
13 August 2024

AperTO - Archivio Istituzionale Open Access dell'Università di Torino

Original Citation:

Sub-behaviour relations for session-based client/server systems

Published version:

DOI:10.1017/S096012951400005X

Terms of use:

Open Access

(Article begins on next page)

Anyone can freely access the full text of works made available as "Open Access". Works made available
under a Creative Commons license can be used according to the terms and conditions of said license. Use
of all other works requires consent of the right holder (author or publisher) if not exempted from copyright
protection by the applicable law.

Availability:

This is a pre print version of the following article:

This version is available http://hdl.handle.net/2318/1526465 since 2015-10-14T14:16:37Z

Sub-behaviour relations for

session-based client/server systems

Franco Barbanera Ugo de’Liguoro

April 5, 2013

Abstract

We propose a refinement and a simplification of the behavioural se-
mantics of session types, based on the concepts of compliance and sub-
behaviour from the theory of web contracts. We introduce three relations
on a suitable class of behaviours with higher-order input/output, called
“session behaviors”. Such relations, depending on each other, represent
the idea of sub-behaviour from the point of view of a client, a server
or a peer, respectively. A restriction of the intersection of the first two
characterizes the usual sub-behaviour relation (from the literature). We
then device a formal system for three subtyping relations (dubbed CSP-
subtyping) for session types that takes into account the role played by
a user of a channel during an interaction, so extending Gay and Hole
subtyping theory. We show that our session behaviors and sub-behaviour
relations provide a sound and complete semantics for CSP-subtyping (and
for Gay and Hole subtyping as a by-product).

1 Introduction

A great deal of work is presently devoted to the formalisation of interaction
through the network, widening the research area on protocols and investigating
its basic concepts. This is motivated by the impressive growth of Web based
systems and by the development of service-oriented programming. In this sce-
nario programmers are expected to produce modules that heavily depend on the
communication with systems and programs written by third parties, of which
nothing is known except a generic and often informal description of their be-
haviour.

Session types and contracts are two formalisms used to study client/server
protocols. Session types have been introduced in [17] as a tool for statically
checking safe message exchanges thorough channels. The basic concept is that
of session, which is a logic unit collecting and structuring messages exchanged
among a set of agents, sharing private channels to prevent interference by
unchecked third parties. Session types represent the usage of each session chan-
nel by a regular tree of types (which is itself considered as a type), abstractly
representing all sequences of actions of which the typed channel is the “subject”
in the π-calculus jargon. In the theory of session types each type has a dual,
describing the same interaction from the point of view of the process holding

1

the opposite end of the channel; the exact correspondence of dual typings of the
same channel ensures error freeness (but not deadlock freeness: see [14]).

Contract theory, as proposed in [7, 18, 11], addresses the problem of ab-
stractly describing behavioural properties of systems by means of process al-
gebra. In the case of first order theory, namely without input/output of non
atomic data, contracts are formalised by means of a subset of CCS without τ
terms from [13]. These include, beside prefixing and recursion, external and
internal choice, denoted by σ + σ′ and σ ⊕ σ′ respectively, but not parallel
composition, which has a computational meaning. Indeed a contract is a static
object, that is some kind of abstract interface offered by a server to its possible
clients, describing the server overall behaviour during an interaction. To for-
mally check whether a client will comply with the server, a dual contract can
be used, describing this time the client requests. This leads to an asymmetric
view of the client/server interaction, because of a bias to the client side: it is
only the client that is expected to complete in any interaction with the server,
and not vice versa.

A benchmark for comparing the two approaches is flexibility. If a service is
looked at in a third party’s server it is unlikely that anything will be found that
perfectly matches the query. Hence criteria are needed to decide whether what is
available from the server can be safely used on the client side, without expecting
the exact matching of descriptions in the respective interfaces. Moreover, such
criteria should be checked automatically, since the request of a service might
well occur at run time.

On the session type side a natural solution is polymorphism and more pre-
cisely subtyping, firstly proposed in [16]. This is an extension of input/output
subtyping from [22], such that e.g. the branching type &〈ℓ1 : A〉 is considered
as a subtype of the larger &〈ℓ1 : A, ℓ2 : B〉 because anything offering the choice
between messages or data of type A and B via the options ℓ1, ℓ2 can safely
masquerade, either as a server or as a client, offering the option ℓ1 only. Dually,
the selection type ⊕〈ℓ1 : A, ℓ2 : B〉 signals the possibility of choosing among ℓ1
and ℓ2 without committing to either of them; then this is a subtype of ⊕〈ℓ1 : A〉
because any agent satisfying the stronger constrain of choosing ℓ1 will safely do
in any environment correctly reacting to both ℓ1 and ℓ2.

A concept of sub-contract can be defined by adapting the theory of testing
from [12]. In [18, 20] a compliance relation ρ ⊣ σ is introduced which ensures
that any request from the client ρ is satisfied by the server σ, so that any possible
interaction among ρ and σ will never prevent the client from completing; this
can be seen as the success condition of testing σ against ρ. Compliance naturally
induces a preorder, σ1 �s σ2 in our notation, which correspond to the inclusion
Client(σ1) ⊆ Client(σ2), where Client(σ) = {ρ | ρ ⊣ σ}. We call �s the server
sub-behaviour relation, which essentially coincides with the sub-contract relation
in [18].

In [3] we pointed out that a dual notion can be considered: ρ1 �c ρ2, corre-
sponding to the inclusion Server(ρ1) ⊆ Server(ρ2), where Server(ρ) = {σ | ρ ⊣ σ}.
We call �c the client sub-behaviour relation.

Actually a third notion can be taken into account by considering interactions
where components have no commitments to each other. When no asimmetry
is imposed on interacting components they can then be looked at as peers. An
orthogonality relation ⊥ formalizing this sort of interaction could hence be
defined as ⊣ ∩ ⊢, a relation strongly related to the subsieve relation in [8]. Then

2

σ ⊥ σ′ holds if both σ and σ′ complete in any terminating interaction among
the two and induces a preorder �∗ corresponding to the inclusion Peer(σ1) ⊆
Peer(σ2), where Peer(σ) = {τ | τ ⊥ σ}.

The notion of compliance was also investigated in [10] where, however, the
asymmetric nature of compliance has been put aside, by considering only a re-
lation similar to ⊥ .

The relations �c, �s and �∗ hence represent the notion of substitutabil-
ity between, respectively, clients, servers and peers in client/server-based dis-
tributed systems taking into account the different roles a component plays in
an interaction. Intuitively, if we look at σ1 and σ2 as the behaviours of two
servers, then, in case σ1 �s σ2 holds, σ2 represents the behaviour of a server
offering richer services (which means also possibly longer interactions) than the
server described by σ1. In case, instead, we look at two behaviours ρ1 and ρ2
as the descriptions of two clients, the relation ρ1 �c ρ2 states that the client
represented by ρ1 is less demanding (in the sense also of the number of consec-
utive requests) than the client with behaviour ρ2. Whenever σ1 �∗ σ2, instead,
a component with behaviour σ2 can safely interact in a symmetric manner with
at least all the peers of σ1.

For what concerns the operators + and ⊕, the �∗ relation behaves the
same as �p for p = c, namely covariantly in the number of + summands and
contravariantly in the number of the ⊕-summands (and covariantly w.r.t. the
respective continuations), that is session behaviors and behavioural subtyping
mirror branching and selection session types w.r.t. (syntactic) subtyping, re-
spectively. To these properties, however, the sub-behaviour relations �c and
�s add dual forms of subtyping in depth that does not hold in the subtyping
theory for session types deviced by Gay and Hole in [16].

In a first-order setting, i.e. where components themselves cannot be freely
exchanged in a system, the three sub-behaviour relations can be formalized in-
dependently. When higher-order is considered, however, they become intimately
correlated, since also the exchanged components can play a particular role in
the system, not necessarily corresponding to the role of the components that
exchanged them, as we shall see later on in an example.

Turning back to the comparison of session types with contracts, there is a
natural interpretation of the first order session type A into a contract [[A]],
which interprets branching types &〈· · ·〉 into external choices, and selection
types ⊕〈· · ·〉 into internal choices. However, as it has been observed in [19], such
an interpretation is unsound. Indeed [[&〈ℓ1 : end〉]] = ℓ1.1 and [[&〈ℓ1 : end, ℓ2 :
A〉]] = ℓ1.1+ ℓ2.τ , where 1 is the contract of completed processes and τ = [[A]].
Now, in the subtyping theory we have &〈ℓ1 : end〉 ≤ &〈ℓ1 : end, ℓ2 : A〉, but
ℓ1.1 6�∗ ℓ1.1+ ℓ2.τ (and this is the case for �c and�s as well). In fact, if we take
ρ = ℓ1.1+ ℓ2.σ, for any σ unrelated to τ , then ρ ∈ Peer(ℓ1.1) \Peer(ℓ1.1+ ℓ2.τ).
Problems arise also because of the admittance of unguarded recursion, e.g.
recx.x, in the contract syntax.

The conclusion we draw from the above remarks is that contracts are a larger
and likely more expressive formalism than session types. This does not rule out
the possibility of using contracts to give meaning to session types, which is what
we shall begin the technical part of the present paper with: on the contract side
we shall define a formal language of session behaviors and denote it by SB.

3

It can be looked at as the image of the session types interpretation map, so
that in

∑

i ai.σi and in
⊕

i ai.σi the ai are pairwise distinct and names ai and
co-names ai occur within sums + and ⊕ only, respectively. Besides, recursion
is assumed to be contractive. By doing so we trim the nondeterminism of
the system so that the previous example ceases to be problematic. In fact
now ℓ1.1 �∗ ℓ1.1+ ℓ2.τ holds, since ρ = ℓ1.1 + ℓ2.σ is ruled out from the set
of possible clients (and hence of peers) of ℓ1.1, being syntactically incorrect.
This implies for instance: ℓ1.1 �s ℓ1.ℓ31+ ℓ2.τ . The syntactical restriction we
impose on session behaviours is tantamount to restrict the nondeterminism in
their interactions, so that it depends at any time on just one of the two actors
of an interaction.

Although session behaviours are isomorphic to session types, we keep them
distinct from types, because the former have an operational semantics. We shall
describe such an operational semantics by means of an LTS defining a reduction
relation among parallel composition of contracts, such that ρ‖σ =⇒ ρ′‖σ′ if

ρ
α

=⇒ ρ′ and σ
α̃

=⇒ σ′, and α and α̃ are actions that synchronise with each
other. The compliance relation ρ ⊣ σ is then defined by the clause that, if
ρ‖σ =⇒ ρ′‖σ′ 6=⇒, then ρ′ = 1, formally describing the fact that the ”server”
σ has satisfied all the requests of the client ρ. Notice that, according to our
client/server/peer roles, σ does not need to ”complete” (i.e. to reduce to 1)
unless also ρ ⊢ σ holds; besides, we shall admit also non terminating complying
interactions.

We provide now an intuition of the intended meaning of the notions described
above by modifying an example sketched in [3] which, in turn, is an adaptation
of one in [19]. Let us consider a Ballot-Service. This service can receive a login
and, if correct, signal to the client (a voter), by means of the message Ok, that
it is enabled to vote for one of the candidates A, B or C. After that, the server
offers also the possibility of voting for one of two possible vice-candidates. In
case the login is incorrect, instead, a message Wrong is issued to the client. By
means of recursion, a voter is allowed to retry the login action in case of a
failure. The following element of SB then abstractly describes the behaviour of
the Ballot-Service:

BallotServiceBeh = recx. Login.(Wrong.x ⊕ Ok.(VoteA.(Va1+ Va2)
+
VoteB.(Vb1+ Vb2))
+
VoteC.(Vc1+ Vc2)))

The following element of SB, instead, describes the behaviour of Voter1, a
possible client of our Ballot-Service:

Voter1Beh = Login.(Wrong+ Ok.(VoteA⊕ VoteB))

As said before, the notion of compliance expresses the idea that a client is
entitled to abandon the interaction at any time, while a server is expected to
react properly to all client requests. So we have that

Voter1Beh ⊣ BallotServiceBeh

4

Notice that Voter1 is not prepared to vote for vice-candidates and it is prepared
to try and login just once, notwithstanding the server admits repeated login
actions after possible failures.

Let us now take into account a different Ballot Service, Ballot-Service-2,
whose abstract behaviour is described by the following element of SB:

BallotService2Beh = Login.(Wrong ⊕ Ok.(VoteA+ VoteB))

A voter that uses Ballot-Service-2 can just try once to login and can vote for
just A or B, without the possibility of choosing any vice-candidate.
Intuitively, Ballot-Service offers then a ”richer” service that Ballot-Service-2,
and in any system designed to have Ballot-Service-2 as ballot service, we can
safely replace it by Ballot-Service. This safe-sostitutability property is guaran-
teed by the fact that, according to our sub-behaviour relations, we have

BallotService2Beh �s BallotServiceBeh

In fact any voter complying with a ballot service allowing for just one login, two
candidates choices and no vice-candidates, will definitely comply with the more
liberal one that allows for more login attempts, an extra choice of candidates
and also the possibility of choosing a vice-candidate after the candidate choice.

In order to exemplify the �c relation, let us now consider another possible
voter, Voter2, who wishes to return a blank ballot, i.e. to participate to the bal-
lot but without voting for any candidate. The behaviour of Voter2 is described
by the following element of SB:

Voter2Beh = Login.(Wrong+ Ok)

According to the �c relation we have:

Voter1Beh �c Voter2Beh

because a voter described by Voter2Beh is less demanding than one described
by Voter1Beh, that is a voter behaving as Voter2Beh complies with all the ballot
servers voters described by Voter1Beh comply with. This implies that any voting
system designed to accommodate voters with the behaviour Voter1Beh can safely
accommodate voters having the behaviour Voter2Beh. An example of use of the
relation �∗ will be provided later on.

If, as in the examples above, only first-order session-behaviours were taken
into account, the relations �c, �s and �∗ would not be difficult to formalize and
investigate. As we shall see, difficulties arise, instead, when we wish to use our
formalism to describe the behaviour of components that have the possibility
of exchanging among themselves other components (with their corresponding
behaviours), i.e. when we consider higher-order session behaviours. In the
context of session types, the exchange of components corresponds to delegation,
realized by means of channel passing, and it has been extensively investigated
since the very beginning of the development of session types theory.

5

In the present paper we shall define the set SB of session behaviours in
order to take into account also higher-order behaviours, that is behaviours with
higher-order input actions, ?(σp)σ′, and higher-order output actions ![σp]σ′,
where p is one of the three possible role played by the sent/received behaviour
σ: c (client), s (server) or ∗ (peer). Whereas in the context of session types we
can look at σ as the semantics of the type of a sent/received channel, from a
more general point of view we can look at it as the description of a sent/received
component.

The use of polarities as superscripts of received and sent contracts in SB is
justified by the asymmetry of the approach considered here: without marking
received and sent contracts with polarities, incorrect situations easily arise (see
also [2]). For instance, let us assume that a communicating agent is waiting for
a component (or a channel) enabling an interaction as a client according to the
behaviour σ. If it actually receives a component conforming to τ and τ describes
amore demanding client behaviour, the received component could make requests
that the server to which the agent is connected (or will be connected to) is not
able to satisfy. So the information that τ and σ have to be confronted w.r.t.
the relation �c is essential, and it is provided by the label c.

Notice that the only possibility of avoiding the use of labels c or s in sent
and received behaviours is to force their contracts to coincide, or to be related
by �∗. This, however, would severely restrict the flexibility of our formalism.

Then, when we formally define the compliance relation ⊣, we have to take
into account that the interaction with a higher-order session behaviour ![σc

1]σ2

can be triggered by any ?(τc1)τ2 such that τ1 �c σ1 and not just when τ1 ≡ σ1

or τ1 �∗ σ1. A similar motivation similar justifies the fact that ![σs
1]σ2 can be

triggered by any ?(τs1)τ2 such that τ1 �s σ1. In our formalism we shall further
ask received/sent behaviours not to contain free variables, for reasons that will
be clarified in the paper.

For the time being, let us consider a system where the Ballot-Service is
modularized into an Authentication-Service and a Vote-Bookkeeper service. The
Authentication-Service checks the right of the client to vote, and then passes
to her the description of how her vote can be expressed (this can be a channel
through which the vote can be given, or a component enabling the voter to
transparently interact, as a client, with the Vote-Bookkeeper.) The behaviour
of the Authentication-Service is described by the following higher-order element
of SB:

AuthServiceBeh =

rec x. Login. (Wrong. x
⊕
Ok. ![(VoteA.(Va1)⊕ VoteB.(Vb1)⊕ VoteC.(Vc1))c])

⊕ ⊕ ⊕
Va2 Vb2 Vc2

whereas the Vote-Bookkeeper behaves according to:

VoteBookprBeh = VoteA.(Va1+ Va2) + VoteB.(Vb1+ Vb2) + VoteC.(Vc1+ Vc2)

As said before, the use of polarities enables to exploit the flexibility of our sub-
behaviour relations also for sent/received behaviours. In AuthServiceBeh, by

6

labeling with c the behaviour:

(VoteA.(Va1⊕ Va2)⊕ VoteB.(Vb1⊕ Vb2)⊕ VoteC.(Vc1⊕ Vc2)) (1)

it is stated that Vote-Bookkeeper can interact with any voter willing to express
her vote according to any behaviour τ such that

(VoteA.(Va1⊕ Va2)⊕ VoteB.(Vb1⊕ Vb2)⊕ VoteC.(Vc1⊕ Vc2)) �c τ (2)

For example a possible τ in (2) could be:

(VoteA⊕ VoteB)

so that, if Voter3 is committed to behave according to:

Voter3Beh = Login.(Wrong+ Ok.?[(VoteA⊕ VoteB)c])

then she is guaranteed to safely interact as a client with the modularized server
Ballot-Service. In fact by the definition of ⊣, we have:

Voter3Beh ⊣ AuthServiceBeh

To exemplify sent/received behaviours labelled by s, let us describe the ser-
vice Authentication-Service-2, richer than Authentication-Service. Such a ser-
vice, after having sent the behaviour according to which its client can vote, can
receive from the voter a behaviour (a protocol) according to which the voter’s
employer wishes to be certified about her employee having voted (let us assume
that the protocol enables the choice among two sorts of certifications, C1 or C2,
and for each of these certifications a certification stamp can be issued, s1 or s2,
respectively):

AuthService2Beh =

rec x.
Login.
(Wrong. x
⊕
Ok. ![(VoteA.(Va1)⊕ VoteB.(Vb1)⊕ VoteC.(Vc1))c]. ?((C1.s1 + C2.s2)s))

⊕ ⊕ ⊕
Va2 Vb2 Vc2

Then Authentication-Service-2 is guaranteed to safely interact with some Voter4
behaving in accordance with:

Voter4Beh = Login.(Wrong+ Ok.?((VoteA ⊕ VoteB)c).![(C1)s])

since
C1 �s (C1.s1+ C2.s2).

Behaviour C1 might look rather meaningless, but the voter could know in ad-
vance that the employer will ask for the first certificate, but that she is not
waiting for the respective stamp.

It is now natural to expect that, in case one implements an Authentication-
Service-3 according to:

7

AuthService3Beh = rec x. Login.(Wrong. x
⊕
Ok. ![δ].?((C1.s1.d+ C2.s2+ C3.s3)s))

where C3 denotes another possible certification, d is an extra date-stamp for the
certification C1, and δ is (1) (or a greater behaviour w.r.t. �c), we get:

AuthService2Beh �s AuthService3Beh

This means that, in a system containing AuthService2Beh, such a service can
be safely replaced by AuthService3Beh since, for what concerns the higher-order
input actions of these behaviours, we have that:

(C1.s1+ C2.s2) �s (C1.s1.d+ C2.s2+ C3.s3).

The above example also illustrates the use of the label ’∗’. Let us consider
a Voter5 who behaves the same as Voter4, but after sending the login, besides
the ability of receiving the information whether the login is ok or not, she can
receive a Help message before the description of the interaction with a Pass-
wordsManager. The interaction protocol with the Passwords Manager allows
to retrieve a forgotten password by answering to one of two possible questions:
the name of the voter’s best friend or the date of the voter’s mother birthday.

Voter5Beh = rec x. Login.
(Wrong.x
+

Ok. ![(VoteA⊕ VoteB)
c]

+

Help. ?((nameRq.name.pw+ dateRq.date.pw)
∗))

We assume that the interaction between Voter5 and PasswordsManager cannot
be interrupted by any of the two participants. This accounts for the label ’∗’
on the received behaviour (nameRq.name.pw+ dateRq.date.pw). It follows that,
given the behaviour:

Voter6Beh = rec x. Login. (Ok+ Help. ?((nameRq+ dateRq.date.pw)
∗))

we have that
Voter6Beh 6�c Voter5Beh

since

(nameRq+ dateRq.date.pw) 6�∗ (nameRq.name.pw+ dateRq.date.pw)

In fact nameRq is a peer of (nameRq+dateRq.date.pw), but not of (nameRq.name.pw+
dateRq.date.pw). We have instead:

Voter7Beh �c Voter5Beh

for

8

Voter7Beh = rec x.Login. (Ok+ Help. ?((dateRq.date.pw)
∗)).

As suggested before, the presence of sent/received behaviours makes the
formalization of sub-behaviour relations difficult. In particular because of a
circularity problem. As a matter of fact, in the formalization of the inter-
action between elements of SB, in order to reflect the above discussed vari-
ance/contravariance property of input/output sub-behaviour, we should postu-

late that in case σ
![ρp

1
]

−→ σ′ & τ
?(ρp

2
)

−→ τ ′, the two interacting behaviours σ‖τ
synchronize (formally σ‖τ −→ σ′‖τ ′) if and only if ρ1 �p ρ2. But �p depends,
via the concept of compliance, on the very same reduction relations, so making
the definitions circular.

By analogy with the similar case of Theorem 2.6 in [9], the problem can
be solved by means of stratification based on a suitable complexity measure.
In fact, in order to perform the input or the output of a ρp, any σ necessarily
contains ρ as a (proper) subexpression. On passing we observe that this is not
true anymore if sent/received behaviors are open expressions, namely if they
contain some variable x.

The apparently simple formalization via stratification, however, has both
conceptual and technical difficulties. Conceptually, the LTS is not a formal
system, at least at first glance, since the logical complexity of the definition is Π0

2,
so not even an r.e. relation. Technically, defining the �p relations as the union
of their stratified restrictions requires a thoroughly study of the LTS before
proving that they coincide with the inclusion of the sets Client(σ), Server(ρ)
and Peer(σ), as intended. Such a detailed study, together with the �∗ relation
properly extend the work in [3].

Once we know that the three sub-behaviour relations over SB are well de-
fined, their coinductive characterisation is the essential tool for their further in-
vestigation. This will be achieved by a mutual coinductive construction, which
we shall give in terms of the behaviour syntax up to a notion of convergence,
accounting for the unfolding of recursive definitions and of the set of possible
internal choices.

A first consequence is the proof that the defined relations �s, �c and �∗ on
SB are well-behaved with respect to duality, as it is induced by the notion of dual
session types. Moreover, it will be possible to show that �∗ is the intersection
of server and client sub-behaviours. A notion of semantic subtyping will be also
defined as the restriction of the �∗ relation to elements of SB containing only
the label ’∗.

We shall also present a client/server/peer subtyping system which simultane-
ously axiomatises three relations ≤c, ≤s and ≤∗ on session types, transparently
corresponding to �c, �s and �∗. The type syntax reflects the definition of
SB in that input/output types have the transmitted type A1 in ?(Ap

1)A2 and
in ![Ap

1]A2 labeled by a polarity. We shall require A1 to be a closed type, a
necessary restriction which was not taken into account in [16]. Then, to the
unfolding rules of recursive µ-types and the coinductive rules treating each type
constructor but µ, we add the axioms A ≤c end, end ≤s A and end ≤∗ end

for any A, the first two accounting for the asymmetry of the client and server
sub-behaviour relations.

The typing system defines a set of derivable judgments Γ ⊢ A ≤p B, where

9

Γ ∪ {A ≤p B} is a set of inequalities among closed types. Its semantic coun-
terpart is Γ |= A ≤p B, which is defined as the usual conditional statement
that if all the inequalities C ≤q D ∈ Γ are true according to the definition
|= C ≤q D ⇔ [[C]] �q [[D]], then |= A ≤p B. The soundness theorem states that
Γ ⊢ A ≤p B implies Γ |= A ≤p B; on the other hand the opposite implication
fails when 6|= Γ, as it will be shown by a counterexample. In fact the best result
one can establish is that if Γ |= A ≤p B then either 6|= Γ or Γ ⊢ A ≤p B. But
this is enough to show that [[A]] �p [[B]] if and only if ∅ ⊢ A ≤p B, for p = c, s, ∗.
Such a completeness result extends and completes the semantic investigation
started in [3], where just soundness was proved. A soundness and completeness
result is shown to hold also for Gay and Hole’s subtyping w.r.t. our semantic
subtyping. Moreover, since our subtyping system is shown to be decidable and
behaviours are bijective with session types, we also deduce from the complete-
ness theorem that the relations �c, �s and �∗ are decidable, and so that the
LTS defining the operational semantics of behaviours is a formal system in the
usual sense.

The paper is organised as follows: in section 2 we introduce session be-
haviours, the LTS defining compliance and hence the server, client and peer
sub-behavior relations, stratified w.r.t. the rank of behaviour expressions. We
prove that the stratified definition induces three chains of relations, whose unions
coincide with the inclusion of clients, servers and peers of each pair of related be-
haviours, respectively. In section 3 we provide a coinductive characterisation of
the sub-behaviour relations, which is entirely based on the syntax of behaviour
expressions, not on the LTS. By means of the coinductive characterization we
shall be able to prove the apparently simple and natural property that �∗ is the
intersection of �c and �s. In Section 4 we define session types with polarized
higher-order input/output, dubbed CSP-session types, and a derivation sys-
tem axiomatizing client/server/peer subtyping (that we prove to be decidable),
which includes the Gay and Hole subtyping for session types. We then interpret
in Section 5 CSP-session types into session behaviours and client/server/peer
subtyping into the respective sub-behaviour relations, proving soundness and
completeness of the system. We derive also that a suitable restriction of �∗

(the semantic subtyping) is a model for the Gay-Hole subtyping relation. In
section 6 we refer to related works, and in section 7 we conclude.

The present paper extends the systems and results of the preliminary paper
[3], where only the client/server relations were taken into account and where
no full proof were provided. Here we also provide a complete analysis of the
stratified definition of the sub-behaviour relations. Besides, in [3], only sound-
ness was shown for our subtyping system. The present paper also provides the
proof of decidability for the client/server/peer subtype relations,implying, by
completeness, the decidability of the sub-behaviour relations.

2 Session Behaviours and Client/Server Sub-Behaviour
relations

A session behaviour can be looked at as an abstract description of the commu-
nication actions by a process on one end of a bidirectional channel (or, from a
more general viewpoint, as an abstract description of the behaviour of a com-

10

ponent) in a distributed system. We formalize session behaviours by means of
a process calculus inspired by the calculus of contracts [7, 18, 11, 10] which,
on the one hand, we restrict w.r.t. the shape of subterms of both external and
internal choices, while, on the other hand, we extend contract syntax to model
delegation (higher-order input and output.)

Definition 2.1 (Session Behaviours) i) Let N be some countable set of
symbols and N = {a | a ∈ N}, with N ∩ N = ∅. The set BE of raw
behaviour expressions is defined by the grammar:

σ, τ ::= 1 inaction
| a1.σ1 + · · ·+ an.σn external choice
| a1.σ1 ⊕ · · · ⊕ an.σn internal choice
| x variable
| recx.σ recursion
| ?(σp)τ input p ∈ {s, c, ∗}
| ![σp]τ output

where

- n ≥ 1 and ai ∈ N (hence ai ∈ N) for all 1 ≤ i ≤ n;

- x is a session behaviour variable out of a denumerable set and it is
bound by the rec operator; fv(σ) denotes, as usual, the set of free
variables in σ.

ii) The set SB of session behaviours is the subset of closed raw behaviour
expressions such that:

- in a1.σ1 + · · · + an.σn and a1.σ1 ⊕ · · · ⊕ an.σn, the ai and ai are,
respectively, pairwise distinct;

- in recx.σ the expression σ is not a variable;

- in ?(σp)τ and ![σp]τ σ is a closed expression, i.e. fv(σ) = ∅.

We abbreviate a1.σ1 + · · · + an.σn by
∑n

i=1 ai.σi, and a1.σ1 ⊕ · · · ⊕ an.σn by
⊕n

i=1 ai.σi. We also use the notations
∑

i∈I ai.σi and
⊕

i∈I ai.σi, for finite and
not empty I. The trailing 1 is normally omitted: we write e.g. a+b for a.1+b.1.
Note that recursion in SB is guarded and hence contractive in the usual sense.

This definition follows similar constructions in [8, 21]. A technical difference
is the use of polarities; they have been introduced in [16] and used in [23] to
keep track of the pairing of the two ends of private channels of sessions. We
use here polarities to distinguish among actions by a server (p = s), by a client
(p = c), or by a peer (p = ∗).

We comment on the restriction that fv(σ) = ∅ in ?(σp)τ and ![σp]τ in
Remark 2.4.

The semantics of session behaviours is given in terms of a labeled transition
system (LTS) σ

α
−→ σ′ where σ, σ′ ∈ SB and α belongs to an appropriate set

of actions: Act. As usual, N ∪ N ⊆ Act; in the present case, however, also
the input/output of a behaviour is an action so that, somehow, SB has to be
included into Act.

11

Definition 2.2 (Behaviour LTS)
Define the set of actions Act0 = N ∪N and

Act = Act0 ∪ {?(σp), ![σp] | σ ∈ SB, p ∈ {s, c, ∗}}.

Let ⊕, rec 6∈ Act; define the LTS (SB,Act ∪ {⊕, rec },−→) by the rules:

a1.σ1 + · · ·+ an.σn
ak−→ σk a.σ

a
−→ σ

a1.σ1 ⊕ · · · ⊕ an.σn
⊕
−→ ak.σk recx.σ

rec

−→ σ{recx.σ/x}

?(σp)τ
?(σp)
−→ τ ![σp]τ

![σp]
−→ τ

where 1 ≤ k ≤ n and σ
α

−→ τ abbreviates (σ, α, τ) ∈ −→.

We abbreviate −→=
⊕
−→ ∪

rec

−→. Note that neither ⊕ nor rec are actions,
so that they are unobservable and used just for technical reasons; indeed we
adopt the standard −→ (from CCS without τ) in the subsequent definition of
the parallel operator for testing.

As usual, we write =⇒=−→∗,
α

=⇒=−→∗ α
−→−→∗ for α ∈ Act, σ

s
=⇒ σ′ if

s = α1 · · ·αn and σ
α1=⇒ · · ·

αn=⇒ σ′. Also we write σ −→ and σ
α

−→ if there
exists σ′ s.t. σ −→ σ′ and σ

α
−→ σ′ respectively, and σ 6−→ when ¬(σ −→).

A syntactical concept of duality on SB is obtained by interchanging a with a,
+ with ⊕ and ?(·) with ![·]. Its formal definition is obtained by restricting to SB
a straightforward definition by induction on the structure of the raw expressions
in BE (i.e. also for open expressions).

From now on, in order to avoid too cumbersome definitions, any time an
inductive definition on elements of SB is provided, it will be tacitely assumend
to be actually the restriction to SB of the corresponding inductive definition on
BE.

Definition 2.3 The syntactic dual σ of σ ∈ SB is defined by the following
clauses:

1 = 1 x = x recx.σ = recx.σ
∑

i∈I ai.σi =
⊕

i∈I ai.σi

⊕

i∈I ai.σi =
∑

i∈I ai.σi

?(σp)τ =![σp]τ ![σp]τ =?(σp)τ

The definition closely mimics the duality operator on session types, e.g. in [16].
As expected, σ = σ for all σ. Note that the behaviour σ in ?(σp)τ , as well as
its polarity p remains unaffected by the · operation, and similarly for ![σp]τ .

Remark 2.4 By the fact that rec is not observable and that recx.σ
rec

−→ σ{recx.σ/x}
is the unique possible reduction out of recx.σ, the behaviours recx.σ and σ{recx.σ/x}
are observationally indistiguischable. So we expect that both recx.σ and σ{recx.σ/x}
are such. But this is false without the restriction that fv(σ) = ∅ in ?(σp)τ and
![σp]τ . Consider for example (with any p):

recx.?(xp)
rec

−→?(rec x.?(xp)p)

12

where recx.?(xp) violates the constraint on input/output behaviors because, even
if it is closed, the x is free in the subexpression ?(xp). Then we have:

recx.?(xp) = recx.![xp]
rec

−→![recx.![xp]p].

But ?(rec x.?(xp)p) = ![recx.?(xp)p] 6= ![recx.![xp]p].

2.1 Defining Compliance and sub-Behaviours Relations
by Stratification

As discussed in the Introduction, we intend to formalize three binary sub-
behaviour relations on SB that represent the notion of substitutability in client/
server or peer systems and that take into account the different roles of the in-
teracting components in such systems. The relation of client sub-behaviour,
ρ1 �c ρ2, is defined as to the the subset relation among the possible servers of
ρ1 and ρ2; the relation of server sub-behaviour, σ1 �s σ2, instead, is the subset
relation among the possible clients of σ1 and σ2; finally, the relation of peer
sub-behaviour, σ1 �∗ σ2 is the subset relation among the possible peers of σ1

and σ2.
All the notions of client, server and peer are intended to be formalized by

introducing a relation of compliance holding between two elements of SB, ρ ⊣ σ,
whenever any action α on ρ’s side (α can be looked at as a client request) is
eventually matched by a correspondent synchronizing co-action α̃ on σ’s side
(then α̃ is a server response). We shall see that, as exemplified in the examples
of the Introduction, α̃ does not need to be the syntactic dual of α in case of
higher-order actions.

As previously mentioned, and further discussed later on, the presence of
higher-order actions makes the definition of action synchronization, and hence
that of the relation ⊣ , depend on all �c, �s, and �∗, so revealing a circularity.

However, thanks to the restriction that input/output behaviors cannot in-
clude any free occurrence of variables, we can argue that the σ in ?(σp).τ and
![σp].τ is always of lower complexity than the whole behavior expression, so that
we can stratify the definition of SB w.r.t. the following notion of rank.

Definition 2.5 (Stratified session behaviours) Let us define a rank map-
ping rank : SB → N inductively as follows:

rank(1) = rank(x) = 0

rank(rec x.σ) = rank(σ)

rank(
∑n

i=1 ai.σi) = rank(
⊕n

i=1 ai.σi) = max(rank(σ1), . . . , rank(σn))

rank(?(σp)τ) = rank(![σp]τ) = max(rank(σ) + 1, rank(τ))

Then we set SBi = {σ ∈ SB | rank(σ) ≤ i}.

The number rank(σ) measures the maximal nesting of input/output actions
in σ. Since we forbid the input/output of open behaviours, we have that
rank(recx.σ) = rank(σ{recx.σ/x}) for all raw behavioural expressions σ. This is
the consequence of the following lemma and justifies the definition rank(x) = 0.

13

Lemma 2.6 For all σ, τ ∈ SB and variable x we have:

rank(σ{τ/x}) =

{

max(rank(σ), rank(τ)) if x ∈ fv(σ)

rank(σ) otherwise.

It follows that rank(recx.σ) = rank(σ{recx.σ/x}) for any σ.

Proof. If x 6∈ fv(σ) then obviously σ{τ/x} = σ and the thesis is trivial.
Otherwise we reason by induction over the structure of σ. If x ∈ fv(σ) then
σ cannot be 1 nor any variable different from x; if σ = x then σ{τ/x} = τ
and rank(τ) ≥ rank(x) = 0. If σ is either an internal or an external choice
the thesis follows by the induction hypothesis. The relevant cases are when
σ =?(σp

0)σ1 or σ =![σp
0]σ1. Then e.g. (?(σp

0)σ1){τ/x} =?(σp
0)(σ1{τ/x}) because

x 6∈ fv(σ0), being σ0 closed by Definition 2.1. So the thesis follows by the
induction hypothesis.

Now rank(recx.σ) = rank(σ), so that rank(rec x.σ) = rank(σ{rec x.σ/x}) no
matter whether x ∈ fv(σ) or not. �

If α ∈ Act, by abuse of notation we write rank(α) = 0 if α ∈ N ∪ N and
rank(?(σp)) = rank(![σp]) = rank(σ) + 1.

We now formally introduce the relation of compliance for session behaviours
of rank 0, written ρ ⊣0 σ. Then, by means of the compliance relation, we define
the sets of clients, servers and peers of level 0, and finally the sub-behaviour
relations of level 0.

We recall that behaviours in SB0 do not contain ?(σp)τ nor ![σp]τ .

Definition 2.7 (Compliance and Sub-behaviours for SB0) i) Let ρ‖σ de-
note a pair of session behaviors in SB0, then define:

ρ
α

−→ ρ′

ρ
α

−→0 ρ′

ρ −→ ρ′

ρ −→0 ρ′

ρ
α

−→0 ρ′ σ
α

−→0 σ′

ρ‖σ −→0 ρ′‖σ′

ρ −→0 ρ′

ρ‖σ −→0 ρ′‖σ

σ −→0 σ′

ρ‖σ −→0 ρ‖σ′

where α ∈ N ∪N and α is the usual involution: α = α.

ii) We say that the client ρ is compliant with the server σ, written ρ ⊣0 σ, if

∀ρ′, σ′. ρ‖σ −→∗

0 ρ′‖σ′ 6−→0 ⇒ ρ′ = 1

The session behaviour ρ is said to be a peer of the behaviour σ, written
ρ ⊥0σ, if both ρ ⊣0 σ and σ ⊣0 ρ hold.

iii) We define:

Client0(σ) = {ρ ∈ SB0 | ρ ⊣0 σ} Server0(ρ) = {σ ∈ SB0 | ρ ⊣0 σ}

Peer0(σ) = {ρ ∈ SB0 | ρ ⊥0σ}.

14

iv) We define the following sub-behaviour relations over SB0:

σ �0
s σ

′ ⇔ ∅ 6= Client0(σ) ⊆ Client0(σ
′),

ρ �0
c ρ′ ⇔ ∅ 6= Server0(ρ) ⊆ Server0(ρ

′),

σ �0
∗ σ′ ⇔ ∅ 6= Peer0(σ) ⊆ Peer0(σ

′).

Notice that by restricting the attention to behaviours in SB0, the compli-
ance relation is defined as in [18, 20].

Simple examples of compliance are: a⊕b ⊣0 a.d+b and also a⊕b ⊣0 a.d+b+e,
whereas a⊕ b ⊥0a+ b; on the other hand a+ b 6⊣0 a⊕ d because the behaviour
a⊕ d could reduce to d. This would prevent a possible request of a+ b, the one
modeled by the action

a
−→, from being matched by a corresponding action on

d’s side.
The ⊣0 relation is not symmetric: indeed 1 ⊣0 σ for any σ, but e.g. a 6⊣0 1.

Observe that in [18, 20] a⊕ b 6⊣0 a⊕ b while a+ b ⊣0 a+ b. On the other hand,
by our syntactical restrictions neither a ⊕ b nor a + b are well formed session
behaviours.

We stress that in our formalism two behaviours can be compliant, or peers,
without necessarily exhibiting a finite sequence of syncronising actions: the
simplest example is recx.a.x ⊣0 recx.a.x.

As recalled at the beginning of this subsection, if we wish to have a flexible
and expressive formalism, the extension of the definition of compliance to the
whole SB is not straightforward. In fact to cope with higher-order input/output
behaviours, the following rule would be sound but unnecessarily restrictive:

σ
![ρp]
−→ σ′ τ

?(ρp)
−→ τ ′

σ‖τ −→ σ′‖τ ′
(3)

For istance, it would prevent, in the example of the Introduction, the be-
haviour Voter3Beh to comply with AuthServiceBeh. It would not guarantee as
well the possibility of safely substitute AuthService2Beh by AuthService3Beh.

As a matter of fact, given that one is able to extend the sub-behaviour
relations �0

s, �
0
c and �0

∗ to SB, it would be reasonable to relax the above rule
(3) as follows:

σ
![ρp

1
]

−→ σ′ τ
?(ρp

2
)

−→ τ ′ ρ1 �p ρ2

σ‖τ −→ σ′‖τ ′
(4)

where p = s, c, ∗.
The intuitive justification of rule (4) above is as follows: let us look at a

received behaviour as a protocol that the receiving agents is expected to conform
to. The superscript polarity specifies the role to play among client, server or
peer when the protocol is used. Without specifying the polarity, rule (4) either
reduces to rule (3) or to a version of (4) where only �∗ can be considered.
But this would be a remarkable loss of flexibility. Indeed an agent could keep
on safely interacting with the environment even in case of waiting for a client
protocol ρ2 and receiving a less demanding client protocol ρ1 (that is ρ1 �c ρ2).

15

Dually, the interaction with the environment cannot produce undesired effects
if a richer server protocol ρ1 is received instead of the expected and poorer ρ2
(that is ρ1 �s ρ2). A similar explanation can be given for the �∗ relation.

Rule (4) above, however, cannot be used to define the relation −→, since
it would make the definition circular: in fact by using such a rule the relation
−→ relies on the definition of �p, that is defined in terms of ⊣, which in turn is
defined in terms of −→ itself.

Fortunately, as it is suggested in [10, 21], if σ
?(ρp)
−→ σ′ or σ

![ρp]
−→ σ′ then

rank(ρ) < rank(?(ρp)) = rank(![ρp]) ≤ rank(σ), so that the circularity can be
avoided by stratifying the definitions.

Below we consider stratified notions of client/server/peer sub-behaviour.

Definition 2.8 (Compliance and stratified Sub-behaviours)
For each i ∈ N we define inductively the binary relations �i

c, �
i
s and �i

∗. The
cases of �0

c, �
0
s and �0

∗ have been treated in Definition 2.7. When i > 0 let us
add to the rules in the definition of −→0 the following one:

τ
![ρp

1
]

−→ τ ′ σ
?(ρp

2
)

−→ σ′ ρ1 �k
p ρ2 k = max(rank(ρ1), rank(ρ2))

σ‖τ −→ σ′‖τ ′
(5)

and its symmetric, where:

i) ρ ⊣ σ ⇔ ∀ρ′, σ′ ∈ SB. ρ‖σ −→∗ ρ′‖σ′ 6−→ ⇒ ρ′ = 1;

ii) ρ ⊥ σ ⇔ ρ ⊣ σ & σ ⊣ ρ ;

iii) Clienti(σ) =

{

{ρ ∈ SBi | ρ ⊣ σ} if rank(σ) ≤ i

∅ otherwise

iv) Serveri(ρ) =

{

{σ ∈ SBi | ρ ⊣ σ} if rank(ρ) ≤ i

∅ otherwise

v) Peeri(σ) =

{

{ρ ∈ SBi | ρ ⊥ σ} if rank(σ) ≤ i

∅ otherwise

vi) σ �i
s σ

′ ⇔ ∅ 6= Clienti(σ) ⊆ Clienti(σ
′);

vii) ρ �i
c ρ

′ ⇔ ∅ 6= Serveri(ρ) ⊆ Serveri(ρ
′);

viii) ρ �i
∗ ρ′ ⇔ ∅ 6= Peeri(ρ) ⊆ Peeri(ρ

′).

Also for −→ we use the standard denotation =⇒ = −→∗.

The following lemma easily descends from the definitions.

16

Lemma 2.9

i) −→ preserves duality; that is σ‖σ −→ σ1‖σ2 ⇒ σ2 ≡ σ1.

ii) ρ ⊥ σ ⇔ ∀ρ′, σ′ ∈ SB. ρ‖σ −→∗ ρ′‖σ′ 6−→ ⇒ ρ′ = 1 & σ′ = 1;

iii) For all i ∈ N, Peeri(σ) = Serveri(σ) ∩ Clienti(σ).

Notice that we immediately have �i
∗ ⊇ �i

c ∩ �i
s. More work is needed to

establish the desired �i
∗ = �i

c ∩ �i
s.

Lemma 2.10

i) σ
α

−→ σ′ ∨ σ −→ σ′ ⇒ rank(σ) ≥ rank(σ′);

ii) σ
?(ρp)
−→ σ′ ∨ σ

![ρp]
−→ σ′ ⇒ rank(σ) > rank(ρ);

iii) ρ‖σ −→ ρ′‖σ′ ⇒ rank(ρ) ≥ rank(ρ′) & rank(σ) ≥ rank(σ′).

Proof. All the three points are quite immediate. In particular point (iii)
follows by points (i) and (ii) and does not depend on the premise �k

p in Def.
2.8. �

Proposition 2.11 For all i ∈ N the relations �i
s, �i

c and �i
∗, as well as the

sets Clienti(σ), Serveri(ρ) and Peeri(ρ), are well defined.

Proof. By simultaneous induction on i. The base case being obvious, we treat
the induction case for �i

s only, since the other ones are either implied or similar.
For σ �i

s σ′ to be well defined, this has to be the case for both Clienti(σ) and
Clienti(σ

′), that is for any ρ ∈ SBi the statements ρ ⊣ σ and ρ ⊣ σ′ must be
defined. This requires that also σ, σ′ ∈ SBi, so that by (iii) of Lemma 2.10, if
ρ‖σ =⇒ ρ′‖σ′′ or ρ‖σ′ =⇒ ρ′‖σ′′ we have that rank(ρ′), rank(σ′′) ≤ i . It follows
that, if anywhere in these reductions an instance of rule (5) in Def. 2.8 ever
occurs, the rank k in the premise is strictly lower than i by part (ii) of Lemma
2.10, so that the relation �k

p in the premise is well defined by the inductive
hypothesis. �

We can now define the client/server/peer sub-behaviour relations.

Definition 2.12 (Server/Client/Peer Sub-behavior Relations)
Over SB we define the binary relations:

�s =
⋃

i∈N

�i
s �c =

⋃

i∈N

�i
c �∗ =

⋃

i∈N

�i
∗ .

From the above definition it is not immediate to get a clear a picture of
what are the properties of the sub-behaviour relations. In particular of what is
the relationship among �∗, �c and �s, for which a thoroughly analysis of the
stratified definitions will be necessary.

We start by showing that the sub-behaviour relations are indeed reflexive.

17

Lemma 2.13 Let σ ∈ SB with k = rank(σ), and p = s, c, ∗.

i) σ ∈ Clientk(σ) ∩ Serverk(σ);

ii) σ �k
p σ.

Proof. We prove (i) and (ii) by simultaneous induction over k. For (i) we need
to consider just σ ∈ Clientk(σ)∩Serverk(σ), since σ ∈ Peerk(σ) will immediately
descends from Lemma 2.9(iii).
Case k = 0. The theses descend immediately from Definition 2.7.
Case k > 0. We consider (i) first. We show only that σ ∈ Clientk(σ), being the
proof for σ ∈ Serverk(σ) similar.
Then, by definition of Clientk(σ) we have to show, taking into account Lemma
2.9(i), that ∀σ′ ∈ SB. σ‖σ =⇒ σ′‖σ′ 6−→ ⇒ σ′ = 1. This can be shown by
using the definition of −→ and the definition of syntactic duality (Def. 2.3). In
case of higher-order actions we can apply the induction hypothesis for (ii). In
fact, whenever rule (5) has to be used in the derivation, we need to have ρ′ �h

p ρ′

for some ρ′, with h = rank(ρ′). This is exactly the induction hypothesis of (ii),
since, by Lemma 2.10(iii) and definition of rank, we get rank(ρ′) < rank(σ), that
is h < k.
We can now proceed with (ii). By point (i) we have that Clientk(σ) 6= ∅ and
Serverk(σ) 6= ∅. Then, by definition of �k

p, what we need to show is just the
trivial facts that Clientk(σ) ⊆ Clientk(σ) and Serverk(σ) ⊆ Serverk(σ). �

Observe that, by the last lemma, conditions ∅ 6= Clienti(σ), ∅ 6= Serveri(σ)
and ∅ 6= Peeri(σ) in Definition 2.8 are equivalent to max(rank(σ), rank(σ′)) ≤ i.

A relevant property of the sub-behaviour relations is illustrated by the fol-
lowing proposition which roughly says that �s has a bottom element and �c

a top one, both coinciding with 1. When we define client/server/peer sub-
typing relations for session types in Section 5 (Def. 4.2), these properties will
be explicitly represented by the axioms (T-Ax-C) and (T-Ax-S), so that the
client/server subtypings is sound and complete w.r.t. the corresponding sub-
behaviour relations.

Observe that Clienti(1) 6= {1} since e.g. recx.1 ∈ Clienti(1); on the other
hand to prove that Serveri(1) = SBi it doesn’t suffice that 1 is the top element
w.r.t. �c, since we have to prove that any behaviour possesses at least a server.

Proposition 2.14
∀σ ∈ SB. σ �c 1 & 1 �s σ.

Proof. The first part of the conjunction easily follows by the fact that, for
k = rank(σ) we have Serverk(σ) 6= ∅ by Lemma 2.13(i), and by the fact that it
straightforwardly holds Serverk(1) = SBk.

For the second part: we recall that ρ ∈ Clienti(1) if and only if ρ ∈ SBi,
i ≥ rank(1) = 0 and for all ρ′ if ρ‖1 =⇒ ρ′‖1 6−→ then ρ′ = 1. Therefore,
in such a case, we get ρ ∈ Clienti(1) if and only if for all ρ′ if ρ =⇒ ρ′ 6−→
then ρ′ = 1 (trivially 1 itself satisfies the condition). But any such ρ belongs
to Clientk(σ) as soon as k ≥ max(rank(ρ), rank(σ)); in particular this is the case
for ρ = σ: hence ∅ 6= Clientk(1) ⊆ Clientk(σ), i.e. 1 �k

s σ if k ≥ rank(σ), and
hence 1 �s σ by definition. �

18

2.2 A non-stratified characterization of the sub-behaviour
relations.

Even if the definition of the sub-behaviour relations relies on the stratification
of SB, they can be given a simple and natural characterization in terms of the
subset relation between sets of clients, servers and peers, defined as the unions
of the sets Clienti(σ), Serveri(ρ) and Peeri(σ) respectively.

Definition 2.15 (Client(σ), Server(ρ) and Peer(σ))
For σ, ρ ∈ SB, we define the sets:

Client(σ) =
⋃

i∈N
Clienti(σ) Server(ρ) =

⋃

i∈N
Serveri(ρ)

Peer(σ) =
⋃

i∈N
Peeri(σ)

From Lemma 2.13 we know that Client(σ), Server(σ) and Peer(σ) are non
trivial notions for arbitrary σ.

Corollary 2.16 ∀σ ∈ SB. Client(σ) 6= ∅ & Server(σ) 6= ∅ & Peer(σ) 6= ∅.

The characterizations we aim at are then as follows:

σ �s σ
′ ⇔ Client(σ) ⊆ Client(σ′) ρ �c ρ

′ ⇔ Server(ρ) ⊆ Server(ρ′)

σ �∗ σ′ ⇔ Peer(σ) ⊆ Peer(σ′)
(6)

Moreover, we expect that for Peer(σ) and �∗ the following hold:

Peer(σ) = Client(σ) ∩ Server(σ) (7)

and
�∗ = �c ∩ �s (8)

If (6) is the case then �s, �c and �∗ are all preorders. However, there are some
difficulties in proving this. Suppose in fact that σ �s σ′. Then we know that
the set of clients of σ is non empty and included into that of σ′, but this is the
case only below a certain rank. As a matter of fact, if we know that Clienti(σ) ⊆
Clienti(σ

′), it is not obvious that a client ρ of σ, possibly of higher rank than
i, will be a client of σ′ as well. Similar remarks concerning stratification levels
can be made about the other relations and about the claim (7). For what
concerns Claim (8), and in particular the ⊆ direction, the problem depends on
the two separate quantifications over clients and servers of a behaviour that are
not equivalent to a singular quantification over their peers. Claim (8) will be
proved in Section 3 by means of the coinductive characterisation of our sub-
behaviour relations. We devote instead the remaining part of this section to the
proofs of claims (6) and (7).

We begin the study by stating the following simple fact, easily descending
by the corresponing definitions.

Fact 2.17 For any i ≤ j:

Clienti(σ) ⊆ Clientj(σ) & Serveri(σ) ⊆ Serverj(σ) & Peeri(σ) ⊆ Peerj(σ).

19

From the above fact, the following Lemma easily descends.

Lemma 2.18

i) ρ ∈ Client(σ) & k = max(rank(ρ), rank(σ)) ⇒ ρ ∈ Clientk(σ);

ii) σ ∈ Server(ρ) & k = max(rank(ρ), rank(σ)) ⇒ σ ∈ Serverk(ρ);

iii) σ ∈ Peer(ρ) & k = max(rank(ρ), rank(σ)) ⇒ σ ∈ Peerk(ρ).

Now we are able to prove Claim (7).

Proposition 2.19

Peer(σ) = Client(σ) ∩ Server(σ)

Proof. (⊆) Immedate, by definition of Peer(σ), Client(σ) and Server(σ).
(⊇) Let ρ ∈ Client(σ)∩Server(σ) and let k = max(rank(ρ), rank(σ)). By Lemma
2.18 we have that ρ ∈ Clientk(σ) ∩ Serverk(ρ), and hence ρ ∈ Peer(σ) by defini-
tion.

We now move towards the proof of the right-to-left implications of claims
(6).

Lemma 2.20

i) Client(σ) ⊆ Client(σ′) ⇒ ∃i ∈ N. σ �i
s σ

′;

ii) Server(ρ) ⊆ Server(ρ′) ⇒ ∃i ∈ N. ρ �i
c ρ

′;

iii) Peer(σ) ⊆ Peer(σ′) ⇒ ∃i ∈ N. σ �i
∗ σ′.

Proof. (i) Let k = max(rank(σ), rank(σ′)). Then σ ∈ Clientk(σ) 6= ∅
by Lemma 2.13 (i) and Fact 2.17. On the other hand, if ρ ∈ Clientk(σ) ⊆
Client(σ) ⊆ Client(σ′) we have that rank(ρ) ≤ k and, by Lemma 2.18, that
ρ ∈ Clienth(σ

′) where h = max(rank(ρ), rank(σ′)). It follows that h ≤ k and
hence ρ ∈ Clientk(σ

′) by Fact 2.17.
(ii), (iii). Similar to (i). �

The above lemma implies that:

Client(σ) ⊆ Client(σ′) ⇒ σ �s σ
′ Server(ρ) ⊆ Server(ρ′) ⇒ ρ �c ρ

′

Client(σ) ⊆ Client(σ′) ⇒ σ �s σ
′

Establishing the left-to-right implications of (6) is more involved, and a precise
definition of the concept of synchronisation is in order.

Definition 2.21 Given α, β ∈ Act and k ∈ N we say that α and β synchronise
below k and write α synch β below k, if one of the following cases occur:

i) α, β ∈ Act0 and α = β and k is arbitrary (even 0);

ii) α =![σp] and β =?(τp) or α =?(τp) and β =![σp] and σ �h
p τ for some

h < k.

20

We then say that α and β synchronise, written α synch β, if α synch β below k
for some k.

Observe that if α synch β and k bounds above both rank(α) and rank(β)
then α synch β below k.

Let s = α1 · · ·αm and t = β1 · · ·βn be sequences in Act∗: then we say that s
and t synchronise pointwise (or just synchronise), and write s synch t, if m = n
and αi synch βi for all i = 1, . . . ,m. We also write |s| for the length of s ∈ Act∗.

Lemma 2.22 Let ρ, σ ∈ SB:

i) ρ‖σ =⇒ ρ′‖σ′ for some ρ′, σ′ ∈ SB if and only if there exist s, t ∈ Act∗

such that s synch t and ρ
s

=⇒ ρ′ and σ
t

=⇒ σ′;

ii) ρ‖σ 6−→ if and only if either ρ = 1 or σ = 1 or

ρ 6−→ & σ 6−→ & ¬∃α, β ∈ Act. [α synch β & ρ
α

−→ & σ
β

−→] ;

iii) if ρ ⊣ σ and ρ‖σ =⇒ ρ′‖σ′ then ρ′ ⊣ σ′;

iv) if ρ ⊥ σ and ρ‖σ =⇒ ρ′‖σ′ then ρ′ ⊥ σ′

Proof. Easy consequences of Def. 2.8. �

Lemma 2.23 Let σ, σ′, ρ, ρ′ ∈ SB. For all k ∈ N:

i) if i ≤ k then σ �i
s σ

′ ⇒ σ �k
s σ′;

ii) if i ≤ k then ρ �i
c ρ

′ ⇒ ρ �k
c ρ′;

iii) if i ≤ k then ρ �i
∗ ρ′ ⇒ ρ �k

∗ ρ′.

Proof. We prove (i), (ii) and (iii) by simultaneous induction over k. The
case k = 0 is trivial since then i = k. Let k > 0; from σ �i

s σ′ and i ≤ k
it follows that ∅ 6= Clienti(σ) ⊆ Clientk(σ), i.e. Clientk(σ) 6= ∅. To prove that
Clientk(σ) ⊆ Clientk(σ

′) we reason by contradiction: suppose that there exists
some ρ ∈ Clientk(σ) \ Clientk(σ

′). By Lemma 2.22 there exist s ∈ Act∗ of

minimal length, ρ0 ∈ SB and α ∈ Act such that ρ
s

=⇒ ρ0
α

=⇒ and σ′ s̃
=⇒ σ′

0

with s̃ pointwise synchronising with s, but for any β synchronising with α,

σ′
0 6

β
=⇒. For simplicity, let us assume that |s| = |s̃| = 0, that is ρ0 = ρ and σ′

0 =
σ′: indeed the general case can be treated by iterating the following argument.

By assumption ρ ⊣ σ, hence also α.1 ⊣ σ, which implies that σ
γ

=⇒ for some
γ s.t. α synch γ. Since rank(α) ≤ rank(ρ) ≤ k and rank(γ) ≤ rank(σ) ≤ k we
know that α synch γ below k.

On the other hand, since by definition γ.1
γ

−→ 1 and since we showed

that σ
γ

=⇒, we have that, by definition of ⊣, that γ.1 ⊣ σ. Then, since h =
rank(γ.1) = rank(γ) ≤ rank(σ) ≤ i, we know that γ.1 ∈ Clienti(σ) ⊆ Clienti(σ

′)

by the hypothesis that σ �i
s σ

′. It follows that σ′ δ
=⇒ for some δ s.t. γ synch δ,

and again this is the case below k.
Now let us consider the possible cases according to the shape of α, and

consequently of γ and δ:

21

α ∈ Act0: then rank(α) = rank(γ) = rank(δ) = 0, hence α, γ, δ ∈ Act0 so that
there exists a ∈ N s.t. either α = γ = a and γ = δ = a or α = γ = a and
γ = δ = a: in both cases α synch δ.

α =![τp0]: then by the fact that α synch γ below k we have γ =?(τp1) for
some τ1 s.t. τ0 �k0

p τ1 where k0 < k. It follows that γ =![τp1], and by

γ synch δ we deduce that δ =?(τp2) for some τ2 s.t. τ1 �k1

p τ2 where also
k1 < k. By induction hypothesis (i),(ii) or (iii)according to p, we have
that τ0 �h

p τ1 �h
p τ2 where h = max(k0, k1) < k i.e. τ0 �h

p τ2 and we
conclude that α synch δ.

α =?(τp0): in this case we have α =?(τp0), γ =![τp1] and δ =![τp2] where τ1 �k0

p τ0
and τ2 �k1

p τ1, where k0, k1 < k; then we argue as in the previous case
concluding that α synch δ.

In all possible cases we get a contradiction w.r.t. the assertion that σ′ 6
β

=⇒ for
any β synchronising with α. The proofs of (ii) and (iii) are similar and we are
done. �

Theorem 2.24 For all σ, σ′, ρ, ρ′ ∈ SB:

σ �s σ
′ ⇔ Client(σ) ⊆ Client(σ′) ρ �c ρ

′ ⇔ Server(ρ) ⊆ Server(ρ′)

σ �∗ σ′ ⇔ Peer(σ) ⊆ Peer(σ′)

Proof. The ⇐ implications follow by Lemma 2.20. To show ⇒ suppose that
σ �s σ

′, namely σ �i
s σ

′ for some i; if ρ ∈ Client(σ) then ρ ∈ Clientj(σ) for some
j; then for k = max(i, j) we have:

ρ ∈ Clientj(σ) ⊆ Clientk(σ) ⊆ Clientk(σ
′) ⊆ Client(σ′),

by Fact 2.17 and (i) of Lemma 2.23. This proves σ �s σ′ ⇒ Client(σ) ⊆
Client(σ′); the other implications follow in a similar way using Fact 2.17 and
(ii),(iii) of Lemma 2.23.

Corollary 2.25 �s, �c and �∗ are preorders, that is reflexive and transitive
relations.

Proof. Immediate by Theorem 2.24. �

We end up with a nice property of syntactical duality w.r.t. the preorders
�c, �s and�∗. Let us first establish a lemma.

Lemma 2.26 For all ρ, σ, τ ∈ SB,

i) If ρ ⊣ τ and τ ⊣ σ then ρ ⊣ σ;

ii) If ρ ⊥ τ and τ ⊥ σ then ρ ⊥ σ.

Proof. (i) It suffices to prove that if ρ
α

=⇒ then there exists γ s.t. σ
γ

=⇒ and

α synch γ. If ρ
α

=⇒ then, by the hypothesis ρ ⊣ τ , there exists β s.t. τ
β

=⇒ and

22

α synch β. On the other hand if τ
β

=⇒ then τ
β

=⇒, so that, by the assumption

τ ⊣ σ, we have that σ
γ

=⇒ for some γ s.t. β synch γ. We now check that
α synch γ by cases of α.

Let α ∈ Act0: then either α = a or α = a for some a ∈ N . In the first case
we have that β = a so that β = a = a and we obtain that γ = a. If instead
α = a, we obtain by the same reasoning that γ = a, and in both cases α synch γ.

If α =![ρp0] then β =?(τp0) for some τ0 s.t. ρ0 �p τ0. It follows that β =![τp0];
therefore γ =?(σp

0) for some σ0 s.t. τ0 �p σ0. By Corollary 2.25 we know
that �p is transitive for both p = c, s, hence we deduce that ρ0 �p σ0 and we
conclude that α synch γ.

The case α =?(ρp0) is treated similarly, by deducing that γ =![σp
0], this time

with σ0 �p τ0 �p ρ0 for some τ0 s.t. β =![τp0].
(ii) Easy by definition fo ⊥ and point (i), observing that the · operation is
involutive. �

Proposition 2.27 Let τ ∈ SB. Then

i) τ is the minimum client of τ , i.e. ∀ρ ∈ Client(τ). τ �c ρ;

ii) τ is the minimum server of τ , i.e. ∀σ ∈ Server(τ). τ �s σ;

iii) τ is the minimum peer of τ , i.e. ∀ρ ∈ Peer(τ). τ �∗ ρ.

Proof. We observe that, by Lemma 2.13 and Definition 2.15, τ ∈ Client(τ) ∩
Server(τ). Hence it remains to show the minimality property w.r.t. �c and �s,
respectively.
(i) Let ρ ∈ Client(τ). In order to establish τ �c ρ, let σ ∈ Server(τ). Then we
have ρ ⊣ τ and τ ⊣ σ. By Lemma 2.26 we know that ρ ⊣ σ, i.e. σ ∈ Server(ρ).
Hence τ �c ρ. The proofs of (ii) and (iii) are similar, using Lemma 2.26 and
observing that the · operation is involutive. �

Remark 2.28 The properties in Proposition 2.27 depend on the lack of im-
plicit nondeterminism in session behaviours (reflecting the same characteristic
of session types). The nondeterminism in our system is in fact only explicit,
since it is due exclusively to the ⊕ operator.

A light form of implicit nondeterminism could be introduced by relaxing the
constraint imposing prefixes in a sum + or ⊕ to be pairwise distinct: in fact,
if we let a + a.b to be a session behaviour, (a + a.b)‖a reduces both to 1 and
to b. Then a ⊕ a.b 6⊣ a + a.b and the minimum of Client(a + a.b) is actually
a. On the other hand, a + a.b 6⊣ a ⊕ a.b and the minimum of Server(a + a.b) is
a.b. But some behaviours could have no minimum client or server at all, e.g.
Server(a.b+ a.c) = ∅.

Relaxing the constraint that a1, . . . , an ∈ N in a1.σ1+· · ·+an and a1, . . . , an ∈
N in a1.σ1⊕· · ·⊕an.σn, would, instead, introduce even more nondeterminisms,
taking us completely outside of the “session” context.

3 Coinductive characterizations

The definitions of compliance and sub-behaviour relations in the previous sec-
tion remain unmanageable because of their loose connection with the algebraic

23

structure of behaviours. To remedy the deficiency, this session is devoted to the
coinductive characterisation of these concepts.

We start from some remarks. The syntax of session behaviours prevents
infinite −→ reductions. A raw behavioural expression like recx.x is not, in fact,
a session behaviour. Also an expression like recx.(y⊕ z) is not a proper session
behaviour (not even a raw expression), since we allow the + and ⊕ operators
only with prefixed expressions. Such syntactical restrictions, however, do not
prevent an abstract representation of branching and selection types. At the
same time they rule out diverging expressions like recx.x and recx.rec y.(x⊕ x)
which would be meaningless in the present setting. This is made precise by the
following lemma.

Lemma 3.1 For any σ ∈ SB, there exists no infinite −→ reduction out of it.
Moreover, given σ ∈ SB, there exists a unique finite and non empty R ⊆ SB
such that R = {σ′ ∈ SB | σ =⇒ σ′ 6−→}, which takes one of the following forms:

{1}, {
n
∑

i=1

ai.σi}, {a1.σ1, . . . , an.σn}, {?(σp
1)σ2}, {![σp

1]σ2} (n > 0).

Proof. By cases of σ ∈ SB: in particular, if σ = recx.σ′ we know that σ′ 6= x
and that, in case σ′ be a ⊕-term, its components are prefixed. So the longest
−→ reduction sequence out of σ necessarily consists in a number of

rec

−→ steps
(which is equal to the number of occurrences of rec prefixing σ, since σ can

actually be of the form recx.rec x2. . . . recxn.σ
′′), followed by at most one

⊕
−→

step. From the above reasoning it easily follows also the second part of the
statement. �

Definition 3.2 For any σ ∈ SB and R ⊆ SB, we define

σ⇓ R if and only if R = {σ′ ∈ SB | σ =⇒ σ′ 6−→}

As a shorthand, we shall write σ ⇓ 1, σ ⇓
∑n

i=1 ai.σi, σ⇓
⊕n

i=1 ai.σi,
σ⇓?(σp

1)σ2 and σ ⇓![σp
1]σ2 whenever σ ⇓ R and R has one of the four forms

in Lemma 3.1, respectively. Equivalently σ ⇓ τ if and only if τ is the unique

session behaviour such that σ
rec

−→
∗

τ . By this we have:

Corollary 3.3 For any σ, τ ∈ SB, if σ⇓ τ then rank(σ) = rank(τ).

Proof. By the above remark and Lemma 2.6. �

Definition 3.4 (Coinductive Client/Server/Peer Relation Triple) i)
The operator H : (P(SB × SB × SB))2 → (P(SB × SB × SB))2 is defined
as follows: for any triple of relations (Rc,Rs,R∗) ⊆ SB2 × SB2 × SB2,
((σc, τc), (σs, τs), (σ∗, τ∗)) ∈ H(Rc,Rs,R∗) if and only if:
either τc⇓ 1 & σs⇓ 1 & τ∗⇓ 1 & σ∗⇓ 1,
or the following conditions hold, where p, q ∈ {s, c, ∗}:

a) σp⇓
∑

i∈I ai.σpi
⇒ ∃J ⊇ I. τp⇓

∑

j∈J aj.τpj & ∀i ∈ I. σpi
Rpτpi

24

b) σp⇓
⊕

i∈I ai.σpi
⇒ ∃J ⊆ I. τp⇓

⊕

j∈J aj .τpj & ∀j ∈ J. σpj
Rpτpj

c) σp⇓?(σ
q
1)σ2 ⇒ τp⇓?(τ

q
1)τ2 & σ1Rqτ1 & σ2Rpτ2

d) σp⇓![σ
q
1]σ2 ⇒ τ ⇓![τq1]τ2 & τ1Rqσ1 & σ2Rpτ2

ii) A triple of relations (Rc,Rs,R∗) ⊆ SB2 × SB2 × SB2 is a coinductive
client/server/peer relation triple if and only if (Rc,Rs,R∗) ⊆ H(Rc,Rs,R∗).

SinceRc, Rs andR∗ occur covariantly in the clauses definingH(Rc,Rs,R∗),
the operator H is monotonic. Then the following fact immediately follows by
Tarsky theorem:

Fact 3.5 Let H0 = SB2 × SB2 × SB2 and Hk+1 = H(Hk); then

ν(H) =

=
⋃

{(Rc,Rs,R∗) ⊆ SB2 × SB2 × SB2 | (Rc,Rs,R∗) ⊆ H(Rc,Rs,R∗)} =

=
⋂

k∈N
Hk

is the greatest fixed point of H.

Then we define coinductively the following relations:

Definition 3.6

(�co.k
c ,�co.k

s ,�co.k
∗) =def H

k and (�co
c ,�co

s ,�co
∗) =def ν(H),

where Hk is defined as in Fact 3.5.

Lemma 3.7 (�c,�s,�∗) is a client/server/peer relation triple.

Proof. It suffices to check the clauses of Definition 3.4 with �c, �s and �∗

in place of Rc, Rs and R∗ respectively. In case σ �c τ , σ
′ �s τ ′ and σ′′ �∗ τ ′′

with τ ⇓ 1, σ′⇓ 1, τ ′′⇓ 1, and σ⇓ 1 the first clause (before (a)) of the definition
is satisfied and we are done. We go on now treating the case of �s only, since
�c and �∗ can be treated in a similar way.

Suppose that σ ⇓
∑

i∈I ai.σi: then we observe that ρ ⊣ σ and ρ 6⇓ 1 if
and only if ρ =

⊕

h∈H ah.ρh for some H ⊆ I and ρh ⊣ σh for all h ∈ H .
Moreover, by assumption, ρ ∈ Client(τ) which implies that τ ⇓

∑

j∈J aj .τj for
some J ⊇ H such that ρh ⊣ τh for all h ∈ H . We can now show that for all i ∈ I
Client(σi) ⊆ Client(τi) and hence, by Theorem 2.24, σi �s τi. In fact, let {ρi}i∈I

be any set such that ρi ∈ Client(σi). We observe that, for ρ =
⊕

i∈I ai.ρi, ρ ⊣ σ
and hence ρi ∈ Client(τi) for all i ∈ I by the preceding observations.

If σ ⇓
⊕

i∈I ai.σi the proof is as before. Let us now consider the case
σ⇓?(σq

1)σ2. Then ρ ⊣ σ and ρ 6⇓ 1 if and only if ρ =![ρq1]ρ2 such that ρ1 �q σ1

and ρ2 ⊣ σ2. Now the hypothesis σ �s τ implies τ ⇓?(τq1)τ2 where it has to be
the case that ρ1 �q τ1 and ρ2 ⊣ τ2. By the arbitrary choice of ρ we can take
ρ1 = σ1, so that in particular we have σ1 �q τ1 and, by letting ρ2 vary over the
whole Client(σ2), we can conclude that Client(σ2) ⊆ Client(τ2), that is σ2 �s τ2
as desired.

The case σ⇓![σq
1]σ2 is similar to the last one, and we are done. �

25

Lemma 3.8 For any σ, τ ∈ SB and p = s, c, ∗:

σ �co
p τ ⇒ σ �p τ.

Proof. We shall prove that σ �co
p τ implies σ �k

p τ for k = max(rank(σ), rank(τ))

(which suffices since �p =
⋃

i �
i
p) by double induction: primary induction over

k and secondary induction over the length of certain reduction sequences. In
particular, when applying the secondary induction, we shall show, equivalently,
the contraposite implication. To this aim recall that σ 6�k

p τ if and only if
Clientk(σ) 6⊆ Clientk(τ) when p = s, Serverk(σ) 6⊆ Serverk(τ) when p = c and
Peerk(σ) 6⊆ Peerk(τ) when p = ∗ (in fact by the assumption that k ≥ rank(σ)
we know that σ ∈ Clientk(σ) ∩ Serverk(σ) ∩ Peerk(σ) and therefore Clientk(σ),
Serverk(τ) and Peerk(τ) are all nonempty). Pick some ρ ∈ Clientk(σ)\Clientk(τ)
(ρ ∈ Serverk(σ) \ Serverk(τ) and ρ ∈ Peerk(σ) \ Peerk(τ), respectively): then
there exist ρ1, . . . , ρn such that ρ0‖τ0 =⇒ ρ1‖τ1 =⇒ · · · =⇒ ρn‖τn with
ρn 6= 1 but ρn‖τn 6−→, where ρ0 = ρ and τ0 = τ . Since ρ ⊣ σ we have
that ρ0‖σ0 =⇒ ρ1‖σ1 =⇒ · · · =⇒ ρn‖σn where σ0 = σ. Then we argue by (sec-
ondary) induction over n that σ 6�co

s τ (the proofs that Serverk(σ) 6⊆ Serverk(τ)
implies σ 6�co

c τ and that Peerk(σ) 6⊆ Peerk(τ) implies σ 6�co
∗ τ can be carried on

by means of similar arguments and hence it will be omitted).
If n = 0 then ρ0‖τ0 6−→ (possibly disregarding a finite amount of internal

reductions of ρ0 and τ0), namely ρ‖τ 6−→. From ρ ⊣ σ it follows that no clause
in Definition 3.4 can be satisfied and we conclude that σ 6�co

c τ directly.
If n > 0 then suppose that σ ⇓ σ′ and consider the possible shapes of σ′

(which cannot be 1):

σ′ =
∑

i∈I ai.σi: since ρ = ρ0 ⊣ σ we deduce that ρ0 ⇓
⊕

h∈H ah.ρh and that
H ⊆ I and ρh ⊣ σh for all h ∈ H . In particular we have that ρ1 = ρi for
some i ∈ I such that σ1 = σi. If not τ ⇓

∑

j∈J aj .τj or J 6⊇ I then we

know that σ 6�co
c τ immediately; otherwise J ⊇ I, τ1 = τi and ρi = ρ1 6⊣

τ1 = τi, which is witnessed by the reduction ρ1‖τ1 =⇒ · · · =⇒ ρn‖τn of
length n− 1. Then by the secondary induction hypothesis we know that
σi = σ1 6�co

s τ1 = τi, and we conclude that σ 6�co
c τ .

σ′ =
⊕

i∈I ai.σi: symmetrically to the previous case we deduce that ρ0 ⇓
∑

h∈H ah.ρh, with H ⊇ I, and ρi ⊣ σi for all i ∈ I. If not τ ⇓
⊕

j∈J aj .τj
or J 6⊆ I then we are done; otherwise J ⊆ I, and since ρ‖τ =⇒ ρ1‖τ1 we
know that τ1 = τj and ρ1 = ρj for some j ∈ J ⊆ I ⊆ H , and we have
that ρj 6⊣ τj which is proved by the reduction ρ1‖τ1 =⇒ · · · =⇒ ρn‖τn of
length n−1: then the thesis follows by the secondary induction hypothesis,
namely σj = σ1 6�co

s τ1 = τj .

σ′ =?(σq
1)σ2: reasoning as before we have that ρ0 ⇓![ρq1]ρ2 with ρ1 �co

q σ1

and ρ2 ⊣ σ2. We observe that h = max(rank(ρ1), rank(σ1)) < k because
ρ0 = ρ ∈ Clientk(σ) so that rank(ρ1) < rank(![ρq1]ρ2) and rank(![ρq1]ρ2) =
rank(ρ) by Lemma 2.6; on the other hand rank(σ1) < rank(σ′) = rank(σ),
the last equation holding again by Lemma 2.6. By the primary induction
hypothesis we have ρ1 �h

q σ1 so that ρ1 = ρ2 and σ1 = σ2. If not
τ ⇓?(τq1)τ2 or σ1 6�co

q τ1 we are done; otherwise σ1 �co
q τ1 which by the

primary induction implies σ1 �l
q τ1 for l = max(rank(σ1), rank(τ1)) < k:

26

let m = max(h, l), then m < k and ρ1 �m
q σ1 �m

q τ1 by Lemma 2.23 that
is ρ1 �m

q τ1. We conclude that τ1 = τ2 and that ρ2 6⊣ τ2 is witnessed by a
reduction of length n− 1; therefore σ2 6�co

s τ2 by the secondary induction,
which implies σ 6�co

s τ .

σ′ =![σq
1]σ2: similar to the last case. �

Theorem 3.9 (�c,�s,�∗) is the largest client/server/peer relation triple w.r.t.
componentwise inclusion, namely

(�c,�s,�∗) = (�co
c ,�co

s ,�co
∗).

Proof. (�c,�s,�∗) ⊆ (�co
c ,�co

s ,�co
∗) = ν(H) follows by Lemma 3.7 and the

fact that ν(H) is the largest client/server relation pair. The opposite inclusion
is just Lemma 3.8. �

We can now show Claim (8). i.e. that the natural relationship among �∗,
�c and �s does hold.

Theorem 3.10
�∗ = �c ∩ �s

Proof. (⊇) Assume that σ �c τ and σ �s τ . If ρ ∈ Peer(σ) then ρ ∈ Client(σ)
and ρ ∈ Server(σ) by Lemma 2.19. Hence, by assumption, ρ ∈ Client(τ) ∩
Server(τ). Then, by Lemma 2.19 again, ρ ∈ Peer(τ), so establishing that σ �∗ τ .
(⊆) To prove the inclusion �∗ ⊆ �c ∩ �s, let us consider the triple (�∗,�∗

,�∗). It is not difficult to check, using Theorem 3.9, that it is a coinductive
client/server/peer triple, so that �∗ ⊆ �c and �∗ ⊆ �s by Theorem 3.9 again.

We end this section by defining a relation that is a model of the Gay-Hole
subtyping relation on session types, as we prove in the next section.

Definition 3.11 (Semantic Subtyping)

i) We define SB⇂∗ as the set SB restricted to session behaviours containing
only the polarity ’ ∗’;

ii) The semantic subtyping relation �: ⊆ SB⇂∗×SB⇂∗ is defined as the relation
�∗ restricted to pairs in SB⇂∗ × SB⇂∗.

Notice that �: is in turn the restriction to SB⇂∗ of the subsieve relation in [8].

4 CSP-Session Types and CSP-Subtyping.

In this section we extend the usual formalism of session types with delegation
and their corresponding subtyping relation [16] in order to take into account
the particular roles (client server or peer) played by a component during an
interaction along a channel. We define a set of session type expressions which we
call CSP-Session Types (Client/Server/Peer Session Types) and devise a formal
system for deriving three kinds of inequalities to be interpreted as particular
forms of subtyping that take in account the roles played by the users of channels.
More precisely, we consider inequalities of the shapes A ≤c B, A ≤s B and

27

A ≤∗ B for client, server and peer subtyping, respectively. In the next section
we shall then provide a semantics of session types by means of behaviours in
SB, and show that the system is sound and complete w.r.t. the sub-behaviour
relations �c, �s and �∗ respectively.

We shall consider session types only (live channel types), disregarding sorts
in the terminology of [17].

Definition 4.1 (CSP-Session Types) i) The set of raw client/server/peer
type expressions is defined according to the following grammar:

p, q ::= c | s | ∗ polarities

A,B session types

::= end terminated session

| &〈ℓi : Bi | i ∈ I〉 branching

| ⊕〈ℓi : Bi | i ∈ I〉 selection

| ?(Ap)B input

| ![Ap]B output

| X variable

| µX.A recursion

where

- I is a finite and non empty set of indexes;

- the ℓi’s belong to a denumerable set of labels;

- X is a session type variable out of a denumerable set, and it is bound
in µX.A, free otherwise: fv(A) is the set of free variables occurring
in A;

- p ∈ {c, s, ∗}.

ii) The set ST of Client/Server/Peer session types, CSP-types for short, is
defined as the set of of raw type expressions such that A is not a variable
in µX.A; further fv(A) = ∅ in both ?(Ap)B and ![Ap]B expressions.

iii) We define ST⇂∗ as the set of CSP-types containing only the polarity ‘ ∗’.

In definitions and in the technical treatment we consider only pure session types
without ground types G = Bool, Int, . . .; however ground types can be easily
added to the syntax of input/output types by admitting the types ?(Gp)B and
?(Gp)B.

In the following, &i∈I〈ℓi : Bi〉 and ⊕i∈I〈ℓi : Bi〉 will be sometimes used as
shorthand for, respectively, &〈ℓi : Bi | i ∈ I〉 and ⊕〈ℓi : Bi | i ∈ I〉.

The restriction that A is not a variable in µX.A is the usual one to make
recursive types contractive. Beside this, CSP-session types extend ordinary
session types syntax because of polarities in the type semantics, while they have
been used only for live variables in [16, 23] as well as in our [2].

28

On the other hand we are more restrictive w.r.t. input/output types. The
restriction that Amust be closed in the contexts ?(Ap)B and ![Ap]B is new, and
it is clearly connected with the behavioural semantics we are proposing in this
paper. It rules out types e.g. of the shape µX. ?(Xp)A and µX. ![Xp]A which
(by disregarding the polarity p) are legal session types in the literature. Since we
adopt the equi-recursive approach in the treatment of recursive types (see [15]),
if X 6∈ fv(A) then the input (output respectively) of the type itself is immaterial
for the continuation of type A, and we do not see any sensible use of such an
input (or output). If instead X ∈ fv(A) then setting B = µX. ?(Xp)A we have
that B is isomorphic to ?(Bp)A{B/X} which, in turn, should be isomorphic
to µX. ?(Bp)A, being the latter a legal type in our context but for the B sub-
expression. Of course this is not a definite argument to exclude any theoretical
loss because of the restriction we have adopted.

Definition 4.2 (CSP-Subtyping) The client subtyping, denoted by ≤c, the
server subtyping, denoted by ≤s, and the peer subtyping, denoted by ≤∗ are
the binary relations on closed CSP-session types defined by the following rules,
where p, q ∈ {c, s, ∗}.
The symbol Γ in a judgment Γ ⊢ A ≤p B denotes a finite set of type inequalities
of the form C ≤p D. As usual Γ, C ≤p D abbreviates Γ ∪ {C ≤p D}, assuming
that C ≤p D 6∈ Γ.

Γ ⊢ A ≤c end (T-Ax-C) Γ ⊢ end ≤s A (T-Ax-S)

Γ ⊢ end ≤∗ end (T-Ax-P)

Γ ⊢ A ≤p A (T-Sub-Id) Γ, A ≤p B ⊢ A ≤p B (T-Sub-Hyp)

Γ ⊢ A{µX.A/X} ≤p B
(T-Sub-Unf-L)

Γ ⊢ µX.A ≤p B

Γ ⊢ B ≤p A{µX.A/X}
(T-Sub-Unf-R)

Γ ⊢ B ≤p µX.A

Γ,&i∈I〈ℓi : Ai〉 ≤p &j∈J〈ℓj : Bj〉 ⊢ Ai ≤p Bi ∀i ∈ I I ⊆ J
(T-Sub-&)

Γ ⊢ &i∈I〈ℓi : Ai〉 ≤p &j∈J 〈ℓj : Bj〉

Γ,⊕i∈I〈ℓi : Ai〉 ≤p ⊕j∈J〈ℓj : Bj〉 ⊢ Aj ≤p Bj ∀j ∈ J I ⊇ J
(T-Sub-⊕)

Γ ⊢ ⊕i∈I〈ℓi : Ai〉 ≤p ⊕j∈J 〈ℓj : Bj〉

Γ, ?(Aq)B ≤p ?(C
q)D ⊢ A ≤q C,B ≤p D

(T-Sub-In)
Γ ⊢ ?(Aq)B ≤p ?(C

q)D

Γ, ![Aq]B ≤p ![C
q]D ⊢ C ≤q A,B ≤p D

(T-Sub-Out)
Γ ⊢ ![Aq]B ≤p ![C

q]D

We say that A is a client (server, peer) subtype of B, written A ≤c(s,∗) B when-
ever ∅ ⊢ A ≤c(s,∗) B is derivable.

29

We stress that the system above allows closed session types only. In partic-
ular we do not have to care about assumptions like X ≤p Y in the treatment
of recursion, which was the case e.g. in Abadi and Cardelli’s original subtyping
system in [1].

The rules of our system are inspired to the axiomatisation of recursive simple
types in [5], in that for each type constructor we have a rule that coinductively
defines its meaning, whereas the µ-types are simply unfolded on the right-hand-
side of the judgments. This has the technical advantage of being closer to the
coinductive characterisation of the sub-behaviour relations studied in this paper.

Remark 4.3 The system in Definition 4.2 is algorithmic because it satisfies a
kind of subformula property (see Lemma 5.14 below for a precise statement), so
that the upward reconstruction of the derivation can be syntax driven. It is also
deterministic, but possibly for the choice of the order in which (T-Sub-Unf-L)
and (T-Sub-Unf-R) are used as in the example 4.7, which is immaterial.

4.1 Relationship between CSP and Gay-Hole Subtyping.

In the present subsection we show the relationship between our system and the
Gay and Hole algorithmic subtyping system in [16], to which we refer for its
definition. By what we previously discussed, we consider closed session types
only also for the Gay-Hole system. We denote by GHT the usual set of session
types with delegation used in [16], and by ≤ the algorithmic subtyping relation
defined there. Then we claim that the sets ST⇂∗ and GHT are essentially the
same (see also below 5.3).

Definition 4.4 We define ≤: as the restriction of ≤∗ to ST⇂∗ × ST⇂∗

In order to avoid too cumbersome a notation, we shall identify elements of
ST⇂∗ with the corresponding ones in GHT .

Proposition 4.5 Let ≤−
∗ be the relation defined on ST⇂∗ by the formal system of

Definition 4.2 without axioms (T-Ax-C) and (T-Ax-S). Then, for A,B ∈ ST⇂∗,
we have

i) ⊢ A ≤ B ⇔ ⊢ A ≤−
∗ B

ii) ⊢ A ≤−
∗ B ⇔ ⊢ A ≤: B

The precise relationship between CSP-subtyping and the Gay-Hole algorith-
mic subtyping of [16] is stated then in the following corollary.

Corollary 4.6 Let A,B ∈ ST⇂∗.

⊢ A ≤ B ⇔ ⊢ A ≤: B

Proposition 4.5(ii) easily descends from Remark 4.3. For what concerns
Proposition 4.5(i), we do not prove it in detail, since it is rather routine and
since the only difference between our system and the algorithmic one of [16] lies
in the coinductive treatment of type constructors rules. We illustrate instead
such different treatment by means of an example.

30

Example 4.7 Given A = µX.&〈ℓ1 : X〉 and B = µX.&〈ℓ1 : X, ℓ2 : C〉, where
C is any type in ST⇂∗, we can derive: ⊢ A ≤∗ B as follows:

(T-Sub-Hyp)
&〈ℓ1 : A〉 ≤∗ &〈ℓ1 : B, ℓ2 : C〉 ⊢ &〈ℓ1 : A〉 ≤∗ &〈ℓ1 : B, ℓ2 : C〉

(T-Sub-Unf-R)
&〈ℓ1 : A〉 ≤∗ &〈ℓ1 : B, ℓ2 : C〉 ⊢ &〈ℓ1 : A〉 ≤p B

(T-Sub-Unf-L)
&〈ℓ1 : A〉 ≤∗ &〈ℓ1 : B, ℓ2 : C〉 ⊢ A ≤∗ B

(T-Sub-&)
⊢ &〈ℓ1 : A〉 ≤∗ &〈ℓ1 : B, ℓ2 : C〉

(T-Sub-Unf-R)
⊢ &〈ℓ1 : A〉 ≤∗ B

(T-Sub-Unf-L)
⊢ A ≤∗ B

The same conclusion (after erasing the polarities) is derived in the system in
[16] (Figure 11), using the rules:

Γ, µX.A ≤ B ⊢ A{µX.A/X} ≤ B
(AS-Rec-L)

Γ ⊢ µX.A ≤ B

and its symmetric (AS-Rec-R) to unfold the B above, plus

Γ ⊢ Ai ≤p Bi ∀i ∈ I I ⊆ J
(AS-Branch)

Γ ⊢ &i∈I〈ℓi : Ai〉 ≤p &j∈J〈ℓj : Bj〉

Then we can build the derivation:

(AS-Assump)
A ≤ B,&〈ℓ1 : A〉 ≤ B ⊢ A ≤ B

(AS-Branch)
A ≤ B,&〈ℓ1 : A〉 ≤ B ⊢ &〈ℓ1 : A〉 ≤ &〈ℓ1 : B, ℓ2 : C〉

(AS-Rec-R)
A ≤ B ⊢ &〈ℓ1 : A〉 ≤ B

(AS-Rec-L)
⊢ A ≤ B

where (AS-Assump) is the same axiom as (T-Sub-Hyp). Also the complexity of
the two derivations is comparable: the first derivation is higher than the second
one in that it makes the unfoldings twice; on the other hand the second derivation
has a larger set of assumptions where the unfoldings are saved, so that, looking
at the systems algorithmically, space in the second system compensate time in
the first one.

5 Behavioural Semantics of CSP-Subtyping.

We devote now the present section to provide a behavioural semantics for CSP-
session types and for CSP-subtyping. At the end we show how to use such
semantics, togheter with the results of the previous subsection, in order to get
also a semantics for Gay-Hole subtyping.

Given the definition of CSP-session types, it is straightforward to interpret
them into behaviours.

31

Definition 5.1 (Behavioural Semantics of CSP-Session Types)
Assume, without loss of generality, that there is a bijective mapping [[X]] = x
from type variables to behaviour variables, and that the set N is in one-to-one
correspondence with the set of labels ℓi’s used in session types.
Then the semantic function [[·]] : ST → SB is obtained by restricting to session
types the mapping from raw type expressions into raw behaviour expressions
defined as follows:

[[end]] = 1

[[&〈ℓi : Bi | i ∈ I〉]] =
∑

i∈I ℓi.[[Bi]]

[[⊕〈ℓi : Bi | i ∈ I〉]] =
⊕

i∈I ℓi.[[Bi]]

[[X]] = x

[[µX. A]] = rec [[X]]. [[A]]

[[?(Ap)B]] = ?([[A]]p)[[B]]

[[![Ap]B]] = ![[[A]]p][[B]]

Ground types could be interpreted into SB by means of names in N , so that
we could add the clause [[G]] = G.1 to the definition of the semantic mapping.
The subtyping theory is intended to formalize structural subtyping, so that no
axiom like e.g. Int ≤p Real is ever considered. For practical purposes, however,
it shouldn’t be problematic to add axioms like Int ≤p Real without loosing the
theoretical properties of the system established in this paper.

The interpretation mapping [[·]] is well defined and basic syntactical proper-
ties are preserved in the following sense:

Lemma 5.2 If A ∈ ST then [[A]] ∈ SB. In particular fv([[A]]) = {x | ∃X ∈
fv(A). x = [[X]]}, so that if fv(A) = ∅ then fv([[A]]) = ∅; moreover, the mapping
[[·]] is well behaved w.r.t. substitution, that is [[A{B/X}]] = [[A]]{[[B]]/[[X]]}.

Proof. By straightforward induction over the structure of A. �

It is immediate to check that we actually have the following

Fact 5.3 The mapping [[·]] : ST → SB is a bijection.

Remark 5.4 When typing π-calculus terms, dual session types play an essen-
tial role (see [17, 23]). Roughly, the dual of a type is obtained by exchanging
& with ⊕ and input with output. More precisely, if A is a type expression then
define the dual of A as the type expression A by:

end = end

&〈ℓi : Bi | i ∈ I〉 = ⊕〈ℓi : Bi | i ∈ I〉

⊕〈ℓi : Bi | i ∈ I〉 = &〈ℓi : Bi | i ∈ I〉

X = X

µX.A = µX.A

?(Ap)B = ![Ap]B

![Ap]B = ?(Ap)B

32

Now, if A ∈ ST then A ∈ ST , moreover [[A]] = [[A]], which is immediate by
induction over the structure of A.

Given the interpretation of types, we proceed by defining the semantics of
≤c, ≤s and ≤∗, and in general of judgments Γ ⊢ A ≤p B; recall that these are
about closed types, both in Γ and in A ≤p B:

Definition 5.5 (Judgment Semantics) Let p, q ∈ {c, s, ∗}.

i) |= A ≤p B iff [[A]] �p [[B]]

ii) |= Γ iff |= C ≤q D for all C ≤q D ∈ Γ

iii) Γ |= A ≤p B iff |= Γ implies |= A ≤p B

To facilitate the proofs below it is convenient to consider the following strat-
ified version of Definition 5.5:

a) |=k A ≤p B iff [[A]] �co.k
p [[B]];

b) |=k Γ iff |=k C ≤p D for all C ≤q D ∈ Γ;

c) Γ |=k A ≤p B iff |=k Γ implies |=k A ≤p B.

Note that the stratification is done w.r.t. the characterisation of the relations
�p in terms of the operator H in Theorem 3.9. In fact, by this theorem we have
that |= A ≤p B if and only if |=k A ≤p B for all k and hence:

∀k.Γ |=k A ≤p B ⇒ Γ |= A ≤p B.

This observation will be used in the proof of the following Soundness Theorem.
The opposite implication does not hold. In fact once it is the case that 6|=k

C ≤p D for some C,D and some k, then the same is true for any h ≥ k, but
|=h′ C ≤p D for some h′ < k, for h′ = 0 at least. Therefore it is possible to
choose Γ such that |=k Γ and 6|=k A ≤p B, while it is true that Γ |= A ≤p B
just because 6|= Γ, which only means that 6|=h Γ for all but finitely many h. In
the Completeness Theorem, however, only the fact that |= A ≤p B if and only
if |=k A ≤p B for all k is needed.

As usual we write ambiguously Γ ⊢ A ≤p B for the judgment itself and the
statement that it is derivable.

Theorem 5.6 (Soundness) For any judgment Γ ⊢ A ≤p B, with p = c, s, ∗:

Γ ⊢ A ≤p B ⇒ Γ |= A ≤p B.

Proof. We actually prove Γ ⊢ A ≤p B ⇒ ∀k. Γ |=k A ≤p B by a principal
induction over the derivation of Γ ⊢ A ≤p B, and a subordinate induction over
k.

In case of axioms (T-Ax-C), (T-Ax-S) or (T-Ax-P) the thesis holds since
[[end]] = 1 and for all σ = [[A]] and all k we have σ �co.k

c 1, 1 �co.k
s σ and

1 �co.k
∗ 1by definition of H.

33

The cases of axioms (T-Sub-Id) and (T-Sub-Hyp) are obvious.
In case of rule (T-Sub-Unf-L) we observe that, if [[µX.A]] = recx.σ then

recx.σ ⇓ τ if and only if σ{recx.σ/x} ⇓ τ hence [[µX.A]] �co.k
p [[B]] if and only

if σ{recx.σ/x} = [[A{µX.A/X}]] �co.k
p [[B]], which holds by induction since it

is the right-hand statement of the judgment in the hypothesis of the rule. The
case of rule (T-Sub-Unf-R) is analogous.

Of the remaining cases T-Sub-&, T-Sub-In, T-Sub-⊕ and T-Sub-Out we
treat explicitly the first two, as the others are symmetric.

(T-Sub-&). Γ |=0 &i∈I〈ℓi : Ai〉 ≤p &j∈J〈ℓj : Bj〉 is trivially true, since
[[&i∈I〈ℓi : Ai〉]] �0

p [[&j∈J 〈ℓj : Bj〉]] holds always.

To establish Γ |=k+1 &i∈I〈ℓi : Ai〉 ≤p &j∈J 〈ℓj : Bj〉, assume |=k+1 Γ.
Since �k

p ⊇ �k+1
p , we have that |=k Γ. By the secondary induction hy-

pothesis: Γ |=k &i∈I〈ℓi : Ai〉 ≤p &j∈J〈ℓj : Bj〉, so that it must be the case
that |=k &i∈I〈ℓi : Ai〉 ≤p &j∈J 〈ℓj : Bj〉.
It follows that |=k Γ,&i∈I〈ℓi : Ai〉 ≤p &j∈J〈ℓj : Bj〉; hence by the primary
induction hypothesis: Γ,&i∈I〈ℓi : Ai〉 ≤p &j∈J 〈ℓj : Bj〉 |=k Ai ≤p Bi for
all i ∈ I. We conclude that |=k Ai ≤p Bi for all i ∈ I.

Let [[&i∈I〈ℓi : Ai〉]] =
∑

i∈I ℓi.σi, where σi = [[Ai]], and similarly [[&j∈J〈ℓj :
Bj〉]] =

∑

j∈J ℓj .τj with τj = [[Bj]]. Then trivially
∑

i∈I ℓi.σi ⇓
∑

i∈I ℓi.σi

and
∑

j∈J ℓj .τj ⇓
∑

j∈J ℓj .τj . On the other hand we know that σi �co.k
p τi

for all i ∈ I, since |=k Ai ≤p Bi. Hence
∑

i∈I ℓi.σi �co.k+1
p

∑

j∈J ℓj .τj ,
that is |=k+1 &i∈I〈ℓi : Ai〉 ≤p &j∈J〈ℓj : Bj〉 as desired.

(T-Sub-In). Γ |=0 ?(A
p)B ≤q ?(C

p)D since [[?(Ap)B]] �co.0
q [[?(Cp)D]] holds

always.

To establish Γ |=k+1 ?(A
p)B ≤q ?(C

p)D, let us assume |=k+1 Γ.
Since �co.k

p ⊇ �co.k+1
p , we have that |=k Γ. By the secondary induction

hypothesis: Γ |=k ?(A
p)B ≤q ?(C

p)D, so that it must be the case that
|=k ?(A

p)B ≤q ?(C
p)D. It follows that |=k Γ, ?(Ap)B ≤q ?(C

p)D; hence
by the primary induction hypothesis both the statement Γ, ?(Ap)B ≤q

?(Cp)D |=k B ≤q D and Γ, ?(Ap)B ≤q ?(C
p)D |=k A ≤p C hold. We

conclude that |=k B ≤q D and |=k A ≤p C. Let [[?(Ap)B]] =?(σ1)σ2 and
[[?(Cp)D]] =?(τ1)τ2, where [[A]] = σ1, [[B]] = σ2, [[C]] = τ1 and [[D]] = τ2.
We trivially have that ?(Ap)B ⇓ ?(Ap)B and ?(Cp)D ⇓ ?(Cp)D. On the
other hand we know that σ1 �co.k

p τ1 and σ2 �co.k
q τ2, since |=k A ≤p C

and |=k B ≤q D. Hence ?(σp
1)σ2 �co.k+1

q ?(τp1)τ2, that is |=k+1 ?(A
p)B ≤q

?(Cp)D, as desired.

Corollary 5.7 For all A,B ∈ ST and p = c, s, ∗

⊢ A ≤p B ⇒ [[A]] �p [[B]].

Proof. By Theorem 5.6, taking Γ = ∅ and recalling that |= A ≤p B is defined
as [[A]] �p [[B]].

As far as completeness is concerned we preliminary observe that the inverse
implication of Theorem 5.6 doesn’t hold, namely Γ |= A ≤p B 6⇒ Γ ⊢ A ≤p B

34

in general. This is due to the fact that Γ |= A ≤p B is a conditional statement,
which is vacuously true when 6|= Γ. This is the case if Γ contains some inequality
C ≤q D such that 6|= C ≤q D, that is [[C]] 6�q [[D]]. Now consider the inequalities
end ≤c &〈ℓ : end〉 and &〈ℓ : end〉 ≤s end: then it is easy to see that 6|= end ≤c

&〈ℓ : end〉 (and by the way also 6|= &〈ℓ : end〉 ≤s end); but end ≤c &〈ℓ : end〉 |=
&〈ℓ : end〉 ≤s end vacuously, whereas end ≤c &〈ℓ : end〉 6⊢ &〈ℓ : end〉 ≤s end

because it is neither an instance of an axiom nor of the conclusion of any rule.
Nonetheless we are able to prove a completeness theorem, namely the state-

ment that |= A ≤p B implies ⊢ A ≤p B, which is done below. We begin by
introducing some auxiliary concepts.

Definition 5.8 Given a finite set Γ of (closed) type inequalities and a (closed)
type inequality A ≤p B with p = c, s, ∗, we define, for any k ∈ N, the predicate
Γ ⊢k A ≤p B by:

i) Γ ⊢k A ≤p B holds if either Γ ⊢ A ≤p B is an axiom, or k = 0;

ii) Γ ⊢k A ≤p B holds if there is an instance of either (T-Sub-Unf-L) or
(T-Sub-Unf-R) inference rules

Γ ⊢ A′ ≤p B′

Γ ⊢ A ≤p B

such that Γ ⊢k A′ ≤p B′;

iii) Γ ⊢k+1 A ≤p B holds if there is an instance of any inference rule

Γ1 ⊢ A1 ≤p B1 · · · Γn ⊢ An ≤p Bn

Γ ⊢ A ≤p B

but of rules (T-Sub-Unf-L) and (T-Sub-Unf-R), such that Γi ⊢k Ai ≤p

Bi for all i ∈ {1, . . . , n}.

The following remark helps to understand the meaning of the judgments Γ ⊢k

A ≤p B.

Remark 5.9 Let us consider derivation trees whose nodes are labeled by sub-
typing judgments and such that each internal node represents the conclusion
of a rule and its immediate descendants its premises. Hence a derivation is a
finite derivation tree whose leaves are (instances of) axioms. Then the meaning
of Γ ⊢k A ≤p B is that there exists a finite derivation tree D with conclusion
Γ ⊢ A ≤p B which possibly is not a derivation, as it could have some leafs which
are not axioms. The index k is a bound to the number of the rules in a branch of
D other than (T-Sub-Unf-L) and (T-Sub-Unf-R). Of course if Γ ⊢k A ≤p B
then for any h ≤ k Γ ⊢h A ≤p B holds, and its tree D′ can be chosen so
that D′ ⊆ D, when considered as prefix closed sets of (labeled) nodes. In fact,
because of Remark 4.3, the derivation system is syntax directed but when both
types in the right-hand-side inequation are µ-types. Such types, however, must
be unfolded in order to match the conclusion of any rule, and hence there can be
ambiguity only about the order of rules (T-Sub-Unf-L) and (T-Sub-Unf-R),
which is immaterial.

35

If Γ ⊢ A ≤p B then Γ ⊢k A ≤p B for any k, and in fact the derivation
of Γ ⊢ A ≤p B is exactly the derivation tree establishing Γ ⊢k′ A ≤p B for
some suitably large k′. On the other hand it is not necessarily the case that the
branches of the derivation tree proving Γ ⊢k A ≤p B can be extended to reach a
true derivation of Γ ⊢ A ≤p B; in the case branches can be extended, this cannot
be done infinitely many times, as it will be shown at the end of the completeness
proof.

The predicate Γ ⊢k A ≤p B is well defined by induction over k: this follows
by the fact that µ-types are contractive, hence condition (ii) of Definition 5.8
cannot be satisfied infinitely many times. Contractivity also implies that the
following mapping over ST (also considered in [16]) is well defined:

unfold(A) =

{

unfold(B{A/X}) if A = µX.B

A otherwise.

Indeed by contractivity of µ-types we know that any such a type is of the
form µX1 . . . µXn.A where A is neither a variable nor a µ-type. It follows that
unfold(µX1 . . . µXn.A) is always defined.

Lemma 5.10 For any k ∈ N

Γ ⊢k A ≤p B ⇔ Γ ⊢k unfold(A) ≤p unfold(B).

Proof. The thesis is a consequence of Definition 5.8 by observing that, reading
derivations in the upward sense, no µ-type can be ever used before unfolding
it through occurrences of either rule (T-Sub-Unf-L) or (T-Sub-Unf-R), and
that the index k does not decrease right in that cases.

Lemma 5.11 For any A ∈ ST :

[[A]]⇓ [[unfold(A)]].

Proof. This is an immediate consequence of the fact that [[µX.A]] = recx.[[A]],
where x = [[X]], and that the semantic interpretation is well behaved w.r.t.
substitution by Lemma 5.2.

For the proof of Lemma 5.12 below, the following notation will be useful.
Let A ∈ ST be neither a variable nor a µ-type. Then we write op(A) to denote
the main type constructor of A; in particular we have op(end) = end. If instead
A is a µ-type then we put op(A) = op(unfold(A)). By this convention and the
definition of unfold(A) we have that op(A) = op(unfold(A)) for any A which is
not a variable, and for closed A a fortiori.

Lemma 5.12 For any k ∈ N:

|=k Γ, A ≤p B ⇒ Γ ⊢k A ≤p B

36

Proof. In the following we assume that A ≤p B 6∈ Γ, since otherwise Γ ⊢k

A ≤p B holds trivially by definition because of the axiom (T-Sub-Hyp).
We prove the thesis by induction over k. When k = 0 the thesis holds

immediately since Γ ⊢0 A ≤p B is always true. Let k > 0: by Lemma 5.11
Γ ⊢k A ≤p B if and only if Γ ⊢k unfold(A) ≤p unfold(B); then it suffices
to establish the latter proceeding by cases of op(A) and op(B), which are the
principal type constructors of unfold(A) and unfold(B) respectively.

op(A) = end and op(B) 6= end, i.e. unfold(A) = end and unfold(B) 6= end. If
p = s then Γ ⊢ end ≤s B is an instance of the (T-Ax-S) axiom hence
Γ ⊢k end ≤s B holds immediately. If instead p = c first observe that
[[A]]⇓ [[end]] by Lemma 5.11, and [[end]] = 1. Now |=k Γ, A ≤c B implies
|=k A ≤c B and hence |=k end ≤p B i.e. 1 �co.k

c [[B]]. By definition
of �co.k

p this is only possible if [[B]] ⇓ 1 so that unfold(B) = end and
Γ ⊢k end ≤p end is an instance of the axiom (T-Sub-Id).

op(B) = end and op(A) 6= end: this is similar to the previous case, but for
using axiom (T-Ax-C) in place of (T-Ax-S).

op(A) = op(B) = end. If p = s, c then we proceed as in the previous cases.
If p = ∗ then Γ ⊢ end ≤∗ end is an instance of the (T-Ax-P) axiom and
hence Γ ⊢k end ≤∗ end holds immediately.

op(A) = &: then unfold(A) = &〈ℓi : Ai | i ∈ I〉 for certain Ai, so that
[[A]] ⇓ [[&〈ℓi : Ai | i ∈ I〉]] by Lemma 5.11, where [[&〈ℓi : Ai | i ∈ I〉]] =
∑

i∈I ℓi.[[Ai]]. By hypothesis we know that |=k Γ, A ≤p B, which implies
by the above that [[unfold(B)]] = [[&〈ℓj : Bj | j ∈ J〉]] =

∑

j∈J ℓj.[[Bj]]

where
∑

i∈I ℓi.[[Ai]] �co.k
p

∑

j∈J ℓj.[[Bj]]. It follows that, by definition of

�co.k
p , I ⊆ J and [[Ai]] �co.k−1

p [[Bi]] for all i ∈ I.

Since �co.k
p ⊆�co.k−1

p , we have that |=k Γ, A ≤p B implies |=k−1 Γ, A ≤p B
and in particular |=k−1 &〈ℓi : Ai | i ∈ I〉 ≤p &〈ℓj : Bj | j ∈ J〉. By the
above we conclude that |=k−1 Γ,&〈ℓi : Ai | i ∈ I〉 ≤p &〈ℓj : Bj | j ∈
J〉, Ai ≤p Bi for all i ∈ I. By induction this implies that

Γ,&〈ℓi : Ai | i ∈ I〉 ≤p &〈ℓj : Bj | j ∈ J〉 ⊢k−1 Ai ≤p Bi

for all i ∈ I; but since I ⊆ J we conclude by rule (T-Sub-&) that

Γ ⊢k &〈ℓi : Ai | i ∈ I〉 ≤p &〈ℓj : Bj | j ∈ J〉

as desired.

op(B) = &: this is symmetric to the previous case.

The remaining cases of op(A) and op(B) can be treated in the same manner.
In order to complete the proof of completeness, it remains to prove that if

Γ ⊢k A ≤p B for all k then Γ ⊢ A ≤p B. This is done with minor differences by
means of the same proof as Lemma 10 in [16], which in turn adapts to session
types the proof in [22], Lemma 2.4.1.

37

Definition 5.13 (Subterms) For any (in general open) A ∈ ST define the
set Sub(A) of sub-expressions of A by the following clauses:

i) Sub(end) = {end},

ii) Sub(&〈ℓi : Ai | i ∈ I〉) = {&〈ℓi : Ai | i ∈ I〉} ∪
⋃

i∈I Sub(Ai),

iii) Sub(⊕〈ℓi : Ai | i ∈ I〉) = {⊕〈ℓi : Ai | i ∈ I〉} ∪
⋃

i∈I Sub(Ai),

iv) Sub(?(T p)B) = { ?(T p)B} ∪ Sub(T) ∪ Sub(B),

v) Sub(![T p]B) = { ![T p]B} ∪ Sub(T) ∪ Sub(B),

vi) Sub(µX.B) = {C{µX.B/X} | C ∈ Sub(B)},

vii) Sub(X) = {X}.

Given the judgments Γ ⊢ A ≤p B and Γ′ ⊢ C ≤q D define

Γ ⊢ A ≤p B ⊳R Γ′ ⊢ C ≤q D

if and only if Γ ⊢ A ≤p B is not an instance of any axiom and Γ ⊢ A ≤p B and
Γ′ ⊢ C ≤q D are instances of the conclusion and of a premise of rule (R) respec-
tively. Further define Γ ⊢ A ≤p B ⊳ Γ′ ⊢ C ≤q D if Γ ⊢ A ≤p B ⊳R Γ′ ⊢ C ≤q D
for some R.

In the following the following notations willbe used:

Sub(A ≤p B) = Sub(A) ∪ Sub(B)

Sub(Γ) =
⋃

{Sub(C ≤p D) | C ≤p D ∈ Γ}

Lemma 5.14 Suppose that Γ ⊢ A ≤p B ⊳R Γ′ ⊢ C ≤q D, then:

i) Γ ⊆ Γ′

ii) Sub(C ≤q D) ⊆ Sub(A ≤p B),

iii) Γ′ ⊆ Sub(Γ) ∪ Sub(A ≤p B).

Proof. By direct inspection of the rules.

Lemma 5.15 There exists no infinite chain of typing judgments w.r.t. ⊳.

Proof. Toward a contradiction, let Γ0 ⊢ A0 ≤p0
B0 ⊳R0

Γ1 ⊢ A1 ≤p1
B1 ⊳R1

· · ·
be such an infinite chain. Because of the contractiveness of the µ-types, Ak, Bk

cannot always be µ-types from a given index on, and hence for every i there
exists j ≥ i such that Rj 6∈ {T-Sub-Unf-L,T-Sub-Unf-R}, and in particular
there exist infinitely many such Rj ’s. Being this the case, for all such j’s we
have, by definition of Sub(), that Aj ∈ Sub(Aj), Bj ∈ Sub(Bj). Moreover, we
have necessarily that Aj ≤pj

Bj ∈ Γj+1 \ Γj , since otherwise Γj ⊢ Aj ≤pj
Bj

would be an instance of axiom (T-Sub-Hyp). From this fact, together with
Lemma 5.14(i), it follows that the cardinalities |Γi| are unbounded. However,
by repeated applications of Lemma 5.14(iii), we know that, for all i, Γi ⊆
Γ0 ∪ Sub(A0 ≤p0

B0) which is a finite set.

38

Corollary 5.16 Let p = c, s, ∗. If Γ ⊢k A ≤p B for all k then Γ ⊢ A ≤p B.

Proof. If Γ ⊢k A ≤p B then there exists a derivation tree Dk with conclusion
Γ ⊢ A ≤p B and possibly some leaf which is not an axiom. By Remark 5.9 we
can choose these trees so that Dh ⊆ Dk whenever h ≤ k, where Dh and Dk are
viewed as prefix closed sets of nodes. Now, let D =

⋃

k Dk. If Γ 6⊢ A ≤p B
then D is infinite, hence it has an infinite branch by König Lemma since it is
a finitary tree. But then the judgments labeling such a branch would be an
infinite chain w.r.t. ⊳, contradicting Lemma 5.15.

Theorem 5.17 (Completeness) Let Γ, A ≤p B be a finite set of type inequal-
ities among closed types, with p = c, s, ∗, then:

Γ |= A ≤p B ⇔ (6|= Γ ∨ Γ ⊢ A ≤p B).

Proof. (⇐) If 6|= Γ then Γ |= A ≤p B holds vacuously; if instead Γ ⊢ A ≤p B
then Γ |= A ≤p B follows by Theorem 5.6.

(⇒) If Γ |= A ≤p B and |= Γ then |= Γ, A ≤p B, and hence |=k Γ, A ≤p B for
all k. By Lemma 5.12 this implies Γ ⊢k A ≤p B for all k, and then Γ ⊢ A ≤p B
by Corollary 5.16.

We get now as Corollaries, a number of results.

Corollary 5.18

i) The relations �s, �c and �∗ over SB are decidable.

ii) For all closed A,B ∈ ST and p = c, s, ∗:

⊢ A ≤p B ⇔ [[A]] �p [[B]].

iii)
⊢ A ≤∗ B ⇔ ⊢ A ≤c B & ⊢ A ≤s B

Proof. (i) By Point (ii) and Fact 5.3, since ⊢ A ≤p B is decidable by Lemma
5.15.
(ii) By Theorem 5.17, taking Γ = ∅.
(iii) By Theorem 3.10 and point (ii).

We end our work by showing that the Gay and Hole subtyping relation is
sound and complete w.r.t. to our semantic subtyping of Definition 3.11.

Recall that we identify elements of ST⇂∗ and the corresponding ones in GHT .

Corollary 5.19 (Soundness and Completeness of Gay and Hole subtyping)
Let A,B ∈ ST⇂∗.

⊢ A ≤ B ⇔ [[A]] �: [[B]]

39

Proof.

⊢ A ≤ B ⇔ ⊢ A ≤: B (Cor. 4.6)

⇔ ⊢ A ≤∗ B (Def. 4.2)

⇔ ⊢ A ≤c B & ⊢ A ≤s B (Cor. 5.18(iii))

⇔ [[A]] �c [[B]] & [[A]] �s [[B]] (Cor. 5.18(ii))

⇔ [[A]] �∗ [[B]] (Th. 3.10)

⇔ [[A]] �: [[B]] (Def. 3.11)

Remark 5.20 In [3] it was erroneously stated that Gay and Hole subtyping can
be modeled by the relation �c ∩ �s. Such a statement, as it is, does not hold.
In fact it is enough to consider the following counterexample: let us consider
the behaviours ?(Dc).end and ?(endc).end, where D is an arbitrary behaviour
different from end. In our typing system it is easy to show that both

?(Dc).end ≤c ?(end
c).end and ?(Dc).end ≤s ?(end

c).end

hold, whereas at the same time we have that

?(D).end 6≤ ?(end).end and ?(Dc).end 6≤ ?(endc).end

where ≤ is the Gay-Hole subtyping relation1.
Actually a model that can be obtained for Gay and Hole subtyping from the

system without �∗ is the relation �c ∩ �̆s, where �̆s is defined by σ�̆sτ ⇔
σ̆ �s τ̆ , where σ̆ is obtained from σ by exchanging all the polarities in σ (i.e.

by replacing c by s and vice versa). Intuitively, the use of (̆·) in the relation
�c ∩�̆s forces the synchronizing higher-order actions to be the servers of each
other.

6 Related Work

The starting point of the present work are the subtyping system for session types
in [16] and the contract theory in [7, 18, 11, 10]. In particular the concept of
compliance originates from [18]; however, we depart from the original definition
adopting a more general concept, such that even non terminating behaviours can
be compliant. In fact we allow the satisfaction in the limit of the requirement
that all the actions by the client should find an adequate reply by the server.
This is similar to [21], and we give a definition which is literally the same as
that one used in [20].

On the other hand, the concept of “subsession” from [21] (which is the
same as that of “compliance” in [10]) is not our compliance, nor one of our
sub-behaviour relations. Rather it is comparable to our orthogonality and be-
havioural subtyping, since for the test to succeed it is required that both sides
of a parallel combination complete (reach a final state).

With respect to session type subtyping as presented in [16] we have used
a slightly different version of the algorithmic subtyping system, inspired to the

1Such a counterexample was pointed out to us by an anonymous referee of a draft version

of the present paper, whom we thank.

40

subtyping system in [5] for the simple types with arrow and µ-types. The result-
ing system, thought more verbose than the original one, is closer to the coin-
ductive characterisation of the sub-behaviour preorders and technically more
suitable for our treatment. In the study of the proof theoretical properties of
the system we have largely profited of [22] and [15].

The issue of comparing contracts to session types has been addressed in [19,
9], besides the quoted [21, 10]. The choice of restricting to session behaviours is
responsible for the neat characterization of the main concepts involved, and first
of all of the notion of the dual of a behaviour. To appreciate the advantage of the
definition of session behaviours one could compare it to the difficult treatment
of duality for the full set of behaviours in [19] and the fact the the encodings
from session types to contracts and viceversa are not inverse each other. A
restriction to contracts, producing an effect similar to the one induced by our
restrictions, has been proposed in [6] where terms like a+ b.c and also like a+ b
are avoided by imposing any output action b to be preceded by an internal tau
action; however, the absence of an internal choice and the ability of mixing input
(i.e. branching actions in our interpretation) and output summands (which are
naturally interpreted as selection actions) make this behaviour calculus rather
unsuitable for our purposes.

Finally, the recent work [4] elaborates on the sub-behaviour preorders and
on the definition of session behaviours considered in the present paper, as well
as in the former [3], and shows that the intersection of server and client sub-
behaviour is a fully abstract model of subtyping of first order session types when
restricted to “session contracts”, which coincide with first-order behaviours in
SB. This result (but not the proof) is the same as our completeness Theorem
and Corollary 5.18(ii), which are however more general.

7 Conclusion

We have considered a behavioural semantics of session types interpreted as a
suitable kind of contracts, with higher-order input/output of contracts with
labels that express the role (client, server or peer) played by the user of a
sent/received ”component” exhibiting that contract. Moving from the concept
of compliance from contract theory, it is possible to define the notions of client,
server and peer (this last notion being the intersection of the first two). Three
sub-behaviour preorders can then be defined as the inclusion of the sets of
clients, servers and peers, respectively. We have shown that the three preorders
provide a sound and complete semantics for an extension with roles of Gay and
Hole’s subtyping theory of session types. Such a system is decidable, so that the
sub-behaviour relations we have studied are decidable as well. As a by-product,
also the original theory of subtyping has a complete model by interpreting sub-
typing as a suitable restriction of the peer sub-behaviour relation, with the mild
restriction that input/output types have to be closed.

References

[1] R. M. Amadio and L. Cardelli. Subtyping recursive types. ACM Trans.
Program. Lang. Syst., 15(4):575–631, 1993.

41

[2] F. Barbanera, S. Capecchi, and U. de’Liguoro. Typing asymmetric client-
server interaction. In FSEN, volume 5961 of LNCS, pages 97–112. Springer,
2009.

[3] F. Barbanera and U. de’Liguoro. Two notions of sub-behaviour for session-
based client/server systems. In Proceedings of PPDP’10, pages 155–164.
ACM, 2010.

[4] G. Bernardi and M. Hennessy. Modelling session types using contracts. In
Proceedings of the 27th Annual ACM Symposium on Applied Computing,
SAC ’12, pages 1941–1946, New York, NY, USA, 2012. ACM.

[5] M. Brandt and F. Henglein. Coinductive axiomatization of recursive type
equality and subtyping. Fundam. Inform., 33(4):309–338, 1998.

[6] M. Bravetti and G. Zavattaro. A foundational theory of contracts for multi-
party service composition. Fundam. Inform., 89(4):451–478, 2008.

[7] S. Carpineti, G. Castagna, C. Laneve, and L. Padovani. A formal account of
contracts for Web Services. In WS-FM, 3rd Int. Workshop on Web Services
and Formal Methods, number 4184 in LNCS, pages 148–162. Springer, 2006.

[8] G. Castagna, M. Dezani-Ciancaglini, E. Giachino, and L. Padovani. Gen-
eral Session Types. Available from:
http://www.sti.uniurb.it/padovani/publications.html, 2008.

[9] G. Castagna, M. Dezani-Ciancaglini, E. Giachino, and L. Padovani. Foun-
dations of session types. In PPDP, pages 219–230. ACM, 2009.

[10] G. Castagna, N. Gesbert, and L. Padovani. Contracts for mobile processes.
In Proceedings of the 20th International Conference on Concurrency Theory
(CONCUR’09), volume 5710 of LNCS, pages 211–228. Springer, 2009.

[11] G. Castagna, N. Gesbert, and L. Padovani. A theory of contracts for web
services. ACM Trans. Program. Lang. Syst., 31(5):19:1–19:61, July 2009.

[12] R. De Nicola and M. Hennessy. Testing equivalence for processes. In
ICALP, volume 154 of LNCS, pages 548–560. Springer, 1983.

[13] R. De Nicola and M. Hennessy. CCS without tau’s. In TAPSOFT, Vol.1,
volume 249 of LNCS. Springer, 1987.

[14] M. Dezani-Ciancaglini, U. de’ Liguoro, and N. Yoshida. On Progress
for Structured Communications. In G. Barthe and C. Fournet, editors,
TGC’07, volume 4912 of LNCS, pages 257–275. Springer, 2008.

[15] V. Gapeyev, M. Y. Levin, and B. C. Pierce. Recursive subtyping revealed.
J. Funct. Program., 12(6):511–548, 2002.

[16] S. Gay and M. Hole. Subtyping for Session Types in the Pi-Calculus. Acta
Informatica, 42(2/3):191–225, 2005.

[17] K. Honda, V. T. Vasconcelos, and M. Kubo. Language Primitives and
Type Disciplines for Structured Communication-based Programming. In
ESOP’98, volume 1381 of LNCS, pages 22–138. Springer-Verlag, 1998.

42

[18] C. Laneve and L. Padovani. The Must Preorder Revisited: An Algebraic
Theory for Web Services Contracts. In CONCUR’07, volume 4703 of LNCS,
pages 212–225. Springer-Verlag, 2007.

[19] C. Laneve and L. Padovani. The pairing of contracts and session types. In
Concurrency, Graphs and Models, volume 5065 of LNCS, pages 681–700,
2008.

[20] L. Padovani. Contract-based discovery and adaptation of web services. In
M. Bernardo, L. Padovani, and G. Zavattaro, editors, SFM, volume 5569
of LNCS, pages 213–260. Springer, 2009.

[21] L. Padovani. Session types at the mirror. In ICE, volume 12 of EPTCS,
pages 71–86, 2009.

[22] B. C. Pierce and D. Sangiorgi. Typing and subtyping for mobile processes.
In Logic in Computer Science, 1993. Full version inMathematical Structures
in Computer Science , Vol. 6, No. 5, 1996.

[23] N. Yoshida and V. T. Vasconcelos. Language Primitives and Type Dis-
ciplines for Structured Communication-based Programming Revisited. In
SecReT’06, volume 171 of ENTCS, pages 73–93. Elsevier, 2007.

43

