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One of the great achievements of neutrino physics was the discovery of solar neutrinos in 1968
through the Homestake underground experiment. This experiment exploited a radiochemical
method based on the chlorine-argon process of inverse beta decay suggested by Bruno Pontecorvo
in 1946 during his work in the classified Canadian nuclear project. In this paper, we study the
emergence of the method. We focus on the role played by the problematic status of the neutrino
and its antiparticle in its field of application and the influence exerted by the contemporary models
of energy production in the sun. We also provide evidence that a first germ of this radiochemical
method, in the form of a chlorine-sulfur process, was suggested in a paper published by Richard
Crane in late 1930s. © 2015 American Association of Physics Teachers.

[http://dx.doi.org/10.1119/1.4927486]

I. INTRODUCTION

Since Wolfgang Pauli first postulated the neutrino in 1930
until the early 1950s, physicists generally considered it a
sort of undetectable “ghost.”’ During the 1933 Solvay
Conference, James Chadwick (1935 Nobel Prize in Physics),
who had recently discovered the neutron, said that “it is
certain that the neutrino, if it exists, would be excessively
hard to detect.”? Still in 1949, Luis Alvarez (1968 Nobel
Prize) observed that “it is unfortunate that at the present
time thgere is no convincing experimental proof that neutrinos
exist.””

In this paper, we will address, mainly upon the basis of
primary archival sources, the emergence in the 1930s of a
radiochemical method for detecting neutrinos at a time when
it was considered quite unrealistic to detect this particle. As
it will be shown, almost 30 years later this method led to the
discovery of solar neutrinos by Raymond Davis (2002 Nobel
Prize).

II. NEUTRINOS IN THE LATE 1930s AND EARLY
1940s: CONSENSUS AND EXPERIMENTAL
EVIDENCE

During the 1930s and 1940s, the most fruitful experimen-
tal method of investigating the existence of neutrino was the
recoil method, where the energy and momentum of the recoil
nucleus and of all other particles emitted in a beta disintegra-
tion decay process (¢~ or e') are measured. Some of the
most significant recoil experiments were performed in 1936
by Leipunski,* in 1937-1939 by Crane and Halpern,” and in
1942 by Allen.®

In general, by the recoil experiments, it was found that
energy and momentum are not conserved unless the neutrino
is introduced to carry away the missing momentum and
energy. Unfortunately, this method is a rather indirect one
because the recoil experiments are interpreted on the basis of
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the assumption that the law of the conservation of energy
and momentum hold in a single f§ process.’

Direct evidence could be obtained only through experi-
ments in which some characteristic process produced by
neutrinos after they have been emitted is observed. The first
type of experiments belonging to this class were those on the
absorption of neutrinos through the measurements of their
ionization effect, which were carried out in 1934—1935 at the
Cavendish Laboratory in Cambridge. Of course, the expected
chances of success were very low, since it was well known
that “the neutrino would be very penetrating and would
produce a very small specific ionization.”® Thus, it came as
no surprise when, in 1935, by a pioneering underground
neutrino experiment with a coincidence circuit of counters
placed inside the Holborn Tube Station in London, Nahmias
found that such a method was not suitable for detecting
purposes.”

Actually, another unambiguous method to settle the matter
of neutrino existence, besides looking at ionization effects,
was known to exist soon after the formulation of Fermi’s
theory of beta decay. As outlined by Bethe and Peierls on
February 20, 1934, such a method involves a reaction where
“a neutrino hits a nucleus and a positive or negative electron
is created while the neutrino disappears and the charge of the
nucleus changes by 1, i.e.,

v+AX — et +4. X (1)

Although this particular kind of “inverse f-process” is one
process that a neutrino can certainly cause, it was later con-
cluded that it is extremely rare.'’ According to Bethe and
Peierls, the cross-section for such a process may indeed be
estimated “from the lifetime ¢ of f-radiating nuclei giving
neutrinos of the same energy.” This cross section resulted to
have an upper threshold “of 10~** c¢m?, corresponding to a
penetrating power of 10'°km in solid matter,” and “it is
therefore absolutely impossible to observe processes of this
kind with the neutrinos created in nuclear transformations.”"’
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Still, in his 1947 nuclear physics textbook, Bethe explained
that this 10~** order of magnitude—“given by the cross sec-
tion for striking the nucleus (about 10~2* cm?) and the proba-
bility of f-decay within a nucleus (about 1072° cm?)"—
meant that the neutrino was “completely unobservable.”'?

As will be shown in the Sec. III, however, these negative
expectations did not deter others from planning to detect the
neutrino by the inverse f-process by late 1930s and from
being confident that this absolute impossibility might be
successfully challenged in the near future.

ITI. LOOKING FOR NEUTRINOS OUT OF A BAG
OF SALT

Notwithstanding the negative expectations, in 1939, after
having attempted to detect the neutrino by the recoil
method, University of Michigan physicist Richard Crane
directed his attention toward the detection of the neutrino by
a direct method. Since it was conclusively demonstrated
that the presence of neutrinos cannot be detected by an ioni-
zation effect,” Crane observed that “at least one possibility
of detecting them remains, and that is by a process which is
the reverse of the K-electron capture process.”'® This was
just the process first proposed by Bethe and Peierls in
1934,

According to Crane,'? if an inverse beta process was
considered, chlorine-35 could be an adequate target; the
expected reaction is

CPP+v— §¥ 4ot )

As Crane observed, “the product *°S is a radioactive isotope
[...] and decays back to 3CI with the emission of a negative

y g
electron and a neutrino”'? according to the reaction

SH P +e 4. (3)

The existence of a neutrino could, therefore, be judged
from the formation of the radioactive isotope *°S. As later
recollected by Crane, one of the reasons behind the choice of
the *CI-*S reaction was the small energy threshold.'*
According to Crane, the minimum energy of a neutrino that
can transform *CI into *°S was 1.3 MeV, “a value well
within the range of energies of neutrinos emitted from meso-
thorium [228Ra] and its products.”13 Thus, mesothorium is
suitable to be an optimal source of neutrinos in an attempt to
induce a *CI-*>S reaction. The other, very important reason
behind the choice of the *°CI-*>S reaction was the ease of
isolating the isotope possibly produced in the reaction
induced by the neutrino, the **S (by oxidizing the sulfur and
later precipitating it as a sulfate).

These reasons made Crane confident about the possibil-
ities of performing an experiment of this kind. In order to do
this, he placed a capsule containing one mCi of mesothorium
and its products in the center of a bag containing three
pounds of NaCl. After 90 days of irradiation, he extracted
the sulfur and measured its possible activity in an ionization
chamber. Unsurprisingly, no measurable beta activity was
found in the sulfur. By drawing upon the estimate that
3 x 107 neutrinos of energy greater than 1.3 MeV (the thresh-
old energy for the transformation) are emitted per second by
the source used, he concluded indeed that the sensitivity of
the experiment was such that only a cross section as high as
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1073° cm? could have been detected, a far greater cross sec-
tion than that expected by Bethe and Peierls (10~** cm?).

Crane, however, was mainly interested in solar neutrinos.
After having observed, on the basis of the recently developed
Bethe theory of energy production in stars, that “a star
generates about six percent of its energy in the form of
neutrinos,”"? he took the view that it is of interest to know
whether the neutrinos escape from the center of the sun with-
out further collision with matter. He suggested, therefore,
that if his bag of salt experiment was repeated again with a
stronger source of mesothorium or radium, it could be possi-
ble to determine whether an absorption mechanism like the
inverse beta process was great enough to prevent the escape
of neutrinos from the sun."’

Even if he was interested in the flux of solar neutrinos,
Crane did not discuss his *>CI-*>S method as a possible way
to detect solar neutrinos. Yet, he implicitly referred to
Bethe’s theory of energy production in stars, which was
based on the assumption that this energy is entirely due to
the conversion of H to He and held that this conversion could
occur through two different neutrino producing chains: the
proton-proton (p-p) chain, where ’H and *He act as a cata-
lyst that is created and destroyed during the intermediate
steps of the fusion reaction, and the carbon-nitrogen-oxygen
(CNO) cycle, where the H — He conversion is obtained by
the action of these three elements as a catalyst.'>

It was only in his January 1948 review paper about the
state-of-art in the search for the neutrino that Crane hinted at
the possibility of detecting solar neutrinos by this method.
There, he stated that “the energy spectrum of the neutrinos
produced in the [CNO] Bethe cycle is not unfavorable
for the inverse beta process.”'* This possibility was actively
pursued only several years later, though not by Crane, who
gave up the method.

Significantly, in this same review paper, Crane empha-
sized also that “the use of the large neutrino flux from a
chain-reacting pile to test for the inverse beta decay process
has been a subject of conversation among physicists since
the advent of the pile.” He concluded that “it would be
surprising if experiments of this sort were not going forward
at the present time in one or more of the government
laboratories.”"*

Crane’s guess was correct. Since 1945, another Italian nu-
clear physicist, who was working in a Canadian government
laboratory as part of a classified project, had been thinking
about detecting pile neutrinos through a method almost iden-
tical to that used by Crane, though with negative results, a
few years earlier. His name was Bruno Pontecorvo.

IV. NEUTRINOS OUT OF A DRY CLEANING
MACHINE

By early 1943, and until 1949, Pontecorvo participated in
a secret government project in Canada (Montreal and Chalk
River) code-named Tube Alloys, consisting mainly of work-
ing on the design of a heavy water natural uranium reactor.
During that period in Canada, he started thinking about the
problem of neutrino detection. On May 19, 1945, he finished
a note titled, “On a method for detecting free neutrinos,”16
(Fig. 1) that was issued two days later by the National
Research Council of Canada (NRC) with the PD-141 code.!”

For some reason, Pontecorvo never referred to this note
in his scientific'® and autobiographical'® articles. The first
reference was briefly made only in 1996 by Giuseppe
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Fig. 1. Cover of the PD-141 report “On a method for detecting free neutrinos” (Courtesy: The National Archives of the UK, Ref. AB2/675).

Fidecaro, who got a copy of the report from Geoffrey Hanna,
former collaborator of Pontecorvo in Canada.

The object of Pontecorvo’s note is to show that “the exper-
imental observation of an inverse f§ process is not out of the
question,” and to suggest “a method which might make an
experimental observation feasible.”'® Pontecorvo writes that
even if the actual emission of the positive or negative
electron when the neutrino is absorbed is not detectable in
practice, “the radioactivity of the produced nucleus may be
looked for and studied as an indication of the inverse f§
process produced by neutrinos.”'®
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The essential point of this method is that the radioactive
atoms produced have different chemical properties from the
irradiated atoms. He suggests, therefore, that “it is possible
(by means of the usual carrier technique) to extract from an
irradiated volume of the order of cubic meters the radioac-
tive atoms of known life-time,”'¢ provided that some condi-
tions are met. First, the material to be irradiated must be
cheap, since cubic meters are involved. Second, the nucleus
produced from the neutrino absorption must be radioactive
with a lifetime of at least several days because of the
long time involved in the chemical separation. Third, the
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chemical separation of the radioactive atoms must be simple.
Finally, the masses of the original and final nuclei must have
close values since the closer the masses, the larger the energy
of the electron emitted concurrently with the absorbed neu-
trino and the larger the cross-section for an inverse f-ray
process as a consequence of Fermi’s f-ray theory.'®

Given the above conditions, Pontecorvo re-discovered
what Crane had already suggested, that “chlorine... fulfills
reasonably well,” in the form of 35Cl, and that *°S would be
produced by absorption of a neutrino and emission of ' via

v 30— 35 and Bs LB )

Actually, Pontecorvo did not mention Crane’s pioneering
attempt to detect the neutrino by the inverse beta process.
What is remarkable is that Pontecorvo instead cites the other
contemporary Crane and Halpern papers about the recoil
method in the same journal. It is unclear whether the Italian
physicist arrived independently to suggest a chlorine-sulfur
radiochemical method or if he was consciously influenced by
Crane’s paper but for some reason decided to not cite it.

Differently from Crane, who had suggested using NaCl,
Pontecorvo identifies carbon tetrachloride (CCly), a well-
known and cheap dry cleaning solvent at the time, as the best
chlorine compound to irradiate from a chemical point of
view.?! Upon the basis of the 1944 Seaborg’s Table of
Isotopes,”” where 7S is listed as beta-decaying to *>Cl with
a period of 87.1 days (the energy of the ff-ray radiation being
only 120keV), Pontecorvo argues for a much larger scale
experiment than that previously considered by Crane, stating

[The] production of 35S would be observable by
using a volume of CCly, of the order of cubic meters
and radioactive source having intensity of the order
of 10'7 neutrinos/s. Such extremely intense source
does not go much beyond the Gpresent technical
facilities (“hot” metal from pile).]

Maurice Pryce, member of Tube Alloys, had pointed out
to Pontecorvo that the sun is another possible source since it
emits a “quite considerable” flux of neutrinos.”> To
Pontecorvo, this source, however, does not seem appropriate
to the radiochemical method because “the flux of neutrinos
received from the sun [10'" neutrinos cm ™2 s~ ' providing
Bethe’s carbon cycle is the source of energy of the sun] is
too low for an experiment of the type suggested.”'®

The contents of PD-141 show that Pontecorvo’s optimism
as to the possibility of experimentally observing an inverse-f3
process by the radiochemical method was rooted in the new
possibilities offered by nuclear reactors, such as the heavy
water nuclear reactor soon to be available in Chalk River. If
the natural sources usually available before the advent of
fission reactors were measured in terms of activities of the
order of one curie or 3.7 x 10'° disintegrations/s (corre-
sponding to 3.7 x 10'® neutrinos/s or a neutrino flux at one
meter of about 3 x 10°cm 2 sfl), the fission reactors were
expected to yield a 107-10® higher neutrino flux. As a matter
of comparison, the original 2-kW Fermi pile produced
4 % 10" neutrinos/s. While this by itself was no guarantee
that the neutrino detection problem was solvable, it made
Pontecorvo’s bet worth pursuing, provided that the technical
difficulties inherent in the observations of a few atoms of a
radioisotope out of a massive volume of dry cleaning
machine liquid were successfully overcome.
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One year after the drafting of PD-141, Pontecorvo
presented a lecture titled “Inverse Beta Process” to a nuclear
physics conference held in Montreal.?* On November 20,
1946, the contents of this lecture were issued again as an
NRC report with the PD-205 code (Fig. 2).°

PD-205 was originally classified by the U.S. AEC because
of its sensitive content concerning reactor physics. In fact,
Pontecorvo’s report was declassified less than two years
later, on October 8, 1948 (a few days before two other
Montreal conference NRC reports on different topics).°
Thus, Pontecorvo’s second report soon became available to
the scientific community, quite contrary to the first one that,
for unclear reasons, was declassified only in 1964 though it
had the same sensitive contents.

The analysis of the contents of the second Pontecorvo
report on neutrino detection reveals strong similarities with
the earlier note. In this second report, we indeed find again
the bold conjecture that the experimental observation of the
inverse f5 process “is not out of the question,” and the condi-
tions to be fulfilled to make this observation feasible.
Further, the conclusion that chlorine would fulfill them
reasonably well, in the form CCly, and the estimate that a
volume of the order of 1 m? of CCl, would require a neutrino
source that, while extremely intense, “is not too far from
what could be obtained with present day facilities.”*

However, in the previous report, Pontecorvo susggested, as
Crane had earlier, a reaction starting from 3 Cl, which
accounts for about 76% of the natural chlorine. In his second
report, he focuses instead on e (24% of natural chlorine).
The reaction is now

v43Cl— -+ Ar and JAr LS ¥ (5)

where *’Ar decays into *’Cl by K capture with a half-life of
34 days.

Pontecorvo’s new attention for *’Cl as opposed to the pre-
vious *>Cl is a matter of speculation because no reference to
PD-141 is made in his second report and in his later publica-
tions. What is clear is that at some point he became aware
that relatively fewer difficulties in the extraction of argon
might be expected if compared with the separation of sulfur
out of chlorine. When only chemical methods are possible, as
is the case for separating *S, “it is necessary that the addition
of only a few grams of a non-isotopic carrier, per hundred
liters of material treated gives an efficient separation.” It is,
therefore, a difficult separation. On the contrary, if the
nucleus formed in the inverse f§ process is a rare gas, as in the
case of argon out of chlorine, the separation is easier since it
can be obtained by physical methods, “for example by boiling
the material irradiated.” As emphasized by Pontecorvo,
Otto Frisch, who was former head of the Manhattan Project’s
Critical Assembly Group and who had spent a period in
Chalk River in March 1946,%" agreed with the Italian physi-
cist that the chemical separation obtained by physical meth-
ods was “the most promising method.”*

A further element behind Pontecorvo’s new choice might
be discovering at some point between the two reports the
favorable decay mode of *’Ar by K electron capture.?® This
discovery may have supported the view that Cl-Ar was the
optimal method for detecting the neutrino.

Pontecorvo also reaffirms that the solar neutrino flux is
several orders of magnitude lower than necessary to obtain
an observable effect and that the only available strong
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neutrino sources are related to nuclear reactors: either the
“hot” uranium metal extracted from a pile or, still better,
“the pile itself, during operation.”* The chlorine-argon
method indeed required a neutrino flux of the order of 10'*
neutrinos s~ 'cm ™~ that, “though extremely high, is not too
far from what could be obtained with present day
facilities.”>

In April 1949, a few months after the declassification of
PD-205, Alvarez discussed in a detailed fashion
Pontecorvo’s CI-Ar reaction in a University of California
report, giving widespread visibility to the method. Alvarez
supported Pontecorvo’s conclusions on both reactor and so-
lar neutrinos by quantitatively showing the feasibility of the
method for detecting reactor neutrinos and by briefly com-
menting on the negligibility of the expected effects of solar
neutrinos.
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In an interesting turn of events, experiments in the next
two decades clearly showed that the opposite was true and
that only solar neutrinos could be captured by Pontecorvo’s
net.

V. THE SOLAR NEUTRINOS, AT LAST

In February 1949, Pontecorvo moved to England to join
the Harwell nuclear facility, where he planned “to do the
experiments with neutrinos from a pile,” though it was “a
highly acrobatic feat.”” In fact, Pontecorvo never conducted
the planned neutrino experiment. In the late summer of
1950, he defected to the Soviet Union,30 where he “happened
to work in an accelerator laboratory (and not in a reactor
laboratory)”'® and, therefore, stopped working on the neu-

trino detection problem.
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In the meantime, a new theoretical point was raised and
brought to Pontecorvo’s attention, though without no signifi-
cant effect on his research program. In July 1948, following
a visit to Chalk River and recent conversations with Fermi,
Anthony Turkevich, a University of Chicago physicist, wrote
to Pontecorvo that:

[The] theoreticians have not yet decided [if] there
is a “real” difference between a “neutrino” and an
“anti-neutrino.” In this case I wonder if the pile
(f~ decays) which furnishes “anti-neutrinos” can
induce a process such as C1¥ (v, e) A% which
really requires “neutrinos.”"

At that time, it was indeed unknown whether the neutrino
v_ emitted in the f~ decay (named antineutrino) via

n—p+p v ©6)
and the neutrino v, emitted in the f* decay (the neutrino) via
p—ntftu, 7

were identical or if they differed. In particular, it was
unknown if the neutrino in the equivalent inverse-f process
(8), corresponding to process (6) of

vi+n—p+p- ®)

could be considered as the same particle as the one in the
inverse-f process (9), corresponding to process (7) of

vo+p—n+ B )

This situation dramatically changed only in the 1950s
when awareness was gained that neutrinos (produced in
fusion reactions, as in the sun) and antineutrinos (produced
by reactors and radioactive sources) are not identical. This
was achieved through experimental confirmation that reac-
tion (9) actually occurs if reactor antineutrinos are used and
experimental (dis)confirmation that reaction (8) does not
take place if the same reactor antineutrinos are employed.

In particular, in 1956, Frederick Reines and Clyde Cowan,
who for several years had been focusing on the inverse pro-
cess (9) in Hanford and at Savannah River, succeeded to
detect reactor antineutrinos v_ through a method completely
different from the radiochemical one, the recently emerged
technique of organic liquid scintillators.>* The intense flux of
antineutrinos produced in the beta decay of fission fragments
enters the scintillator containing a high proportion of hydro-
gen and, therefore, of protons. By reaction (9), the antineu-
trino interacts with one of these protons, creating a positron
and a neutron that are revealed as a pair of delayed signals.
In 1995, about 20 years after the death of Cowan, Reines
was awarded the Nobel Prize in Physics “for the detection of
the neutrino” (actually, an antineutrino).

With hindsight, we can look back and conclude that
the first, conceptually correct attempt to detect antineutrinos
v_ through inverse process (9) was just Crane’s 1939 chlorine-
sulfur reaction. This possible road for detecting the antineu-
trino, however, was never pursued again because it was, in the
meantime, surpassed by Reines and Cowan’s method.

As regards inverse process (8), it was first taken in serious
consideration by Pontecorvo in his second report, where he
suggested using the *’Cl-*” Ar reaction (5) for detecting reactor
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neutrinos. This experiment was first conducted by Raymond
Davis, Jr., in 1954 under the hypothesis that if v, and v_ do
not differ, “one should be able to observe the process upon
carrying the experiment to the required sensitivity.”*> Davis
exposed up to 11,4001 of CCl; to v_ emitted by the
Brookhaven reactor and later by the Savannah River reactor
without finding evidence of a reaction induced by reactor anti-
neutrinos, even if the required sensitivity was obtained.**

The positive result obtained by Reines and Cowan with
reaction (9), coupled with the negative result obtained by
Davis with reaction (8), both using reactor antineutrinos,
supported the view that though “in the theory of beta decay
it is not a priori evident that neutrinos and antineutrinos are
distinguishable,” these “two independent studies of the
inverse beta reaction have established with good probability
that such is the case.””

Therefore, this outcome stimulated Davis to produce
Pontecorvo’s *’Cl-> Ar reaction by solar v, neutrinos. This
choice required, however, the capability of observing much
lower fluxes of energetic neutrinos with respect to those
available near a large reactor’® and a new theoretical frame-
work on solar neutrinos. Both conditions were met only in
the mid-1960s, when the development of models about
energy production in the sun offered encouraging prospects
for solar neutrino detection.

By the time of Bethe’s theory, it was indeed understood
that a natural laboratory for producing an important flux of
(vy4) neutrinos was the sun. In the mid-1950s, however, it
was unclear whether solar neutrinos were energetic enough
to overcome the threshold of the chlorine-argon reaction.
While in the previous decade Pontecorvo’s *’Cl-*” Ar method
could in principle be used to detect solar neutrinos, since
Bethe’s CNO nuclear cycle (which was believed to be the
most important source of energy in the sun) predicted the
production of neutrinos whose maximum energy
(1.8MeV)"> was known to be larger than the threshold
of neutrino energy for transforming *’Cl into *’Ar
(0.816MeV),37 in the 1950s, such an expectation was quite
less legitimate.

In the early 1950s, it was indeed found that in the sun the
p-p chain—where the reaction of two protons leads to the
successive production of the deuteron, “He, and *He—out-
weighs the CNO cycle by a considerable factor under the
assumed conditions of temperature and density.”® Since
the neutrinos emitted in the p-p chain were known to have a
maximum energy of 0.41MeV (Ref. 39) (below the
0.816 MeV threshold), a chlorine-argon experiment to detect
neutrinos from the sun did not seem feasible.

Things changed in 1958 with Holmgren and Johnston’s
discovery that the probability was 2500 times higher than
previously estimated*® that the p-p chain led to a branch with
production of 'Be out of *He and a *He nuclei. As was
gointed out by William Fowler, the successive formation of

B by proton capture on 'Be resulted in the emission of a
substantial flux of energetic neutrinos of up to 14.1 MeV in
energy that “may be detectable through observations on
3CI(v,7)*" Ar, using the technique developed by Davis”
with reactor neutrinos.*'

Contrary to Fowler’s expectations, in 1960, the 'Be — °B
proton capture reaction rate was found to be too disappoint-
ingly low to ensure a negative result even with a very large
volume of chlorine.** The expectations of a chlorine-argon
experiment seemed brighter only by 1964 when John
Bahcall theoretically found that the capture rate of °B
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neutrinos by chlorine was significantly higher than expected.
The cross-section of Pontecorvo’s reaction (5) was indeed
found by Bahcall to be so large for ®B energetic neutrinos
that they were expected to produce about 90% of the total
signal in a detector based upon the chlorine-argon reaction.*®

The above encouraging estimates set the stage for the
Davis’ well-known solar neutrino experiment. At first, a pilot
experiment using 1,000 gal of perchloroetylene (C,Cly) bur-
ied in a limestone mine in Ohio (C,Cl; was chosen instead
of CCl, because its vapor pressure was lower and it was
eight times less toxic)** enabled setting limits on the extra-
terrestrial neutrino flux. Then, in 1965-1966, a large-scale
experiment using a 100,000 gal detector was set up in the
Homestake Gold Mine in South Dakota (Fig. 3). The
Homestake experiment apparatus was located 1,480m
underground to reduce the production of *’Ar from (p,n)
reactions by protons formed in cosmic-ray muon interac-
tions. At that depth, the expected *’Ar production from all
background processes was estimated to be less than 0.2
atoms/day, which was well below the rate expected from
solar neutrinos (3.5 atoms/day).45

The Homestake experiment was a success, since
Pontecorvo’s method worked and solar neutrinos were
found. However, it was a problematic success because there
were not as many as were expected. In 1968, the first results
of the experiment led to an upper limit of the solar neutrino
flux corresponding to a capture rate of 0.5/days,*> much
lower than the theoretical estimate (that, in the meantime,
new calculations had lowered to a value two to three times
higher).*® This result was confirmed by the measurements in
the 1970-1994 period, when Davis’ experiment had been
running almost continuously. An estimated total of 2,200
argon atoms were produced in the tank, i.e., “the sun pro-
duces one third as many neutrinos as expected.”’ This gap
between measurements and calculations of solar neutrino
flux has since been known as the “solar neutrino problem.”

With Davis’ experiment, a “new field of neutrino physics”
was born,48 a field to which Pontecorvo continued to give
significant contributions. One notable example was his idea,
put forward in 1969, that the solar neutrino problem might
be solved through “neutrino oscillations” that would cause a
decrease in the number of detectable solar neutrinos at the
earth’s surface.*’

Fig. 3. Construction of the tank used in the solar neutrino experiment in the
Homestake gold mine (Courtesy: Brookhaven National Laboratory).
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Davis’ results were confirmed in the late 1980s by
Masatoshi Koshiba and his group with another gigantic
detector built in Japan, called Kamiokande, based on the
completely different water Cherenkov technique, where solar
neutrinos could be detected by the elastic scattering of neu-
trinos on electrons. These accomplishments earned Davis
and Koshiba one half of the 2002 Nobel Prize in Physics.
Significantly, in his Nobel lecture, Davis openly acknowl-
edged his debt to Pontecorvo when he wrote that the method
behind the radiochemical experiment “was suggested by
Pontecorvo.”*’

VI. CONCLUDING REMARKS

The present account shows that the radiochemical method
used by Davis had a long history dating back to the times
when it was felt possible to get direct evidence of the neu-
trino by an inverse beta decay experiment actually performed
by Crane, using a CI-S reaction, a little bag of table salt as a
sample, and a capsule of radionuclide as a source. Crane’s
presently forgotten experiment was later, being unaware or
not, proposed again by Pontecorvo in his equally forgotten
first NRC report, where, through a large scale experiment, a
considerable volume of chlorine-based dry-cleaning liquid
was expected to enjoy success in detecting the neutrinos
produced by the emerging technology of nuclear reactors. A
better method to detect pile neutrinos was eventually devised
by Pontecorvo, using a different reaction scheme (Cl-Ar)
involving the same dry-cleaning liquid but a different chlo-
rine isotope, with the advantage of a much easier chemical
separation.

This method played a relevant twofold role in the hands of
Davis. When applied to study reactor neutrinos, the method
brought to light the different behavior of the neutrino and
antineutrino, thus paving the way for the detection of a
different kind of neutrino, those emitted by sun. Second, in
1968, it proved successful in detecting solar neutrinos.

The emergence of solar neutrinos out of the Homestake
experiment was a formidable accomplishment requiring the
successful mastering of the extraction of a few atoms out of
10%°. However, the 30-year-long historical process that made
this possible was shaped by the evolving models of energy
production in stars that, in turn, made a radiochemical
experiment to detect neutrinos from the sun more-or-less fea-
sible. At the end of this long and winding road, when all the
conditions proved to be favorable for the experiment thought
of many years before by Pontecorvo, the experiment was
finally performed, leading to the detection of solar neutrinos
for the first time ever.
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