ
δ y2)≤ (λ/δ) ·y2 for

∣∣(λ/δ) ·y2
∣∣< 1.

Fort tending to zero (and multiplying with−1) we obtain by using Lebesgue’s theorem
again twice

p

((
g
v

)
,

(
ξ1

ξ2

))
=

−iξ1

(
ℓS+S

∫
R\{0}

y· (1{|Sy|<1} ·1{|log(1+(λ/δ) y2)|<1}−1{|y|<1}) N(dy)

)

−iξ2

(
β
S2 + logδ+

∫
R\{0}

log(1+
λ
δ

y2) · (1{|Sy|<1} ·1{|log(1+(λ/δ) y2)|<1}) N(dy)

)

+
1
2

ξ2
1S2Q

−
∫
R2\{0}

(
ei(z1,z2)ξ −1− iz′ξ · (1{|z1|<1} ·1{|z2|<1})

)
Ñ

((
g
S

)
,dz

)
,
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whereÑ is the image measure

Ñ

((
g
S

)
,dz

)
= N

((
S·

log(1+(λ/δ) ·2)

)
∈ dz

)
.

And by writing the starting point asS= exp(v/2) we obtain the result. �

It is an advantage of our approach that, having calculated the symbol, one can
write down the (extended) generator and the semimartingalecharacteristics at once.
For the reader’s convenience we recall the definition of the extended generator (cf.
Definition (7.1) of [5]):

Definition: An operatorG with domainDG is calledextended generatorof a
Markov semimartingaleX if DG consists of those functionsf ∈B(Rd) for which there
exists a functionG f ∈ B(Rd) such that the process

C f
t := f (Xt)− f (X0)−

∫ t

0
G f(Xs) ds

is well defined and a local martingale.

Combining Theorem 4.4 of [21] and Theorem 7.16 of [5] we obtain:

Corollary 1: The extended generatorG onC2
b(R

2) of the process(X(1),X(2))′ =
(G, log(σ2))′ can be written as

Gu(x) =

∂1u(x)

(
ℓex2/2+ex2/2

∫
R\{0}

y· (1{
∣∣∣ex2/2y

∣∣∣<1} ·1{|log(1+(λ/δ) y2)|<1}−1{|y|<1}) N(dy)

)

+∂2u(x)

(
β

ex2
+ logδ+

∫
R\{0}

log(1+
λ
δ

y2) · (1{
∣∣∣ex2/2y

∣∣∣<1} ·1{|log(1+(λ/δ) y2)|<1}) N(dy)

)

+∂1∂1u(x)ex2Q

+
∫
R2\{0}

(
u(x−y)−u(x)+y′∇u(x) · (1{|y1|<1} ·1{|y2|<1})

)
Ñ (x,dy)

with theÑ from above.

Writing D(A) for the domain of the generatorA of the process we haveD(A)⊆
DG and the operatorsA andG coincide onD(A).

Corollary 2: The semimartingale characteristics(B,C,ν) of the process
(X(1),X(2))′ = (G, log(σ2))′ are

B(1)
t =

∫ t

0


ℓe

X(2)
2 +e

X(2)
2

∫
R\{0}

y· (1{∣∣∣∣∣e
X(2)

2 y

∣∣∣∣∣<1

} ·1{
∣∣∣log(1+( λ

δ ) y2)
∣∣∣<1}−1{|y|<1}) N(dy)


ds

B(2)
t =

∫ t

0

(
β

eX(2)
+ logδ+

∫
R\{0}

log(1+
λ
δ

y2) · (1{∣∣∣eX(2)/2y
∣∣∣<1

} ·1{
∣∣∣log(1+( λ

δ ) y2)
∣∣∣<1}) N(dy)

)
ds

Ct =
∫ t

0

(
eX(2)

Q 0
0 0

)
ds

ν(·;ds,dy) = Ñ(Xs(·),dy) ds

with theÑ from above.
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Remark: A different approach to calculate the characteristics of the COGARCH
process is described in [12]. Furthermore our results are related to earlier work of
B. Rajput and J. Rosinski. In their interesting article [15]they derive under certain
restrictions a representation of the characteristic function of processes of the formXt =∫ t

0 f (t,s) dZs where f is a deterministic function andZ is a Lévy process.
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J. Vives∗

MALLIAVIN CALCULUS FOR LÉVY PROCESSES: A SURVEY

Abstract. Since Itô (1956) it is known that Lévy processes enjoy the chaotic representa-
tion property in a certain generalized form. In other words, the space of square integrable
functionals of a certain independent random measure associated to a Lévy process has Fock
space structure. The Fock space structure gives the possibility to develop a formal calculus
where a gradient and a divergence operators, that are dual between them, are the main tools.
On every space of random functionals with Fock space structure we can interpret probabilis-
tically these operators and develop an stochastic calculusof Malliavin - Skorohod type. In
this survey I present, first of all, a probabilistic interpretation of these operators in the case of
functionals of a Lévy process. This interpretation generalizes the well-known interpretation
for the standard Poisson process presented in Nualart and Vives (1990 and 1995) and, of
course, the genuine Malliavin - Skorohod calculus for the Wiener process. As an application
I obtain an anticipating Itô formula that extends both the usual adapted formula for Lévy
processes and the anticipative version of the Itô formula on the Wiener space.

1. Introduction

This paper is a survey of Malliavin Calculus for Lévy processes since the point
of view developed mainly in Solé, Utzet and Vives [15], that is strongly based on Itô
[7], where the fact that square integrable functionals adapted to the filtration of a certain
independent random measure associated to a Lévy process enjoy the chaotic represen-
tation property is proved. Of course, being Wiener process aparticular example of
Lévy process, Malliavin calculus for Lévy processes is an extension of Malliavin cal-
culus for the Wiener process. Good references of Malliavin calculus for the Wiener
process and for Gaussian processes in general are Sanz-Solé[13] and Nualart [8].

The fact that a process enjoys the chaotic representation property can be de-
scribed also saying that the space of square integrable functionals has Fock space
structure. This structure gives the possibility to developa formal calculus where a
gradient and a divergence operators (dual between them) arethe main tools. On every
space of random functionals with Fock space structure we caninterpret probabilisti-
cally these operators and develop an stochastic calculus ofMalliavin - Skorohod type.
See Nualart-Vives [9] and Applebaum [5] for details.

In this paper, the probabilistic interpretation of these operators in the case of
functionals of a Lévy process is presented following Solé, Utzet and Vives [15]. Pre-
viously, a canonical space for Lévy processes is constructed following the ideas devel-
oped by Neveu [11] for the standard Poisson case. This interpretation of the operators
generalizes the interpretation given by Nualart and Vives in [9] and [10] for the stan-
dard Poisson case.

As an application I present an anticipating Itô formula, based on Alòs, León
and Vives [1], that extends both the usual adapted formula for Lévy processes (see for

∗This work has been financed by grants MEC FEDER MTM 2009, 08869and 07203.
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example Cont and Tankov [6]) and the anticipative version ofthe Itô formula on the
Wiener space developed in Alòs and Nualart [3]. Another recent application that can
be found in Alòs, León, Pontier and Vives [2], is a Hull and White formula (pricing
formula) for plain vanilla options based on an stochastic volatility jump diffusion price
model. We have no space here to present this nice financial application.

Section 2 is devoted to Fock space structure. In section 3 we give the construc-
tion of the canonical space for a Lévy process. In section 4 wepresent the probabilistic
interpretation of the operators. Finally, Section 5 is devoted to the anticipative Itô for-
mula.

2. Formal calculus based on the Fock space structure

Let H be a real separable Hilbert space. For anyn≥ 0 we consider the tensor
productsH⊗n. Recall thatH⊗0 = R andH⊗1 = H. We define the Hilbert subspaces
H⊙n ⊆ H⊗n given by the symmetric elements with the scalar product

〈 fn,gn〉⊙n := n!〈 fn,gn〉⊗n.

The Fock space associated toH is defined by the Hilbert space

Φ(H) :=
∞⊕

n=0

H⊙n

with the scalar product〈 f ,g〉= ∑∞
n=0〈 fn,gn〉H⊙n, where f = ∑∞

n=0 fn andg= ∑∞
n=0gn.

If (S,B(S),µS) is a certain measure space we can considerH = L2(S). In this
case we haveH⊙n = L2

s(S
n), that is the space ofn−dimensional and symmetric square

integrable functions, with the modified scalar product. So,if F ∈ Φ(H), we have
F = ∑∞

n=0 fn with fn ∈ L2
s(S

n).

We define the gradient or annihilation operatorD as an application that maps an
elementF ∈ Φ(H) to an elementDF ∈ Φ(H)×H ∼= L2(S,Φ(H)) such that

DtF =
∞

∑
n=1

n fn(·, t), t −a.e.,

of course provided thatDF ∈ L2(S,Φ(H)), that is equivalent to

∞

∑
n=1

nn!|| fn||2L2(Sn) < ∞.

It is easy to see that this operator is densely defined and closed. Its domain is
denoted by DomD.

Let u ∈ L2(S,Φ(H)). Of course we haveut = ∑∞
n=0un(t, ·), µS− a.e. where

un ∈ L2(Sn+1) is symmetric with respect to then last variables. Denote bỹun be the
symmetrization in alln+1 variables. Then we define the divergence or creation oper-
ator ofu by
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δ(u) =
∞

∑
n=0

ũn,

provided this series is inΦ(H), that is equivalent to assume

∞

∑
n=0

(n+1)! ‖ũn‖2
L2(Sn+1) < ∞.

We denote by Domδ its domain. This operator is also densely defined and
closed.

OperatorsD andδ are dual. Concretely we have that ifF ∈DomDandu∈Domδ
then

〈u,DF〉L2(S,Φ(H)) = 〈F,δ(u)〉Φ(H).

This is the basis of a calculus on the Fock space, that we can name Malliavin-
Skorohod calculus without probability, and that can be largely developed, obtaining
abstract formulas such as a Clark-Ocone type one (see Nualart and Vives [9]).

3. Lévy processes

In all the paperX will be a Lévy process with triplet(γ,σ2,ν) whereγ ∈ R,
σ2 > 0 andν is a Lévy measure. Good references for Lévy processes are Sato [14] and
Cont and Tankov [6]. Recall that Lévy processes can be usefully represented by the
so called Lévy-Itô representationXt = γt +σWt + Jt , whereW is the standard Wiener
process andJ is apure jumpLévy process, independent ofW, such that

Jt :=
∫ t

0

∫
{|x|>1}

xdN(s,x)+ lim
ε↓0

∫ t

0

∫
{ε<|x|≤1}

xdÑ(s,x),

whereN(B) = #{t : (t,∆Xt) ∈ B}, for B ∈ B((0,∞)×R0), is the jump measure of
the process,dÑ(t,x) := dN(t,x)−dt dν(x) is the compensated jump measure and the
limit is a.s. uniform in t on every bounded interval. Recall also that for everyt ≥ 0,
F X

t = F W
t ∨F J

t .

From Itô [7], a Lévy processX can be associated to a centered and indepen-
dent random measureM onR+×R. We consider the continuous measureµ(dt,dx) =
η(dx)dt, whereη(dx) := σ2δ0(dx)+ x2 ν(dx). More explicitly, we have, for anyE ∈
B(R+×R),

µ(E) = σ2
∫

E(0)
dt+

∫∫
E′

x2dν(x)dt,

whereE(0)= {t ∈R+ : (t,0)∈E} andE′=E−{(t,0)∈E}. Then, forE∈B(R+×R)
with µ(E)< ∞, we define the measure

M(dt,dx) = σW(dt)δ0(dx)+xÑ(dt,dx),
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that is,

M(E) = σ
∫

E(0)
dWt +

∫∫
E′

xdÑ(t,x),

and it is a centered independent random measure such thatE
[
M(E1)M(E2)] = µ(E1∩

E2), for E1,E2 ∈ B(R+×R) with µ(E1)< ∞ andµ(E2)< ∞.

Let S := [0,∞)×R endowed with the Borelσ−algebra and the measureµ de-
fined above. Then we can consider

H⊗n = L2
n := L2

(
(R+×R)n,B(R+×R)n,µ⊗n).

For fn ∈ L2
n, following Itô [7], we can define a multiple stochastic integral In( fn)

with respectM, through the same steps as in the Wiener case, and prove thatL2(Ω,F X)
has Fock space structure, that is,

L2(Ω,F X) =
∞⊕

n=0

In(L
2
n).

Then, we can represent any functionalF ∈ L2(Ω,F X) via the expansion

F =
∞

∑
n=0

In( fn), fn ∈ L2
n.

This expansion is unique if we take everyfn symmetric.

This fact makes possible to apply the machinery of annihilation and creation
operators in a Fock space as presented before.

If F ∈ L2(Ω), with chaotic representationF = ∑∞
n=0 In( fn), ( fn symmetric) and

such that∑∞
n=1nn!‖ fn‖2

L2
n
< ∞, we define its gradient as

DzF =
∞

∑
n=1

nIn−1

(
fn
(
z, ·
))

, z∈ R+×R,

Recall thatDzF is an element ofL2(R+×R×Ω,µ⊗P).

In particular we can consider the two particular cases

Dt,0F =
∞

∑
n=1

nIn−1

(
fn
(
(t,0), ·

))
, t ∈ R+,

in L2(R+×Ω,dt⊗P) and

Dt,xF =
∞

∑
n=1

nIn−1

(
fn
(
(t,x), ·

))
, (t,x) ∈ R+×R0,

in L2(R+×R0×Ω,dt x2dν(x)⊗P).
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If we define its domains analogously to previous cases and denote them by
DomD0 and DomDJ respectively, we have that ifσ > 0 andν 6= 0, DomD = DomD0∩
DomDJ.

On other hand, letu∈ L2
(
R+×R×Ω,B(R+×R)⊗F X,µ⊗P). As before, we

have the chaotic decomposition

u(t,x) =
∞

∑
n=0

In(un((t,x), ·))

whereun ∈ L2
n+1 is symmetric in then last variables. Then, if̃un denotes the sym-

metrization in alln+1 variables we have

δ(u) =
∞

∑
n=0

In+1(ũn),

in L2(Ω), providedu∈ Domδ, that means∑∞
n=0(n+1)! ‖ũn‖2

L2
n+1

< ∞.

The duality property, in this case can be written in the following way: If u ∈
Domδ andF ∈ DomD we have

E[δ(u)F] = E
∫∫

R+×R

u(t,x)Dt,xF µ(dt,dx).

4. Probabilistic interpretation of gradient and divergence operators

4.1. A canonical space for Lévy processes

The usual canonical Lévy process is built on the space of measurable functions
fromR+ toR or on the space ofcàdlàgfunctions, in both cases with theσ-field gener-
ated by the cylinders and using the Kolmogorov extension theorem. In order to have a
probabilistic interpretation of the operatorD, in Solé, Utzet and Vives [15] a different
canonical Lévy process is constructed. This construction is an extension of the canon-
ical Poisson process defined by Neveu [11] and is done in several steps. First of all we
construct a canonical space for a compound Poisson process in a finite time interval,
then we extend it toR and after this, we construct the canonical space for a pure jump
Lévy case. In fact, in this last case, the probability space is the set of all finite or infi-
nite sequences of pairs(ti ,xi) such that for everyT > 0, there is only a finite number of
ti ≤ T, including the empty sequence. Finally, for a general Lévy process we consider
the canonical Wiener space(ΩW,FW,PW,{Wt , t ≥ 0}) and the canonical pure jump
Lévy space(ΩJ,FJ,PJ,{Jt , t ∈ R+}). Then we define

(ΩW ×ΩJ,FW ⊗FJ,PW ⊗PJ)

with Wt(ω,ω′) :=Wt(ω) and Jt(ω,ω′) := Jt(ω′). The processXt = γ t+σWt +Jt is
the canonical Lévy process.



266 J. Vives

4.2. Probabilistic interpretation of the operator Dt,0

We are going to see thatDt,0 turns to be the derivative with respect to the Wiener
part ofX and that the usual rules of classical Malliavin Calculus apply

Recall that we have the isometryL2(ΩW ×ΩJ)≃ L2(ΩW;L2(ΩJ)) and then we
can apply the theory of Malliavin calculus for Hilbert spacevalued random variables
as it is developed for example in Nualart [8].

Let beDW the classical Malliavin derivative and denote by DomDW its domain.
Given a real separable Hilbert spaceH , we can extend this notion toH -valued random
variables. We writeDW∗

to denote the extended notion and DomDW∗
to denote its

domain. In this case we have DomDW∗ ≃ DomDW ⊗H . In the particular case of
H = L2(Ω′), for a certain probability space(Ω′,F ′,P′), such thatL2(Ω′) is separable,
we have,

DomDW∗ ≃ DomDW ⊗L2(Ω′)≃ L2(Ω′;DomDW).

As a consequence, ifF ∈ L2(Ω × Ω′) such that for allω′ ∈ Ω′, P′-a.s.,F(·,ω′) ∈
DomDW, thenF ∈ DomDW∗

and

DW∗
t F(ω,ω′) = DW

t F(·,ω′)(ω), ℓ⊗P⊗P
′−a.e.

In our particular case we haveL2(Ω′)= L2(ΩJ), which is a separable Hilbert space, and
soL2(ΩW×ΩJ)≃ L2(ΩW;L2(ΩJ)). Therefore we can compute bothDt,0F andDW∗

t F ,
and to obtain DomDW∗ ⊂ DomD0, and forF ∈ DomDW∗

, we haveDt,0F = 1
σ DW∗

t F.
This gives the probabilistic interpretation ofDt,0.

The most general chain rule is proved in Petrou [12]: IfF = f (Z) with Z ∈
DomDW∗ and f in C1

b(R), thenF ∈ DomDW∗ andDW∗
t F = f ′(Z)DW∗

t Z.

4.3. Probabilistic interpretation of Dt,x for x 6= 0.

Consider now a pure jump Lévy processJ with Lévy measureν. Givenω ∈ ΩJ

andz= (t,x) ∈ R+×R0, we introduce inω a jump of sizex at instantt, and call the
new elementωz =

(
(t1,x1),(t2,x2), . . . ,(t,x), . . .

)
.

For aF J-random variableF , we define the transformation(TzF)(ω) := F(ωz),
and the applicationTF : R+×R0×Ω −→ R, that applies(z,ω) to F(ωz) is B(R+×
R0)⊗F J measurable and ifF = 0, P−almost surely, thenTF = 0, ℓ⊗ν⊗P a.e.

Now we can define the increment quotient operator

Ψt,xF(ω) :=
(Tt,xF)(ω)−F(ω)

x
.

Thanks to the results given above,Ψt,x is a measurable operator fromL0(ΩJ) to
L0(R+×R0×ΩJ). It is linear, closed and ifF,G∈ L0(ΩJ),

Ψt,x(F G) = GΨt,xF +F Ψt,xG+xΨt,x(F)Ψt,x(G).
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Using the same ideas as in Nualart and Vives [10], givenF ∈ L2(ΩJ), we have

F ∈ DomDJ ⇐⇒ ΨF ∈ L2(R+×R0×ΩJ),

and in this caseDt,xF = Ψt,xF, µ⊗P−a.e. This gives the probabilistic interpretation
of Dt,x for x 6= 0.

In the general case, givenz= (t,x) ∈ R+×R0, for ω = (ωW,ωJ) ∈ ΩW ×ΩJ

defineωz = (ωW,ωJ
z), and for a random variableF ∈ L0(ΩW ×ΩJ) let (T∗

z F)(ω) :=
F(ωz). Define also the operator

Ψ∗
t,xF :=

F(ωt,x)−F(ω)
x

.

Then, forF ∈ L2(Ω) we have thatF ∈ DomD if and only if F ∈ DomDW∗ and
Ψ∗F ∈ L2(Ω× [0,∞)×R0), and in this case,

Dt,xF = 1{σ>0}1{0}(x)
1
σ

DW∗
t F +1R0(x)Ψ

∗
t,xF.

4.4. Probabilistic interpretation of δ

From now on, fix a finite timeT > 0 and consider the process{Xt , t ∈ [0,T]}.
Consider the independent random measureM restricted to[0,T]×R. Assume also∫
R

x2dν(x)< ∞.

Following Applebaum [4], the random measureM, with the filtration
{
F X

t , t ∈
[0,T]

}
, induces a martingale-valued measure and allows to define anstochastic inte-

gral.

Let u be a predictable process such thatE
∫∫

[0,T]×R
u2(z)µ(dz) < ∞. We can

define a stochastic integral
∫∫

[0,T]×R
u(z)dMz such that foru andv square integrable

predictable processes we have

E
[∫∫

[0,T]×R

udM·
∫∫

[0,T]×R

vdM
]
= E

[∫∫
[0,T]×R

uvdµ
]
.

An explicit expression for the integral
∫∫

[0,T]×R
u(z)dMz is given by

∫∫
[0,T]×R

u(z)dMz = σ
∫ T

0
u(t,0)dWt +

∫∫
[0,T]×R0

xu(t,x)dÑ(t,x).

As in the Wiener case, the Skorohod integral restricted to predictable processes
coincides with the integral with respect to the random measureM.

In fact, if δ0 is the dual operator ofDt,0 andδJ is the dual operator ofDt,x for
x 6= 0, we have

δ(u) = δ0(u·,0)+δJ(u1R0(x)).
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In particularδ0 coincides withσδW and δJ coincides with the path by path
integral with respect toxÑ over predictable processes.

Next result will play a key role in the application:

LEMMA 1. Let F∈ DomD be a bounded random variable and u∈ Domδ such
that

E
∫
[0,T]×R

(u(t,x)(F +xDt,xF))2µ(dt,dx)< ∞.

Then u(t,x)(F +xDt,xF) ∈ Domδ if and only if

Fδ(u)−
∫
[0,T]×R

u(t,x)Dt,xFµ(dt,dx) ∈ L2(Ω)

and in this caseδ(Fu) = Fδ(u)−δ(xuDF)− ∫
[0,T]×R

u(t,x)Dt,xFµ(dt,dx).

4.5. The spaceLF

To go further we need some structure into the space Domδ. We follow Alòs and
Nualart [3]. It is known thatL2

a([0,T]×R×Ω), the space of square integrable and
adapted processes, is included in Domδ. So, we search for a Hilbert space included in
the domain ofδ but that inludes adapted and square integrable processes.

We defineL1,2, f as the space of processesu ∈ L2([0,T]×R× Ω) such that
Ds,xut,y exists a.e. fors≥ t. and belongs toL2(([0,T]×R)2×Ω). Observe thatL1,2, f

is a Hilbert space with the norm

‖u‖2
L1,2, f := ‖u‖2

L2([0,T]×R×Ω)+‖Ds,xut,y11{s≥t}‖2
L2(([0,T]×R)2×Ω)

andL2
a([0,T]×R×Ω)⊆ L1,2, f ⊆ L2([0,T]×R×Ω).

Then we consider the spaceLF that it is defined in the following way:u ∈
LF if and only if u ∈ L1,2, f andDr,wDs,xut,y exists a.e. forr ∨ s≥ t and belongs to
L2([0,T]3×R3×Ω). LF is a Hilbert space with the norm

‖u‖2
LF := ‖u‖2

L1,2, f +‖Dr,wDs,xut,y11{r∨s≥t}‖2
L2(([0,T]×R)3×Ω).

andL2
a([0,T]×R×Ω)⊆ LF ⊆ L1,2, f ∩Domδ ⊆ L2([0,T]×R×Ω). Moreover,

E(δ(u)2)≤ 2‖u‖2
LF .

Observe that this inequality allow to control convergence of δ(u) by conver-
gence with respect the norm ofLF and apply, when necessary, dominated convergence
theorem.
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5. An anticipating Itô formula

In Alòs, León and Vives [1] we use the techniques presented before to obtain
an anticipative version of the Itô formula for Lévy processes, where the coefficients
are assumed to be inLF . Our Itô formula is not only an extension of the usual adapted
formula for Lévy processes, but also an extension of the anticipative version of the Itô
formula on the Wiener space, obtained by Alòs and Nualart (2008).

Consider the semimartingale

Xt = X0+
∫ t

0
usdWs+

∫ t

0
vsds

+
∫ t

0

∫
|y|>1

z1(s−,y)yN(ds,dy)+
∫ t

0

∫
|y|≤1

z2(s−,y)yÑ(ds,dy)

whereu andz2(s−,y)y are adapted and haveL2 trajectories a.s. andv is adapted and
hasL1 trajectories a.s. This is in fact a generalization of a generic Lévy process.

In this case (see Cont and Tankov [6] for example) it is well known that

F(Xt) = F(X0)+
∫ t

0
F ′(Xs−)usdWs

+
∫ t

0
F ′(Xs−)vsds+

1
2

∫ t

0
F ′′(Xs−)u

2
sds

+
∫ t

0

∫
|y|>1

[F(Xs)−F(Xs−)]N(ds,dy)

+
∫ t

0

∫
|y|≤1

[F(Xs)−F(Xs−)−F ′(Xs−)z2(s−,y)y]N(ds,dy)

+
∫ t

0

∫
|y|≤1

F ′(Xs−)z2(s−,y)yÑ(ds,dy).

Our purpose is to obtain an analogous formula changing Itô stochastic integrals
by Skorohod versions, that is, an anticipating version of this formula. Recall that if
u, v, z1 and z2 are anticipating processes, the Itô integral with respect to W is not
defined, so we need the Skorohod extension. Moreover, the integrals with respect̃N
are well defined path by path, but they are not zero expectation integrals, so we are also
interested in an Skorohod type version for this case. Coefficients will be assumed to be
in the domain of the gradient operator in the future sense. So, this application includes
also the Lévy extension of the corresponding domains in the Wiener case as presented
in Alòs and Nualart [3].

We introduce the spaceL1,2, f
− . A random fieldu= {u(s,y) : (s,y) ∈ [0,T]×R}

in L1,2, f belongs to the spaceL1,2, f
− if there existsD−u in L2(Ω× [0,T]×R) such that

∫ T

0

∫
R

sup
(s− 1

n )∨0≤r<s,y≤x≤y+ 1
n

E[|Ds,yu(r,x)−D−u(s,y)|2]µ(ds,dy)
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converges to zero asn goes to infinity.

We need also to precise the relationship between Skorohod and path by path
integrals. Letz= {z(s,x) : (s,x) ∈ [0,T]×R} be a measurable random field such that:

• If sn ↑ s in [0,T] andym → y, y 6= 0, the limit z(s−,y) = limn,m→∞ z(sn,ym) is

well–defined and belongs toL1,2, f
− .

• The random fieldsz(s−,y) andyD−z(s−,y) belongs toLF .

• The random fieldz(s−,y)y is pathwise integrable with respect toÑ.

Then we have that for any interval(a,b] or (a,∞) in (0,∞),

∫ t

0

∫
{a<|y|≤b}

z(s−,y)yÑ(ds,dy)

= δ((z(s−,y)+yD−z(s−,y))11{a<|y|≤b}11[0,t](s))

+

∫ t

0

∫
{a<|y|≤b}

D−z(s−,y)µ(ds,dy), t ∈ [0,T].

Finally, consider the process

Xt = X0+δW(u11[0,t])+
∫ t

0
vsds+

∫ t

0

∫
{|x|>1}

z1(s−,x)xN(ds,dx)

+
∫ t

0

∫
{0<|x|≤1}

z2(s−,x)xÑ(ds,dx), t ∈ [0,T].

with the hypotheses

• X0 ∈ DomD.

• u∈ LF , δW(u11[0,t]) has continuous paths and
∫ T

0 u2
sds is a.s. bounded by a con-

stant.

• v∈ L1,2, f and
∫ T

0 v2
sds is a.s. bounded by a constant.

• z1 andz2 are bounded and satisfies the conditions of Theorem 1 on(1,∞) and
(0,1] respectively. Moreover,D−z2 ∈ L1,2, f

Then, ifF ∈C2(R), we have that

F ′(Xs−)(us11{y=0}+z2(s−,y)11{0<|y|≤1})11[0,t](s)

and
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D−(z2(s−,y)F ′(Xs−))(s,y)y11{0<|y|≤1}11[0,t](s)

belong toDomδ and

F(Xt)−F(X0)

= δ((F ′(Xs−)(us11{y=0}+z2(s−,y)11{0<|y|≤1})

+ y11{0<|y|≤1}D
−
(s,y)(z2(s−,y)F ′(Xs−)))11[0,t](s))

+
1
2

∫ t

0
F ′′(Xs)u

2
sds+

∫ t

0
F ′(Xs)vsds+

∫ t

0
F ′′(Xs)D

−
(s,0)Xsusds

+
∫ t

0

∫
{0<|y|≤1}

D−
(s,y)F

′(Xs−)z2(s,y)µ(ds,dy)

+
∫ t

0

∫
0<|y|≤1

[F(Xs)−F(Xs−)−F ′(Xs−)z2(s−,y)y]N(ds,dy)

+
∫ t

0

∫
{|y|>1}

(F(Xs)−F(Xs−))N(ds,dy).
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