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Preface

The 8th Congress of Isaac (the International Society forlysis, its Appli-
cations and Computation) took place at the People’s Friépddniversity of Russia,
Moscow between August 22nd and 27th 2011. There were a langber of parallel
sessions at the meeting, and we are grateful to the editdRemdiconti del Seminario
Matematico di Torinpparticularly Marino Badiale, for agreeing to publish aestion
of the talks from the&Stochastic Analysisession herein.

Just as analysis grew from the need to make fully rigorousesefthe calcu-
lus developed by Newton, Leibnitz and their followers in #eventeenth century, so
stochastic analysis developed from the equivalent prograrfor stochastic calculus
in the twentieth century. The giant on whose shoulders wetatid was Kyosi I1td
(1915-2008), who developed the key ideas of stochastigriatend stochastic differ-
ential equation (SDE) in the 1940s, as well as initiating ynather important themes in
the subject. He was awarded the inaugural Gauss prize inuhafitiis achievements
in 2006. 1td worked primarily, but not exclusively, witBrownian motion and this
quickly became the paradigm noise process for workers ifiekde Breakthroughs in
understanding the more general processes caltingalesn the 1960s and 1970s by
Kunita and Watanabe, and by Meyer (among others) led to tediations of stochas-
tic analysis being based on the general notiors@fimartingale Applications to
engineering and science were quickly developed, througheitension of stochas-
tic analysis to stochastic control and stochastic filterifige remarkable development
of mathematical finance since the 1990s stimulated a revfuaterest in the rich class
of semimartingales with jumps calléevy processesvhile interest in modelling with
self-similarity led to an extension of the calculus to ird#dractional Brownian mo-
tion, which is not a semimartingale.

Meanwhile, from the mid 1970s there were important theoa¢idvances such
as the systematic study of processes on manifolgtoehastic differential geometry
and the creation of th®alliavian calculus initially by Paul Malliavin (1925-2010),
which enabled the development of an internal different&étulus based on chaotic
expansions. In particular, Malliavin obtained a probatiiti proof of Hormander’s
theorem that hypoelliptic diffusions have smooth densitia the last twenty years or
so, the study of stochastic partial differential equati@RDES) has been a major focus
of attention, and this has led to a lot of interest in infiniterensional noise. Martin
Hairer was awarded a Fields medal in 2014 for a novel theorggilarity structures
associated to non-linear SPDEs, and his work made greaff aseeav way of looking
at stochastic equations — thmugh pathtechnique of Terry Lyons.

Stochastic analysis reaches into many different areas tfamatics. Its roots
are in probability theory and mathematical analysis, bumtiéracts with functional
analysis, differential geometry, partial differentiabgjons, potential theory and many
areas of applied mathematics, such as numerical analyBis.papers in this volume
are good indicators of the breadth and scope of the subject.

Applebaum uses techniques from group representationsdménessary and
sufficient conditions for smoothness of densities on compicgroups. Belopskaya
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and Woyczynski present a probabilistic approach to exigtemd uniqueness of non-
linear, second-order parabolic PDEs, by setting up assatBDEs. Glikikh and Vi-
nokurova obtain existence to an SDE on the total space of vbandle, which
is nothing but Newton’s second law of motion from the pointvigw of Nelson’s
theory of “stochastic mechanics”; a theory that providega@babilistic approach to
the problem of quantisation. By investigating conservatiof the associated Markov
semigroup, Grigor'yan finds sufficient conditions for stastic completeness of some
processes on metric measure spaces, including Browniaiomed jump processes
on manifolds, and random walks on graphs. Melnikova andaiskiy apply a theory
of random generalised functions, known as the “white noisdtulus, to obtain exis-
tence and uniqueness for a class of SPDEs. The COGARCH pgriascontinuous
time version of the GARCH process, which is an important tiitha model in math-
ematical finance (for which Robert Engle won the 2003 Nob&ePin Economics),
and Schnurr shows how to extract probabilistic informafimm this process by using
the pseudo-differential operator representation of iteegator. Finally Vives presents
a survey of Malliavin calculus for Lévy processes, inclgdihe nonanticipating 1t6
formula.

David Applebaum (October 2014)
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SMOOTHNESS OF DENSITIES ON COMPACT LIE GROUPS

Abstract. We give necessary and sufficient conditions for both squategiability and
smoothness for densities of a probability measure on a companected Lie group.

Keywords and Phrased.ie group, Haar measure, unitary dual, Fourier transform; con
volution operator, Lie algebra, weight, Sugiura space, smdensity, central measure, in-
finitely divisible, deconvolution density estimator.

1. Introduction

The study of probability measures on groups provides a matieal framework for
describing the interaction of chance with symmetry. Thigjact is broad and interacts
with many other areas of mathematics and its applicatiools ag analysis on groups
[19], stochastic differential geometry [6], statistic$ §id engineering [4].

In this paper we focus on the important question concerningna probability
measure on a compact group has a regular density with respkletar measure. We
begin by reviewing work from [1] where Peter-Weyl theory &ed to find a necessary
and sufficient condition for such a measure to have a squéegrable density. This
condition requires the convergence of an infinite serieghs that are formed from
the (non-commutative) Fourier transform of the measuraigstion. We also describe
a related result from [2] where it is shown that square-irgbijty of the measure
is a necessary and sufficient condition for the associatedotation operator to be
Hilbert-Schmidt (and hence compact) on ttfespace of Haar measure.

In the second part of our paper we turn our attention to measwith smooth
densities. A key element of our approach is the importarighsof Hermann Weyl
that the unitary duaG of the groupG can be parameterised by the space of highest
weights. This effectively opens up to investigation by standard analytical methods.
We introduce Suguira’s space of rapidly decreasing funstiof weights which was
shown in [18] to be topologically isomorphic @°(G). We are then able to prove that
a probability measure has a smooth density if and only ifdsrker transform lives in
Suguira’s space. This improves on results of [3] where tH&y embedding theorem
was used to find sufficient conditions for such a density tetexi

In the last part of the paper we give a brief application tdistiaal inference.

In [13], Kim and Richards have introduced an estimator ferdinsity of a signal on
the group based on i.i.d. (i.e. independent and identiaiifliributed) observations
of the signal after it has interacted with an independengenoilo obtain fast rates of
convergence to the true density, the noise should be in abd@itsmoothness class”
where smoothness is here measured in terms of the decayfaftiner transform of the
measure. We show that the “super-smooth” class is smootieingual mathematical
sense.

197



198 D. Applebaum

2. Fourier Transforms of Measures on Groups

Throughout this papés is a compact connected Lie group with neutral elenssanid
dimensiond, B(G) is the Borelo-algebra ofG and ?(G) is the space of probability
measures oG, B(G)), equipped with the topology of weak convergence. The role of
the uniform distribution orG is played bynormalised Haar measure m ?(G) and

we recall that this is a bi—invariant measure in that

m(Ao) = m(cA) = m(A),

for all A€ B(G),o0 € G. We will generally writem(do) = do within integrals.

Our main focus in this paper is thopez 2(G) that are absolutely continuous
with respect tanand so they have densitiés= L*(G, m) satisfying

p(A) = | f(o)do,

forall Ac B(G).

A key tool which we will use to study these measures is the cmmmutative
Fourier transform which is defined using representationrtheWe recall some key
facts that we need. A good reference for the material belavufroup representa-
tions, the Peter-Weyl theorem and Fourier analysis of sgirdegrable functions is
Faraut [7].

If H is a complex separable Hilbert space tHé(H) is the group of all unitary
operators od. A unitary representationf G is a strongly continuous homomorphism
mtfrom G to U(Vy) for some such Hilbert spadg. So we have for alg,h € G,:

e 1(gh) = (g)m(h),

e TI(e) = I (Wherely is the identity operator o¥y),

e (g =m(g) P =m(g)".

1tis irreducibleif it has no non-trivial invariant closed subspace. Everyuyr

has a trivial representatignacting onVs = C by 6(g) = 1 for allg € G and it is clearly
irreducible. Theunitary dualof G,G is defined to be the set of equivalence classes
of all irreducible representations @ with respect to unitary conjugation. We will
as usual identify each equivalence class with a typicalesgprtative element. AS
is compact, for allit € G,dy := dim(Vy) < o so that eacht(g) is a unitary matrix.
Furthermore in this cad8 is countable.

For eachite G, we define co-ordinate functioms; (0) = 11(0);; with respect to
some orthonormal basis .

THEOREM1 (Peter-Weyl).The sef{/dnTtj,1 <, j < dg,Te G} is a complete
orthonormal basis for &(G, C).

The following consequences of Theorem 1 are straightfawaderive using
Hilbert space arguments.
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COROLLARY 1. For f,g € L?(G,C)

e Fourier expansion.

f=S datr(f(m),

neG

wheref () := Jo f(o~Yym(o)do is the Fourier transform of f.

e The Plancherel theorem.

12 =S dll| T2
T[Eé

where||| - ||| is the Hilbert-Schmidt norrfj|T||| := tr(TT*)%.

e The Parseval identity.

(f.9)= 5 dar(Fmg(m").

neG

If pe P(G) we define itfourier transformfito be
A = [ (o Yu(do)

for eachrte G. For example ik is a Dirac mass athenég(T) = Iy and
m(m) = { 2 :I gfg . If phas a density thenfi= f as defined in Corollary

1. If we takeG to be thed-torus T% thenG is the dual grougZ? and the Fourier
transform is precisely the usual characteristic functibrthe measurqu defined by
H(n) = fra € ™Xp(dx) for n € Z9, where- is the scalar product. Note that any non-
trivial compact connected abelian Lie group is isomorphi&? for somed € N.

Fourier transforms of measures on groups have been stugdiethby authors,
see e.g. [12, 10, 9, 16] where proofs of the following basapprties can be found.

For allp, py, o € P(G),Ti€ G,
1. =P (T) = () (1,
2. fideterminegi uniquely,
3. ||[A(M) || < 1, where]| - || denotes the operator normVi.

4. Let(pn,n € N) be a sequence i8(G). w, — W (weakly) if and only ifi (1) —
() asn — co.
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Remark. Most authors defing(m) = [5T(0)p(do). This has the advantage that
Property 1 above will then regd * piz() = (i1 (T0)[&(T0) but the disadvantage thatyif
has densityf thenfi(r) = f(T0)*. Itis also worth pointing out that the Fourier transform
continues to make sense and is a valuable probabilisticiticthle case wher& is a
general locally compact group (see e.g. [10, 9, 16].)

3. Measures with Square-Integrable Densities

In this section we examine the case whpgieas a square-integrable density. The fol-
lowing result can be found in [1] and so we only sketch the phaoe.

THEOREM2. The probability measure p has ak-density fiif and only if

Y dll[A(T)[[? < oo,

neG

In this case

fu= Y der(ArOT(-)).

meG

Proof. Necessity is straightforward. For sufficiency define- y s dntr(fi(m)m).
Theng € L?(G,C) and by uniqueness of Fourier coefficie@§t) = [i(r). Using
Parseval's identity, Fubini's theorem and Fourier expamsiwe find that for each
he C(G,C):

J_ho)glo)do = ngédntrm(n)mn)*) = [ (@)u(do).

This together with the Riesz representation theorem iragthatg is real valued and
g(o)do = u(do). The fact thag is non-negative then follows from the Jordan decom-
position for signed measures. O

See [1] for specific examples. We will examine some of thesleadmext section
from the finer point of view of smoothness.

To study random walks and Lévy processe&iwe need the convolution oper-
atorTy in L?(G,C) associated tp € ?(G) by

(@) = [ f(enu(dv),

for f € L%(G,C),0 € G. For exampléel, is the transition operator corresponding to the
random walk(u*",n € N). The following properties are fairly easy to establish.

e T, is a contraction.

e T, is self-adjoint if and only if is symmetric, i.e.u(A) = u(A-1) for all A€
B(G).
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The next result is established in [2].

THEOREM3. The operator [is Hilbert-Schmidt if and only if u has a square-
integrable density.

Proof. Sufficiency follows from the standard representation obkiit-Schmidt
operators irL2-spaces. For necessity, suppose yas Hilbert-Schmidt. Then it has
akernek € L?(G x G) and

(Tuf)(0) = /G (1)ky(0,T)dT.

In particular for eactA € B(G),

HR) = Tula(e) = [ k(e

It follows thatp is absolutely continuous with respectrtowith density f,, = ky (e, -).0]

Let (p,t > 0) be a weakly continuous convolution semigrouPifG) and write
T :=T,. Then(T;,t > 0) is a strongly continuous contraction semigroupl8(G, C)
(see e.g. [11, 10, 14, 2])

COROLLARY 2. The linear operator {is trace-class for all t 0 if and only if
Lk has a square-integrable density for albt0.

Proof For eacht > 0, if | has a square-integrable density thign= Tt? Tt? is
the product of two Hilbert-Schmidt operators and henceasdrclass. The converse
follows from the fact that every trace-class operator ibetlit-Schmidt. O

If for t > O,k has a square-integrable density and is symmetric, then bg-Th
rem 3,T; is a compact self-adjoint operator and so has a discretérapeof positive
eigenvalues e 1 > g2 > ... > e _, 0 asn — . Furthermore by Corollary
2, T; is trace class and

(M) =Y e <o,
&

Further consequences of these facts including the apiplicit small time asymptotics
of densities can be found in [2, 3].

4. Sugiura Space and Smoothness

In this section we will review key results due to Sugiura [®#8]ich we will apply to
densities in the next section. In order to do this we need tsvabout weights on Lie
algebras and we will briefly review the necessary theory.
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4.1. Weights

Let g be the Lie algebra o and exp g — G be the exponential map. For each finite
dimensional unitary representatiomof G we obtain a Lie algebra representatatmby

n(exp(tX)) = 9™ for allt € R.
Eachdm(X) is a skew-adjoint matrix o¥ and
dn([X,Y]) = [dn(X), dm(Y)],

for all X,Y € g. A maximal torusT in G is a maximal commutative subgroup®f Its
dimensiorr is called the rank ofs. Here are some key facts about maximal tori.

e Any o € G lies on some maximal torus.
e Any two maximal tori are conjugate.

Let t be the Lie algebra ¢f. Then it is a maximal abelian subalgebragofThe matri-
ces{dmn(X), X € t} are mutually commuting and so simultaneously diagondisale.
there exists a non-singular matixsuch that

Qdn(X)Q 1 =diag(ir1(X),...,iAg(X)).

The distinct real-valued linear functionalg on t are called theveightsof Tt

Let Ad be the adjoint representation Gfon g. We can and will choose aid-
invariant inner product-,-) on g. This induces an inner product chthe algebraic
dual of t which we also write a6,-). We denote the corresponding norm|by. The
weights of the adjoint representation acting @equipped with(-,-) are called the
roots of G. Let © be the set of all roots d&B. We choose a convention for positivity
of roots as follows. Picks €t such that? N {n € t*;n(v) = 0} = 0. Now define
P, ={a € P;a(v) > 0}. We can always find a subs& C 2, so thatQ forms a
basis for t and everya € 2 is an linear combination of elements Qf with integer
coefficients, all of which are either nonnegative or nongdasi The elements of) are
calledfundamental roots.

It can be shown that every weight afis of the form

M= An— Z Ny
aeqQ

where eachy is a non-negative integer ang; is a weight ofrt called thehighest
weight Indeed ify; is any other weight oftthen|py| < |Aq|. The highest weight of a
representation is invariant under unitary conjugatiorheflatter and so there is a one-
to-one correspondence betweégand the space of highest weigiiof all irreducible
representation db. We can thus parameteri€eby D and this is a key step for Fourier
analysis on nonabelian compact Lie groups. In facan be given a nice geometrical
description as the intersection of the weight lattice with lominant Weyl chamber,
but in order to save space we won't pursue that line of reagdmére. From now on we
will use the notatiord,, interchangeably witl; to denote the dimension of the space
Vi Wheremt € G has highest weight. For a more comprehensive discussion of roots
and weights, see e.g. [8] and [17].
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4.2. Sugiura Theory

The main result of this subsection is Theorem 4 which is ptord18].

Let Mn(C) denote the space of afl x n matrices with complex entries and
M (G) :=Upep Map) (C). We define théugiura space of rapid decreatebes (D) :=
{F :D — M(G)} such that

(i) F(A) € Mg (C) forallA € D,
(i) 1im e [AK||[F(A)||| =0 for allk € N.

S(D) is a locally convex topological vector space with respethé&seminorms
[|F||s=sup.cp [A[°]||F (A)]]], wheres > 0. We also note th&®(G) is a locally convex
topological vector space with respect to the semindififis = sup;.g|U f(0)| where
U € U(g), which is the universal embedding algebragadicting onC*(G) as poly-
nomials in left-invariant vector fields o8, as described by the celebrated Poincaré-
Birkhoff-Witt theorem.

THEOREM 4. [Sugiura] There is a topological isomorphism betweef(G)
and.s(D) which maps each & C*(G) to its Fourier transformf.

We list three useful facts that we will need in the next sectill can be found
in [18].

e Weyl's dimension formulgtates that

_ Maer, A+p,a)

o —
? Mace. (P,0)

)

wherep := %zqeﬁ is the celebrated “half-sum of positive roots”. From here
we can deduce a highly useful inequality. Namely there elst 0 such that

) dy < NJA|™
wherem:=#2, = 3(d—r).
e Sugiura’s zeta functiors defined by

Us) = ﬁ

AeD—{0}
and it converges i§ > r.

e Let (Xy,...,Xy) be a basis fo6 and letA € 7(g) be the usual Laplacian d@

so that
d

A=Y ¢I%X

i,]=1
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where (g') is the inverse of the matrix whosg, j)th component igX;, X;).
We may considen as a linear operator ob?(G) with domainC®(G). It is
essentially self-adjoint and

ATy} = —KnTg;

forall1<i,j <dmme G, whereks = 0 andmt # 6 = Ky > 0. The numbers
(K, L€ G} are called theCasimir spectrunand if A is the highest weight cor-
responding tate G then

Kn= (A, A+ 2p).
From here we deduce that there ex{sts 0 such that

) Mf? < Ky < C(1+ [Arf?).

4.3. Smoothness of Densities

We can now establish our main theorem.
THEOREMS. pe P(G) has aC density if and only iffi € S(D).

Proof. Necessity is obvious. For sufficiency its enough to sholas anlL?-
density. Chooss > r so that Suguira’s zeta function converges. Then using Emeor
2 and (1) we have

T OGP < NS MR

AeD—{0} AeD—{0}
- 1
< N s AMSIRIE Y o
AeD—{0} ret=(0y M

< o 0O

We now investigate some classes of examples. We saythat(G) is central
if forall o € G,

H(OAGL) = (A).

By Schur’s lemmau is central if and only if for eacht € G there exist; € C such
that

—~

A(T) =l

Clearlymis a central measure. A standard Gaussian measuisrcentral
where we say that a measwren G is astandard Gaussiaif it can be realised ap(lB)
in the convolution semigroum(B),t > 0) corresponding to Brownian motion @(i.e.

the associated Markov semigroup of operators is generatéd%ﬂ wherec > 0.) For
a more general notion of Gaussianity see e.g. [10], sect@nT‘o verify centrallty,

take Fourier transforms of the heat equation to oljiiéiy) = e~ 29%x| for eachme G.
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Following [3] we introduce a class of central probability asares orc which
we call theCIDg(G) classas they arecentral and are induced binfinitely divisible
measures ofR. Let p be a symmetric infinitely divisible probability measure Rrso
we have the Lévy-Khintchine formula

/ ép(dx) = e "V forallue R

R

wheren (u) = Loy (1— cogu))v(du),
2 R—{0}

with 0 > 0 andv a Lévy measure, i.efR_{o}(l/\ u?)v(du) < » (see e.g. [15].) We say
p e CIDgr(G) if there exists) as above such that

1
A(m) = e &%) for eachme G.

Examples of such measures are obtainedudyordination15]. So Iet(ytf,t >0)bea
subordinator with Bernstein functiohso that for allu > 0

| esl@g —etio.
0

Let (pt(B),t > 0) be a Brownian convolution semigroup @ (with 0 = v/2) so that

for eachre G ft (1) = e ™1l then we obtain a convolution semigroup of measures
(Wt > 0) in CIGk(G) by

W = ["W A s

for eachA € B(G) and we have

~

b (1) = et
Examples (where we have takes 1):
e Laplace Distributionf (u) = log(1+ Bu),
() = (14 B%kn) U
e Stable-like distributiorf (u) = b®u% (0 < a < 2),

a
—b%k2

f(m =e

It

We now apply Theorem 5 to present some examples of measuties@Gg
class which have smooth densities (and one that doesn't).

Example 1.n general witho #£ O (i.e. non-vanishing Gaussian part)
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Using (1) and (2) we obtain

k K % 1

lim ARO[ = lim (A7 dp
[A]—eo A|oo

. K9k 3

< lim A[fe 2% d;
e

2
< NI jim £ e T o,

A|=e

Example 2. Stable like laws are & by a similar argument.

Example 3. The Laplace distribution is n6¥. But it is L? if r = 1 (e.g.
SQ(3),SU(2),Sp(1).)

5. Deconvolution Density Estimation

We begin by reviewing the work of Kim and Richards in [13]. LétY ande be
G-valued random variables with = X¢. Here we interpreX as a signalY as the ob-
servations and as the noise which is independentXf If all three random variables
have densities, then with an obvious notation we have fx * f;. The statistical prob-
lem of interest is to estimaté based on i.i.d. observations,...,Y, of the random
variableY. We assume that the matrix(m) is invertible for allte G. Our key tool

is theempirical characteristic functiorﬁm)(n) = %zi”:l m(Y,"1). We then define the
non-parametric density estimat@with smoothing parametei, — c asn — o) for
oeGneN:

o= Y detr(mo) (T,

MeGiKkn<Th

The noise is said to besuper-smoottof order3 > 0 if there existsy > 0 and

ai,ap > 0 such that
[1e(19) | = O(kre™ exp(y)) and|| e (1) oo = O(k3Z exp(—yh))

askp — oo, For example a standard Gaussian is super-smootheyitD (i = 1, 2).

For p > 0, the Sobolev spact,(G) := {f € L%(G);||f||, < o} where||f||3 =
3 neg Gn(L+ k)Pl F (1012,

THEOREMG6 (Kim, Richards). If f; super-smooth of orddd and|| fx |1 g) < K

for some s> % where K> 1 then the optimal rate of convergence éf)fto fx is
S
(log(n)) .

A natural question to ask is “how smooth is super-smooth@\vem answer this
as follows:
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PropPoOSITIONL. If f is super-smooth then it is smooth.

Proof. For sufficiently large<;; and using (1) and (2) we find that
there exist€ > 0 such that

~ ~

NE@I < 11T 1]
1
= dZ||F(10)]|e
< NZ|An 2Ok exp(—ykB)
< K 2 (14 )2 exp(—yAed )

from which it follows thatf € §(D) and the result follows by Theorem 5.C.
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Ya. Belopolskaya* and W.A. Woyczynski

SDES, FBSDES AND FULLY NONLINEAR PARABOLIC
SYSTEMS

Abstract. In this article we describe two probabilistic approachesdastruction of the
Cauchy problem solution for a class of nonlinear paraboglgtesns. Namely, we describe
probabilistic models associated with classical and visgasilutions and use them to state
conditions on the problem data that ensure the existenceuaiggieness of the required
solution of the PDE system.

Introduction

Systems of nonlinear second order parabolic equationsaajgpearious fields of con-
trol theory, differential geometry, financial mathematicsl others. Here we consider
a class of nonlinear PDEs of the form

- +[Bui+9=0, u(T,x)=ug(x), |=1,...,d1, where

1) a—s'

1 .
[BU], = & Oju + éTrA*D2u|A+ B!, 0iUm + CimUm

and all coefficients, A, B, c and a scalar functiog depend orx,u, Ju and02u'. Ais
an invertible operator anddenotes the transposition.

Here and below we assume a common convention about sumnuatsrall
repeating indices if the contrary is not mentioned.

We call a system (1) semilinear whapA, B, c andg depend orx, u, quasilinear
when these parameters dependxown, [Ju and fully nonlinear when they depend on
x,u, Ju andJ2u.

A construction of a stochastic problem associated with {19ty depends on
our understanding of a solution to a system, namely, on deniion to construct a
strong, weak or viscosity solution. In this paper we give earaw results concerning
strong and viscosity solutions of (1) constructed via shstic approaches.

1. Probabilistic approach to a strong solution of the Cauchyproblem for a PDE
system

Let (Q, F,P) be a probability spacey(t) € RY be a Wiener process defined on it and
% be a flow generated by(t).

*The first author gratefully acknowledges the financial suppd RRBR Grant 12-01-00457-a and
project 1.370.2011 Minobrnauki.
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To construct a strong solution to (1) in a semilinear caseamsicler a stochastic
problem of the form

(2)  d&(t) =a(&(t),ult,&(t))dt+AE(t), u(t,&()dw(t), &(s) =xe R,

3)
dn(t) = o(E(t), U(t,E(t))N (1)t + C(E(L),u(t,E(L) (N(1),dw(t)), n(s) = he R%,

@ (hu(s0) =ElN(T),wET) + [ (1(6),9(E(O)u0.E©))

whereBl, = C. Aand(h,u) = % heu, denotes the inner product Rft.
Actually, we can sef(t) = (§(t),n(t)) and present (2),(3) in the form

(5) dy(t) = ny(y())dt+ Ny(y(D))AW(L), V() =V,
whereW(t) = (w(t),w(t))", nu((t)) = n(y(t), u(t.y(t)). Nu(v(t)) = N(y(t),u(t.¥(t)),

and
A( , ) 0 a( ) ) 0
Nu(x h) = ( )(()u C(x, u)h)’ Mul( 1) = ( ’8“ e ”)h)

LetX =RY4 Y =R% M4 =RI®RYI, a(x,u) € RY, A(x,u) € MY, ¢(x,u) € M%,
C(x,u) € M% @ RY providedx € X,u € Y. We sayC > holds if

i) a,A have sublinear growth ine RY, ¢,C gandup are bounded in and all of
them butup have polynomial growth im € R%;

i) a,A, c,C andug, g areCX-smooth in all arguments in correspondent norms.

THEOREM1. AssumeE 11 holds. Then there exists a unique solution of (2)-(4).
Let C K hold, k > 1. Along with (2),(3) we consider

© )= Cau(EO)L0dt+ DA 0. dwlt), LS =1,
@ k(1) = CulE(DK()0t-+ Cu(E(H) (K(D). () +
Cu(&(0) (1), (1) dt+ DC(E(D) C(0).n().dw(D),  K(8) =0,
@ (hOyu(s) = ELN(T). OgryUol&(T)) + (K(T). olE(T)) | %+
€ | [ 10(8). D0 0(Esx(0).(6.x(8) + (K(6). G(E(0),u(6.(8)) el

THEOREM?2. LetC 13 hold. Then there exists an intervidh, T] on which the
Cauchy problem (1) has a unique solutiofsx) which admits a probabilistic repre-
sentation of the form (4).
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In addition, if A’12 is the set of scalar functions of the form
W(s,x,h) = (h,u(s,x))

defined on[0, T] x X x Y, differentiable ins € [0, T], and twice differentiable iz €
X x Y, then a solution to (2) belongs ®>? if W € A12.

Providedu(s,x) is a classical solution of (1), we can check ti(s, x,h) =
(h,u(s,x)) given by (4) satisfies the scalar Cauchy problem,

9) %is) +(n(y), 0®) + %TrN*(y)DZCDN(y) +G(y,u) =0, ®(T,y) = (h,uo(X))

w.r.t. ®(t,y) = (h,u(s,x)),y = (x,h), whereG = (h, ).

Moreover, we can show that systems (2)-(4), (6)-(8), and42have a similar
structure. To this end we s€& =Y & XY, and lety = (y1,Yy2) € © have the form
Y1 =K,y2 =yoh. Then one can treat (2)-(4), (6)-(8) as a system that casigR) and

(10)  dA(t) = mE®)A)dt+M(E())(A(),dW(t)), A(S)=A € O.

HereW(t) = (w(t),w(t) ow(t))* and the coefficients have the form

) <z§n) B (C(ox) Dan;: g)qx)) <<zn>’

M(x) (Z:n> = (CE)X) DM?)S):%)C(X)> (Z:n)’

wherefle(x)2on = Oc(x)(¢,n),  OC(X)Zon =OC(X)(E.N).
Along with (1) we will consider the Cauchy problem

A
0s

w.r.t. vt = Oiu!, where[[Di B]u]' = Vi 0iak(x) + TrOiAX) OV A(X) + O BIKvi + O chu™
Herelig(x,u) = gt (x,u) + g3 (x,u)0iu™ and, givena = (ay,...,ax), We use nota-
tion gh(a) = ag%(ja)’ j=1,... k Actually, the system (1),(11) is a semilinear system
w.r.t. V(t,x) = (u(t,x), Ou(t,x)). This together with (10) allows us to apply the above
theorems to construct solutions both to SDEs (2), (10) arldegcCauchy problem (1),
(12).

Note that another useful way to view (2),(3), (6),(7) is tmsider them as an
SDE system w.r.t. components of a proc@és = (x(t),v(t)), where the processes
X(t) andv(t) satisfy SDEs

(12) dx(t) = b(x(t))dt+B(x(t))dW(t), X(s) =X = (xy) € Hy,

(11) [BOoV] + [[DiBlu]' +0g (x,u) =0, Vi(T,x) = it(x)

(13) dv(t) = g(x(t))v(t)dt+Q(x(t))v(t)dW(t), v(s)=v =(0,h) € Hy,
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200(5) = (cen) 20 (1) = (550)

andb(x) = (a(x), yA)", B(X) = (A(x), OyA(x))".

All the above constructions can be extended to the case wiedfiaientsa, A,
¢, C, and the functiorg, depend orx,u, Ou, and everil?u. This allows us to include
a quasilinear or fully nonlinear system of the form (1) intseanilinear system with a
similar structure w.r.t. a functiod = (u, Du, 0%u) or U = (u, Ou, 0%u, 33u), respec-
tively, and to prove the existence and uniqueness of it¢sisalon a small intervalt, T|
depending on coefficients and functiamsandg, when they satisfi 1K with k=5 or
k = 6. One can see the detailed proof of the above results ind}§], [

where

2. Probabilistic approach to a viscosity solution of the Caahy problem for a non-
linear PDE system

In this section we construct a viscosity solution of a fullgntinear version of the
Cauchy problem (1) based on the BSDE theory developed irf{p]Jn combination
with the constructions described in the previous section.

To be more precise we first develop a modification of the apbro&[7] that al-
lows us to construct a viscosity solution of a system of dimesir parabolic equations
of the form (1) with coefficients depending anu, Ju andg = g(x,u,Au), and then
apply a differential prolongation procedure to a systemublfyfnonlinear parabolic
equations to include it into a system of quasilinear paiabejuations. This makes
it possible for us to apply the BSDE technique to construcisaosity solution to a
system of fully nonlinear parabolic equations. The detaflthe corresponding con-
struction can be found in [4], [5].

Let us consider the Cauchy problem (1) in a larger systemistimg of (1) and
oV

(14) S5 +[BOOV + [[B]u] +0d (x,u, AT, 0?u) =0, vi(T,x) = Ditig(x)

w.r.t. Vi = Ou, where[[Di B]u]; = Vi, 0ia") + TrOiADV A+ 0iBXVink+ 0i Chym,
Dig(x,u, AQu, 0%u) = g (x, u, AQu, 0%u) + gZ,(%, u, ADu, 0%0)) O U+
O (%, U, ADU, 020y ) 05 (ADU) jm + G (%, U, Ou, 020 OF uy;.

At this point we need to examine a fully coupled system of fmadvbackward
SDEs (FBSDESs) associated with (1), (14), state conditionsheir coefficients and
functionsg andug to ensure the existence and uniqueness of a solution toghking
FBSDE system and, finally, check that our results lead totcaction of a viscosity
solution of (1).

LetV(s,x,y) = (u(s,X), p(s,%,Y)), p(s,%Yy) = (y,Ou(s,x)). Then (1), (14) may
be rewritten as
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(15) a;’—;“ + GVin+ Gy MEDV + GV + Gm(x,y,V, V) =0, where

(16) GV = %TrfM*(x,V7 V) OV M (x,V, V) + (m(x,V, V), Vi),

. Jg
1 Ak+—. 0
m= (Z), E[M*M]jkz < ikt oy, og>’
0 Ak + dg
G(XaY,V,D\A)( Q(X,u, p,[lp|) >’

gt(x,y,u, p,0p")

andC, & depend orC, ¢, a, A and their derivatives.
Assume tha€C 12 holds. Then (1) and (15) have similar structures.
Consider the Cauchy problem for (15) with the Cauchy data

(17 V(T,%,y) = Vo(%,y) = (Uo(X), Oylo(x))-

SetH; = X x X, Hz2 =Y x Y, H3 =M x My andy(t) = (§(t),{(t)) € H,
Bt) = (n(t),k(t)) € Hz,  Y(t) = (y(t),p(t)) € Hz, Z(t) = (p(t),q(t)) € Hs.

Assume that\(t) satisfies an equation of the form (10) associated with (15),
(17). Consider a stochastic procésg) = d(t,(t)), where

O(t, B(t)) = P& (1) + PRt X(1)) =

[(N(t), o (&(t)))] + [(K(t),Un(&(t))) + (N (L), Oy Uo(&(1)))]

and notice tha@*z‘(t,x(t)) is linear inh andy. From Ito’s formula, and (12), we deduce
that the stochastic differential of the proc&gs) = ®5(t, x(t)) = (v(t),V(t,X(t))) has
the form

(18) d¥(t) = —G(x(t),V (t,x(t)), OV (t,X(t))Z(t) )dt+

(ODB(t,X(1)), M (X (t))dW(1)),
whereG(x,V, V) = (g(x, u, Ou, 0?u), Oyg(x, u, Ou, 02u),

G(X(1),V (£, X(1), DgyV (£, X(1) = (B, = (SHG(X (1), V (t. X (1)), D)V (t. X (1)),
and
(19)  (Hda(t, X (1)), M (t,x(1))dW(t)) = (OC(&(1))(C(t),n (), dw(t)), u(t, &(t)))+
(CEM)((t),dw(t)), u(t,&(1))) + (n(t), Du(t, §(1)) DM (E(t)) (C(L), dw(t))).
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We deduce from (18), (19) that the proc&ss) satisfies
(20) d¥(t) = —G(x(1), Y (1), Z(t))dt+ (Z(t),dW(t)), Y (T)= (B(T).Vo(x(T))),
and the procességt) = (Y1(t),Y?(1)),Z(t) = (Z}(t),Z?(t)) defined by
V(1) = (B(1),Y(1)) = (B.Z* (S Y (1)) = (k(1), Y (1)) + (n(t). Y*(t)) =
(K Zi(stva(t) +(hZ3(st)Y2(t)),  Z(t) = (B.Z(t)
satisfy the BSDE
(21)  dY(t) = —G(x(t),Y(t),Z(t))dt+ZdW(t), Y(T)=Z="(s,T)Vo(x(T)).

Finally, we deduce that one can associate with (15), (1 7dlf@ving FBSDESs
w.r.t. Fi-measurable stochastic procesgés = (§(t),{(t)) € Hi, Y(t) = (y(t),p(t)) €
Hz, Z(t) = (p(t),q(t)) € H3 =M x Mx,

(22)  dx(t) =b(x(t),Y(t),Z(t))dt+B(X(t),Y(t), Z(t))dW(t), X(s) =X € Ha,

(23)  dY(t) = —G(X(t),Y(t),Z(t))dt+ Z()dW, o =Y(T)= (ay,az) € Ha.

Hereb = (a,0A),B = (A,0A), G= (g,g) € Hp, andY(T) is #r-measurable.

Let ?(]0,T];RY) denote the set of progressively measurable square integrab
stochastic procességt) € RY, E {fOT HE(T)HZdT} < o, and$?([0,T],X) denote the
set of semimartingaleg(t) € RY, such tha€ [supi1 [IN(t)[|%] < .

A solution to FBSDE (22),(23) is a triple of progressivelyasarable processes
(X(1),Y(1),Z(t)) in $2([0,T];H1) x $2([0,T]; H2) x M?([0,T]; Ha) such that

@8 xO=x+ [ XY (), ZE)T+ [ BOX(T)Y (1), Z(r))aw(r),
and

t t
(25) Y(t) :OH—/ G(x(r),Y(T),Z(T))dT—/ Z(T)dw(t), 0<t<T,

with probability 1.

Now we are in the framework of the FBSDE theory and have toidens fully
coupled system of forward-backward stochastic equatibagrove the existence and
uniqueness of a solution to (22), (23) we need some addittmmalitions that allow us
to apply the technique of homotopy prolongation [8].

We say thatC ? holds whenC 1! holds and the random functidf(t,Y,Z) =
G(x(t),Y,Z) € Hp satisfies the standard conditions of the BSDE theory [6] tvieic-
sure the existence and uniqueness of a solution to a BSDHequa

dY(t) = —F(t,Y(t),Z(t))dt+ Z(t)dW, a=Y(T) € Hy.
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Let

Hi={X(t) €H1:E sup [x(t)|?<w}, Ho={Y(t)€H2:E sup [[Y(t)|? <o},
te[0,T] te[0,T]

:
%:{Z(t)eHg:E/ Z()]2dt < w0}, H = Hy x Hy x 9
0

and| - |, denote the norm it#, that is, if© = (X,Y,Z) € A, then

.
H:
10113, = E [suplix(t)||*+sup|[Y(®)|+ | |Z(t)[dt
(0.T] [0,7] 0

Denote byD = Hy x Hy x Hz, D = M?(0,T;D) N and, for® = (X,Kk,0) €D,
let Y(©) = (—F(0),b(®),B(0)). We say thaC * holds if there exists a constadt> 0
such that function¥™: D — D andV; satisfy the estimates

‘|Y(@)—Y(@1)||D SCH@—@;]_HD, V@,@]_ED, P—a.s.

Mo(X) =Vo(X)Il <ClIX —Xall. VX.X1€H1 P-—as.
We say thaC 4 holds if there exists a constadt > 0 such that

{(Y(©) = Y(©1),0-01)) < ~Callx —Xa[?, ¥X,X1 € Hi,P-as,
where((-,-)) is an inner product id and
{Vo(X) ~Vo(X1),NIX —XaJ) = Callx —Xz|* X.X1 € Hi,P—as.

Let us start with a simple case as the starting point in thedtopy construction.

LEMMA 1. Let(b% FO B% € D, k% € L?(Q, #7,P). Then there exists a unique
solution(x,Y,Z) € D of FBSDE

(26) dx(t) = [Y(t) - b°(®)]dt + [Z(t) - B°(t)]dw(t), X(0) =X,
27)  dY(t) = —[FO(t) — x()]dt+ Z(t)dw(t), Y(T)=x(T)+a, 0<t<T.
Next, for a giveru € [0, 1], denote by
(XY, 2Z) = (1= WY —pb(X,Y,Z), BY(X.Y,Z) = (1-Wz—HB(X,Y,2),

FH(X,Y,Z) = (1= WX —KF(X,Y,Z), V§(X) = KVo(X) + (1— WX
From general results of BSDE theory and Lemma 1 we can dedhatet least for
L= 0 there exists a unique solution of the FBSDE

@8 xO=x+ [ BEm) -t Eld+ [ Bem) -Bmew,

@9) Y0 =T+ - [ FHem) - Fmld- [ 2maw.
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LEMMA 2. Assume tha€ 2-C # hold, (b*, BX, F¥) € D and, for p= 1 € [0,1],
there exists a unique solutid®°(t) = (xH(t),YH(t),Z"(t)) € D of (28), (29). Then
there exists a constad € [0,1), depending on §C, and T such that there exists a
unique solutior(x"(t), YX(t),Z4(t)) € D of (28), (29) for p= po + 8, whered € [0, dg).

As a result we can deduce the following statement.

THEOREM 3. Assume tha€C ' — C 2 hold. Then there exists a unique so-
lution (X,Y,Z) of (24)-(25). In addition, the function (¢, X) = Y(s) is a continuous
viscosity solution of (15), ¥, x) = (u(s,x), Oyu(s,x)) and its first component(g, x) is
a viscosity solution of (1).

To verify thatV (s,X) is a viscosity solution to (15) and henaés,x) is a vis-
cosity solution to (1) one needs comparison theorems whiekvall known for scalar
equations but are much less known for the case of nondiagyetdms. Actually, we
can overcome this difficulty due to the special structurdefdtystems under considera-
tion, and our ability to reduce them to scalar equations ieva phase space (described
in Section 1).

Finally, applying Ito’s formula, it is not difficult to checthat the following
inequalities hold

E (/T/\'(e,x(e),v(e),z' (6))d9> > 0(<0),

where
| oo | |
N(s,x,Y,2) = [% +A4P)(s,x) —F'(x,Y,2),
® = (¢,0,9), and@(s,x) € RY is aC3- smooth function such thas,x) is a point,
where a local maximum (minimum) &f'(s,X) — ®'(s,X),] = 1,...,dp = 2d; is at-

tained. Combining this with the comparison results we cawethe last statement of
the theorem.
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ON THE NEWTON-NELSON TYPE EQUATIONS ON VECTOR
BUNDLES WITH CONNECTIONS

Abstract. An equation of Newton-Nelson type on the total space of webtmdle with
a connection, whose right-hand side is generated by theatuey form, is described and
investigated. An existence of solution theorem is obtained

Introduction

In [5] (see also [6]) a certain second order differentialaoun on the total space of
vector bundle with a connection was constructed and iryatstd. In some cases it
was interpreted as an equation of motion of a classicalgbaiith the classical gauge
field. The form of this equation allowed one to apply the gization procedure in
the language of Nelson’s Stochastic Mechanics (see, &g9])J. In [7] this proce-
dure was realized for the vector bundles over Lorentz matsfaith complex fibers.
The corresponding relativistic-type Newton-Nelson emum(the equation of motion
in Stochastic Mechanics) was constructed and the exist#ritsesolutions under some
natural conditions was proved. The results of [7] were prieted as the description of
motion of a quantum particle in the gauge field.

In this paper we consider the analogous non-relativistiwtdr-Nelson equa-
tion in the situation where the base of the bundle is a Riemanmanifold and the
fiber is a real linear space. In this case some deeper reseltsbtained under some
less restrictive conditions with respect to the case of [7].

We refer the reader to [2, 6] for the main facts of the geomaitmanifolds and
to [4, 6] for general facts of Stochastic Analysis on Marifol

1. Necessary facts from the Geometry of Manifolds

Recall that for every bundIE over a manifoldM, in each tangent spadgyx E to the
total spaceE there is a special sub-spa®en,y), calledvertical, that consists of the
vectors tangent to the fib&, (called also vertical). In the case of principal or vector
bundle, a connectioH onE is a collection of sub-spaces in tangent spacds soich
that TimxE = Himx) © V(mx at each(m,x) € E and this collection possesses some
properties of smoothness and invariance (see, e.g., [6]).

Denote byM a Riemannian manifold with metric tensgir, -). LetN : £ — M
be a principal bundle ove¥f with a structure grous. By g we denote the Lie algebra
of G. Let a connectiomd with connection forn® and curvature forn® = D6 be given
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220 Yu. Gliklikh and N. Vinokurova

on E. HereD is the covariant differential (see, e.g., [2]). Recall ttia 1-form6
and the 2-form®d are equivariant and take values in the algeb G and that® is
horizontal (equals zero on vertical vectors).

We supposes to be a subgroup oGL(k,R) for a certaink. Let F be ak-
dimensional real vector space, on whiéhacts from the left, and let off an inner
producth(-,-), invariant with respect to the action & be given. We suppose that a
mappinge: F — g* (whereg* is the co-algebra) having constant values on the orbits
of G, is given. This mapping is calletharge

Consider the vector bundie: Q — M with standard fiberf, associated t&.
We denote byQn, the fiber aim e 2. Consider the factorization: £ x F — Q that
yields the bundIl€) (see [2]). The tangent mappifg\ translates the connectidhfrom
the tangent spaces fto tangent spaces @. This connection o is denoted byH™.
Recall that the spaces of connection are the kernels of pdétd : TQ — Q called
connectorthat is constructed as follows. Consider the natural esiparof the tangent
vectorX € TimgQat(m,q) € Qinto horizontal and vertical compones= HX + VX,
whereHX € H?m’q) andVX € V(g Introduce the operat@r: V , 4y — Qm, the natural
isomorphism of the linear tangent spaég, ) = TqQm to the fiberQny of Q onto the
fiber (linear space@m. ThenK™ = pVX.

On the manifoldQ (the total space of bundle) we construct the Riemannian
metricgQ as follows: in the horizontal subspadé8 we introduce it as the pull-back
T1t'g, in the vertical subspacas— ash and define thaH™ areV orthogonal to each
other.

We denote the projection of tangent bun@g/ to M by t: TM — M and
by H' the Levi-Civita connection of metrig on M. Its connector is denoted b¢' :
T2M — TM. The construction oK" is quite analogous to that ¢™ whereQ is
replaced byl  andTQby T2M =TTM.

Recall the standard construction of a connection on thésptece of bundl€),
based on the connectiol& andH? (see, e.g., [3, 6]). The connectéR : T?°Q — TQ
of this connection has the formKQ = K" + KV whereKH : T2Q — H™ and K" :
T2Q — V, and the latter connectors are introduced8: = Tt 1o KT o T2t where
T°t=T(Tm) : T?Q — T?M andTrr L is the linear isomorphism of tangent spaces to
M onto the spaces of connectitff; KY =p1oKTo TK™,

Recall thatA is a one-to-one mapping of the standard fifeonto the fibers of
bundleQ, hence the chargeis well-defined on the entir®. SinceTA is also a one-to-
one mapping of the connections afds equivariant, we can introduce the differential
form ® on Q with values ing as follows. Considefm,q) = A((m, p), f) for (m,p) € E
andf € 7. ForX,Y € Timgq Q we denote byHX andHY their horizontal components.
Then we defin@ g (X,Y) = Pmp) (TATTHX, TATIHY).

Denote bye the coupling of elements @fandg*.Consider the vectgi(m, g), X)
tangent taQ at(m,q). Itis clear that((m,q)) e ﬁn(m‘q)(-,x) is an ordinary 1-form (i.e.,

differential form with values in real line). Denote BY(m,q)) e @ (-, X) the tangent
vector to the total space @ physically equivalent to the form((m,q)) e &><m’q) (-,X)
(i.e., obtained by lifting the indices with the use of Riemam metricg?).
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LEMMA 1 ([5]). The vector fielcb((m,q))odn(m_,q)(-,x) is horizontal, i.e., it
belongs to the spaces of connectldf

THEOREM 1 ([7]). Let (m(t),q(t)) be a smooth curve in Q. Let(¥ be the
parallel translation of the vector X T qt,)) Q@ along (m(t),q(t)) with respect to
HQ. (i) Both the horizontaHX (t) and verticalVX (t) components of ¥) are parallel
along(m(t),q(t)) with respect tdH?. (i) The parallel translation of horizontal vectors
preserves constant the norms and scalar products with segpef®. (i) The vector
field TrX(t) is parallel along nit) on M with respect tdH'.

2. Mean derivatives on manifolds and vector bundles

Consider a stochastic proceS&) with values in/, given on a certain probability
spacegQ,§,P). By ‘ﬂf we denote the minimaj-sub-algebra ofi-algebraf generated
by the pre-images of Borel sets ¥ under the mapping(t) : Q — M (the “present”
or “now” of §(t)) and byE(- | ‘ﬁf) the conditional expectation with respect‘mz.
Recall that the conditional expectation of a random elerfentth respect tOﬁf can
be represented &(&(t)) whereQ is the so-calledegressionntroduced by the formula
O(m) =E(8]&(t) = m) (see, e.g., [10]).

Specify a point inM and consider the normal chast, at this point with re-
spect to the exponential mapping of Levi-Civita connectiarV/ . In Uy, construct the
following regressions

(1) YUm(t,n'{):EtrR)E (W |E(t)=m(>;
@ it ) = fm e (SO=HEE ) )

Introduce X°(t,m) =YYn(t,m) and X°(t,m) =Y "(t,m). Note that X°(t,m)and
XO(t,m) are vector fields of, i.e., under the coordinate changes they transform like
cross-sections of the tangent bundla/ .

Forward and backward mean derivatives &(t) are defined by the formulae
DE(t) = X°(t,&(t)) and D.E(t) = X°(t.(1)).

The vecton?(t) = %(D+ D.)&(t) is called thecurrent velocityof §(t). From
the properties of conditional expectation it follows tHatrte exists a Borel measurable
vector field (regressionf (t,m) on M such thatf(t) = V& (t,&(t)).

Introduce the incrememté (t) of proces<(t): A& (t) = &(t +At) —&(t) and the
so called quadratic mean derivatibe (see [1, 6])D2¢&(t) = E{FOE(% | ‘ﬂf). If

D2&(t) exists, it takes values if2, 0)-tensors.

Everywhere below we are dealing with processes, along wthiehparallel
translation with respect to an appropriate connection i-pased. Here we usg(+)
and parallel translation with respect to the connectidrand such an assumption is
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true, for example, i(t) is an It6 process o/, i.e., an Itd development of an Itd pro-
cess in a certain tangent spaceMoas it is defined in [6]. Denote by, s the operator
of such parallel translation alorg-) of tangent vectors from the (random) po&ts)
of the process to the (random) po#tt).

For a vector fieldZ(t,m) on M the covariant forward and backward mean
derivativesDZ(t,&(t)) andD..Z(t,&(t)) are constructed by the formulae

MeeratZ(t+ALE(E+AL)) — Z(t,E(t)) | ms) )

(3)  DZ(t,&(t)) = lim E(

At]0 At
() D.Z(t,&(t)) = H{ﬂ)EtE <Z(t7E(t)) - rt,thtAZt(t — AL E(t—At)) | mtﬁ) )

From formulae (1), (2), (3) and (4) it evidently follows thetDZ(t,&(t)) = DE(t) and
TmD,.Z(t,&(t)) = D.&(1).

Now consider a stochastic procegs$) in the total space of bundi@ and intro-
duce the proces§t) = Tm(t) on M. Denote byl {'s the parallel translation of random
vectors from the fibeQs s, to the fiberQg alongé(-) with respect to connectio™.
Forn(t) we introduce the covariant mean derivatives by formulae

. Miant+A) —n(t) £\
(5) Dn(t) = im & ( A I‘ﬁt> ,

. n(t) —Mi_ant—24t)
(6) D.n(t) _X{IBE ( Al I‘ﬁt> -

(analogs of (3) and (4)). As abové\(t) = %(D +D,)n(t) is called thecurrent velocity
of n(t).

In order to define the mean derivatives of a vector field algftg on Q we
use the parallel translatid‘rf?S of vectors tangent t@ atn(s), to vectors tangent tQ
atn(t) alongn(-) with respect to connectioH?. By analogy with formulae (3) and
(4) for a vector fieldZ(t, (m,g)) on Q we introduce the covariant mean derivatives by
formulae

(7)  DRz(t,n(t)) =IlimE

At]0

(rtQ,t+AtZ(t+At7rl(t+At))Z(taﬂ(t)) z)_
At Imt ’

(8)  DOz(t,n(t))=limE

A0 At

Z(t,n() ~ T pZt - BN -4Y) .
' RN
LEMMA 2. I'SS translatesH’nT(s) onto Hg(t) and Vy ) onto Vy); the parallel
translation of horizontal components preserves the nomasianer products with re-
spect to §.

The assertion of Lemma 2 follows from Theorem 1 and from tleé theat (see
[3, 6]) that the parallel translation along random processa be described as the limit
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of parallel translations along the processes whose saratiie pre piece-wise geodesic
approximations of the sample paths of the process underdaration.

By symbolsD" andD! we denote the derivatives introduced by formulae (7)
and (8), respectively, for the horizontal components oftmexc(i.e., taking values in
H™. By symbolsDY andDY we denote the derivatives for vertical components (i.e.,
taking values inv). Thus,DQ = D" + DV andD® = DH + DY.

3. The Newton-Nelson equation on the total space of vector hdle

In the problem under consideration the Newton-Nelson eéguuadkes the form

)

(9) 3(DOD, 4 D2D)N(t) = e(n(t)) Py (- V(1)
D2 (t) = 21

whereg(t) = m(t) (cf. [8, 9]).

Expand the current velocity? in the right-hand side of (9) into the sum of
vertical and horizontal componentg! = vi! +vy¥, wherevll € H" andv}| € V. Since
&) () s linear in both argumentsiy y)(-V1) = i) (- W) + @) (-, V). Then,
since the formd is horizontal (see Lemma 1) we obtain tha{(t)(-,v\,{) =0. Thus, the
first equation of system (9) is equivalent to the followingteyn:

(10 3(0D. +DHD)N(1) = e(n(t)) » By (D),
(11) %(DVD* +DYD)n(t) =0.

For simplicity of presentation we denoéén(t)) e énm(-,vﬁ (t)) by a(tﬂ(t))vﬁ
where, by construction; iy ¢y)(-) is a linear operator ihi’(Tm_q,> ((1,1)-tensor).

Introduce the horizontall, 2)-tensor fieldd"a(-,-) = K"Ta(-) on Q. The
vector trdMa(a-, -) is horizontal by construction.

THEOREM 2. Let for the tensor fiela mg) (-) there exist a constant & 0
such thatfg (/|0 x) ()12 + [ltr B e xq)) (a-,-)|2)dt < C for a certain T> 0 and
every continuous curve(®y in Q given on te [0, T]. Here [ (-)|| is the operator
norm (all the norms are generated b{f)y Let also the connectiond™ and H™ be
stochastically complete (see [6]). Then for every pdimtq) € Q, every vectoflp €
H’(qu) and every time instang & (0, T) there exists a stochastic procegd) in Q such
that: (i) it is well-defined or0, T}; (ii) n(0) = (m,q) and Dn(0) = Bo; (iii) for all
t € (to,T) the processeq(t) and&(t) = Tm(t) satisfy(9); (iv) along n(t) the charge
e(n(t)) is constant.

Proof. For simplicity and without loss of generality we suppose %a: 1.

Consider on the space of continuous cur@$[0, T], TnM) the filtration &
where for everyt € [0, T] the o-algebra®; is generated by cylinder sets with bases
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over[0,t]. Consider the Wiener measuren the measure spa¢g®([0,T], T\M), Pr)
and so the standard Wiener proc#gs(t) in TyM as the coordinate process on the
probability spacéC®([0, T], TmM), Pr,v). SinceH" is stochastically complete, the It
developmentVM (t) of Win(t) with respect toH® on M is well-posed. Sinc¢i™ is
also stochastically complete, the horizontal Wi2(t) of WM (t) onto Q with respect
to H™ with initial condition (m,q) is also well-posed. A detailed description of the
construction of process#gM (t) andWQ(t) can be found in [6].

SinceTTt: H}T 0~ TmM is a linear isomorphism that defines the metric tensor
g@in H" by the pull back ofy from T,M, we can translate the Wiener measure and
the W|ener process froMyM to H(" ma)" Denote byW(t) the Wiener process obtained
by this construction. Thisis a coor'dinate process on theespicontinuous curves in
H?m.q) with g-algebra®r and Wiener measure.

Fortp > 0 we introduce the real-valued functitg{t) that equals% fort <tg
and fort > to. Its derivativety(t) is equal to 0 fot < to and to—3 fort > to.
Now consider the following Itd equation Iﬂ?mq):

t
=Bo+ 2/ trD O (swas) (O, ) ds+/ FOQSO( (swe(s) dW(s)

(12) -3 /O to(9)B(ds— / t(s)

Since equation (12) is linear iB, it has a strong and strongly unique solutigft).
Since this solution is strong, it can be given on the spaceraticuous curves ifl7 ma)
equipped with Wiener measure. Consider the following dgrmi the latter space of
curvesH(l) =exp (——fo B(s)?ds+ fo (B(s) - dW( ))). From the hypothesis and from
Lemma 2 it follows that it is well-posed. Introduce the meaasihat has this density
with respect to the Wiener measure. Itis well-known thahwhie new measure the co-
ordinate process takes the fofjtt) = J; B(s)ds+w(t) wherew(t) is a certain Wiener
process adapted t8. DenoteW<(t), considered with respect to the new measure, by
the symboln(t) and introduce the proceggt) = Tm(t); &(t) is obtained fromA/™ (t)

by the change of measure. Equation (12) turns into

B(t) = Bo+ > /FontrDH snt ds+/FOSaSn< 5)B(s)ds

)
+ [ (PBuonen()+ 39 ) auts / sds— 2 [ bz

By constructionn(0) = (m,q) andDn(t) = Bo. The process (t) satisfies (11)
also by construction. The fact that foE (to, T) the processeg(t) and§(t) = m(t)
satisfy (10) and thab,¢(t) = | follows from the formulae for mean derivatives ob-
tained in [6, Chapters 12 and 18].

Evidentlyn(t) is the horizontal lift of the procesgt) with respect to connection
H™ with the initial condition(m,qg). Recall that the horizontal liffj(t) of &(t) is a
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parallel translation ofm,q) along&(-) with respect tdH™. Hence, it can be presented
in the form (§(t),bx(f)) whereby is the horizontal lift of§(t) to £ with respect to
connectiorH and f is a certain vector in the standard fibgr Thus, the sample paths
of n(t) belong to an orbit o5 and so the chargeis constant along(t). O
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Alexander Grigor'yan

STOCHASTIC COMPLETENESS OF SYMMETRIC MARKOV
PROCESSES AND VOLUME GROWTH

Abstract. We discuss sufficient conditions for stochastic completeioévarious types of
Markov processes (diffusions on Riemannian manifolds, junoggsses, random walks on
graphs) in terms of the volume growth function of the undedyimetric measure space.

1. Brownian motion on Riemannian manifolds

Let (M,g) be a Riemannian manifold andbe the Riemannian measure bh The
Laplace operator (or Laplace-Beltrami operai®iy defined to satisfy the Green for-
mula: for allu,v e Cy (M)

(1) /MAu vdp= —/I\.A(Du, Ovydp,

wherel is the Riemannian gradient ad-) is the Riemannian inner product (see [2],
6], [10]).

The symmetry of the operatérwith respect tqu (that follows from (1)) allows
to extend it to a self-adjoint operatorlid (M, W). In general, this extension may not be
unique, but ifM is geodesically complete (which will be assumed throughthen this
extension is unique, that i4 is essentially self-adjoint. With some abuse of notation,
the self-adjoint extension @ will be denoted by the same letter.

As one can see from (1), the operafois non-positive definite, which implies
that the operatoR, := € is a bounded self-adjoint operator for any 0. The fam-
ily {R}-g is called theheat semigroumf A for the reason that it resolves the heat
equation. More precisely, the following is true:

e foranyf € L2, the functioru(t,x) = R f (x) isC® smooth in(t,x) € (0, +o) x M,

2
satisfies the heat equati(%h = Au and the initial conditioru(t, -) 5% ast—
0+.

o If f >0thenRf >0;if f <1lthenRf <1

e The semigroup propertyrPs = P .

Furthermore, the operatéy is in fact an integral operator with a kerngl(x, y)
that is a smooth positive function bf> 0 andx,y € M such that

@ AF09 = [ pOxy) () duy)

227
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forall f € L2. The functionp (x,y) is called theneat kernebf A (or of M). Itis also the
minimal positive fundamental solution of the heat equatiod the transition density
of Brownian motion orM. For example, iM = R" then

_ 1 Cx=yP
n(&y)(4m)mzexp< i)

For general manifolds there is no explicit formula for thatieernel.

The existence of the heat kernel allows to extend the donfaimecoperatoi?
from L to other spaces. For that, let us use now the identity (2)edéfinition ofR
wheref is any function such that the integral converges. In padic® extends to a
bounded operator o™.

DerINITION 1. A manifold (M, g) is calledstochastically completié R1 = 1.

Note that in general we have<OR1 < 1. If R1# 1 then the manifoldM is
calledstochastically incomplete.

Easy examples of stochastically incomplete processeswae ly diffusions in
bounded domains with the Dirichlet boundary condition. Aféayless trivial example
was discovered by R.Azencott [1] in 1974: he showed that Bramw motion on a
geodesically complete non-compact manifold can be stéichilg incomplete. In his
example, the manifold has negative sectional curvaturegtavs to —o very fast
with the distance to an origin. The stochastic incompletsreecurs because negative
curvature plays the role of a drift towards infinity, and ayhigh negative curvature
produces an extremely fast drift that sweeps the Browniaticgato infinity in a finite
time.

The first sufficient condition for stochastic completenelsgemdesically com-
plete manifolds in terms of lower bound of Ricci curvaturesvpaoved by S.-T. Yau
[15]. Below we present a condition in terms of the volume gfofunction.

Let us first state various equivalent conditions for the lséstic completeness.
Fix0< T <o, setl = (0,T) and consider the Cauchy problemlin M

@ o .
3) {m—NIIMXM
Ult—=o = 0.

The problem (3) is understood in the classical sense, thati€” (I x M) andu (t,x) —
0 locally uniformly inx € M ast — 0. We are interested in the uniqueness of the trivial
solutionu = 0 of (3).

THEOREM 1. (Khas'minskii [9])For anya > 0 and T € (0, «], the following
conditions are equivalent.

(a) M is stochastically complete.

(b) The equatiod\v = av in M has the only bounded non-negative solutiaa @.
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(c) The Cauchy problem ifD,T) x M has a unique bounded solutioreu0.

DEerINITION 2. Define thevolume function \(x,r) of a manifold (M, g) by
V (x,r) :=u(B(xr)), whereB(x,r) is the geodesic ball of radiuscentered ax.

Note that 0< V (x,r) < o for all x e M andr > 0 providedM is geodesically
complete.

THEOREM 2. Let (M,g) be a geodesically complete connected Riemannian
manifold. If, for some pointgxe M,

e rdr
@ | oavien =

then M is stochastically complete.

Condition (4) holds, in particular, if
(5) V(0.1) < exp(Cr?)
for all r large enough or even if (5) holds for a sequefigg of valuesr that goes teo

ask — oo,

Theorem 2 follows from the equivalen¢a) < (c) of Theorem 1 and the fol-
lowing more general result.

THEOREM 3. Let (M, g) be a complete connected Riemannian manifold, and
let u(x,t) be a solution to the Cauchy proble8). Assume that, for someg ¥ M and
forallR> 0,

© /OT /B(XO.R) W 0x,t) du)dt < exp(f(R)).

where f(r) is a positive increasing function i, +) such that
® rdr

(7) m:m

Thenu=0inl| x M.

Condition (6) determines hence a uniqueness class for theh@goroblem.
Clearly, (7) holds forf (r) = Cr?, but fails for f (r) = Cr*¢ with £ > 0.

Theorems 2 and 3 were proved in [4] (see also [5] and [6]). @tlgoing into
details, let us emphasize, that the argument repeated$ythisdollowing property of
the geodesic distance functidron the manifold:|0d| < 1.

Let us mention the following consequence Kit.

COROLLARY 1. If M =R" and u(t,x) be a solution tq3) satisfying the condi-
tion

(8) u(t,x)| gCexp(C|x|2) forallt 1, xe R",
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then u= 0. Moreover, the same is true if u satisfies instead&)fthe condition
(9) lut,x)| <Cexp(f(|x])) foralltcl, xeR",
where f(r) is a convex increasing function @, +co) satisfying(7).

The class of functionsi satisfying (8) is called thdikhonov classand the
conditions (9) and (7) define tfigcklind class The uniqueness of the Cauchy problem
in R" in each of these classes is a classical result of Tikhonoyvdd@ Tacklind [12],
respectively.

The hypothesis (4) of Theorem 2 is sufficient for the stodbasimpleteness of
M but not necessary. Moreover, there are examples of stociifstomplete mani-
folds with arbitrarily large volume function.

Nevertheless, the condition (4) is sharp in the followingsge if f (r) is a
smooth positive convex function @0, +) with f/(r) > 0 and such that

® rdr

fin =™

then there exists a geodesically complete but stochdgticedomplete manifoldvi
such that lo (xo,r) = f (r), for somexg € M and large enough(see [5]).

2. Jump processes

Let (M, d) be a metric space such that all closed metric balls
B(x,r)={yeM:d(xy) <r}

are compact. In particulatM, d) is locally compact and separable. liebe a Radon
measure oM with a full support.

Recall that aDirichlet form (‘, ) in L?(M, ) is a symmetric, non-negative
definite, bilinear formE : ¥ x F — R defined on a dense subspageof L (M, 1),
which satisfies in addition the following properties:

e Closedness¥ is a Hilbert space with respect to the following inner praduc
(10) Ei(f,9) .= E(f,9)+(f,9).

e The Markov property: iff € ¥ then alsof := (f A1), belongs toF andZ(f) <
E(f), whereE (f):=E(f,f).

Then (£, ) has thegenerator £ that is a non-positive definite, self-adjoint
operator orL.? (M, ) with domain® C ¥ such thatt (f,g) = (—£f,g) forall f € D
andg € ¥. The generator determines thdieat semigroug R}~ by P = €~ in
the sense of functional calculus of self-adjoint operatdrss known that{R }- is
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strongly continuous, contractive, symmetric semigroupdnand isMarkovian that
is,0<Rf<lforanyt>0if0<f <1.

The Markovian property of the heat semigroup implies thatdperatoP; pre-
serves the inequalities between functions, which allowss® monotone limits to ex-
tendR, from L? to L* (in fact, B extends to any.9, 1 < q < « as a contraction). In
particular,R 1 is defined.

DEerINITION 3. The form(E, ¥) is calledconservativeor stochastically com-
pleteif R1 =1 for everyt > 0.

Assume in addition thatZ, F) is regular, that is, the setF NCy (M) is dense
both in & with respect to the norm (10) and@ (M) with respect to the sup-norm. By
a theory of Fukushima [3], for any regular Dirichlet form theexists a Hunt process
{Xt}t>o such that, for all bounded Borel functiofion M,

(11) Exf(X) =R f(x)

for all t > 0 and almost alk € M, whereEy is expectation associated with the law of
{X} started ak. Using the identity (11), one can show that the lifetimeXpis almost
surely o if and only if R1 =1 for all t > 0, which motivates the term “stochastic
completeness” in the above definition.

One distinguishes local and non-local Dirichlet forms. Dhéchlet form (£, F)
is calledlocal if £ (f,g) = 0 for all functionsf,g e F with disjoint compact support.
It is calledstrongly localif the same is true under a milder assumption that const
on a neighborhood of supp

For example, the classical Dirichlet form on a Riemannianifoéd
£(1,9)= [ Of -Ogdp
M

is strongly local. The domain of this form is the Sobolev spdé, the generator is the
self-adjoint Laplace-Beltrami operatr and the Hunt process is Brownian motion on
M.

A well-studied non-local Dirichlet form ifR" is given by
FOO—f(¥) (@) —g(y)
12 T(f,g) = / ( dxd
(12) (1.9)= [ on YL y
where 0< a < 2. The domain of this form is the Besov Spéﬁ%’/zz, the generator is

(up to a constant multiple) the operatel(fA)"/z, whereA is the Laplace operator in
R", and the Hunt process is the the symmetric stable procesdefin

By a theorem of Beurling and Deny (cf. [3]), any regular Diliet form can be
represented in the form

=0 gl nz(k)7
whereZ(© is a strongly local part that has the form

£°(1.9)= [ F(f.g)dn
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wherer (f,g) is a so callecenergy densitygeneralizingJf - g on manifolds); ()
is a jJump part that has the form

£ (f,9) = %//MxM(NX)—f(y))(g(X)—g(y))dJ<x,y)

with some measur@onM x M that is called aump measureandE™® is a killing part
that has the form

Z(k)(f,g)z/ fgdk
M

wherek is a measure oM that is called &illing measure

In terms of the associated process this meansx{hiatin some sense a mixture
of a diffusion process, jump process and a killing condition

The log-volume test of Theorem 2 can be extended to strogil IDirichlet
forms, provided the distance function satisfies the comdliti

for some point € M and constant, and the volume functiol (x,r) := pu(B(x,r))
satisfies (4). The method of the proof is basically the sania akeorem 2 because
for strongly local forms the same chain rule and productsralee available, and the
condition (13) replaces the conditidgiid| < 1 (see [11]).

Now let us turn to jump processes. For simplicity let us asstimat the jump
measure) has a density (x,y). Namely, letj(x,y) be is a non-negative Borel function
onM x M that satisfies the following two conditions:

(a) j(xy)is symmetric:j (X,y) = j (V,X);

(b) there is a positive consta@tsuch that
(14) /(1/\d(x,y)2)j(x,y)dp(y) <C forallxe M.
M

DEFINITION 4. We say that a distance functidrs adaptedto a kernelj(x,y)
(or j is adapted tdl) if (b) is satisfied.

For the purpose of investigation of stochastic completerles condition(b)
plays the same role as (13) does for diffusion.

Consider the following bilinear functional

1) E(fg =3[ [ (- 13)ex—g0)ixyduxdu)

that is defined on Borel functionsandg whenever the integral makes sense. Define
the maximal domain of by

Fmax={ T €L?: E(f,f) < oo},
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wherel? = L2(M, u). By the polarization identity£(f,g) is finite for all f,g € Fmax.
Moreover, Fmax is a Hilbert space with the following norm:

1115 = Ea(f, )= || f][Z%+ E(F, 1)

Denote by Lig(M) the class of Lipschitz functions dvi with compact support.
It follows from (14) that Lig(M) C Fmax- Define the spacg as the closure of Lig{M)
in (Fmax |||l 4,.,,)- Under the above hypothesi&E, F) is a regular Dirichlet form in
L?(M,n). The associated Hunt proce§¥;} is a pure jump process with the jump
densityj(x,y).

Many examples of jump processes are provided by Lévy-Khin&theorem
where the Lévy measure corresponds t® y) du(y). The condition (14) appears also
in Lévy-Khintchine theorem, so that the Euclidean distainc®" is adapted to any
Lévy measure. An explicit example of a jump densityRihis

const
n+a>

Cx—yl

wherea € (0,2), which defines the Dirichlet form (12).

Sufficient condition for stochastic completeness of thadblet form of jump
type is given in the following theorem that was proved in [7].

j(xy)

THEOREM 4. Assume that j satisfig®) and (b) and let(E, ) be the jump
form defined as above. Fix a constanKb%. If, for some ¥ € M and for all large
enoughir,

(16) V (xo,r) < exp(brlogr),
then the Dirichlet form(‘E, F) is stochastically complete.

Itis not known if the borderline valué for bis sharp.
For example, (16) is satisfied if, for some const@rind all larger,

V (Xo,r) < exp(Cr)

For the proof of Theorem 4 we split the jump kerijél,y) into the sum of two
parts:

j/(X, y) = j(X, Y)l{d(x,y)§1} andj”(X, y) = j(X, y) 1{d(x.y)>1}

and show first the stochastic completeness of the Diricbtet { £’, ) associated with
j’. For that we adapt the methods used for stochastic completeor the local form.
The bounded range gf allows to treat the Dirichlet forndZ’, ) as “almost” local:
if f,gare two functions fron¥¥ such thad (suppf,suppg) > 1 thenZ (f,g) =0. The
condition (14) plays in the proof the same role as the camli(lL3) in the local case.
However, the lack of locality brings up in the estimates @asi additional terms that

*In fact it suffices to have (16) far= ry where{ry} is any sequence such thgt— o ask — co.
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have to be compensated by a stronger hypothesis of the v@tongh (16), instead of
the quadratic exponential growth in Theorem 2.

The tail j” can regarded as a small perturbationjofn the following sense:
(E, F) is stochastically complete if and only (', ) is so. The proof is based on
the fact that the integral operator with the keriféls a bounded operator it? (M, ),
because by (14)

/ ji” (x,y)du(y) <C.
M

It is not clear if the volume growth condition (16) in Theordns sharp.

Let us briefly mention a recent result of Xueping Huang [84ttis analogous
of Theorem 3 about the uniqueness class for the Cauchy pnobtea geodesically
complete manifold. X.Huang proved a similar theorem fortthat equation associated
with the jump Dirichlet form on graphs satisfyirig) and(b): namely, the associated
heat equation has the following uniqueness class

.
// u? (t,x) du(x) dt < exp(brlogr)
0 JB(x,R)

whereb is as above any constant smaller t@n Moreover, he has shown that for
b > 21/2 this statement fails. The optimal valuetfemains unknown. Note that the
functionu in that example is unbounded, so that it cannot serve to shewharpness
of the condition (16) in Theorem 4.

3. Random walks on graphs

Let us now turn to random walks on graphs. (¥t E) be a locally finite, infinite,
connected graph, whebd¢is the set of vertices an is the set of edges. We assume
that the graph is undirected, simple, without loops. (Lé the counting measure &h
Define the jump kernel by(x,y) = 1(,.y}, wherex ~ y means thak,y are neighbors,
that is,(x,y) € E. The corresponding Dirichlet form is

£ (1) = ;{X’y;y}a (9~ £ ()2,

and its generator is

A= T (F(y)— F(X).

y~X

The operatoA is calledunnormalizedor physical)Laplace operator ofX, E). This
is to distinguish from th@ormalizedor combinatorialLaplace operator

Af(x) = de;X) (1)1

where degx) is the number of neighbors of The normalized Laplacia is the
generator of the same Dirichlet form but with respect to thgrde measure dég.
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Both A andA generate the heat semigrough® ande’® and, hence, associated
continuous time random walks o It is easy to prove thal is a bounded operator in
L?(X,deg), which then implies that the associated random walk is advstgchastically
complete. On the contrary, the random walk associated Witluhnormalized Laplace
operator can be stochastically incomplete.

We say that the grapfX, E) is stochastically complete if the heat semigroup
&2 is stochastically complete.

Denote byp(x,y) the graph distance oX, that is the minimal number of edges
in an edge chain connectingandy. Let By(x,r) be closed metric balls with respect
to this distancep and seV,(x,r) = |Bp(x,r)| where|-| := p(-) denotes the number of
vertices in a given set.

The stochastic completeness can be determined in termeg dfitictionV, as
follows.

THEOREMD. If there is a point ¥ € X and a constant & 0 such that
(17) Vp(Xo,r) < cr®
for all large enough r, then the graptX, E) is stochastically complete.

Note that the cubic rate of the volume growth is sharp heredeéd, Woj-
ciechowski [14] has shown that, for amy> O there is a stochastically incomplete
graph that satisfieg,(xo,r) < cr¥*¢. For any non-negative integerset

S ={xeX:p(x,x) =r}.
In the example of Wojciechowski every vertex 8ris connected to all vertices @&_1

ands.

For this type of graphs, that are calladti-trees the stochastic incompleteness
is equivalent to the following condition ([14]):

VP(XOar) <o
&1 1S+l S|
Indeed, assuming (18), one constructs a non-trivial botdirsdéution to the equation

Au—u =0, which is enough to ensure the stochastic incompletecéssi{eorem 1).
For a radial functioru = u(r) this equation acquires the form

(18)

1 d .
u(r+1) ZU(r)+mi;|3|U(')~

Settingu(0) = 1 and solving this equation inductivelyiinwe obtain a positive solution
u(r) that increases in. It follows that

1 r
ur+1) < <1+Sr+1||5(|i;3|8|> v
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whence by induction
R-1 V XO )
) < 1+ 222 >
l_L ( 1S+1] 1S
The condition (18) implies that the product in the right haide is bounded so that
is a bounded function.
If |S| ~ r?* thenVp (xo,r) ~ r3+¢ and the condition (18) is satisfied so that the

graph is stochastically incomplete.

The proof of Theorem 5 is based on the following ideas. Fioskove that the
graph distance is in general not adapted. More preciselyjis adapted if and only if
the graph has uniformly bounded degree, which is not andstierg case.

Let us construct an adapted distance as follows. For anyxedggdefine first
its lengtho (x,y) by

1 1

A .
Vvdegx) /dedy)
Then, for allx,y € X defined(x,y) as the smallest total length of all edges in an edge
chain connecting andy. It is easy to verify thatl satisfies (14) witlC = 1.

Next one proves that (17) f@-balls implies that thel-balls have at most expo-
nential volume growth, so that the stochastic completefudiesvs by Theorem 4.

o(x,y) =
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I. V. Melnikova and M. A. Alshanskiy *

GENERALIZED SOLUTIONS TO EQUATIONS WITH
MULTIPLICATIVE NOISE IN HILBERT SPACES

Abstract. We suggest a framework that allows to introduce multipli@astochastic pertur-
bation of the Gaussian white noise type into a linear difiéed equation in a Hilbert space
and prove existence of the unique solution for the obtainechgstic problem in a certain
space of generalized functions.

1. Introduction

Our model problem is

out,s) _ ou(t,s)
o s

+n(s)u(t,s), 0<s< 1 t>0, ult,0) =0, u0,s) =d(s),

wheren € L.[0; 1. It can be written as the Cauchy problem for an operatoedfitial
equation in Hilbert space = L?[0,1] in the following way:

1) d;—(tt):Au(t), t>0,u(0)=0,

where

(2) A=Ao+Bo= —d%+n(s), domA = {x ¢ Lz[o,l],gls( € L2[0,1],%(0) = 0}.
OperatorAy is the generator of the right shift semigroup, which @asemigroup irH.
Its perturbation byBy, which is bounded i, givesA which is also the generator of a
Co-semigroup. Such problems arise for example in populatyoracdhics. In this case
represents population density with respect to a certairenigal characteristic, say age,
or size of an individualAg is usually the generator of a shift-type semigroBp,s a
multiplication operator (or a sum of multiplication operet) that reflects the influence
of such phenomena as death and birth. We will be concerndutitsituation when
Bo is subject to random fluctuations, so that instead) ) we haven(s) + v(t,s),
wherev is a random process taking values in a certain space of angtn|0,1]. If
we want multiplication byn +v to be a bounded operatorlih v must be a sufficiently
smooth function ok. We use multiplication by smoothed values oftdfvalued white
noise. Namely, considd(-) € £(H; L(H)) defined by

1
3) BOOYI(S) = £x(3) [ w(s—ny(m)ar,

*This work was supported by the Ministry of Education and Bcéeof Russian Federation (Program
1.1016.2011) and by RFBR, project 13-01-00090
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wheree > 0, ¢ € C5 (R). Thus we come to the following stochastic problem:
4) dX(t) = AX(t)dt+B(X(t))dW(t), t >0, X(0)=®.
whereW!(t) is a cylindricalH-valued Wiener process on a probability spé@e ¥, P)

with normal filtration{ % }, ® is an Fo-measurable random variable.
In our work we introduce spaces éf-valued generalized random variables
(8)—p(H),0< p <1, sothat (4) can be written as

whereW(t) is H-valued cylindrical singular white noise and"is the Wick product.
Using Stransform we reduce the problem (5) to a deterministic emethus prove the
existence and uniqueness of its solutiof$n_q(H).

= AX(t) +B(X(t)) oW(t), t >0, X(0)=,

2. Framework

Let (', B(S'), 1) be the white noise probability space, whefeis the space of tem-
pered distributions over the space of rapidly decreasingtfons.s, B(S’) is theo-
algebra of Borel subsets ¢f andp is the white noise probability measure @&{.5’)
(Minlos — Sasonov measure) with

6) dofdyw) =e 206 pes.
5/

We denote by-|o = +/(,-)o the norm ofL2(R). Let (L?) be the space qf-square inte-
grableR-valued functions (random variables) §hwith norm|| - ||o. It follows from (6)
that for any®,n € S we have((-,6), () 2, = (8.n)L2(m). | (-,8) |5 =E(-,6)* = |6[.
It follows from here that the mappir@)— (-,8) can be extended by continuity frog
to the wholeL2(R), so that(-, ) € (L?) is well defined for allpc L2(R) and (6) is still
valid for 6 € L2(R).

Let {&}p_; be the orthonormal basis bf(R), consisting of Hermite functions

X2
2 h — X2 X2 . .
E(x) = 6177"1()()1, wherehy(x) = (—1)kez é’—)ie*? are Hermite polynomials.
ma((k—1)!)2

Let 7 c (NU {0})N be the set of all finite multi-indices. Stochastic Hermite
polynomials, defined biiq (w) := Mk he, ((w, &k)) , we S’ ,a € T, form an orthogonal
basis of(L?) with (ha, hg)2) = 8y !, wherea! := [y 0.

The Gelfand triple

(7) ($)pC(L®)C(S)-p, (0<p<1

is widely used in white noise analysis (see [1, 3]). H&$® = Npen(Sp)p With pro-
jective limit topology, where

(Splo=1{0= 3 daha € (7)1 3 (a)*Plpa(20)? <o}

acT acT
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and the norm- |, generated by the scalar product

(. W)pp = Z (a!)l+p¢a'~|1a(2N)2puv (ZN) P .Il(Zi)pai ;

acT

(8)—p = Upen(S—p)—p With inductive limit topology, whergS_)_p is the adjoint
to (Sp)p. The spacdS_p)_, can be identified with the Hilbert space of all formal

2
expansionspb = 5 4o Pqhg such thatzaeq(a!)l‘P(gg‘z‘pa < oo with scalar product

(P,W)_p_p= zaef(a!)lfp(g’g;)”z’gu . We will denote]-[2, , = (-,-)-pp. FOr® =

Yaer Paha € (8)—p, ¢ = Jacr Paha € (5)p we have(®,¢) = 5 gcr A Py

A setM C (S), is called bounded if for any¢,} € M and for any{e,} C R
converging to 0, the sequenéenn} converges to zero iQ1S),. Itis easy to see that
boundedness of a set (), is equivalent to its boundedness in &w),.

Let H be a separable Hilbert space o&wwith scalar product:,-) and corre-
sponding normj| - ||. Denote by(L?)(H) the space oH-valued functions og’, square
Bochner integrable with respect o Let {ej}?zl be an orthonormal basis K. The
family {h«€j}qer jen is an orthogonal basis ifL?)(H). Any f € (L2)(H) can be
expanded into Fourier serigs= Y ycr jen fa,jNa€) = Yaer fuha = Z(}C’:l f;ej, where
faj €R, fo =3 fajej € H, fj = Yoer fajha € (L?), and we havé‘fH(ZLz)(H) =
Zaefz‘,jeNa”f&”z = Yaer o fGHa = Z(J»:lH fj ||(2|_2)-

Define the spacéS)_p(H) of H-valued generalized functions over the space
(85)p of test functions as the space of all linear continuous dpes® : (), — H with
the topology of uniform convergence on bounded subsetspf We will denote by
®[¢] the action of® € (5)_p(H) on a test functiom € (5)p.

Now we describe the structure @f)_,(H). It is easy to prove the following
proposition:

Proposition 1Any® € (§)_,(H) is bounded as an operator fro(s;), to H for some
peN.

Since(S$), is a countably Hilbert nuclear space, it follows from Prdfios 1:

Corollary 1 Any @ € (S5)_p(H) is a Hilbert-Schmidt operator fromSp), to H for
some pe N.

For any® € (5)_p(H) denote byd; the linear functional, defined ofs), by

(®j,9) := (P[9],€)). Let d be Hilbert—Schmidt fron{Sp), to H, then all®;, j € N,
belong to the correspondifg_p)—, and thus we have

3 |q) ‘.|2
o= z ®q jhg , Z (an? p(ZNa)'sza < o0

a7l acT

For the Hilbert—Schmidt norm @b as an operator froriS,), to H we have:

2
hq

1-p \q’aﬂz
1
(al) 2" (2) P

= al — .
qu.jeN( ) (ZN)Zpa

”q)HaS,p,p: z @

aeT
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Denote by H$(Sp)p;H) the space of Hilbert-Schmidt operators fraisp), to H.It
is a separable Hilbert space. The family of operatdrg ® €j}qcr jen, defined by

(ha ® &) := (ha;9) (2,6, ¢ € (Sp)p is an orthogonal basis of HESp)p:H). It

follows from Proposition 1 thats)_o(H) = | J HS((Sp)p:H). Any @ € (S)_p(H)
peN
has the following decomposition:

P[] = Z(¢1,~>e,-: Z Dqj(hg®ej) = z q)a(hq,')(LZ),
jeN ae7,jeN acT

where®j = (®[-],ej) € (5-p)_p for somep € N, &g = 3 jcy Py, j€) € H. We have

1-p |q’a.,i\2 _ 1-p ||q’or||2

2 = |2 = I 1Y L I
||(DHHS.,p,p jg\}‘(b”—p,—p ueTZjeN(a.) (ZN)ZDO‘ GZT(G-) (ZN)ZPO‘ <00,

For all py < pz and® € HS((Sp,)p;H) we evidently have
HS((Spy)piH) SHS((Spo)piH) . [ PlHs pyp = [PllHs pap-

A setM C (S)_p(H) is called bounded if for any sequen¢®,} C M and
any{en} C R convergent to zerd,en®,} converges to zero i) _o(H). Itis easy to
prove the following propositions:

Proposition 2A setM is bounded inS)_(H) if and only if for any bounded M (5),
there exists K> 0 such that|®[$]|| < K foranyp € M, & € 2.

Proposition 3 If M is bounded in($)_p(H), then there exist g N and K> 0 such
that | P[§]|| < K|p|pp forall ® e M, ¢ € (S)p.

Thus, if a setM is bounded in$)_p(H), then all elements o/ are bounded
operators fron{Sp), to H for somep € N and/ is bounded inZ ((Sp)p,H). Conse-
guently we have

Proposition 41f 4 is bounded in(.S)_p(H), thenM C HS((Sp)p;H) for some pe N,
and M is bounded irHS((Sp)p; H).

The next proposition, which we state omitting the proofegicharacterization
of convergence ifS)_p(H).

Proposition 5 Let ®, = ¥, CDE,”)hu P =3 ,Pshg € (§)-p(H). The following asser-
tions are equivalent:

(i) {®n} converges tebin (S)_p(H);
(i) Allelements of the sequen¢®;,} and® belong toHS((Sp)p; H) for some pe N
and lim ||®, — ®||yspp = 0.
n— oo ’
Letd() :R— (S)_p(H). We will write W :tlirt] o(t) if d(ty) — W uniformly
0

on any bounded subset @), for any sequenct — tg. The derivatived’ (to) will be
understood in the same way. It is easy to derive from Prapaosh the following
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Corollary 2 Let®(t) = 54 Pa(t)ha € (§)—p(H) fort € [a,b] and letp € [a,b].
1. tlm ®(t) = P(to) in (S)—p(H) if and only if all d(t),t € [a,b], belong to
0
HS((Sp)p;H) for some p= N and lim [|®(t) — ®(to) [us pp = O;
2. ®(t) is differentiable atd < [a,b] if and only if do = lim o) = P(to)
dt t—to t—to
exists inHS((Sp)p; H) for some p.
Example. (H-valued cylinder Wiener process and white noise).
Letn(-,-) : Nx N — N be a bijection with

(8) n(i,j) >ij, i,jeN.

Denotegy, := (0, 07...,%, 0,...). The sequencBi(t) = 31 [0 &i (s)dshe, ; is a se-
guence of independent Brownian motions. ThenHhkealued random process

t
W(t) Zj%Bj(t)ej Zn;’Wsn(t)hsn, W, (t) =/0 € &im(s)dseH,

is a cylindrical Wiener process (heif@), j(n) € N are such than(i(n), j(n)) = n).

Itis easy to show thaw/(t) ¢ (L?)(H) for all t € R. At the same time it follows
from the well known estimatg; i (s)ds= O(i*%) and (8) thal1|W(t)||ﬁS’l’p < .So
we haveW(t) € HS((S1)p:H) C (8)—p(H).

Define theH-valued cylindrical white noise by

Wi(t) := & (1) (hsn(i,j)ej) = Z\[Wﬁn(t) Pe, , Wsn(t) = Ei(n)(t)ej(n) €H.
ne

BE
Sinceg; (t):O(i*%), we have|\W(t)||f|s)1,p<°° , thus

W(t) € HS((S1)piH) C (S)—p(H).

Note that for alt € R we have%W(t) =W(t).

Let Zg := (93083 For any® € § it is a random variable o’ belonging to

, -1 12 ,
(8)p for 0 < p < 1 with | Egpp < Zp/zexp[(lf p) 1 |8]p "} (see [1]). The following
expansion holds:
12 .
Z:e: z eﬂhaa edzirl(evzl)gl

|
a7l O('I

Let® € (5)_p(H), 0< p < 1. Definethe S-transfornof @ by
(SP)(8) = P[Zg], B€S.

The proof of the following characteristic theorem almoshptetely repeats the
proof of the corresponding theorem for tGevalued case (see, for example, [1]), and
is thus omitted.
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Theorem 1Let® € (S5)_p(H), 0 < p < 1. Then F= S satisfies the following condi-
tions:

(i) forany®,v € S the function K8+ 2v) is entire analytic function of z C.

(ii) There exist K> 0,a> 0, p€ N, such that
2
©) IF(@)] <Kexp|alels? |, ocs.

If F : $ — H satisfies(i) and (ii ), then there exists a unique € (S)_p(H) such that

1-p
F = S and for any q such tha@e(%) 5 1(21)72@P) < 1, it holds

1-p o -1/2
[®[Hsgpe <K [ 1-¢€ (2&1) Z‘(zi)ﬁ(qu) .
a i) 2

Example. For the above defined cylinder white noise we have:

(SW(t))(8) =W(t)[Ze] = Y Ei(t)ej(8,&n(ij))o-

BE

Let H; andH, be separable Hilbert spaces. Since the spacéHiH8l,) of
Hilbert—Schmidt operators acting frohh, to H; is a separable Hilbert space, we can
consider the spadgs) _p (HS(H1; Hz)) of HS(H1; Hz)-valued generalized random vari-
ables overs),. ForStransforms of any € (5)_p(HS(H1; Hz)) and® € (§)_p(H1),
F(8) = S¥(8)SP(B) € Hy is well defined for anyd € S. SinceS¥(0) andSP(0) sat-
isfy conditions(i) and(ii) of Theorem 1, for an®,v € § the functionF (84 zv) is an
entire analytic function of € C and

2
IS¥(B)SP(B)[[H, < [IS¥(6) lHsity:H,) [|SP(B) [y < KiKzexp {(aﬁaz)eép} ;

whereKs,Kz,a1,a, are the constants from conditigii) of Theorem 1 fo'd and ®
correspondingly (we can obviously suppose the congtantthese conditions to be
the same). It follows th&k is anS-transform of a unique generalized random variable
© € (8)—p(H2). This justifies the following definition.

LetW e (S)_p(HS(H1;Hp)) , @ € () —p(H1). We will call © € () _p(Hz) such
that S© = SWYSD the Wick productof W and® and denote itV o @.

LetQ e HS(H), Ho = Q%(H) with scalar productu, v)n, = (Q‘%u, Q‘%v).
For theH-valued cylindrical white noise, from the estimate

GOP  GOP ooz

o?(2n(i, )~ o?(2ij)®

2 —2Pen(ij) _
||W£n(i,j) ||HQ (ZN) Wl =

it follows
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Proposition 6 For any Q= z‘j”:lojz(ej @ej) € HS(H;H)", (i.e. 354 012 < 00), if

8

(10) ;2] %" <w forsome pe N,
=1
thenW(t) € (5)—p(Hg) forallt € R and anyp € [0;1].

It follows from proposition 6 that ifQ satisfies (10), then for any stochastic
process¥(t) with values in(S)—p (HS(Hg;H)) the (S)-1(H)-valued random process
W(t) o W(t) is well defined.

We will call an (S)_p (HS(Hg; H))-valued random proces#(t) Hitsuda—Sko-
rohod integrableon [0; T], if W(t) o W(t) is integrable ori0;T] as an($)_1(H)-valued

T

function and will call/ W(t) o W(t)dt the Hitsuda—Skorohod integral b4(t).
0

The Hitsuda—Skorohod integral is a generalization ofbhmllagralfoT W(t)dW(t)
with respect to the cylindrical Wiener process. Namel(f) € (L) (HS(Hg; H)) for
allt € [0;T], W(t) is adapted to the filtration generated\byt) and

-
2

/0 IO 12) rsigamy AL <
then

T T

/ w(t)oW(t)dtz/ W(t) dW(t)
0 0
Let H; andH; be separable Hilbert spaces. FPoe £(H1,H>) define

(11) AD = 5 Adghg, for ®= 5 ®ghg € (8)-p(Ha).

aeT aeT
(See the proof in [5]). Defined in such a wayis a linear continuous operator with

values in($)_p(H2). If Ais not bounded, defin@lomA) as the set of alf g Poha €

Ady ||3
(8)—p(H1) such that®dy € domA for anya € 7 and zueq(a!)l‘p% < oo for
2N
somep € N. Then (11) defines a linear operator @wmA) with values in(S)_p(H2).
It is easy to verify that it is closed & is a closed operator frofd; to Hp, and to prove

the next proposition.

Proposition 7Let A: H; — H; be linear and closed. For ar € (domA) C (8)_p(H1)
we have[S®| (h) € domA C Hy and [SA®] (h) = A[S®](h), he S.

3. The Cauchy problem for a linear operator-differential equation with multi-
plicative noise

Consider the Cauchy problem (5) with a linear closed operatacting inH, B(-) €
L(H,L(H)), ® € (domA) C (S5)_p(H). We obtain it by substituting the Hitsuda—
Skorohod integral for the Ito one in equation (4) and diffeéiaing both sides of the

*ForveV, ueU, whereV andU are Hilbert spaces, we denote by u the operator front to V,
defined by(v@ u)h:=v(u, h)y.
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equation with respect o Note that ifQ is a nuclear operator id satisfying (10), then
sinceB(X(t)) € (S)—p(HS(Hq;H)) for anyX(t) € (5)—p(H), the Wick product in (5)
is well defined. Our main result is the following theorem.

Theorem 2 Let A be the generator of age&emigroup in H, B be such that for each
yeH

(Bl) kerB(-)y = {0};
(Bll) B(domA)y C domA;

(Blll) The operator G-)y: H — L(H), defined by x)y := AB(x)y — B(AX)y for x €
domA, is bounded.

Then for any® € (domA) C (§)_o(H) the problem (5) has a unique solution in the
space(S)_o(H).

Proof. Note that by the uniform boundedness principle it followsfir(BlIl) that there
existsMag > 0 such that

(12) IC)YIl < Mas|lX|[[lyll, x€domA,yeH.

Applying Stransform to (5) we obtain the next Cauchy problem:
(13) %X(t,e) = AX(t,08) +B(X(t,08))W(t,8), t >0, X(0,8)=d(0), 08¢,

whereX (t,8) = SIX(t)](8), W(t,8) = SW(t)](8), D(8) = SD(B).
We first prove the uniqueness of solution. Note thaX (f,0) is a solution of
(13) for somed € , it satisfies the equation

X(t.8) = +/ (t—9)B(X(s,8))W(s,0)ds, t>0.
Thus it is sufficient to prove that equation
(14) X(t,8) /Ut— X(s,6))W(s,8)ds=0, t>0

has the only solutio (t,8) = 0 for any® € 5, where{U (t) , t > 0} is theCo-semigroup
generated byA with M > 0, a € R such that

(15) U@ <Met, t>o.

This can be proved using the Volterra equations techniqdetenfact thatW (s, 0) is
an infinitely differentiablét-valued function ok and thus is bounded on any segment
of R.
To prove existence of solution consider the series
(16) T(t,0) = ZTk(t,e), Beys,
K=0
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where operator$(t,0),t >0, k=0,1,2,... are defined as follows:
t R
To(t,8) = U(t), Tk(t,e)x:/ U (t— 9)B(Ti_1(s,0)x) W(s,6)ds x & H.
0

Proving first fort > 0,6 € §, k€ NU{0} and® € (domA) the estimates

tk
(17) ITic(t, ©) | Ly < M (B M€ ]S/ PR

R k R R
(18) [[AT(t,0)®P(8)] < M"”IlBllkllel'éeat\/E(lBIIACD(@)II +kMag||P(8)]]) .

whereM > 0 anda € R are constants from (15)B|| = ||B|| z(H,.(H))» Mag is from
(12), we obtain by (17) for ang,me N

n+m n+m M\ﬁ||B|||9|0\ﬁ k 1
Z||Tkt9||<Matz N ).@S
ag |
1/2
. n+m (2M2H8H2|9%t)k / ntm q 1/2
k=n k! k=n 2

Hence (16) is absolutely convergentR@,6) in L(H) for anyt > 0,6 € S.

For any® € (domA), by Proposition 7 and properties Gp-semigroups we
obtain: To(t,6)®(6) € domA for all t > 0 and® € 5. It follows from (BIl) that
(dorrA) (t,8) C domA for all t > 0 and® € § and by induction we obtain that

Tk(t,0)®@(8) € domA for all @ € (domA) ke N, t > 0and6 € . It also follows from
(BII) that B(Ti(s,0)®(6)) W(t,8) € domA. Moreover, we have

%U(tf $)B(Tk(s,8)P(8)) W(t,8) = AU(t — 9)B(Ti(s,0)P(8)) W(t,0), t > 0,6 € S.

Thus for alld € (domA) we have

(20) CTo(t,0)(6) = ATo(t, 0)(6).
the AU(t —9)B(Ti 8)d(6))W(s,0)d
oy GHLOOE) = [AU-SB(T(s03(0)) (s 8)dst
+B(Tk,1(t,e)&>(e))W(t,e).
SinceA s closed we can rewrite (21) as

d

(22) at

Tu(t,8)P(8) = ATi(t,0)d(8) + B(Ti_1(t,0)D(6))W(t,6).
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Using (18) we obtain

3 i o 2 (VMIBIBlmvDE 1Y
M D (V2M|B][Blzm VD k.
+||B||ea<k§+1 N T Mag||P(8)]| <

m o om2gRe)\ "2 [ m 1\Y?
gMeat( 5 <”k”°>> {3 5] 1me@+

k=n+1 k=mi1
1/2 1/2
M m - (2m?)|B|2/6[3t)" m g2 )
+7eat T . - MABCDG .
El (k%l k! 3 1&®)

it follows from here that the serleioATk (t,8)®(8) converges irH for all 6 € S,

€ (domA). Taking sum of equalities (20) and (22) with respect tokadl N we
obtaLn in the right hand side a series convergingifor allt > 0, 6 € 5. This proves
thatX(t,0) = T(t,0)®d(0) is a solution of (13).
It follows from (19) that
k
= (Mv2||B|[8]o@)vE)” 1

ITE,0)] < kZOIITk(t»e)H < Me"j“kz0 Ja N

1/2 1/2
= (2M2B|182) [ &

<wet (s (2m]BI*jelgt)” T 2| —Mvzetexp(M2|BIZ63t)
2 ki 22

By (9) we have||®(8)|| < ||¢\|Hspﬁoexp<|e|f,), B e S, for somep € N. It follows that
fort > 0 we have

IX(t,8)] < Mv2e* exp((M?|B]2t+1)[6[2) [Plluspo. O€..

It follows from here that for each> 0 X(t,8) is anStransform of a uniqué(t) €
(8)-o(H), which is a unique solution of problem (13). O

It is easy to see tha andB defined by (2) and (3) respectively satisfy the con-
ditions of Theorem 2. Thus the stochastic perturbation ohoadel problem described
in introduction has a unique solution () _o(L?[0;1]).
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A. Schnurr*

COGARCH: SYMBOL, GENERATOR AND
CHARACTERISTICS

Abstract. We describe the technique how to use the symbol in order taledécthe generator
and the characteristics of an Itd process. As an example wgzarthe COGARCH process
which is used to model financial data.

1. Introduction

The COGARCH process was introduced by Klippelberg et all3hih order to model
financial data. It is a continuous time analog of the clas®\&GH process (in discrete
time) and it is based on a single background driving Lévy essdn contrast to the
well known model by Barndorff-Nielsen and Shephard [1]. y.@vocesses are cadlag
universal Markov processes which are homogeneous in éintespace. Our main
reference for this class of processes is [16]. For the Lépietrwe write ¢,Q,N).

In the present paper we calculate the so cadhgtibolof the COGARCH pro-
cess (and its volatility process). The origins of the symalak in the theory of partial
differential equations, namely they appear in the Fougpresentation of certain oper-
ators. The symbol found its way into probability theory fbe following reason: sup-
pose we are given a Feller proceésvith associated semigroug; ):>0 and generator
(A,D(A)). Suppose further that the test functi@fs(RY) are contained in the domain
D(A). In this caséA is a pseudo-differential operator with symbetj(x,§). For every
x € RY q(x,-) is a continuous negative definite function in the sense ob&aberg (cf.
[2] Chapter 2).

For a detailed, self contained treatment on the interplayéen the process and
its symbol cf. the monograph [9]. In this context the follogifour questions are of
interest:

I) Given a process, (say as the solution of an SDE) what iyitsosl? (E.g. [19])

II) Given a symbol, does there exist a corresponding pr&cgss 7, 11])

[1I) Which properties of the process can be characterizedhéasymbol? ([17, 18])

IVV) For which bigger classes of processes is it possible (madul) to define a symbol?
([20, 21])

All four questions are a vital part of ongoing research. i phesent paper we empha-
size, how one can calculate the symbol of a given procesg agimobabilistic formula
and derive directly the generator as well as the semimaténgharacteristics.

The notation we are using is (more or less) standard. Veararsneant to be

*Acknowledgments: Most of this work was done as a part of my PhD thesis, writtereuttte guidance
of René L. Schilling to whom | am deeply grateful. Financiapfort by the DFG-SFB 823 is gratefully
acknowledged. Furthermore | would like to thank an anonymefesee for carefully reading the manuscript
and offering useful suggestions which helped to improve tpep
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column vectors and the transposed of a veetmra matrixQ is denoted by’ respective
Q.

Let us recall how the COGARCH process is defined:
we start with a Lévy process= (Z;); with triplet (¢,Q,N). Fix0<d< 1, >0, A>
0. Then the volatility proces&; )i>o is the solution of the SDE

do?

B dt+o? <I096 dt+ % d[Z,Z]tdiS°>
0o = S
whereS> 0 and

Z.Zif*e= S (az,)2.
O<s<t
It turns out, tha( ot )t>0 is a time homogeneous Markov process.
Definition: The process

t
Gt ::g+/00'sf dz, geR,

is calledCOGARCH process(starting ing).

We allow the process to start everywhere in order to bringmathods into
account. The paifGy,0?) is a (normal) Markov process which is homogeneous in
time. It is homogeneous in space in the first component. Eurtbre(G,o?) is an
It6 process, which follows from Theorem 3.33 of [4] which cheterizes 1t processes
as solutions of certain stochastic differential equat@md Proposition 1X.5.2. of [10]
giving a representation of the semimartingale charadiesisf a stochastic integral.

To avoid problems which might arise for processes define®RonR, we
consider in the following:(Gt,t) = (G,log(c?)), i.e.,V is the logarithmic squared
volatility.

2. The Symbol of a Stochastic Process

Definition: Let X be anRY-valued universal Markov process, which is conservative
and normal. Fix a starting pointand definel = TX to be the first exit time from the
ball of radiusR > 0:

(1) T:=TX:=inf{t > 0:|% —x| > R} underP*(x € RY).
We call the functiorp: RY x RY — C, given by

g —x's _q
2 =—limE*—«——
() p(X,€) im " ;
the (probabilistic) symbol of the process, if the limit exists for evexy§ andR and is
independent of the choice &f
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In[21] Theorem 4.4. we have shown that for Itd processesdiséimse of Cinlar,
Jacod, Protter and Sharpe (cf. [5]) having differentialrabteristics which are finely
continuous (cf. [3]) and locally bounded the above limitstgiand coincides for every
choice ofR. For the reader’s convenience we recall the the definitidibgirocesses,
as itis used here:

Definition: A Markov semimartingaleX = (X )t>o, i.€., @ universal Markov
process which is a semimartingale with respect to everialmptobability P* (x € R),
is calledItdé processif it has characteristics of the form:

Blw= [lX(w)ds j=1,..d

MW= [AX(w)ds jk=1,..d
v(w;dsdy) = N(Xs(w),dy) ds
where/), QK : RY — R are measurable function®(x) = (Q¥(x))1<] k<d is a positive

semidefinite matrix for every € RY, andN(x, ) is a Borel transition kernel oRY x
B(RU\{0}). £, Qand [,..o(1Ay?)N(-, dy) are calleddifferential characteristics.

Example 1: LeX be ad-dimensional Lévy process. Itis a well known fact that
the characteristic function o (t > 0) can be written as

E%exp(iX/€) = exp(—tW(&)).
The functiony : RY — C is called characteristic exponent. By an elementary calcul

tion one obtaing(x,-) = Y(-) for everyx € RY.

Example 2: LetX be a rich Feller process, i.e., the test functiﬁ]@’s{Rd) are
contained in the domaiB(A) of the generatoA. In this case the generator restricted
to CZ(RY) is a pseudo-differential operator with (functional anilysymbol—q(x, &).

In [21] we have shown tha is an It process anpi(x, &) = q(x, &) for everyx, & € RY.

Example 3: Let(Z)i>o be anR"-valued Lévy process. The solution of the
stochastic differential equatiow € RY),

dx¢ = o(x%)dz
XZ)( = X
where® : R4 — R9*M s Lipschitz continuous admits the symbol
P(X,&) = W(P(X)'E).

This was shown in [19].

3. Symbol, Generator and Characteristics

In the present section we calculate the symbol of the COGAREGIdess. Using the
close relationship between the symbol, the extended gemenad the semimartingale
characteristics we are able to write down the latter two abjdirectly. Let us empha-
size that the symbol doe®t depend org, since the process is homogeneous in the
first component.
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Theorem: The stochastic procesS;,t) = (Gt,log(o?)) admits the symbol
p:R? x R?2 — C given by

()4

7'21 <€ev/2+ev/2/

R\(0) y- (1{\eV/2y|<1} : l{|log(1+()\/5) ¥2)|<1} 1{M<1}) N(dy)>

. B A

—i& (@ +logd+ /R\{O} log(1+ 8y2) . (1{‘e\,/,2y|<1} . 1{||Og<1+(>\/5) y2)\<1}) N(dy)
1

+§E%eVQ

_/]RZ\{Q} (ei(Zl‘ZZ)E -1-iZ¢- (L)<} - 1{\22\<1}))N <<3> .,dz) ,

whereN is the image measure

N ((8),dz> —N(, e d2)

underf : R — R2 given by

e/2w
fulw) = <Iog<1+ (\/3) w2>>'

Remark: It is not surprising, that the transformation of jilmap measure de-
pends only orv since the process is space homogeneous in the first component

Proof: LetT be the stopping time defined in (1). At first we use It6’s foranul

ROV (Gl —gM V& _ 1 ROVg(GI MT-vE _q
t N t
1 t T T
= 7E07V/ izlel(Gsﬂst*V)E ng
t 0+

t .
m o+ %]EQV /O £, (CL M —VE gyT
+

(1

t .
(i _ 1 pov £2d(GL VI —VE giGT G
2t 0+
t .
v - %IEJQV / §18,6(G VS VEQIGT VTS
0+
V) B[ G AT VT
2t 0+

V) o IEov Y elC VR (MM 1 (i€1AGT +i€28VY) ).

0<s<t

We deal with this formula term-by-term. In the calculatidrtwe first term we use

dGL = Os-Lse(jor)) dZs
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Recall that the integrand is bounded and for the Lévy progess have the Lévy-It6-
decomposition:

Z— /W | Y (#(dsdy) —dsN(dy))
(Ot x{ly<1}
+ Y AZlynzy>y,

0<s<t

wherep? denotes the jump measure of the process (cf. [10] Propoditib.16). The
integrals with respect to the martingale parts are abaimartingales and the respec-
tive terms disappear. What remains from the first term is:

1 U aT yT
(3) ¥EO’V/O+I218|(GS*"VS* V)Eosfl{se[[O,T]]} d <ES+ Z NZ, - 1{|AZr21}> .

0<r<s

For the first part of this integrand we get:

1 t o AT yT
e /0+ ig1€/(Cs-Ve-Viag 1107y d(4)

1t Gl
=BT /0 18166 e o7y 0s ds

1 .
— 810 B / (G2 oy Ot ds
0 ~~—

—S

—1

— 1§14S.
1,0

In the first equation we used the fact that we are integratiitig i@spect to Lebesgue
measure. For this the countable number of jump times is aetulln the last step we
used Lebesgue’s theorem twice. A similar argumentatiorségiun the consideration
of the second and the third term. The jump term of (3) abovkbeilcompared to the
sixth term.

Using Itd’s formula we obtain for the second term

1 t o aT T 1 1
YEQV/(H ig,el(GE Vv { = d(o?)2+d ( Y loga? —loga?. — GZA(GE)>}

S— 0<r<s r—

and by plugging in the defining SDE f¢o?):

1 t o aT yT B ol
LoV / d(6L M —vEq P ds+ 25 loadd
(2 ), 1€ tselomy | \ gz~ 95+ gz 109008

+% d (0 <Z<S(Azr)2)) +d (0 ;SSA(IOQG,Z) - é_A(c?)) }

We postpone the jump parts and for the remainder term we gibeitimit, using a
similar argumentation as for the first term,

u—0> i£,B/S +i2logd.
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For the third term we obtain in an analogous manner to thedirst

_%Eo,v/t £2d(6L W —VE giGT 6T
o+

1 T_
—iEO’V/ £3e(C VR 1 o702 d[Z,ZS
1 _
—ﬁEO’V/O g2¢(G- Ve~V Liseor05. d(Qs)
1
SESQ.

w2
The terms four and five are constant zero: sittgeand ([Z,Z];); are both of finite
variation on compacts, the proce@®); has this property as well, by its very defi-
nition. Therefore it is a quadratic pure jump process (sé $ection 11.6). Using

Ité’s formula we obtain thaV = log(c?) is again a quadratic pure jump process and
therefore

VT.VTE=0andV',G"|¢=0.

The only thing that remains to do is dealing with the varigusp parts’. From the
first term we left the following behind

L,
t / 1§96 gy 1{se[OT}d<

:7E0,v z ig,dC 3 Ve — E(ys_l{se[[oT]]}AZs Liazy>1)

t O<s<t

AZ; - 1{Azrzl}>

o<r<s

and from the second one

1
B / 1gd(65 E1{se[[OTH}0'< > (Azf)2>
0<r<s

10 - 1 2
+fE ,V/ IE e' % sf El{se[[OT]]}d( z AVr—O_zA<O'r)>

0<r<s r—

1 T yT A
= fEO’VOZqIEze'(GS*’VS* V)El{se[[O,T]]}S(AZS)Z
<5<
1 o aT yT _ 1
+f]EO’V Z IEzeI(GS*’VS* V>El{S€H07T”} (AVS— 2A(O’§)> .
0<s<t Os

Adding these terms to term number six and using the equalitie

A
AG-sr = (O's_ 1{36[[0,T]]})AZS and (AO'-SI—)Z = S(O'g_ 1{36[[0,TH})(AZS)2

as well as

Alog(a2)" =log ((Og‘)T jA(Gg)T > = log <1+ A(;@T )

(05-)7 (05-)7




COGARCH: Symbol, Generator and Characteristics 257

we obtain

}Eo,v I(CUVARY)

. LseloT)) ¥

O<s<t

(eichfAZsElH log(1+(A/3)A(Zs)?)E2 _ 1—i§,05 AZs- 1{\AZS\<1}>
1o {(GI VT -
= - "V/ eI(GS— 1VS— V)El X
t 0] x {y+£0} {se[[0,T]]}
(ei057y§1+i log(L+(A/8)y*)&2 _ 1 _ i£105_Y- 1{\Y\<l}> HZ('; ds dy)

1, el yT _
) ,v/ e|(G$_.,Vs_ v)E,l >
n 0 {y40) {se[[0.T]}}

/
jOs-Ye1+ilog(1+(A/8)y?)E2 _ 1 _: Os-Yy . .
(e‘ '(log(1+§,y2)> & jsy<1) 1{‘Iog<1+gy2)<1}>

+ (izlcs)" (1{‘S)f<1} ' 1{}Iog(l+%y2)‘<l}) B 1{|y<1})>
+ i52|09(1+§y2)'1 sy<1} -1 W (- ds dy).
5 {S¥<2}" Hiog(1+}y2)|<1} ’

It is possible to calculate the integral with respect to thenpensatowr(-;ds dy) =
N(dy) dsinstead of the measure itself ‘under the expectation’esthe integrands are
of cIasng of Ikeda-Watanabe ([8]):

t
F2= {f(s,y, ) : f is predictableE / / If(s.y,-)[2N(dy)dsfor everyt > o} .
0 JR

One obtains this, becausggl; .1} 'l{|log(l+()\/6) y2)|<1y ~ 141yi<1} is zero near the origin

and bounded and I6g+ §y?) < (A/8)-y? for |(A/8)-y?| < 1.
Fort tending to zero (and multiplying with 1) we obtain by using Lebesgue’s theorem
again twice

((2):(2))-
—i&y <55+ S /R\{O} Y- (Lgsy<a) - Lejiog(arr/s) y2)| <1y ~ Livl<1y) N(dy)>
g, (g #1098+ [ 10g(1+ 3)- (Asyety L ogias ) <1 N(dy))
\{0}
+585Q

- /]RZ\{O} (ei(zl'ZZ)E -1- iZ/E ' (1{\zl\<1} : 1{\22\<1})) N <<g> ,dZ) 3
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whereN is the image measure

(2 92) =N (ogas sy ) <)

And by writing the starting point aS= exp(v/2) we obtain the result. O

It is an advantage of our approach that, having calculategymbol, one can
write down the (extended) generator and the semimartingjfzdeacteristics at once.
For the reader’s convenience we recall the definition of tktereled generator (cf.
Definition (7.1) of [5]):

Definition: An operatorG with domain?g is calledextended generatorof a
Markov semimartingal if Dg consists of those functiorfse B(RY) for which there
exists a functiorG f € B(RY) such that the process

Gl = 10%)~ 10%) ~ [ G1(x) ds

is well defined and a local martingale.
Combining Theorem 4.4 of [21] and Theorem 7.16 of [5] we aftai

Corollary 1: The extended generatGronC2(IR?) of the proces¢X (M), X(2)) =
(G,log(c?))’ can be written as

Gu(x) =

2 2 [
d1u(x) (feXZ/ +ee/ /R\{O}Y' (1{)@2/2),‘@} “Ljiogra+(v/e) y2)|<1) ~ Lyi<a}) N(dy))

B A
+02u(x) <$ +logd+ /R\{O} log(1+ SYZ) : (1{‘e?<2/2y|<1} “Ljiogra+ (/) y2)|<1}) N(dy)>
+6161U(X)G&Q
+ oo (09 U0 £y 00 - (g cty Ty )R .0y

with the N from above.

Writing D(A) for the domain of the generatérof the process we havg(A) C
De and the operator& andG coincide orD(A).

Corollary 2: The semimartingale characteristi¢B,C,v) of the process
(XM X@Y = (G,log(a?)) are

t @ @
Bt(l):/ (gexg +eXT/ y-(1
0 ®\(0) {
B§2>:/t B +|oga+/‘ log(1+ 2v?) - (1, o 1 )N(dy) | ds
o \ex®@ 2\{0) > {[e<®r2y|<a} " “floaa+(3) y2)|<1p

B t ex(ZJQ 0
Q_/o( 0 o)ds

v(-dsdy) = N(X(-),dy) ds

x(2
e 2 y|

<1} g3y <ny ~ M) N(dy)) ds

with the N from above.
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Remark: A different approach to calculate the charactesistf the COGARCH

process is described in [12]. Furthermore our results detec to earlier work of
B. Rajput and J. Rosinski. In their interesting article [15y derive under certain
restrictions a representation of the characteristic fonaif processes of the fordg =
5 f(t,s) dZs wheref is a deterministic function ardlis a Lévy process.
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J. Vives*

MALLIAVIN CALCULUS FOR LEVY PROCESSES: A SURVEY

Abstract. Since It6 (1956) it is known that Lévy processes enjoy theottbaepresenta-
tion property in a certain generalized form. In other wortig, $pace of square integrable
functionals of a certain independent random measure assdd@ma Lévy process has Fock
space structure. The Fock space structure gives the piydibidevelop a formal calculus
where a gradient and a divergence operators, that are duadrethem, are the main tools.
On every space of random functionals with Fock space streigte can interpret probabilis-
tically these operators and develop an stochastic calaildalliavin - Skorohod type. In
this survey | present, first of all, a probabilistic interfatéon of these operators in the case of
functionals of a Lévy process. This interpretation gerneealthe well-known interpretation
for the standard Poisson process presented in Nualart amd Y1990 and 1995) and, of
course, the genuine Malliavin - Skorohod calculus for thever process. As an application
| obtain an anticipating 1t6 formula that extends both thealisulapted formula for Lévy
processes and the anticipative version of the 1td formulderiener space.

1. Introduction

This paper is a survey of Malliavin Calculus for Lévy progsssince the point
of view developed mainly in Solé, Utzet and Vives [15], thastrongly based on 1td
[7], where the fact that square integrable functionals tathio the filtration of a certain
independent random measure associated to a Lévy procegstieajchaotic represen-
tation property is proved. Of course, being Wiener proceparéicular example of
Lévy process, Malliavin calculus for Lévy processes is aemsion of Malliavin cal-
culus for the Wiener process. Good references of Malliaailecwdus for the Wiener
process and for Gaussian processes in general are SanjA-Saéd Nualart [8].

The fact that a process enjoys the chaotic representatirepy can be de-
scribed also saying that the space of square integrabldiduats has Fock space
structure. This structure gives the possibility to devedoformal calculus where a
gradient and a divergence operators (dual between thent@raain tools. On every
space of random functionals with Fock space structure wertarpret probabilisti-
cally these operators and develop an stochastic calculMabifivin - Skorohod type.
See Nualart-Vives [9] and Applebaum [5] for details.

In this paper, the probabilistic interpretation of theserapors in the case of
functionals of a Lévy process is presented following Solietland Vives [15]. Pre-
viously, a canonical space for Lévy processes is constifotitowing the ideas devel-
oped by Neveu [11] for the standard Poisson case. This imiton of the operators
generalizes the interpretation given by Nualart and Vivel®] and [10] for the stan-
dard Poisson case.

As an application | present an anticipating 1t formula,dzhsn Alos, Leon
and Vives [1], that extends both the usual adapted formuladoy processes (see for

*This work has been financed by grants MEC FEDER MTM 2009, 0&8&PB07203.
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example Cont and Tankov [6]) and the anticipative versiothefltd formula on the
Wiener space developed in Alos and Nualart [3]. Anothermeagplication that can
be found in Alos, Ledn, Pontier and Vives [2], is a Hull and Vehibrmula (pricing

formula) for plain vanilla options based on an stochastiatility jump diffusion price

model. We have no space here to present this nice financibtafimn.

Section 2 is devoted to Fock space structure. In section 3weetlge construc-
tion of the canonical space for a Lévy process. In section present the probabilistic
interpretation of the operators. Finally, Section 5 is degldo the anticipative It6 for-
mula.

2. Formal calculus based on the Fock space structure

Let H be a real separable Hilbert space. For any 0 we consider the tensor
productsH®". Recall thatH®°® = R andH®! = H. We define the Hilbert subspaces
H®" C H®M given by the symmetric elements with the scalar product

(fn,9n)on := N (fn, On)en.

The Fock space associatedHds defined by the Hilbert space

®(H) = éHQ”
n=0

with the scalar produdtf,g) = S7_o(fn, Onyyen, Wheref = 57 o fhandg= S _o0n.

If (S B(S),us) is a certain measure space we can condgitler L2(S). In this
case we havel®" = LZ(S"), that is the space af—dimensional and symmetric square
integrable functions, with the modified scalar product. Bd; € ®(H), we have
F=73nofhwith fn e L2(S).

We define the gradient or annihilation operdfoas an application that maps an
elementr € ®(H) to an elemenDF € ®(H) x H = L2(S ®(H)) such that

[

DiF = Z nf.(-,t),t—ae,

n=1

of course provided thdF € L?(S ®(H)), that is equivalent to

< 2
Z nn!||fn\||_2(5m < oo,
n=1

It is easy to see that this operator is densely defined anddald$és domain is
denoted by DorD.

Let u € L2(S®(H)). Of course we havey = $% oun(t,-), Us — a.e. where
un € L?(S"1) is symmetric with respect to thelast variables. Denote by, be the
symmetrization in alh 4 1 variables. Then we define the divergence or creation oper-
ator ofu by
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[

o(u) = n;)ﬁn,

provided this series is i®(H), that is equivalent to assume

[oe]

> (n+1) 1Tl gy < .
n=

We denote by Do its domain. This operator is also densely defined and
closed.

Operator® andd are dual. Concretely we have thaFie DomDandu € Domd
then

(U,DF) 250H)) = (F.8(U))oH)-

This is the basis of a calculus on the Fock space, that we cae Malliavin-
Skorohod calculus without probability, and that can bedérgleveloped, obtaining
abstract formulas such as a Clark-Ocone type one (see NaathVives [9]).

3. Lévy processes

In all the papeiX will be a Lévy process with triplety,02,v) wherey € R,
02 > 0 andv is a Lévy measure. Good references for Lévy processes ar¢lgaand
Cont and Tankov [6]. Recall that Lévy processes can be ugeipresented by the
so called Lévy-Itd representatiofys = vt + oW + J, whereW is the standard Wiener
process and is apure jumpLévy process, independent\&f, such that

t t _
Jt::// de(s,x)+Iim// xdN (s x),
0 J{x>1} €l0Jo J{e<|x<1}

whereN(B) = #{t : (t,AX%) € B}, for B € B((0,) x Rq), is the jump measure of
the processiN(t,x) := dN(t,x) — dtdv(x) is the compensated jump measure and the
limit is a.s. uniform int on every bounded interval. Recall also that for evely0,

j;[X — EW\/ };J.

From 1td [7], a Lévy proces¥X can be associated to a centered and indepen-
dent random measui onR; x R. We consider the continuous measpfdt,dx) =
n(dx)dt, wheren(dx) := 28(dx) 4+ x?v(dx). More explicitly, we have, for an§
?(R+ X R),

WE) = 62 / dt+ // dv(x)dt,
E(0) E/

whereE(0) ={t e R : (t,0) €eE} andE’ =E—{(t,0) € E}. Then, forE € B(R; xR)
with Y(E) < =, we define the measure

M (dt, dx) = oW(dt)3o(dx) 4+ xN(dt, dx),
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that is,

M(E) G/E(O) dV\(+///de(t,x),

and it is a centered independent random measure suck theiE1 )M (Ez)] = H(Ex N
Ey), for Eg,Ex € B(R, x R) with pu(Ez) < 0 andp(Ey) < oo.

Let S:=[0,) x R endowed with the Boreb—algebra and the measuuale-
fined above. Then we can consider

HEN = 12— |_2((R+ < R)", B(R, x R)", 1",

For f, € L2, following It6 [7], we can define a multiple stochastic inteld,( )
with respecM, through the same steps as in the Wiener case, and prove {atF X)
has Fock space structure, that is,

[oe]

L2(Q, FX) = P In(LD).

n=0

Then, we can represent any functioffiak L2(Q, %) via the expansion

F=75 In(fy), fael?
n;n n n n

This expansion is unique if we take eveflysymmetric.

This fact makes possible to apply the machinery of annibitaéind creation
operators in a Fock space as presented before.

If F € L?(Q), with chaotic representatidh = % _oIn(fn), (fn symmetric) and
such thaty,_; nn!| anE% < oo, we define its gradient as

(o]

DF = 2 nln,l(fn(z,~)), ze Ry xR,
n=1
Recall thatD,F is an element of2(R; x R x Q,u®P).
In particular we can consider the two particular cases

00

DioF = § nlh_1( fa((t,0),))), teR,,
t,0 nzl nl( n(( ))) +

inL2(R, x Q,dt®P) and

00

DixF = z nln,l(fn((t,x),-)), (t,x) € R, x Ry,

n=1

in L2(R; x R x Q,dt>2dv(x) @ P).
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If we define its domains analogously to previous cases andteeghem by
DomD° and DonD” respectively, we have thatdf > 0 andv # 0, DomD = DomD°N
DomD”.

On other hand, lat € L2(R; x R x Q, B(R4 x R)® FX,u@P). As before, we
have the chaotic decomposition

u(t,x) = i'n(un((tvx)f))

whereu, € L%+1 is symmetric in then last variables. Then, ifi, denotes the sym-
metrization in alln+ 1 variables we have

5(u) = ilmm,

in L%(Q), providedu € Doms, that meang 7 o(n+1)! [|Tq[|Z, < oo
n+1

The duality property, in this case can be written in the fellgy way: If u €
Domd andF € DomD we have

E[5(u)F] = E//R _U(t) DeF it dY).

4. Probabilistic interpretation of gradient and divergence operators

4.1. A canonical space for Lévy processes

The usual canonical Lévy process is built on the space of unabke functions
from R, to R or on the space afadlagfunctions, in both cases with tlefield gener-
ated by the cylinders and using the Kolmogorov extensioaréra. In order to have a
probabilistic interpretation of the operatdy in Solé, Utzet and Vives [15] a different
canonical Lévy process is constructed. This construci@miextension of the canon-
ical Poisson process defined by Neveu [11] and is done inalesteips. First of all we
construct a canonical space for a compound Poisson pratesfnite time interval,
then we extend it t®R and after this, we construct the canonical space for a pung ju
Lévy case. In fact, in this last case, the probability spadéé set of all finite or infi-
nite sequences of paifs,x;) such that for every{f > 0, there is only a finite number of
ti < T, including the empty sequence. Finally, for a general Léwcpss we consider
the canonical Wiener spa¢@w, fw,Pw, {W;,t > 0}) and the canonical pure jump
Lévy spacgQy, F3,P3,{J;,t € R, }). Then we define

(Qw x Qj, Fw ® F3,Pw @ Py)

withW(w, o) :==Wi(w) and J(w,w):=J(w). The proces¥ = yt+oW +J is
the canonical Lévy process.
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4.2. Probabilistic interpretation of the operator Dy o

We are going to see thB g turns to be the derivative with respect to the Wiener
part of X and that the usual rules of classical Malliavin Calculuslapp

Recall that we have the isometry(Qw x Qj) ~ L?(Qw;L?(Q;)) and then we
can apply the theory of Malliavin calculus for Hilbert spa@dued random variables
as it is developed for example in Nualart [8].

Let beDY the classical Malliavin derivative and denote by DbW its domain.
Given a real separable Hilbert spaie we can extend this notion t&-valued random
variables. We writeDV" to denote the extended notion and DB to denote its
domain. In this case we have D@  ~ DomDW @ #. In the particular case of
H = L%(Q'), for a certain probability spad®’, 7', P'), such that.?(Q’) is separable,
we have,

DomD"" ~ DomDW © L?(Q') ~ L2(Q’; DomDW).

As a consequence, F € L%(Q x Q') such that for allw/ € Q', P'-a.s.,F(-,0f) €
DomD%, thenF € DomD"W" and

DYV F(w,0) =D'F(-,w)(w),/ o PP —ae.

In our particular case we haté(Q’) = L?(Qj;), which is a separable Hilbert space, and
soL?(Qw x Q) ~ L?(Qw;L?(Qy)). Therefore we can compute bdihoF andDVF,
and to obtain Dor®"Y" ¢ DomD?, and forF € DomDW', we haveD;oF = ZD{V'F.
This gives the probabilistic interpretation bf o.

The most general chain rule is proved in Petrou [12]F I f(Z) with Z €
DomD%W* and f in CL(R), thenF € DomDW* andD{V*F = f’(Z) D}V*Z.

4.3. Probabilistic interpretation of Dy x for x # 0.

Consider now a pure jump Lévy procebwith Lévy measure. Givenw € Q’
andz= (t,x) € Ry x Rp, we introduce inw a jump of sizex at instantt, and call the
new elementy, = ((t1,x1), (t2,%2),..., (t,%),...).

For a#J-random variablé, we define the transformatidif,F ) (w) := F (w;),
and the applicatiom F: Ry x Rg x Q — R, that applieqz w) to F(w,) is B(R x
Ro) ® 9 measurable and F = 0, P—almost surely, thef F =0,/ ®Vv®P a.e.

Now we can define the increment quotient operator

(TixF)(@) — F (@)

Thanks to the results given abo¥d, y is a measurable operator frdrH(QJ) to
LO(R, x Rg x Q7). Itis linear, closed and i, G € L°(QY),

W x(F G) = GWixF + F Wi xG+xW x(F) Wi x(G).
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Using the same ideas as in Nualart and Vives [10], gvenL?(Q’), we have

F € DomD’ <= WF € L%(R; x Rg x Q7),
and in this cas®; xF = W xF, u® P —a.e. This gives the probabilistic interpretation
of Dy x for x # 0.
In the general case, given= (t,x) € R, x Ro, for w = (o, w’) € Qw x Q,
definew, = (w",w)), and for a random variable € L°(Qy x Q) let (T;F)(w) :=
F(w;). Define also the operator

F(wy) —F
Wi F = —("J"X)X (@

Then, forF € L?(Q) we have thaF € DomD if and only if F € DomD"W* and
WF € L2(Q x [0,) x Rg), and in this case,

1 * *
DixF = 1{0>O} Il{0} (X) EDYV F+1g, (X) LIJLXF-

4.4. Probabilistic interpretation of o

From now on, fix a finite tim& > 0 and consider the proce$X;,t € [0,T]}.
Consider the independent random meadudreestricted to[0,T] x R. Assume also
Jr X2dV(X) < oo.

Following Applebaum [4], the random measivie with the filtration{ftx,t €
[0,T]}, induces a martingale-valued measure and allows to defirstoahastic inte-
gral.

Let u be a predictable process such tIEaff[o,T]XRuz(z) H(d2) < w. We can

define a stochastic integrd]jo 1), U(z) dM; such that foru andv square integrable
predictable processes we have

E {//[O,T]XRUdM./,/[O,T]XRVdM} - E[//[O,T]XRUqu.

An explicit expression for the integrdljq 1.z U(z) dM; is given by

//[o,m u(z)dM; = G/OT u(t,0)dW + //[OTT]XRoxu(t,x)dN(t,x).

As in the Wiener case, the Skorohod integral restricted édiptable processes
coincides with the integral with respect to the random mieslgu

In fact, if 8° is the dual operator db; o and &’ is the dual operator db; x for
x #£ 0, we have

3(u) = 8(u.0) + & (ulg,(X)).
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In particular&® coincides withadV and &’ coincides with the path by path
integral with respect taN over predictable processes.

Next result will play a key role in the application:

LEMMA 1. Let F € DomD be a bounded random variable and=lDomd such
that

E (u(t, %) (F + XDy xF ))?p(dt,dx) < oo.
[0, T]xR

Then ut,x)(F + XD xF) € Domd if and only if

Fa(u) — / U(t, X)Dy xF H(dt, dx) € L2(Q)
[0,T]xR

and in this cas®(Fu) = F&(u) — 8(XuDF) — Ji 1), U(t, X) D xF u(dt, dx).

4.5. The spacéd.”

To go further we need some structure into the space ®¥¥e follow Alos and
Nualart [3]. It is known thal ([0, T] x R x Q), the space of square integrable and
adapted processes, is included in [doi80, we search for a Hilbert space included in
the domain o® but that inludes adapted and square integrable processes.

We definel.»? as the space of processes L?([0,T] x R x Q) such that
DsxUty eXists a.e. fos>t. and belongs td.2(([0,T] x R)? x Q). Observe thaL.>?f
is a Hilbert space with the norm

Iullf 12 = HUHE2([O,T]XR><Q) + ”DS=Xut=y]J‘{SZt}HEZ(([O,T]XR)ZXQ)

andL2([0, T] x R x Q) C L2 C L2([0, T xR x Q).

Then we consider the spadé that it is defined in the following wayu €
LF if and only if u € L*?f and Dy, Dsxlty exists a.e. for Vs>t and belongs to
L2([0,T]® x R3 x Q). LF is a Hilbert space with the norm

||U||]2LF = ||U\|i1.2<,f + ||Dr7WD37Xut=y]1{rVSZt}||EZ(([O’T]><R)3><Q)'
andL2([0,T] x R x Q) CLF C LY¥2" nDomd C L%([0,T] x R x Q). Moreover,

E(3(u)?) < 2|lulfZe-

Observe that this inequality allow to control convergent&®@) by conver-
gence with respect the normbf and apply, when necessary, dominated convergence
theorem.
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5. An anticipating Itd formula

In Alos, Ledn and Vives [1] we use the techniques presentéotédé¢o obtain
an anticipative version of the 1t6 formula for Lévy processahere the coefficients
are assumed to be If . Our Ité formula is not only an extension of the usual adapted
formula for Lévy processes, but also an extension of theigatiive version of the 1td
formula on the Wiener space, obtained by Alds and Nuala@g20

Consider the semimartingale

X =Xo+/0tust\é+/otvsds

+/Ot/|y|>lzl(s—7y)yN(dsdy)+/Ot/y<lzz(s_,y)yﬂ(dsdy)

whereu andz(s—,y)y are adapted and haté trajectories a.s. andis adapted and
hasL! trajectories a.s. This is in fact a generalization of a gerlgévy process.

In this case (see Cont and Tankov [6] for example) it is wethkn that

FO0) = F0) + [ /06 Judvg
+ /OtF/(Xsf)Vst“‘%/OtF”(Xsf)ugdS
t
+ /0 /‘yl>1[F(Xs)—F(Xsf)]N(dsdy)
t
* /o /\yl<1[F(Xs) —F(Xs-) = F'(Xs-)z(s—,y)yIN(ds dy)

+ /Ot /MglF/(Xy)zz(sf,y)ym(dsdy)'

Our purpose is to obtain an analogous formula changing dichststic integrals
by Skorohod versions, that is, an anticipating version «f trmula. Recall that if
u, v, zz and z, are anticipating processes, the Itd integral with resped¥/tis not
defined, so we need the Skorohod extension. Moreover, thgrals with respedil
are well defined path by path, but they are not zero expeatattegrals, so we are also
interested in an Skorohod type version for this case. Caefitis will be assumed to be
in the domain of the gradient operator in the future senseth8application includes
also the Lévy extension of the corresponding domains in tlen®/ case as presented
in Alds and Nualart [3].

We introduce the spade?". A random fieldu = {u(s,y): (s,y) € [0, T] xR}
in .12 belongs to the spade™>" if there existD~uin L2(Q x [0, T] x R) such that

]
[ [ sup ElDsyurx D ulsy)Fluds dy
0 MRs-d

VO<r<sy<x<y+1
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converges to zero asgoes to infinity.
We need also to precise the relationship between Skorohdgath by path
integrals. Lez= {z(s,X) : (s,x) € [0, T] x R} be a measurable random field such that:

o If 5, 1sin [0, T] andym — Y, y # 0, the limit z(s—,y) = liMn m e Z(Sh, Ym) iS
well-defined and belongs foh "

e The random fieldg(s—,y) andyD~z(s—,y) belongs tdLF.

e The random field(s—,y)y is pathwise integrable with respectito

Then we have that for any intervé, b] or (a, ) in (0, ),

t ~
Z(s—,y)yN(dsd
/0 /{My‘gb} (s—,y)yN(ds dy)

=0((z(s—,y) + YD Z(s—,¥)) Wiacyi<by Wioy ()

t
+// D™ z(s—,y)u(dsdy), te[0,T].
0 J{a<lyl<b}

Finally, consider the process

t t
X = X0+6W(u11[o‘t])+/vsds+// 71(s—,X)xN(ds dx)
i 0 0 J{|x>1}
t ~
+ // 2(s—,x)xN(ds dx), te][0,T].
0 J{o<|x<1}
with the hypotheses

e Xg € DombD.

o ucLF, 3V (ullyy) has continuous paths arfgl u2dsis a.s. bounded by a con-
stant.

e ve 22! and ;) VAdsis a.s. bounded by a constant.

e 71 andz are bounded and satisfies the conditions of Theorem (1@n) and
(0,1] respectively. MoreoveD 2z, ¢ Y21

Then, ifF € C?(R), we have that

F'(Xs-) (UsLyy—o) +Z2(S—,Y) yocyj<13) Wiy (S)

and
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D™ (z2(s—,Y)F'(Xs-))(8,Y)YLjo<|yi<13 Liog (S)

belong toDomd and

F (%) —F(Xo)
= J((F'(Xs-) (ustyy—oy + 22(s—,y) Lo py<1})
+ Yllocyj<1}Digy) (Z2(5—,Y)F' (Xs-))) Loy (5))

t t .
" }/ FOe)gds [[FOGads | F06)D 0 Xtuds
2 Jo S 5 O -
t
Doy F'(Xs-)Za(s,y)u(ds d
/0~/{0<M§1} (sy) ( S ) 2( y)U( S Y)
t
// [F(Xs) —F(Xs_) — F'(Xs_)z2(s—,y)y]N(ds dy)
0 Jo<lyl<1

/0 /{MM}(F(Xs) ~F(Xs))N(ds dy).
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