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ABSTRACT

INTRODUCTION: Exposure to whole body vibration (WBW one of the most important risks for
musculoskeletal disorders (MSDs). The objectivéhefstudy was to investigate whether an active
cab suspension system fitted on a telehandler fiasige in reducing WBYV and in improving
comfort.

METHOD: Sixteen male healthy professional operativove a telehandler on a 100m ISO 5008
smooth track at two different speeds (5 and 12 kpth) activated and deactivated cab suspension
system. Adopting an ergonomic approach, differgpeats of the human-machine interaction were
analyzed: 1) vibration transmissibility, 2) subjeetratings of general comfort and local body
discomfort, and 3) anthropometric characteristiche users.

RESULTS: A series of ANCOVAs showed that the suspansystem was effective in reducing
WBY at both speeds but did not affect the percepbdibcomfort by the operators. Moreover,
individuals with higher Body Mass Index (BMI) exparced more comfort. Some neck/shoulder
and lumbar complaints and perceived hard jolts selebm remain even when the system was
activated. No correlations were found between dbje@nd subjective measures.

PRACTICAL APPLICATIONS: Results suggest that theegtors, given their wide range of

physical variability, may need more adjustableustomizable WBYV reduction systems.

Keywords: Active suspension; Anthropometric vatighiComfort; Telehandler; Whole-body

vibration transmissibility

1. INTRODUCTION
1.1 Background and motivation
Exposure to whole body vibration (WBV) has beemtdi®d as one of the most important risks for

musculoskeletal disorders (MSDs) (Lyons, 2002; @sbet al., 2012), having severe effects on
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low-back pain, neck-shoulder disorders, early deggion of the spine and herniated discs
(Bovenzi & Zadini, 1992; Griffin, 1990; Kittusamy &uchholz, 2004). MSDs are a main issue of
concern in agricultural industry: in the United 883 a 2008 report showed that about 20 percent of
farm workers suffer from musculoskeletal injuri&afidel, 2008). In Europe, 2,070,000 out of over
40 millions occupational diseases among agricultyvarators are MSDs (EU OSHA, 2010).
Agricultural and earth-moving machinery operatoes@articularly at risk because they are usually
exposed to vehicle vibrations for a long time (Muayet al., 2008): indeed they typically spend
many hours on the machine (Lin, 2011) and they haaecomplish many operations on different
types of uneven terrain (Wikstrom, 1993), with #edicle moving at various forward speeds (Lines
et al., 1995; Scarlett et al., 2007).

The awareness of the risks related to WBYV expoleat¢o the development of standards and
requirements to maintain healthy working conditioiise development of WBV standards started
in 1966 in Europe, resulting in the publication®0 2631 (Paschold & Sergeev, 2009). This
standard is included into the European Commissioeciive 2002/44/EC as a framework to
measure, with the appropriate frequency weightitigsdaily WBV exposure. The Directive
imposes, on the European Union countries, dutiesngployers to protect employees who may be
exposed to WBV vibration at work, and other persohs might be affected by the vibrations,
whether they are at work or not. A partially diget situation exists in the United States, wheee th
WBYV exposure limits are based upon the 1ISO 263tistahbut are voluntary (Paschold & Sergeev,
2009).

In order to comply with rules and standards angprtanote operators’ health, safety and comfort,
many technological and design innovations have baerduced on vehicles by manufacturers
during last decades (for a review, see Donati, 2P Tiemessen et al., 2007). Innovations range
from suspended seats (Hostens et al., 2004) teata@rgonomic layout of vehicle interior (Pope et
al., 1998) and to cab suspension systems (Velmaragal., 2012). Concerning cab suspension,

different solutions have been developed, from passystems to more recent semi-active and
4
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active ones (Fischer & Isermann, 2004): activeesystin particular represent an important
innovation, not only for WBYV control but also fdre improvement of ride quality, handling and
performance under different operating conditiokerihga et al., 2000; Wong, 2001).

The effects of passive and semi-active cab suspesgstems on WBYV exposure have been
investigated on many vehicles: agricultural trast@carlett et al., 2007), fork lift trucks (Lemeerl
et al., 2002) and harvesters (Deprez et al., 2Q@5)s is known about active systems, and in
particular with regard to telescopic handlers ftalalers). These vehicles are indeed little
investigated (Mansfield et al., 2009; Strambi et2012) and not typically involved in user trials
assessing WBYV exposure, despite the fact thaetebdndler is a versatile and widespread vehicle
used on different off-road applications (constrmetiagriculture, mining, etc.) on uneven terrains
and for a large number of different operations (&ar 2014).

Studies evaluating the effectiveness of susperssistems typically adopt an objective/mechanical
approach, focusing in particular on acceleratioth faequency analysis to determine workers’
exposure limit and action values stated by rulessdandards (De Temmerman et al., 2005;
Hansson, 1995). Nonetheless, current sales trémag that the operator’s comfort is becoming
more and more important in determining the markdte of agricultural machines (Vink, 2005).
Previously, customers wished that their basic neexgd be fulfilled at an affordable cost, while,
in recent years, customers’ decision to purchasaehine has become increasingly influenced by
comfort (Cavallo et al., 2014a; Krause & Bronkhp2§03). Furthermore, comfort is one of the
technological trajectories adopted by off-road eeEhmanufacturers to develop their products
(Cavallo et al., 2014b; Cavallo et al., 2015).

Many previous studies showed that is not alwaysiptesto predict comfort from objective
methods only (de Looze et al., 2003; Mehta & Tew20D0). Nonetheless, and even though
comfort is a subjective phenomenon (de Looze g2@03), users’ perceptions are often left in the
background. Only recently, researchers have becoane aware of the positive outcomes that

could be achieved by involving final users in talaation of comfort (Bluthner et al., 2008).
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The role played by some anthropometric characiesistuch as stature, body mass and Body Mass
Index (BMI), of the users of different vehiclesaffecting WBV exposure and MSDs development
has been investigated in previous studies but astmig results are reported (Blood et al., 2010;
Costa & Azeres, 2009; Mani et al., 2011; Milosawileet al., 2011, 2012; Sadeghi et al., 2012).
Among these characteristics, the BMI is used byWuweld Health Organization to classify
underweight, overweight and obesity in adults (WRQQ0). Thus, it is a relevant index to be
considered, because of the increasing rate of aightvand obesity conditions in the developed
countries (WHO, 2000, 2004). Moreover, as an incldgulated as the body mass in kilograms
divided by the square of the stature in metersngRg/it is a combination of measurements. It is
therefore essential for the interpretation of measents, since, as reported by WHO (1995), body
mass alone has no meaning unless it is related todavidual’s stature. However, the relation
between BMI and exposure to vibration is controsgrsome studies pointed out that MSDs
related to WBV exposure increase when the BMI ea(8®venzi et al., 2006). On the opposite,
results from other studies showed that vibratiaietomfort decreases (Leino et al., 2006) and
energy absorption increases (Wang et al., 2006 hwhe BMI raises.

Little is known, however, about the influence aktanthropometric characteristic on the perception
of comfort in field machinery operators, whose gdagian is undergoing the same trend of

increasing overweight and obesity conditions agyéreeral population (WHO, 2004).

1.2  Aims of the study

The objective of the present study was to invetgiganether an active cab suspension system fitted
on a telehandler was effective in reducing WBYV aniinproving comfort for the operators. The
study adopted an ergonomic approacbricerned with the understanding of the interactiamong
humans and other elements of a system [.w}liich considers users’ involvement esserfiral

order to optimize human well-being and overall sgsperformance(International Ergonomics

Association, 2015; see also Karwowski, 2006). Thpdrtance of this approach is highlighted also
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by the European Directive 42/2006 (European Comons2006), which states thdthder the
intended conditions of use, the discomfort, fatigné physical and psychological stress faced by
the operator must be reduced to the minimum pasdigking into account ergonomic principles
such as: allowing for the variability of the opevds physical dimensions, strength and stamina;
providing enough space for movements of the padrtsecoperator's body; avoiding a machine-
determined work rate; avoiding monitoring that re@gs lengthy concentration; adapting the
man/machinery interface to the foreseeable charesties of the operators(Annex 1, p.21).

Thus, the study was addressed to assess not @nbpjbctive effects of the suspension system on
vibration transmissibility but also the benefitsqeved by the users, considered in their
anthropometric variability.

To characterize the effects of the cab suspengsters fitted on the telehandler the following
aspects of the human-machine interaction were aediyl) objective measures of vibration
transmissibility, 2) subjective ratings of genarainfort and local body discomfort, and 3)
anthropometric characteristics of the users.

This study brings an additional contribution to &éxesting literature about WBV reduction and
comfort improvement. First of all, the study inugates WBV exposure and vibrational comfort on
an understudied type of field vehicle, the telescbpndler. Moreover, the vehicle was equipped
with an active hydro-pneumatic suspension systetdithonally, the present research includes a
subjective assessment of vibrational comfort aima/lf/, relations between objective measures,

subjective evaluation and anthropometrics charisties of the users are analyzed.

2. MATERIALS AND METHODS

2.1 Participants
Sixteen male healthy professional telehandler dsit@ok part in the study. Individuals with a
minimum of 5 years of driving experience on telatiars (driving-experience cut-off as in Kumar

et al., 2001) were chosen to participate in thdystlihe mean age and experience operating



159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

telehandlers were 39.4 years (SD=12.2; range 1&6@0.0 years (SD=14.49; range 10-50),
respectively. The participants completed a briefsfionnaire about their work experience and
musculoskeletal disorders history. All the partaifs did not report any musculoskeletal disorders
and were suitable for the investigation trials. thik participants signed an informed consent to
participate in the study.

2.2 The telehandler

The telescopic handler is a field vehicle equippétt a longitudinal telescopic and elevating arm,
usually activated by hydraulic jacks, to orientdte load carrier (ISO 12934:2013; ISO 5053:1987).
An example of the vehicle is shown in Figure 1. &ese of their versatility, telehandlers are widely
used in agriculture and construction sector (Ber2014). They show high sales numbers
worldwide: the Association of Equipment ManufactaréAEM) statistics estimates 30,000 units
sold in 2011(Cranes & Access, 2012).

The telehandler used in the study was a Merlo nRR&B,9CS model. It is a 2 axles, 4 wheel drive
vehicle equipped with 103 kW Diesel engine and bgthtic transmission. The maximum forward
speed is 40 kph (25 mph). The vehicle is repretigataf the typical telehandler architecture
adopted by most of the manufacturers: the cab, tv@hdriving station, is on the left and the engine
on the right of the vehicle median plane. The pg boom, in 3 sections for a maximum length
of 9 m, is on the median plane of vehicle. The mmaxn loading mass of the telescopic boom is
5500 kg. The telehandler was equipped with hydredpmatic active cab suspension system
designed to reduce vibration magnitude along tinecat direction, from the buttock to the head (z-
axis) of the driver. The cab is joined to the cigmefthe vehicle by front and rear mechanical
articulated connections. They make possible theaalsplace 120 mm vertically under the force
of the active dumper, placed between the chassdishenfloor of the cab. The system is covered by

Merlo patent.
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Figure 1. Example of telehandler (from ISO 5053798

2.3 Whole-Body Vibration

Vibration level was measured using three ICP acogieters mounted respectively on the driver’s
seat, on the floor of the cabin close to the béskeoseat, and on the chassis of the telehantier.
accelerometer on the seat was a set pad. Theivibtavels were measured along the three
orthogonal directions (x, y and z) according to¢berdinate system for a seated person (ISO 2631-
1:1997). However, since the vertical vibrations asaally dominant in vehicles (Basri & Griffin,
2013), they significantly contribute to vibratioragnitude exposure of the driver (Cann, Salmoni &
Eger, 2004), and the active suspended cab systefneles designed to operate along this direction,
only the vertical direction (z axis) was considefedthe purposes of the present paper.

The signal from the three accelerometers was stamdtie laptop using a National Instruments data
acquisition card (NI19234). Later on the data wareessed using a LabView software (National

Instruments, 2012).

2.4 Subjective ratings
Subjective measures were collected by means oéstignnaire, developed considering the
instrument by Bovenzi et al. (2006) and the scglpally used in the subjective measurements of

comfort (for a review, de Looze et al., 2003; Me&t&ewari, 2000). The questionnaire submitted

9



201 to the participants was composed of 3 items, tesastheir perception of comfort, the possible body
202 discomfort, and the jolts perceived while drivifgyst, the participants were asked to rate the

203 comfort perceived regarding vibrations during et on a 11-point rating scale, ranging from 0
204  (no comfort at all) to 10 (extreme comfort). Thérey were asked to identify body areas

205 experiencing little/moderate/hard/very hard disammndluring the trial on a body map (Corlett &

206 Bishop, 1976). Finally, the participants were astethdicate how often (never, sometimes, often),

207 they perceived, while driving the telehandler, aodholts to lose contact with the seat.

208 2.5 Anthropometric parameters

209 Stature and body mass were measured for each phttieipants in the study, in accordance with
210 I1SO 7250-1 (2012) guidelines regarding variablecdpsons, instruments and measurement

211 conditions. These parameters were then used talatdeach participant’s BMI.

212 The anthropometric characteristics of the partigipan the study are reported in Table 1. The
213 sample was a good representation of the anthropmmatiability of the Italian population (ISO
214 7250-2, 2010; Masali, 2013), with participants frboth the 5-18 and the 90-95 percentiles

215 (some participants were even above tHB @&rcentile with regard to body mass).

216 Table 1. Anthropometric characteristics of the atipipants.

Mean SD Range
Body mass (kg) 88.6 18.5 64-129
Stature (mm) 1751 72 1600-1860
Body Mass Index (kg/fy  28.9 5.8 22-42

217

218 2.6 Testing procedure
219 Objective measurements were carried out whiledte@haindler was driven over a 100 m ISO

220 smooth track (ISO 5008:2002). Previous studiesinoefl that the use of ISO-5008 track provides

10
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a reasonable basis for comparison of the WBV talvthe operator of a field wheeled-vehicle is
exposed, due to the high repeatability of vibratiata (Cavallo et al., 2005; Deboli et al., 2012;
Scarlett et al., 2005; Zehsaz et al., 2011).
Each of the participants drove the telehandlehen$0O-smooth track in 4 different conditions:

1. Trial 1 (Low, OFF): speed of 5 kph, deactivatedpsunsion

2. Trial 2 (Low, ON): speed of 5 kph, activated suspen

3. Trial 3 (High, OFF): speed of 12 kph, deactivatadpension

4. Trial 4 (High, ON): speed of 12 kph, activated srspon
Participants were not informed that the telehanclérwas equipped with a suspension system to
avoid any influence on their subjective ratingstdée the trials, each participant performed a
training trial during which he had the possibilibyadjust the seat, so, in any of the test conastio
the seat suspension travel was set with vertigakadents for custom comfort. The fore/aft
adjustment of the seat was set to fit the most odrpbsture for each participant. After each taial

research assistant administered the questionnaire.

2.7 Data processing

Vibration data were processed to obtain root-mepra® (rms) accelerations in ménd the
frequency spectra in one-third octave band ranfymg 0.5 to 80 Hz. This range is indeed
interesting from a hygienist’s point of view as oejed in the 1ISO standard 2631-1 (1997). The
signals were therefore weighted using the weightunge W for the z axis as described in the
same standard. These aspects are developed ihidetaiedicated paper while the present paper
focuses on vibration transmissibility (ISO 10326992).

Vibration transmissibility was evaluated by compgtthe floor/chassis and the seat/chassis
indexes. The indexes were calculated followingrttethod used for the SEAT (Seat Effective
Amplitude Transmissibility) factor, as stated bg 8N 13490 (2001) and ISO 7096 (2000)

standards.The floor/chassis index accounted foetfteets of the cab suspension system, whereas

11
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the seat/chassis index accounted for the jointtesffef seat and cab suspension systems. The
indexes were calculated by a 2 steps process.ifBtistep was the calculation of the floor/chassis
and seat/chassis rms ratios for each participaegch of the third octave frequency bands taken
into consideration, and in any of the 4 testingdtbons. Then, in the second step, the ratiosén th
frequency range 2-8 Hz were summed up for anyeptrticipants in each of the testing
conditions. In the 2-8 Hz range the human vibrasiensitivity is the highest (Griffin, 1990).

2.8 Statistical analyses

Descriptive statistics were computed for the viloraindexes, the comfort ratings, the body
discomfort areas and perceived jolts.

Then, Pearson correlations were calculated, tosiigegte the associations between vibration
indexes and between vibration indexes and comdirigs, within each trial and across the trials.
Finally, to test for differences in vibration indesxand comfort ratings with activated and
deactivated system at each forward speed, a s¥nepeated measures Analysis of Covariance
(ANCOVA) were carried out on each variable, at lawd high forward speed, while controlling for
the BMI of the participants. Vibration indexes ahd comfort ratings were within-subject factors
and the BMI was a covariate.

Prior to analysis, diagnostic and normality tesésernconducted. Scatter plots and histograms were
generated and Shapiro-Wilk tests performed fovtheation indexes and the comfort ratings.
Floor/chassis indexes at 5 kph and 12 kph with tilested system, and comfort ratings at 5 kph
with activated and deactivated system showed ativegekew. Transformations were unsuccessful
in achieving normality for floor/chassis indexed atkph with deactivated system and comfort
ratings at 5kph with deactivated system. Howew#opéng the same approach as reported by
Govindu and Reeves (2014) and since the analysesfasthe study are known to be robust with
regard to normality assumptions (Howell, 2010),dh&a were used in their raw format.

Statistical analyses were performed using StagisBackage for Social Science 21 (SPSS

software).
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3. RESULTS

Table 2 reports descriptive statistics of the shagisis and floor/chassis vibration indexes and
comfort ratings with activated and deactivated saspn system at the two speeds. As can be seen,
when the suspension system was activated, vibraaomsmissibility decreases, in particular when
considering the floor/chassis index at high spekgher ratings of comfort were reported with

activated system, in particular at high speed.

Table 2. Descriptive statistics of the seat/chamsdsfloor/chassis vibration indexes and comfort

ratings in the four trials.

Parameter Cab N Speed
suspension
system
Low(5kph) High(12kph)
Mean SD Range Mean SD Range
. OFF 16 5.32 1.05 3.92-7.54 5.55 75  4.26-6.95
Seat/chassis
index (m/$) ON 16 4.57 .82  3.66-6.50 385 .81 2.76-5.72
OFF 16 6.81 14 6.41-6.96 7.29 .30 6.60-7.55
Floor/chassis
index (m/g) ON 16 5.47 .38  4.53-5.96 405 .14 3.83-4.28
OFF 16 7.13 1.93 3-9 519 2.37 1-10

Comfortrating 16 781 204 310 744 199  4-10

Considering then the data coming from the body rBgmrticipants reported body discomfort after
the trials with deactivated system (Trials 1 andi®) 4 after the trials with activated system ([ria

2 and 4). Discomfort was reported mainly arisimngnglthe lumbar and neck/shoulders regions (see
Figure 2) and it was particularly reported for TBaThis was the condition with high forward
speed and deactivated suspension. A qualitativigsisa@f Figure 2 shows that, at low speed, there

was a slight difference in reported discomfort vathivated and deactivated system (Trials 1 and

13



288

289

290

201

292

293

294

295

296

297

298

299

300

301

302

303

2), whereas some more consistent differences cabd®rved at high speed (Trials 3 and 4). In
particular at high-speed with activated systemal) there was not any discomfort reported for
knees and ankles. Similarly, in the same triakc@hsfort at neck/shoulders and lumbar area
decreases.

Overall, when the cab suspension system was agtiyvtitere was a slightly reduced number of
participants complaining about body discomfortfiré to 4 participants) and a reduced intensity of
reported discomfort (from moderate to little), wihme exceptions in the lumbar area (two

participants still reported little or moderate disdort with activated system).

N N
p ¢ P e
(* @] ) (o ‘\ﬂ :
el Beafl Bl Bt
|"'|.f'1||*.__'.'l; |"-.j.|. |'-'||e'1|I '_._'*]'-{'! I-:f.'o",_,_i]u‘j"I rl,f'l ., I |
dele 4 derte el
\'l" '\,“['f “u.'i‘/ [
\ \ | \ [
) D" J 7
Trial 1 Trial 2 Trial 3 Trial 4

Fig. 2. Body maps (Corlett & Bishop, 1976) with & of discomfort reported by the participants
for different body parts during the four trialsg(stlittle discomfort; small circle=moderate
discomfort).

Concerning hard jolts while driving, all the paipiants reported no jolting during low speed trials
(Trial 1 and 2). In Trial 3, 7 out of the 16 paip@nts reported having experienced some hard jolts
while driving, whereas 9 participants reported oltsj In Trial 4, 3 participants reported somegolt

while 13 reported no jolts.

14
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Pearson’s correlation coefficients were calculated betweenW\Beasurements, comfort ratings
and the BMI for each of the 4 trials. The analgtiswed significant correlations between the BMI
and the comfort ratings in Trials 1, 2 and 4. Olleadjective indexes and comfort ratings
significantly correlated with themselves acrosstdsting conditions. No significant correlations
were found either between vibration transmissipilitdexes or between comfort ratings and

objective measures (see Table 3).
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Table 3. Pearson’s correlations between vibratiolexes, comfort ratings, and BMI in the four trials

BMI Seat/chassis Seat/chassis Seat/chassis Seat/chassis Floor/chassis Floor/chassis Floor/chassis Floor/chassis Comfort,
Low,OFF Low,ON High,OFF High,ON

Low,OFF Low,ON
BMI - -,309 ,035

Seat/chassis - ,708**
Low,OFF

Seat/chassis -
Low,ON

Seat/chassis
High,OFF
Seat/chassis
High,ON
Floor/chassis
Low,OFF

Floor/chassis
Low,ON

Floor/chassis
High,OFF
Floor/chassis
High,ON
Comfort,
Low,OFF

Comfort
Low,ON

Comfort,
High,OFF

Comfort,
High,ON

High,OFF

-,227

748%

,556*

High,ON

-,126

,538*

,168

,621*

Low,OFF

,097

,258

271

,435

347

Low,ON
-,303

,388

440

,459

,215

,738**

High,OFF
,010

111

,263

448

, 101

,870**

,801**

High,ON
296

-,.399

-,223

-,101

-,209

,364

,238

,480

,552*

,006

171

-,139

-,388

,156

-,058

144

,074

Comfort

,603*

076

,183

-,154

-,454

,255

-,009

,255

,291

,922%*

Comfort,

,261

,084

-,002

-,019

,064

,065

-,319

-,058

-,175

,490

,435

Comfort,

, 720**

,140

,388

151,

-,035

,083

-,094

117

,003

, 129

724%

,459

Note.* p<.05; * p < .01.
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314 At low forward speed, the ANCOVA showed a signifitanain effect of the Trial on the

315 seat/chassis indeE((L14)=7.95;p=.014;;72:.362), with a lower transmissibility with activate

316 system EMM=4.57,ESD=0.21), as compared to deactivated systeMNI=5.32,ESD=0.26). The
317 BMI reported a main effect on the comfort ratirﬁgl(14)=7.48;p=.016;;72:.348), with an increased
318 perception of comfort at higher levels of BMI, witbth deactivated and activated suspension
319 system =.185, t(14)=2.48p=.027 and;=.214, t(14)=2.83p=.013, respectively).

320 No significant interaction effects between Triatldahe BMI on any of the objective indexes

321 (seat/chassidi(1,1474.05;p=.064; floor/chassid:(1,14=3.28;p=.091) and comfort ratings

322  (F(1,1470.64;p=.436) were found.

323 At high forward speed, the ANCOVA showed a sigrifitmain effect of the Trial on the

324 seat/chassis indek 1474.85;p=.045;,°=.257) and on the floor/chassis ind&x (14=93.23;

325 p=.000;7°=.869). The transmissibility for the seat/chasstek was lower with activated system
326 (EMM=3.85,ESD=0.21) than with deactivated systeBEMM=5.56,ESD=0.19). Similarly, the
327 transmissibility for the floor/chassis indexNIM=4.05,ESD=0.03) was lower compared to

328 deactivated systenEMM=7.29,ESD=0.08). The BMI showed a main effect on the comfating
329 (F(1,14)=6.09;p=.027;772=.303), with an increased perception of comfohigher levels of the
330 covariate, when the suspension system was actiy@gte2b0, t(14)=3.88, p=.002).

331 No significant interaction effects between Triatldhe BMI on any of the objective indexes
332 (seat/chassi$(1,1470.14;p=.717; floor/chassis(1,1470.29;p=.600) and comfort ratings

333  (F(1,1472.04;p=.175) were found.

334 4. DISCUSSION

335 The aim of the study was to investigate the effet@n active cab suspension system fitted on a
336 telehandler on WBV and operators’ comfort, accaumfor their anthropometric variability.

337 Adopting an ergonomic approach, both the vehictétae operator were taken into account,

338 considering both objective and subjective pararseter
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339 From a mechanical point of view, the activatiortte cab suspension system proved to be effective
340 in reducing the vibration transmissibility to thever. At both low (5 kph) and high (12 kph)

341 forward speed the activation of the system redticedibration transmissibility from the chassis to
342 the seat. Moreover, at high speed, it led to aifstgimt reduction of vibration transmissibility als
343 at the floor/chassis level. Thus, the system wiesebe per sg independently from the effect of
344 the seat suspension. Considering urgent safetgssslated to WBYV in field machinery (Mayton et
345 al., 2008), this result stresses the importan@dopting such systems and encourages further
346 studies in the area.

347 As concerns the subjective assessment, resultseshihat the activation of the suspension system
348 did not affect the perception of comfort by thetggpants, whereas the Body Mass Index had a
349 significant effect on the increase of comfort rgirat both low and high speed. The positive effect
350 of BMI on comfort improvement is consistent wittepious evidences reporting a decreased

351 vibrational exposure for people with higher BMI (Ma&t al., 2011; Leino et al., 2006). This is an
352 important result if we consider that people with BMIues of overweight and over actually

353 represent the major part of agricultural and althemoving operators (WHO, 2000, 2004).

354 However, the analysis did not show any interacéfiact between the trial and the BMI, suggesting
355 that the activation of the suspension system diglay any role in enhancing the effects of the
356 higher BMI in improving the comfort perceived byetbperators. The ongoing changes in

357 agricultural population (more women, elderly andyrant workers) may ask for deeper

358 investigation of the relation between objectivehjsative and anthropometric parameters, by

359 involving participants representing the lower eatlthe BMI variability (underweight and normal
360 weight conditions). In this way, more data will eailable to design suspension systems that can
361 be effective in reducing WBYV and promoting comfiant these specific categories of users, in

362 accordance with the ergonomic perspective of theensal design (Kroemer, 2005).

363 Although there was a small number of observatidimitiperceived jolts, the analysis of jolting

364 indicated that, at high speed, the activation efgbspension system did not wholly eliminate
20
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perceived jolting. This issue should be furthereistigated in larger samples, since jarring and
jolting exposure is an important risk for musculelgkal symptoms among farm workers (Mayton
et al., 2008).

Data about body discomfort suggested that some leamgp remained, even when the cab
suspension system was activated, in the neck/sboatda and lumbar area. This is an interesting
result if we consider that avoiding operator distmmns as important as improving the efficiency
and the performances of the machinery (Cavalld. @04 4a; Krause & Bronkhorst, 2003) and it
should be examined more in depth by adopting ttlenigue applied by Yoshimura et al. (2005) in
their laboratory experiment about bio-dynamic rexsas to vertical vibration.

The study did not show any correlations betweenratibn indexes and subjective ratings of
comfort confirming the result from previous studmsvibrational comfort, which reported weak or
no relations between these two types of data (ded.et al., 2003; Kujit-Evers et al., 2003). In a
future development of the research it will be usefumeasure also the vibration transmissibility of
the human body from the seat surface to the spmlamn and to the head, following the method
adopted by Yoshimura et al. (2005), to better cahend and examine these issues. Moreover,
other factors are reported in the literature asrfgpan influence on the perception of vibration and
comfort: for example, some behaviors and postubesni¢ et al., 2002) can play an important role
in reducing vibration magnitude. Thus, this isshieusd be further investigated by increasing the
range of individual variables considered.

Beyond its strengths, some limitations of the pneseudy should be taken into account. The
participants in the study were limited to 16 indivals, due to practical difficulties in gathering
people from field machinery population in an expemntal setting. Indeed, they are spread across
the country and have different paces of work. burfe research it would be useful to increase the
sample size to obtain more generalizable resulteerGhe results of this study, it would be useful
also to stratify the sample for underweight, oveglveand obesity conditions, to better explore the

role played by human body in affecting technicabmgements and subjective ratings. Finally, data
21



391 were collected on one telehandler only. When thestigation was carried out, to the knowledge of
392 the authors, Merlo was the only manufacturer hasungh active cab suspension system available
393 onits vehicles. Nevertheless, different modelshwifferent characteristics, such as mass, mass
394  distribution, wheelbase, maximum dimension of #ledcopic boom are available. Such different
395 vehicles may be considered in a future investigatio

396 5. CONCLUSION

397 WBYV exposure is a well-known risk for developing BiSand it is an important source of

398 discomfort, which can affect performance and leaishjuries. For these reasons, WBV has to be
399 constantly taken into account and monitored, bymaed different preventive measures and

400 solutions (Tiemessen et al., 2007). This is palditytrue for field vehicles users, given the work
401 they had to perform and the time spent on the macfMayton et al., 2008).The present study

402 showed that an active cab suspension system moantadelehandler was effective in reducing
403 vibration transmissibility but it did not affectelperception of comfort in a group of professional
404  users.

405 An ergonomic approach was adopted in the studygidight consistencies and discrepancies

406 Dbetween different sources of data about WBV expoauad comfort, coming from both the vehicle
407 and the users. Anthropometric characteristics ®uers have been considered to investigate which
408 range of physical variability was better protedsgdhe suspension system. At both low and high
409 speed, individuals with higher BMI reported higlsemfort levels, but this was not affected by the
410 activation of the cab suspension. In addition,dhie suspension system did not eliminate

411 discomfort: some neck/shoulder and lumbar com@aeems to remain.

412  The results of the study are not conclusive anthéurinvestigations are needed to improve

413 vibrational comfort in telehandler users. Howevke present study suggests that the operators,
414  given their wide range of physical variability, maged more adjustable or customizable WBV

415 reduction systems: this may be particularly rel¢¥anthose users who have characteristics near to

416 the extreme end of the variability (e.g. aged peopbmen or migrant workers), whose presence is
22
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increasing among the workforce population of theettgped countries (de Haan & Rogaly, 2002;

De Schutter, 2013; limarinen, 2006).
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