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Three-dimensional chemotaxis-
driven aggregation of tumor cells
Alberto Puliafito1, Alessandro De Simone2, Giorgio Seano1,3, Paolo Armando Gagliardi1,4, 
Laura Di Blasio1,4, Federica Chianale1, Andrea Gamba5,6,7, Luca Primo1,4 & Antonio Celani8

One of the most important steps in tumor progression involves the transformation from a 
differentiated epithelial phenotype to an aggressive, highly motile phenotype, where tumor cells 
invade neighboring tissues. Invasion can occur either by isolated mesenchymal cells or by aggregates 
that migrate collectively and do not lose completely the epithelial phenotype. Here, we show that, in 
a three-dimensional cancer cell culture, collective migration of cells eventually leads to aggregation 
in large clusters. We present quantitative measurements of cluster velocity, coalescence rates, and 
proliferation rates. These results cannot be explained in terms of random aggregation. Instead, a 
model of chemotaxis-driven aggregation – mediated by a diffusible attractant – is able to capture 
several quantitative aspects of our results. Experimental assays of chemotaxis towards culture 
conditioned media confirm this hypothesis. Theoretical and numerical results further suggest an 
important role for chemotactic-driven aggregation in spreading and survival of tumor cells.

Multiple acquired genetic mutations drive the gradual alteration of normal growth control mechanisms 
that leads to cancer. Growth regulation in healthy individuals is realized through the controlled cellular 
response to different stimuli such as growth factors, cell-matrix or cell-cell contact. These components 
can be turned into mediators of unrestrained cell proliferation through either autocrine or paracrine 
mechanisms1–3.

Once a tumor starts growing, other cellular functions become decisive for the tumor to outcompete 
the neighboring normal cells and ultimately evade the primary site. One of such functions is the cell’s 
ability to move in response to stimuli: indeed the migratory machinery is often found to be altered in 
tumors4–7, and can be exploited by tumor cells to increase survival probability or gain selective advan-
tage8–10. Furthermore evidence pointing at tumor invasion and metastasis as an analogous of normal 
morphogenesis is compelling11,12.

About 90% of human cancers are carcinomas, i.e. malignancies originating from epithelial tissues, 
and a widely accepted view of tumor progression in carcinomas involves the growth of a tumor in situ 
followed by a transformation of cells which undergo an epithelial to mesenchymal transition (EMT)3. 
Isolated highly motile tumor cells are then able to move and spread throughout the entire body depend-
ing on the matching between their transcriptional background and/or acquired genetic alterations and 
the visited environment.

However cancer cells can migrate as collective units13–16. While in vivo evidence for isolated migrating 
cancer cells has been elusive, several indisputable examples have been provided to show that cells move 
as groups both in normal development and in cancer models17–20. The molecular fingerprints of these 
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phenotypes are not well defined yet and are thought to be partially overlapping with innate abilities of 
epithelial cells14,21,22, indicating that cancer invasion by collective migration might not require the com-
plete loss of epithelial markers.

An important question regarding collective migration is whether it can confer a selective advantage as 
opposed to pure mesenchymal migration. In principle, aggregation of cells into clusters might represent 
a selective advantage over single cells in many different ways23. The capability of tumor cells of moving 
as a cluster has been related to the ability to escape certain facets of the immune response and to be 
advantageous after extravasation, where adhesion-dependent signaling is not present and mechanical 
strain can be relevant8,24,25. For instance, homotypic aggregation of tumor cells has been described previ-
ously to be of paramount importance in the development of breast cancer as it might prevent anoikis26. 
Recently, it has been demonstrated that multicellular aggregates can form from heterogeneous cancer 
cell populations at the primary site. These clusters can be detected in the bloodstream and, albeit more 
rare than single cells, have much higher morbidity27. Here, we report a novel growing phenotype found 
in a cancer cell (CC) line. Cells seeded in three dimensional BME gels as single cells are able to grow 
as cluster and move towards each other. Close clusters aggregate into larger clusters and cluster velocity 
and proliferation depend on cell density. We present quantitative measurements of aggregation dynam-
ics, rates of proliferation and velocity of clusters. Our experimental results indicate that the cell seeding 
density influences the average velocity of cell migration, but not the overall time-scale of the aggregation 
process. This observation is in striking contrast with what would be expected if aggregation was due to 
random, undirected motion. In this latter case one would observe density-independent migration rates 
– as clusters would move independently of each other – and a speed-up of aggregation with increasing 
number density – as the cluster-cluster encounter rate would be higher. Our results seem instead to point 
at some “action at a distance” between clusters at the origin of the coalescence process.

What drives aggregation then? How is it possible that aggregation rates are independent of density? 
To answer these questions we formulated the theoretical hypothesis that cells or cell clusters attract 
each other by following a gradient of a diffusible factor. The model of chemotaxis driven cell aggrega-
tion (CDA) explains our quantitative measurements and allows to predict several distinctive dynam-
ical features. We discuss the experimental results and predictions in view of the potential advantage 
that homotypic aggregation might have in tumor spreading and survival. Theoretical hypotheses and 
approximations are then confirmed by means of numerical simulations and corroborated by further 
experimental evidence.

Materials and Methods
3D cell culture.  Cell lines were cultured in RPMI media (PC3, DU145, LnCaP) or DMEM 
(MDA-MB-231) supplemented with 10% Fetal Bovine Serum, Penicillin/Streptomycin and L-Glutamine. 
Cells were kept at 37 °C under 5% CO2 humidified air. For 3D cell culture cells were either trypsinized, 
diluted to the desired concentration and directly seeded in BME gel or preaggregated overnight in low 
cell attachment plates with 1% methylcellulose solution. BME gel was prepared as follows: a layer of 
Growth Factor Reduced (GFR) Matrigel (100 μL, rediluted to a final concentration of 8 mg/mL) was 
deposed on the bottom of a standard 48-well plate. A second layer of GFR-Matrigel (same amount and 
concentration), pre-mixed with single cells or aggregates, was deposed on the top of the previous layer, 
and a third layer of GFR-Matrigel was deposed on top of these two (same amount and concentration). All 
operations previous to polymerization were conducted on ice to avoid BME solidification. After polymer-
ization, each well was filled with 500 μL culture media (M199 with 10% FBS,Pen/Strep and L-Glutamine). 
The plate was then kept in the incubator and media were replaced daily. Timelapse videomicroscopy 
experiments were conducted on a standard inverted bright-field microscope equipped with a motorized 
stage and an incubator to keep the plate stably at 37° and 5% CO2. For longer timelapse experiments, 
cells were kept in the incubator and imaged once a day for 20 or more days.

Proliferation assay.  Data from Fig.  1F were generated by applying Click-It Edu technology 
(Lifetechnology) to 3D cell culture. Briefly, BME-embedded cells were fed with the intercalating agent 
(EdU) for 6 hours at indicated seeding time. BME was then dissolved by incubating with Cell Recovery 
Solution (BD) and cells were then fixed in 4% PFA, stained with the EdU detection reagent and analyzed 
by flow cytometry. The measured fraction of cells positive for EdU incorporation is reported, corre-
sponding to the proliferating population.

Chemotaxis assay.  Chemotaxis assays were performed with Transwell Permeable Supports (BD) cul-
ture plate inserts with 8 μm pore size.

30000 cells were plated on top of the insert in 400 μL of media (serum free or other as indicated). The 
lower chamber was filled with 750 μL of conditioned media (or other, as indicated). After 24 hours, cells 
sitting on top of the insert were scraped and cells sitting on the bottom of the insert were then fixed with 
2.5% Glutaraldehyde and stained with crystal violet in methanol. Images were acquired on an upright 
microscope and analyzed by means of a custom written Matlab algorithm. Each experiment was con-
ducted 3 times with at least 2 technical replicates and different batches of conditioned media were used.
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Figure 1.  CC spheroids grow, migrate and aggregate in BME embedded 3D cultures. (A) PC3 cell 
spheroids were obtained under overnight culture in low-attachment conditions. Small heterogeneous 
clusters were then embedded in BME gels. Cells were then imaged by means of time-lapse imaging and 
representative snapshots at 0, 40 and 80 hours are shown in the first row of images. The images show clusters 
that emit protrusions and move toward each other forming larger clusters. The white square in the middle 
of the leftmost panel is enlarged in the inset at the top right corner of the three snapshot to illustrate one 
aggregation event. Scale bar is 200 μm. (B,C) The second and third row show snapshots of time-lapse images 
at indicated times obtained by single-cell seeding of PC3 embedded into BME at low and high density 
respectively. Seeding densities calculated a posteriori are 35 and 113 cells/mm3 respectively. Single cells move 
and grow as clusters that merge into larger clusters. Scale bar is 200 μm. (D,E) DU145 cells were seeded at 
23 and 77 cells/mm3. While cells do grow as spheroids, they do not move or aggregate. Rare merging events 
are observed whenever clusters come into contact by pure growth. (F) The fraction of proliferating cells 
was measured by means of an EdU-CLICK assay. Each curve represents, for each given seeding density, the 
percentage of EdU positive cells at each time of the experiment. Densities are 5 (blue squares), 10 (dark blue 
circles), 20 (green triangles), 40 (brown diamonds) cells per mm3. A peak of proliferating cells occurs at 
different times depending on seeding density. In wells where the seeding density was high the proliferation 
peak is reached before than wells where cells are sparse. The color-bar is common to panels (F,G). (G) To 
estimate cells doubling times we performed growth measurements on clusters by means of image analysis. 
Measured densities are 21.7 (green diamonds), 47.3 (brown squares), 72.0 (dark red circles), 112.9 (red 
triangles) cells per mm3. Indeed cluster size doubling time has a peak occurring at different time from 
seeding depending on seeding density and peak times are similar to those found in panel F. Denser clusters 
tend to reach the peak faster than sparse clusters.
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Image processing and quantifications.  Digital images were processed by custom computer algo-
rithms written in Matlab to extract quantitative data on cell aggregation, proliferation and velocity28. To 
extract cluster size, images were first corrected for non uniform illumination. To this end, unprocessed 
images were convoluted with a flat kernel to obtain a background image. Then the original image was 
divided by the background to obtain a corrected image. Afterwards, to equilibrate differences in the 
intensity due to out-of focus effects, intensity profiles were centered around the mean and used as the 
argument of a hyperbolic tangent. At this point, single cells were detected by high-pass filtering images 
while large clusters were simply identified by thresholding was used to obtain a binary image, which was 
then labeled and from which quantitative data could then be extracted.

To obtain cell or cluster velocities we made use of a tracking technique frequently used in hydrody-
namics called Particle Image Velocimetry or PIV. Briefly, cells or clusters were identified either automati-
cally or semi-automatically. A small image tile containing the object to track is cropped from the original 
image and the best match in the next frame is found by computing spatial cross-correlation function.

Data analysis.  Data from Fig. 1G were obtained by calculating the total area of clusters in a field of 
view over time, computing the time derivative of the logarithm and multiplying by 1.5 to account for the 
fact that growth is proportional to the volume of clusters and not surface.

To fit and rescale the data on cell aggregation shown in Fig. 2, curves for each aggregation assay were 
fitted to: τ θ θ( , , , ) = ( − ) + ( − ) τ−( − )/f t c t c t t t t e[ ]t t

0 0 0
0 , where θ is the Heaviside function. Once 

fitted, curves were rescaled to obtain Fig.  2B and halving times of clusters calculated as τ τ= ( )ln 22  
and shown in Fig. 2C.

The theoretical cell/cluster velocity distribution (Fig.  2D) is obtained by a simultaneous fit of the 
velocity distributions for all cluster densities (quantile method). To generate data from Fig. 3G we ran a 
simulation with the same parameters of Table 1 and hypothesized that each cell in a cluster proliferates 
with a rate: = ( / )/ + ( / )r m r c c c c[1 ]i i i i0 0 0

2 , where mi is the number of cells in the cluster i, ci is the total 
concentration felt by the cluster, c0 is a reference concentration. Below c0 the proliferation response 
decreases with the ligand concentration, while above c0 it decreases (c0 =  109 mm−3) and r0 is the basal 
cell proliferation rate, chosen to be 3 days−1. The dependence of the proliferaton rate from the concen-
tration of the chemoattractant is justified by the data presented in Fig. 1F,G, where higher seeding density 
(i.e. higher concentrations) are correlated with higher proliferation. The doubling rate is defined (analo-
gously to Fig. 1G) as τ = /d dtlo g M2 2 .

Results
BME embedded CCs grow into larger aggregates in culture.  We first assessed the ability of a 
human prostate carcinoma cell line with high metastatic potential, the PC3 cell line, to grow and invade 
when embedded in BME gels. Spheroids of PC3 were generated by growing cells under non-adherent 
culture conditions and then embedded, resulting in multicellular aggregates in BME gels. This procedure 
generates a spatially uniform distribution of clusters of heterogeneous size (See SI Movie 1). Both single 
cells and cell clusters can move within the matrix by developing protrusions. Typical observed velocities 
are of the order of 1 μm/h. By time-lapse microscopy we recorded the behavior of cells at longer times 
and observed that clusters tend to aggregate into larger structures on timescales of the order of several 
days. Aggregation occurs through long protrusions and is followed by a reshaping of the aggregated 
cluster into a new cluster of round shape. Snapshots of aggregation events are shown in Fig. 1A–C.

To gain further insights into the dynamics of this process we performed several time-lapse experi-
ments by seeding cells as single-cell suspensions at different initial densities (see SI Movie 2). Single cells 
start growing after a short lag-phase (1–2 days), with duplication times of the order of 2 days. Some 
clusters actively move either in an apparently random direction or toward other clusters. After several 
days clusters that do not touch each other produce protrusions that allow aggregation. Aggregation of 
larger clusters (up to several hundreds of μm) is also observed. At the end of the culture cell aggregation 
slows down and eventually stops.

Notably, the ability to aggregate in 3d culture is not common to all CC lines, as shown in Fig. 1D and 
SI Movie 3–4. For example DU145 and LnCaP cells, which both grow into clusters when embedded in 
BME gels, are not able to aggregate. Interestingly, these two CC lines are less metastatic compared to PC3 
cells29. The same phenomenon was observed in MDA-MB-231 cells, a well characterized breast cancer 
cell line with invasive and metastatic ability (see Fig. SI2C and SI Movie 5).

Cell proliferation and cluster growth rates.  Cells proliferate when embedded, as can be clearly 
seen by looking at the size of clusters shown in Fig. 1B. To analyze the relationship of cell proliferation 
on seeding density and time we performed a 5-ethynyl-2′ -deoxyuridine (EdU) incorporation assay on 
aggregating cells (see Fig.  1F). The number of proliferating cells reaches a peak after several days in 
culture. The peak occurs earlier for higher seeding density and later when cells are sparsely seeded. We 
also measured the cluster sizes through quantitative image analysis to investigate whether the clusters’ 
volumes followed a similar time-course. As shown in Fig. 1G, we indeed found that large seeding den-
sities induce high volumetric growth-rates earlier than low densities.
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Aggregation rates are independent of seeding density.  To better characterize aggregation and 
its cause, we measured the aggregation rates for several runs at different seeding densities. Results are 
shown in Fig.  2A–C. Aggregation rates are essentially independent of initial density, i.e. the number 
of clusters halves in about 9 days for all densities we considered. Initial densities range from 10 to 
200 cells per mm3. This choice is motivated by the fact that too sparse cells do not aggregate, presumably 
because they do not grow well and are too far away from each other (on average 500 μm). On the other 
hand, when cells come too close initially (below 100 μm), they tend to spontaneously aggregate as soon 
as they touch each other and it is difficult to separate active aggregation from contact. We could not 
measure aggregation beyond three weeks of time as at this stage cells proved to suffer culture conditions 
and we could not detect well all the structures present in the images. Indeed single cells started to detach 
from clusters and basically all the field of view was covered with clusters or cells.

Velocity distributions depend on number cell density.  Cell velocity was measured in early stages 
of aggregation, after seeding. PIV techniques were used to measure the velocity distribution of cells 
for different seeding densities (see Materials and Methods and SI text for further details). As shown in 

Figure 2.  Dynamics of CC spheroids aggregation. (A) The number of objects in the image (either cells 
or clusters) was measured to calculate density at any time of time-lapse movies of the aggregation assays. 
Semi-automatic image analysis methods were used to count the number of objects. Each curve represents 
a different independent experiment. (B) Aggregation curves were fitted independently, rescaled and time-
shifted with the values of the obtained parameters. Curves are time-shifted depending on the value of the fit 
of the lag-times, and rescaled according to the fitted seeding density. Shades indicate 1σ (blue), 2σ (red), 3σ 
(green). (C) Aggregation times, i.e. halving time of the number of objects in each field of view was measured 
for several densities (N =  63). The blue dotted line is the median of the data, τ2 =  8.93 days, plotted as a 
guide to the eye. Each box is the box-plot of the data contained in the corresponding logarithmic bin of cell 
density. Red lines are medians, blue boxes are 25th and 75th percentiles, and whiskers are the most extreme 
points. The continuous black line represents the function x−1, plotted here as a reference, as this would be 
the dependence of the time from density in the case of pure random aggregation. (D) Velocity of cells/
clusters measured at early time-points of the aggregation assay. Densities are 21 cells/mm3 (red squares), 
31 cells/mm3 (blue circles), 59 cells/mm3 (green triangles) and 189 cells/mm3 (cyan diamonds). Here p(vx) 
indicates the probability density function (PDF) of the variable vx. The PDF of the components vx and vy 
of the velocity was found to have heavy tails (power law decay) and to be function of the seeding density. 
Denser cells move slower on average than sparse cells. The experimental velocity distribution is compared 
with the predicted Holtsmark distribution (solid line) with width v* =  2.8 · 10−3 n−1/3 where n is the cluster 
density.
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Figure 3.  Theoretical and Computational results on chemotaxis driven cell aggregation. (A) Computational 
model of chemotactic driven aggregation. The simulation volume is seeded with clusters (in red) that 
proliferate with a constant growth rate and attract each other by a diffusible chemoattractant as described 
in eq. (1). The clusters are spherical and coalesce upon boundary contact. Periodic boundary condition 
are considered for cluster position and chemoattractant concentration field. The simulation parameters are 
summarized in Table 1. (B) Cartoon illustrating three clusters of different sizes attracting each other along 
the direction of the arrows. The thickness of the arrows indicate the magnitude of the velocity of each clusters 
while the blue color-map indicate the concentration field of the chemoattractant in the space (increasing 
concentration from dark to light). (C) Rescaled density of cells in all clusters as function of time. Several 
different simulations are shown to illustrate the effect of different initial seeding configurations (while keeping 
the density constant) on the total growth. (inset) The prediction of the theoretical model (black dashed line) 
is compared with the results of the computational model (in red). Results from independent simulation runs 
with the same set of parameters are shown. (D) Simulated cluster velocity PDF. The cluster velocity PDF at 
the simulation start (blue circles) agrees with the predicted Holtsmark distribution (black solid line). A slight 
discrepancy for intermediate values is due to finite volume effects and is reduced for a larger simulation 
volume (red triangles). (E) Rescaled density of clusters as function of time. The prediction of the theoretical 
model (dashed black line) is compared with the results of the computational model (continuous colored lines). 
Results from independent simulation runs with the same set of parameters are shown. (F) The Holtsmark 



www.nature.com/scientificreports/

7Scientific Reports | 5:15205 | DOI: 10.1038/srep15205

Fig. 2D, the distribution of velocities has a large core indicating that a large fraction of cells move at slow 
speeds. However, a consistent number of events also occurs at values far beyond the standard deviation. 
We will show below how this is related to the kinetics of aggregation. As displayed in Fig.  2D lower 
densities are associated to larger velocities.

Theoretical model of aggregation.  We noticed that the experimental results could not be explained 
by coalescence under random, independent motion of clusters. Indeed, the dependence of the velocity 
on the initial seeding density rules out the possibility that speeds of different clusters be independent and 
suggests the existence of an interaction between them. Moreover, the observation that aggregation rates 
are independent of seeding density is in stark contrast with the results expected for random aggregation. 
In that case, rates are proportional to the initial number density: the more closely packed the clusters are, 
the faster the coalescence process. Therefore, we explored the possibility that the interaction between 
clusters be mediated by a secreted, diffusible attractant as sketched in Fig. 3A,B. Since the time needed 
for molecules to diffuse across the domain is much faster than cell movement, the secreted factor builds 
up a quasi-steady concentration profile peaked around each cluster. Concentration then decays as the 
inverse of the distance from the center up to an interaction length-scale λ µ= /D , set by the diffusion 
coefficient D of the diffusible factor and its degradation rate, μ, where it starts falling off exponentially 
fast. Reasonable values for these two parameters are D =  10  –  20 μm2/s for D and μ−1 =  0.5 ÷  2 days, 
yielding an interaction length-scale of approximately 1 mm. We therefore predict that chemotaxis-driven 
aggregation should cease whenever initial density is smaller than a few cells per cube millimeter. Indeed 
on the timescale of the experiments we performed (between 10 and 20 days), we could not observe 
aggregation taking place below a seeding density of around 10 cells/mm3.

Within the interaction length-scale, because of the slow power-law decay of the concentration pro-
file (inversely proportional to the cluster-cluster distance), the mean concentration of chemoattractant 
receives contributions by all clusters. As a result, the average level of diffusible factor generated by clus-
ters is spatially uniform and proportional to the production rate of chemoattractant, to the total number 
of cells and inversely proportional to the degradation rate of the chemoattractant (detailed calculations 
are presented in SI).

The molecular mechanism by which cells feel the concentration field and orient their motion is the 
spatially asymmetric activation of cell surface bound receptors by the diffusible ligand. The strength of 
directional signaling (resulting in the orientation and magnitude of migration velocity) can be assumed 
to be proportional to the magnitude of the gradient of the bound receptors density, which is in turn 
proportional to the concentration gradient30,31. For a general monovalent ligand-receptor system, taking 
into account endocytosis and recycling, the surface density of ligand-receptor complexes can be calcu-
lated and yields:

χ χ χ= ( )∇ , ( ) = ( )c c
K
c

v c 10
on

where v is the velocity of cells or clusters, c is the concentration of chemoattractant, ∇ c its gradient, 
χ(c) is the chemotactic coefficient, χ0 is a reference chemotactic responsivity and Kon is a reference con-
centration. This expression holds in a range of concentrations between two limits Kon and Koff that are 
functions of the kinetic parameters of the model (see SI). In this range cells respond to fold-changes in 
concentration, a behavior known as Weber-Fechner law32.

A further consequence of the slow decay of the concentration profile generated by a single cluster is 
that gradients are largely dominated by the contribution of the nearest cluster and interactions between 
clusters are essentially pairwise (detailed calculations are included in the SI text). Thus large values of 
the concentration gradient come from the action of nearest-neighbors while low and intermediate values 
come from the contribution of farther clusters. From eq. (1), and the fact that the background concen-
tration is spatially uniform, it immediately follows that the velocity at any given point is statistically 
distributed in the same way as the concentration gradient. Thus fast migration events are determined by 
close clusters that aggregate while lower and intermediate velocities are on average originating from the 
distribution coming from all clusters. A detailed calculation shows that the statistics of cluster velocity 
follows the Holtsmark distribution33, which has heavy power tails p(v) ~ v−5/2 and width v* ~ n−1/3 where n 

distribution arises from the sum of two approximately independent contributions. The power-law behavior 
for large velocities is produced by the interaction with the nearest cluster (in red). The interaction with the 
farther clusters contributes with a Gaussian term for low and intermediate velocities. The sum of the two 
contributions (dashed green) agrees with good approximation with the exact Holtsmark distribution (in blue). 
(G) To explain the patterns of cell proliferation observed in Fig. 1G, we hypothesized that proliferation depends 
on the concentration of a secreted factor (see main text or SI). The values of density used in the simulations 
are 10 (red), 20 (green), 40 (blue), 80 (cyan), 120 (magenta) cells/mm3. The plot presents the results of several 
numerical simulations for different initial densities, showing a peak of proliferation that depends on initial 
density, analogously to Fig. 1G.
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is the density of clusters and v one of the components of the velocity (see SI). This distribution also arises 
in the study of the gravitational field generated by a random distribution of masses as well as for the elec-
tric field generated by many randomly-distributed charged particles (see34 and refs therein). Remarkably, 
our general model thus predicts the same dependence velocity/density obtained in the experiments, as 
shown in Fig. 3D.

To understand the dynamics of CDA we applied our results to the Smoluchowski aggregation equa-
tion (generalized to include cell replication) and derived the mean rate of aggregation of two clusters 
(also known as the coalescence kernel). This rate is proportional to the production of chemoattractant 
by both clusters and to the chemotactic coefficient χ(c), and is inversely proportional to the diffusion 
coefficient D. The aggregation time, which is calculated by plugging the expression for the kernel into 
the Smoluchowski equation (see SI text) reads:

τ
µχ

=
( )

D
K 20 on

which is independent of initial density, as found in the experiments. This result follows directly from 
the counteracting effects of pairwise coalescence and chemotaxis. On the one hand coalescence is more 
probable whenever clusters are closer and thus denser. On the other hand the denser the clusters the 
slower their speed due to Weber-Fechner response (1). The balance of these two aspects makes the 
aggregation time independent of cell density.

Numerical simulations.  To gain further insights on CDA dynamics, we performed numerical simu-
lations of the aggregation process. The numerical approach has a twofold motivation: on the one hand it 
allows to check several approximations that were made in the theoretical formulation of the model (see SI 
text), on the other hand, it allows exploration of different parameter sets, thereby giving a comprehensive 
view of how CDA might represent for cancer cells an efficient strategy to invade the surrounding space.

Results of our simulations are shown in Fig.  3C–E. In our theoretical modeling of CDA above, we 
have adopted a mean-field point of view, i.e. we have described the dynamics of a representative pair of 
clusters. While this approach is clearly advantageous as it allows to obtain predictions for many-body 
problems that would otherwise be unaccessible, its validity has to be tested. Numerical simulations of 
CDA show indeed that the theory developed above is an extremely good approximation of the dynamics 
of a population of clusters, as shown in Fig. 3F. Therefore we have checked whether the theoretical pre-
dictions obtained for the distribution of the velocity at early aggregation stages is correct, and we have 
found agreement between experiments, theory and numerical simulations.

As a particular case, we have investigated the situation where proliferation depends on the local 
concentration of secreted factor felt by each cluster. This corresponds, for example, to the case where 
cells secrete two factors, one responsible for cell migration and the other for cell proliferation – or when 
one single factor mediates both effects. We assume that the proliferation response of each cell to the 
mitogenic growth factor is increasing up to a reference concentration and then decreases, as suggested 
by our data in Fig. 1F,G. Under this assumption, the mean cell proliferation rate in an aggregation assay 
exhibits a bell-shaped behavior in time similar to the one observed in Fig. 3G. Note that, even though a 
concentration-dependent proliferation induces a feedback on migration through changes in the amount 
of secreted factor, the aggregation kinetics appears to be largely unchanged. (not shown).

Parameter Definition Value

n initial cell density 10 ÷  100 mm−3

a cell diameter 20 μm

α cell proliferation rate 0.02 h−1

β production rate of chemoattractant per cell 100 ÷  1000 molecules s−1

χ0Kon chemotactic response 0.5 μm2 s−1

μ chemoattractant degradation rate 0.1 h−1

Dc chemoattractant diffusivity 10 μm2 s−1

Table 1.   Model parameters. The values of n, a and α were directly estimated from experimental images. 
The value of the diffusion coefficient Dc was taken from refs 49, 50 and represents a typical value of diffusion 
coefficient of a growth factor. The value of μ was estimated by imposing an interaction length of roughly 
600 μm, as measured in aggregation assays. The chemotactic response was estimated by imposing a typical 
velocity of 1 ÷  10 μm/h, by using eq. (1) with a relative gradient µ∇ / = .− − −� �c c m2 5101 3 1. β was 
estimated by imposing that the average concentration at working cell/clusters concentrations to be 
=c nM1 , and by using eq. (29) of the SI text.
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PC3 cells perform chemotaxis toward their own culture conditioned media.  To verify whether 
our hypothesis on the mechanisms of CDA could be true, we collected conditioned media from PC3 cul-
tures and assayed the cells ability to perform chemotaxis towards their own conditioned media. Indeed 
conditioned media collected in serum deprived cultures is able to attract cells (see Fig. 4A) and its effect 
is concentration dependent as shown in Fig.  4B, e.g. dilution of the media of a factor 3 stopped the 
chemotactic effect. Furthermore, to test whether the factor was accumulated over time, we tested differ-
ent batches of conditioned media collected at 24, 48 72 and 96 hrs of culture and obtained an increasing 
number of migrated cells over the control. Results are shown in Fig. 4A,B. As further controls we assayed 
the ability of PC3 cells to perform chemotaxis towards conditioned media collected from cultures of 
other prostate lines finding that indeed, although to a lesser extent, DU145 and LnCaP conditioned 
media attract PC3 cells. On the other hand, LnCaP cells were not able to migrate effectively towards their 
own conditioned media (Fig. SI2A-B). Taken together these data indicate that PC3 secrete a chemotactic 
factor and support the CDA hypothesis as an explanation for the aggregation of PC3 cells.

Discussion
In this paper we presented experimental evidence showing a novel phenotype of CCs. Our results indi-
cate that when embedded in a BME gel basement membrane, CCs can grow as spheroids and aggregate 
forming larger and larger structures. We quantified the dynamics of the aggregation process and found 
that the aggregation time is independent of seeding density. Conversely, our measurements of cell velocity 
at the early stage of aggregation indicate that the average velocity depends on seeding density. Theoretical 
arguments show that the observed behavior is not consistent with aggregation due to the random motion 
of cells and point to a long-distance interaction between clusters. We formulated a theoretical model 
of chemotaxis-driven cell aggregation and found very good agreement between our experimental data 
and the theoretical predictions. We confirmed the plausibility of CDA in PC3 by proving their ability to 
migrate towards conditioned media in a chemotaxis assay.

Figure 4.  Chemotaxis of PC3 cells to autocrine secreted factors. (A) To assess the ability of PC3 
conditioned media to induce chemotaxis of PC3 cells we collected the conditioned media in serum free 
media over different times. We then used the PC3 culture conditioned media in a classical chemotaxis assay. 
Migration of cells from serum free media (indicated as 0 h) towards serum free media was used as a control. 
Conditioned media collected at 24 h, 48 h, 72 h and 96 h is increasingly effective in inducing chemotaxis of 
PC3 cells, with the experimental point at 96 h showing a slight decreased effect. For the sake of comparison 
we performed migration of PC3 towards 0.5% FBS and obtained a median of 6.9 (fold over 0 h migrating 
towards 0 h). The number of migrated cells is normalized with the number of migrated cells in the case of 
serum free (0 h →  0 h, 50.0 ±  3.5 cells, median ±  SEM). Statistical significance was assessed by means of a 
two-tailed t-test. Control vs any of the conditioned media yields a p-value smaller than 10−10. 96 h against 
72 h yields a p-value smaller than 0.05. The box-plot indicates median, first and third quartiles and the 
whiskers extend over the respective quartiles for a length equivalent to 1.5 inter-quartiles length. Each 
point represents one field of view. (B) To verify whether the migration effect was genuine we performed a 
set of control experiments. We diluted the conditioned media collected at 72 hours 3 and 9 fold (72 h:3 and 
72 h:9 respectively) and found that with this dilution cells migrate as in the control. The same experiment 
was repeated with the conditioned media collected at 48 h and diluted 2 and 4 fold (48 h:2 and 48 h:4 
respectively). Furthermore to exclude purely chemokinetic or proliferative effects we repeated the same 
experiments by adding the same medium (i.e. 24 h or 72 h) in both the upper and lower transwell chambers. 
We obtained that indeed the conditioned media has a genuine effect as its presence in both the chambers 
did not induce migration as in the previous conditions. As a reference the same experiment performed with 
0.5% FBS in both chambers gives a median of 2.26.
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One possible explanation for the evolutionary emergence of CDA is the assumption that the diffusi-
ble attractant is also a growth factor. Autocrine loops are ubiquitously found in cancer3,35 and the same 
holds for chemotaxis-related genes and phenotypes. Since it is not unusual to find growth factors to have 
impact on both migration and proliferation, an interesting issue is whether a cell might actually gain 
simultaneously the ability to migrate faster, in a directional way and to replicate faster than its neighbor-
ing cells. This hypothesis would also suggest that, since the concentration of chemoattractant is higher 
where cell clusters are bigger, CDA would also strongly increase cell proliferation in a positive feedback 
loop, thereby conferring an even larger selective advantage to cells that aggregate. A simple theoretical 
argument supporting this hypothesis is presented in the Supplementary Material.

In our study we have not considered the effect of mechanical deformation of the matrix nor that of 
matrix degradation and subsequent variation of mechanical properties. While these aspects are with no 
doubts of clear importance in cancer invasion in general, their effect on aggregation would be secondary 
as it would impact local cluster-cluster interactions, but would not hinder diffusion or drive aggregation 
per se. Several cell lines have been reported to undergo homotypic or heterotypic aggregation in liquid 
cultures in vitro. However within such culture conditions, cells enter in contact due to passive physical 
mechanisms and exploit cell-adhesion molecules to form multi-cellular clusters26,36–40. Therefore, while 
our assay shows the prowess that cells display in actively searching for other cells, aggregation in liquid 
overlay cultures reflects the ability of cells of staying together upon contact, and is therefore a completely 
different phenomenon.

PC3 cell line is long known for its ability to form spheroids and to invade BMEs (see29,41–44 and refs. 
therein) and has been recently reported to migrate collectively in a N-cadherin dependent fashion45. 
However it is not known whether the ability of growing as spheroids and that of migrating collectively 
can act synergistically to improve the cells ability to invade or grow. Potentially, CDA might confer selec-
tive advantage in two separate ways: i) the local concentration of secreted growth factors and proteases 
around a cell aggregate is high, thereby yielding potentially increased invasiveness and proliferation and 
ii) cells that do not possess the autocrine loop but do express the receptor for the factor secreted by other 
cells could perform a sort of hitchhiking thus resulting in a larger clonal heterogeneity. Both these aspects 
might contribute to the overall survival of cancer clones. Interestingly, prostate cancer (the origin of the 
cell line used in this study) is known to be often multifocal46–48, thereby making such aspects potentially 
relevant in this context.

An interesting issue is whether CDA might be relevant in the context of primary tumor site, in the 
spreading of cancer cells toward distant sites or even in the secondary site. While a role for tumor mul-
ticellular clusters has been hypothesized in the metastatization process25,27, its advantage in colonizing a 
primary or distant site is less obvious and remains to be proven.

Our work describes CDA as a novel mechanism of growth in cancer. This phenotype is curiously 
opposed to what happens in other contexts where cancer development is based on detachment of single 
cells from a multicellular structure and migration regardless of cell-cell or cell-matrix adhesion signals. 
A role for CDA in vivo still remains to be proven. Nevertheless our theoretical and experimental results 
point at a general relevance for this process, and unveil an additional mechanism by which cancer cells 
might divert otherwise physiological functions and abilities for their own purpose and benefit.
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