
13 May 2024

AperTO - Archivio Istituzionale Open Access dell'Università di Torino

Original Citation:

Snai1 promotes ESC exit from the pluripotency by direct repression of self-renewal genes

Published version:

DOI:10.1002/stem.1898

Terms of use:

Open Access

(Article begins on next page)

Anyone can freely access the full text of works made available as "Open Access". Works made available
under a Creative Commons license can be used according to the terms and conditions of said license. Use
of all other works requires consent of the right holder (author or publisher) if not exempted from copyright
protection by the applicable law.

Availability:

This is a pre print version of the following article:

This version is available http://hdl.handle.net/2318/1529087 since 2016-05-25T17:08:03Z



	

	

	

	

This	is	an	author	version	of	the	contribution	published	on:	
Questa	è	la	versione	dell’autore	dell’opera:	

	[Stem Cells. 2015 Mar;33(3):742-50. doi: 10.1002/stem.1898.]	
		

The	definitive	version	is	available	at:	
La	versione	definitiva	è	disponibile	alla	URL:	

[http://onlinelibrary.wiley.com/doi/10.1002/stem.1898/abstract]	

	



 1 

 

 

Retinoic acid induces Snai1 in stem cells of the preimplantation blastocyst to initiate 

differentiation. 

 

 

Federico Galvagnia,1,2 , Claudia Lentuccia,2, Francesco Neri2,c, Caterina De Clementea, Maurizio 

Orlandinia, Francesca Anselmic, Michela Grilloa, Daniela Dettoric, Sara Borghia, and Salvatore 

Olivierob,c,1,    

 

a Dipartimento di Biotecnologie, Chimica e Farmacia.  Università di Siena, via A.Moro, 2, 53100 

Siena, Italy. 

b Dipartimento di scienze della vita e biologia dei sistemi.  Università di Torino, via Accademia 

Albertina 13, 10124 Torino 

c HuGeF, via Nizza 52, Torino, Italy. 

 

 

1 To whom correspondence should be addressed:   

federico.galvagni@unisi.it; salvatore.oliviero@hugef-torino.org 

2 Equal contribution 

 

 

Key words: Snai1, Snail, Retinoic acid, Nanog, embryonic stem cells, differentiation, self-renewal. 

 

  



 2 

Abstract (100?) 

 Although, in general, much is known about the pluripotency self-renewal circuitry, the molecular 

events that lead ESCs to exit from pluripotency and begin differentiation are largely unknown.  

We found that the zinc finger transcription factor Snai1, involved in gastrulation and epithelial- 

mesenchymal transition (EMT) is already expressed in the inner cell mass of the preimplantation 

blastocysts, where it contributes to ESC exit from plurypotency. In ESCs Snai1 does not respond to 

TGFβ or BMP4 but is induced by retinoic acid (RA) treatment, which induces the binding, on the 

Snai1 promoter, of the retinoid receptors RARγ and RXRα, the disssociation of the Polycomb 

repressor compex 2 (PRC2), and  the increase of histone H3 methylation at lysine K4. We found 

that Snai1 in ESCs mediates the repression of pluripotency genes by binding directly to the 

promoters of Nanog, Nr5a2, Tcl1, c-Kit, and Tcfcp2l1. Time course analysis shows that the 

transient activation of Snai1 in Embyoid bodies induces at later time points the expression of the 

markers of all three germ layers. These results suggest that Snai1 is a key factor that triggers inner 

cell mass cell of the preimplantaion blastocysts to exit from the plurypotency state and initiate their 

differentiation processes.  

 

Significance 

Embryonic stem cells, derived from the inner cell mass, can be maintained indefinitively in their 

self-replication mode by growing them under defined conditions that sustain the expression of   

genes involved in their self-renewing. Less is known about the molecular mechanisms that induce 

stem cells of the inner cell mass to enter into their differentiation processes. We found that retinoic 

acid, which has been previously shown to be expressed in the trophoectoderm of the 

preimplantation blastocyst, is a potent inducer of the transcription factors Snai1, which in turn  

represses the expression of the genes for self-renewal. Thus Snai1, induced by retinoic acid triggers 

the embryonic stem cells toward their differentiation.     
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Introduction. 

 

Embryonic stem cells (ESCs) derived from the inner cell mass (ICM) are able to self renew or 

initiate their differentiation by the establishment of multiple regulatory pathways. ESC self renew is 

maintained by a complex network of transcription factors, which is self-propagated by numerous 

autoregulatory loops (1). This network is centered around the three leading actors Oct3/4, Sox2, and 

Nanog, but includes several other transcription factors such as Esrrb, Klf2, Klf4, and Tbx3 (2-5).  

Although much is known about the regulatory circuitry that maintain ESC identity less is known 

about the extrinsic stimuli and intrinsic factors that trigger the exit of ICM cells toward their next 

differentiation steps.   

The Snail family of transcription factors that includes the Snai1 (Snail homolog 1), Snai2 (Slug), 

and Snai3 (Smug) encode zinc finger transcription factors, which function mainly as transcriptional 

repressors. They are involved in physiological and cancer-associated epithelial-mesenchymal 

transition (EMT) by directly repressing the E-cadherin promoter and other cell-cell adhesion 

molecules (6-10).  Different signaling pathways, including TGFb, BMP, FGF, and WNT have been 

implicated in the induction of Snail family members during the process of EMT (7, 8). In  

postimplantation embryo Snai1 is expressed in the mesoderm during gastrulation, in neural crest, 

and in the primitive streak (11, 12). Interestingly, Snai1-deficient embryos are smaller than control 

littermate embryos already at E7.5 and, besides Brachyury, the expression of the visceral endoderm 

marker Cer1 was severely reduced (13), suggesting a role of Snai1 before gastrulation and in other 

tissues than mesoderm. 

Retinoic acid (RA), an active metabolite of the vitamin A (retinol),  is a potent signaling molecule 

that exerts pleiotropic roles in patterning, morphogenesis, and organogenesis during vertebrate 

embryonic development (14). All-trans retinoic acid (atRA) acts through binding to nuclear retinoic 

acid receptors (RARs). RARs are ligand-inducible nuclear transcription factors, which 

heterodimerize with the retinoid X receptors (RXRs; nuclear receptors that bind the 9-cis-RA 
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stereoisomer) and bind to cis-acting retinoic acid response elements (RAREs) in regulatory regions 

of target genes. 

In vitro prolonged retinoic acid exposure promotes ESC differentiation into primitive endoderm and 

cells of the three primary germ layers, depending on culture conditions (15-17). Despite these 

observations and the well-known effects of retinoids in cellular differentiation and embryonic 

development, the role of these compounds in preimplantation embryo and early ESC lineage 

specification has not yet been  clarified.  It has been previously demonstrated that trophoblast cells 

of preimplantation blastocists express retinoids and RA activity has been observed already at the 

3.5-day mouse blastocyst in both ICM and trophectoderm (18, 19). However, its function at this 

early stage of embryo development has not been clarified. 

Here, we investigate the mechanisms by which RA promotes early differentiation of ESCs. We 

demonstrate that the transcription factor Snai1 is expressed in the ICM of preimplantation mouse 

blastocyst and it is a primary target of RA in ESCs. We further show that Snai1 is able to promote 

the ESC exit from the pluripotency by direct repression of self-renewal genes Nanog, Nr5a2, Tcl1, 

c-Kit, and Tcfcp2l1. 
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Results 

 

Snai1 is induced by RA in undifferentiated ESCs. During embryo development Snai1 has 

been shown to be required for gastrulation, mesoderm and neural crest formation  (7-9, 20) 

To verify whether Snai1 plays a role in early stages of cell differentiation we analyzed by 

immunofluorescence its expression in preimplantation mouse blastocysts.  At embryonic (E) day 

3.5  Snai1 was expressed in Oct3/4 positive nuclei of ICM cells (Fig. 1A and Supplementary Fig. 

S1).  In epithelial-mesenchymal transition (EMT) the transcription of Snai1 is activated by the 

cytokines of the TGF-β family through the Smad phosphorylation (7). In ESCs, TGF-β1 and BMP4 

failed to promote Snai1 expression (Fig. 1B and C) even if BMP4 induced strong Smad2/3 

phosphorylation (Fig. S2A). Time course analysis by RT-qPCR and Western blot revealed that 

Snai1, but not the related transcription factors Snai2, Snai3, Twist, Zeb1, and Zeb2, is transiently 

expressed after atRA or its 9-cis isomer treatment achieving the maximum expression level at 2 

hours (Fig. 1B,  Fig. S2B and data not shown) while the inducers of ESC differentiation bFGF and 

Activin did not upregulated Snai1 in ESCs (Fig 1C). The regulation of Snai1 by RA is a general 

feature of ESCs because Snai1 undergoes upregulation upon atRA treatment also in R1 and WW6 

mouse ESC lines and even in human BG01V ESCs (Fig. 1D and Fig. S2C).  

On the Snai1 promoter we found a canonical conserved retinoic acid response element (RARE-

DR5) centered at position -543 with respect to the transcriptional start site (Fig. S3). Interestingly, it 

has been previously shown that trophoectoderm cells are the major source of retinoids in domestic 

pigs (18) and RA activity has been measured already at 3.5-day of mouse blastocyst both in the 

trophectoderm and in ICM (19). Chromatin immunoprecipitation (ChIP) assays demonstrated that 

RARγ and RXRα bind the Snai1 promoter in ESCs  and their binding  increases following atRA 

treatment (Fig. 1E). Snai1  promoter is   bivalent in ESCs as it is  marked by both H3K4me3 and 

H3K27me3. Cell treatment with atRA induced  Suz12 dissociation from the promoter which was 
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accompanied by H3K27me3 demethylation and increase of H3 acetylation and methylation at K4 

(Fig. 1F). Cyp26a1 and Oct3/4 were used as positive and negative control, respectively (Fig. S4). 

 

Snai1 is a transcriptional repressor of genes involved in pluripotency and self- 

renewal. To investigate the role of the early Snai1 expression in ESC differentiation, we generated 

a stable ESC line expressing the Snai1 whose activity is under the control of 4-hydroxytamoxifen 

(OHT),  (Snai1-ER) (21). Following induction with 1 µΜ OHT, the chimeric protein Snai1-ER is 

rapidly localized in the nucleus, where it is stable for about 8 hours (Fig. 2A) and   ESCs acquired a 

more differentiated phenotype (Fig. 2B) 

To identify Snai1 regulated genes, we performed a microarray analysis using mRNA from Snai1-

ER ESCs induced at different time periods with OHT. We found 131 genes down-regulated more 

than 2.5-fold at 12 hours post-treatment (p<0.01)(Table S1).    Interestingly, 17 of them were genes 

involved in ESC self-renewal and pluripotency, with a high percentage of transcriptional regulators 

(Fig. 2C, D). Repression by Snai1 was validated by RT-qPCR (Fig. 2E).  

As a control, we treated wild type ESCs with OHT or vehicle alone (EtOH) and did not observe any 

significant difference in the mRNA expression for all genes tested.  

To evaluate the direct binding of Snai1 to the identified target genes we selected out those carrying 

conserved Snai1 binding sites within their promoter regions (Table  S2). These genomic regions 

were analyzed by ChIP using a specific antibody for Snai1 (Fig. 3A). The promoters of Nanog, 

Nr5a2, Tcfcp2l1, c-Kit, and Tcl1 showed binding of Snai1-ER that was significantly increased 

following OHT treatment. Because Nr5a2, Tcfcp2l1, c-Kit, and Tcl1 were described to be targets of 

Nanog (22), we analysed the repression by Snai1 of these genes in the presence of ectopic Nanog, 

to investigate whether their repression was due to direct Snai1 binding or Nanog down-regulation. 

Following OHT treatment, the expression of  these genes was still repressed also in the presence of 

Nanog, while the expression of Esrrb, which was not found to be direct Snai1 target, was no more 
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repressed in presence of exogenous Nanog (Fig. 3B and C). Thus  demonstrating  that  Nanog, 

Nr5a2, Tcfcp2l1 c-Kit, and Tcl1 are all direct Snai1 targets.  

In agreement with these observations Snai1 knockdown cells showed more regular ESC colony 

morphology with an increased and uniform ALP staining and an augmented expression of the key 

pluripotency markers Nanog, Esrrb, Klf4, and Tcfcp2l1 (Fig. 3D-F). 

 

Snai1 expression induces ESC exit from pluripotency. To verify whether Snai1 expression 

could promote ESC differentiation we analyzed the effect of transient activation of Snai1-ER in 

embryoid bodies (EBs). EBs were formed in phenol-red free medium containing Charcoal/Dextran 

absorbed serum to deplete the basal levels of retinoids and estrogens. After 2 days, EBs were treated 

with 1 µΜ 4-OHT, or vehicle alone (EtOH), for 2 hours and then disgregated and re-aggregated 

(Fig. 4A) to reduce the Snai1-ER activation to a single pulse and avoid the mesoderm determination 

due to a prolonged expression of active Snai1 (9). As shown in Figure 4B, the Snai1-dependent 

differentiation potential was tested by analysis of  the mRNA levels of pluripotency and 

differentiation markers by RT-qPCR. The early pulse of Snai1 activity in ESCs by OHT treatment 

induced a persistent reduction of Rex1 expression within 24 hours and a transient strong reduction 

of Nanog expression, while Oct3/4 mRNA level did not change markedly during differentiation.  

Analysis of expression of differentiation markers showed a strong increase in the expression of the 

primitive endoderm (PrE) marker Dab2 (23), the mesendodermal marker Gsc, the primitive streak 

marker T (Brachyury-Bry) and Flk1, Sox1 and Foxa2, markers of the mesoderm (24), 

neuroectoderrm, and definitive endoderm layers, respectively. It is interesting to note that 

expression of endogenous Snai1, necessary for the completion of the mesoderm development, was 

stimulated by the transient activation of Snai1-ER in ESCs. 

Collectively these data suggest that Snai1, induced by ER in preimplantation blastocysts, promotes 

ESCs to exit from pluripotency and initiate their differentiation program.  
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Discussion 

 

It has been previously demonstrated that preimplantation blastocysts express RA and ICM respond 

to its signaling (18, 19). Here we found that the transcription factor Snai1 is already expressed in 

ICM of the preimplantation blastocysts and it is induced in response to RA. We demonstrate that its 

function in ESCs is to contribute to their exit from the naïve state by direct repression of 

pluripotency genes.   

Interestingly, the induction of Snai1 by RA appears to be ESC-specific, because it was induced by 

RA in different ESC lines but was not upregulated by RA in several cell lines, including A549, 

MCF7, HT29, PANC-1, and PC3, that do express Snai1 and response to TGF-β (not shown). 

It has been previously shown the essential role of RARγ and RXRα in RA-dependent gene 

regulation in ESCs (25, 26).  We found that RARγ and RXRα are constitutively bound to Snai1 

promoter in the absence of ligand and their binding is increased following atRA treatment. This 

regulation is in agreement with the described model for retinoid receptor activation in which the 

receptors bound on the DNA repress transcription through the recruitment of the corepressors and 

the ligand-induced conformational changes increase DNA affinity (27, 28) and favor the switch 

between corepressors and coactivators (29).  
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We observed that upon atRA treatment the reduction of PRC2 binding, H3K27me3 mark together 

with the increase of H3 acetylation and H3K4methylation on the Snai1 promoter.  This result is in 

agreement with  the  previous observation that in F9 embryonal carcinoma cells the heterodimer 

RARγ/RXRα was bound on the RAREs elements of the Cyp26A1 and the Hoxa1 promoters in 

association with the polycomb group (PcG) protein Suz12, promoting methylation on H3K27 and 

transcriptional repression. This association was attenuated by atRA treatment with consequent 

transcriptional activation of the target genes (30).   

Differently from the prolonged exogenous expression of Snai1 that promotes differentiation of 

epiblast cells to early mesoderm repressing the microRNA-200 (9), we observed in ESCs the Snai1-

dependent repression of genes associated with pluripotency with the consequent increased 

expression of markers for all three germ layers. This effect was due exclusively to the defined 

activation window, since we also observed that prolonged expression of Snai1 promoted mesoderm 

differentiation (not shown). We found that in ESCs Snai1 represes pluripotency and self-renewal 

genes. Notably, 7 of the identified Snai1 target genes Esrrb, Klf4, Klf2, Nanog, Tbx3, Rex1 and 

Nr5a2 are key regulators of ESC identity, which have been described to be downregulated during 

conversion of ESCs into EpiSCs (31). 

Snai1 has been previously shown to be involved in post-implant development of the embryo as it is 

involved in gastrulation and  the formation of a primitive streak and several different signalling 

pathways have been associated with the induction of Snai1 (7).  

Our results now show that Snai1 acts at two independent differentiation steps: it promotes early 

stages of ESC differentiation by direct repression of pluripotency and self-renewal genes when 

expressed in ESC and mesoderm formation when expressed in epiblast cells.  This result was also  

confirmed by Snai1 expression before EBs aggregation which recapitulates the first ICM/ESCs 

lineage segregation between epiblasts and primitive endoderm with the downregulation of the 

pluripotency markers Rex1 and Nanog while Oct3/4 was not down modulated followed by the 

spontaneous activation of endogenous Snai1 transcription when Flk1 expression marks mesoderm 
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differentiation. 

In fact it was previously shown that upon ESC differentiation Rex1 is down-regulated in primitive 

endoderm and epiblast lineages, Nanog is repressed in primitive endoderm and transiently down-

modulated in epiblast and pluripotency marker Oct3/4 is expressed in the ICM cells and later in 

epiblast and in the primitive endoderm cells at the early stage of blastocyst development (31-36).  

In summary, this study has revealed that Snai1, besides inducing mesoderm formation also controls 

the exit of ESC from pluripotency and self-renewal.  
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Materials and Methods 

 

Plasmids DNA constructs. cDNA of human Snai1 coding region without stop codon, in frame 

with cDNA of mouse ERα ligand-binding region was obtained by PCR from pBabePuro-

hSnai1.ER.NoTag (Addgene plasmid 19292) (21) using following oligonucleotides: 5’-

GAGAGGATCCSCCATGCCGCGCTCTTTCCTC-3’ and 5’-

GAGAGTCGACTCAGATCGTGTTGGGGAA-3’, and cloned in the lentiviral vector 

pCCLsin.hPGK.GFP.pre. The plasmid was confirmed by sequencing. Silencing experiments were 

performed using lentiviral vectors pLKO.1 from the TRC-Mm1.0 shRNA library (Open 

Biosystems, Huntsville, AL) expressing specific shRNA for mouse Snai1 (clone 

TRCN0000096619) and for eGFP as negative control (#RHS4459). Mouse Nanog cDNA was 

obtained from total ESCs mRNA using the following oligonucleotides: 5’-

GAGAGGATCCACCATGAGTGTGGGTCTTCCTGG-3’ and 5’-

GAGAGTCGACCCCAGATGTTGCGTAAGTCTC-3’, and cloned in pCCL lentiviral vector. 

 

Lentiviral particles production and cells transduction. Lentiviral vector were co-transfected with 

pMD2.VSVG, pMDLg/pRRE, pRSV-Rev in Lenti-X TM 293 cell line (Clonetech) to produce 

lentivirus particles as previously described (37).  

To determine viral titre cells were infected at 2x10^5 clles/ml in 6 well plates with serial dilution of 

viral preparation and 8 µg/ml Hexadimetrine-bromide (Sigma) and analyzed 24 hours later for GFP 

protein expression levels through fluorescence microscope. 2x105 E14 ESCs were plated in 35mm 

dish and infected with 15 µl of pre-titred viral preparation and 8µg/ml Hexadimetrine-bromide 

(Sigma). 24 hours after infection medium has been changed and cells were treated with Puromycin 

6 µg/ml for 6 days. 
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ES cell maintenance. Mouse ESCs were cultured on gelatin coated dishes in feeders free culture 

system in serum containing medium consisting of DMEM 4.5 g/l glucose, 15% Embryomax FBS 

(Millipore), NEAA 100X (Invitrogen), Na-Pyruvate 100X (Invitrogen), LIF ESGRO 1000U/ml 

(Millipore) and 2-Mercaptoethanol 50 µM (38). Mouse GFP-Bry ES cell line was kindly provided 

by Dr. Gordon Keller, and cultured in serum free medium on gelatin coated dishes in feeders free 

culture system as previously described (39).  

 

ES cell differentiation. For embryoid-bodies (EBs) formation we used the protocol described 

previously (40) with the following modification: E14 ESCs expressing Snai1-ER were plated at 

2.5x105 cells/ml in ultra low attachment plates (Costar) in MEM ALPHA Medium w/o Phenol-red 

(Invitrogen) supplemented with 10% Charcoal/Dextran Treated FBS (HyClone) and 2-

Mercaptoethanol 50 µM. After 46 hours EBs were treated for additional 2 hours with 1 µM 4-

Hidroxy-tamoxifen (4-OHT) (#H7904, Sigma-Aldrich). Subsequently, EBs were dissociated with 

trypsin and cells were reaggregated at 1.5x105 cells/ml in the same medium and new EBs were 

harvested 1,2 and 3 days later. GFP-Bry ESCs were cultured in serum-free medium consisting of 

75% IMDM (Invitrogen), 25% Ham’s F12 (Invitrogen) supplemented with 0.5x N2B27 (w/o 

retinoic acid) supplement (Invitrogen), 0.05% BSA, 2 mM glutamine (Invitrogen), 0.5 mM ascorbic 

acid (Sigma), 0.45 mM 1-thioglycerol (Sigma). After 24 hours GFP-Bry ESCs were treated for 

additional 24 hours with 0.1 µM atRA. Subsequently, EBs were dissociated with trypsin and cells 

were reaggregated at 1.5x105cells/ml in the same medium and new EBs were harvested 3 days later 

for flow cytometry analysis. 

 

RT-qPCR. Total RNA was prepared Total RNA was prepared with TRIreagent (Invitrogen) 

according to the manufacturer’s protocol. RT-qPCR was performed with SuperScript III One-Step 

RT-PCR System and SYTO9 Green-Fluorescent Nucleic Acid Stain (Invitrogen) on Rotor Gene 

6000 (Corbett Research)(41). The oligonucleotides used for RT-qPCR are listed in Table S3). 
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Flow cytometry analysis. EBs generated from GFP-Bry cell differentiation were dissociated with 

Dissociation Buffer PBS-based (Invitrogen) for 1-2 min and arranged at 1x106 cells/ml in PBS and 

1 µl of reconstituted fluorescence reactive dye LIVE/DEAD Fixable Dead Cell Stain Kit 

(Invitrogen) was added and cell were incubated for 30 min protecting from light and analyzed by 

FACS CantoII (Becton Dickenson). Data analysis was performed by FlowJo software (Tree Star 

Inc.) 

 

Cell Fractionation. Cell were collected in PBS, centrifuged 10 min at 1850 xg, and then 

resuspended in 5 volumes (cellular pellet volumes) of Hypotonic Buffer (20 mM HEPES pH 7.9, 1 

mM MgCl2, 10 mM KCl, 0.1% Triton X-100, 20% glycerol plus fresh 0.5 mM DTT, 10mM Na-

Butirrate); centrifuged 5 min at 1850 xg at 4°C, and then resuspended in 3 volumes of Hypotonic 

Buffer. After 10 min of ice incubation cell were centrifuged at 3300 xg for 15 min supernatant was 

collected as the cytoplasmatic fraction and pellet as the integral nuclear fraction. Nuclei were 

resuspended in 2 volumes of Hypotonic Buffer plus 3 volumes of 2X-F Buffer (20 mM TRIS HCl 

pH 7.0, 100 mM NaCl, 60 mM Na4O7P2, 50 mM NaF, 10 µM ZnCl2, 2% TRITON X-100), mixed 

by gently rotation for 30 min, and then centrifuged for 30 min at 25000 xg at 4°C. Supernatant is 

collected as Nuclear fraction.  

 

Protein extracts, immunoblotting, and immunofluorescence. Cells were lysed in RIPA buffer 

and IP performed as previously described (42, 43). Immunofluorescence assays were carried out as 

previously described (44). 

 

ChIP assay. Each Chromatin Immunoprecipitation (ChIP) experiment was performed in at least 

three independent biological samples as previously described (45). Briefly, 1x106 cells were cross-

linked with 1% formaldehyde for 10 min at R.T. quenched with 0.125 M Glycin for 5 min at R.T., 



 14 

washed twice with PBS and resuspended in 0.2 ml of SDS lysis-buffer, stored on ice for 10 min, 

sonicated for 15 min 0.5X using Bioruptor (Bio-Rad) and then centrifuged at 20000 xg for 10 min 

at 4°C. Supernatants were diluted 10 folds with ChIP dilution Buffer (1% kept as input) and 

incubated with 1-2 µg of primary antibody in gentle rotation at 4°C O/N. Then 10 µl of pre-blocked 

protein A beads were added and incubated for 1 hour in the same conditions. Then extract and 

beads complexes were washed for three times respectively with: low-salt buffer, high-salt buffer, 

LiCl buffer and twice with TE buffer. Elution was performed by adding 0.25 ml of elution buffer 

for 15 min in gentle rotation at R.T. After RNase and proteinase K treatment, DNA was purified 

with phenol-chloroform extraction followed by ethanol precipitation. DNA was analyzed by real 

time quantitative PCR (RT-qPCR) using the SYBR GreenER™ qPCR SuperMix and SYTO9 

Green-Fluorescent Nucleic Acid Stain. (Invitrogen). For the amplification of immunoprecipitated 

DNA, we used the oligonucleotides listed in Table S4.  

 

Microarray analysis. RNA was exctracted and purified as previously described (46). Microarray 

was performed on Illumina Platform and analyzed using BeadStudio Gene Expression Module 

(GX). Data were background adjusted and quantile normalized using default parameters in the 

BeadStudio Software. Probes with Log|FC|>1+and p-value <0.05 were selected for downstream 

analysis. Heat-map plots were performed through the Bioconductor package in R. Differential 

expression analysis of the up- or down-regulated genes were performed by plotting genes on their 

Log2 expression value using Excel (Microsoft TM).  

 

Antibodies and Reagents. All-trans Retinoic acid (atRA) (R2625) and 9-cis Retinoic acid (R4643), 

Retinol (R72632) were obtained from Sigma-Aldrich (Missouri, USA). TGF-β1 (240-B-010), 

mBMP4 (5020-BP-010) and Activin A (338-AC-010) were obtained from R&D System. bFGF 

(AA-10-155) was obtained from Life Technology. 
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For Western Blot primary antibodies: anti SP1 (sc-59), anti ERα (sc-542), anti Tubulin β (sc-9104) 

Santa-Cruz Biotechnology, anti Lamin B1 (#33-2000) Zymed Research, anti Snai1 (#3879), anti 

human Snai1 (#4719), anti Slug (#9585), anti Smad2/3 (#3102), anti Smad1 (#9743) and anti 

pSmad1/5 (#9516) Cell Signalling, anti pSmad2/3 (#AB3849) Millipore and anti-Nanog 

(#ab14959) Abcam. For ChIP assay: Suz12 (#D39F6, Cell Signalling), RARγ (#abin123009, 

Antibodies-online), RARα (sc-553-X, Santa-Cruz Biotechnology), rabbit IgG (sc-2027, Santa-Cruz 

Biotechnology), Histone H3-trimethyl-K4 (#07-473, Millipore), Histone-trimethyl-K27 (#07-449, 

Millipore), Histone H3-diacetyl (#06-599, Millipore) and anti Snai1 (#3879, Santa-Cruz 

Biotechnology). 
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Figure legends. 

 

Fig.1. Snai1 is expressed in premplantation blastocysts and induced in ESC by retinoic acid.   (A) 

Snai1 is localized to the nucleus of ICM-Oct3/4 positive cells of the pre-implant mouse blastocyst 

at E3.5. (B) Snai1 expression is transiently induced by 0.1 µM atRA, but not by TGF-β1 (3ng/ml) 

or Bmp4 (10ng/ml). The results were normalized to β-Actin expression. Mean values from three 

independent experiments are shown with standard deviations. (C) Western blot analysis of Snai1 

expression in ESCs. Activin and bFgf were used at the concentration of 10 ng/ml. Proteins levels 

confirmed the mRNA expression data. The ubiquitous transcription factor Sp1 was used to verify 

equal loading. (D) The expression levels of Snai1 in atRA treated human ESCs were analyzed by 

Western blot. (E) Snai1 promoter is bound by retinoic acid receptors in ESCs. ChIP analysis of 

RARγ, RXRα, and Suz12 on the promoter region (-600 with respect to the transcriptional start site). 

atRA 0.1 µM was added at the indicated time points (min). IgG purified from non-immune serum 

were used as negative control. Data are expressed as percentage of DNA inputs. (F) ChIP analysis 

of histone modifications on the Snai1 promoter in control and atRA induced ESCs. Data represent 

average ±SD of three independent experiments. 

 

Fig. 2. Snai1 directly represses key self-renewal regulators.  (A) Time course analysis of  Snai1-ER 

localization showing the rapid and transient Snai1-ER nuclear localization and stabilization 

following 1 µΜ OHT treatment. Laminin and Tubulin were used as loading and fractionation 

controls of nucleus and cytoplasm, respectively. (B) Bright field of ESC colonies in control and 

treated with OHT for 48 hours. 

(C) Venn diagram of microarray analysis showing genes more than 2.5-fold down-regulated after 
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12 hours of 1 µΜ 4-OHT treatment (D) Heat map of microarray analysis showing the down-

regulated self-renewal markers at the indicated time points after 4-OHT treatment. (FC: Fold 

Change). (E) Validation  of microarray analysis by reverse transcription real-time polymerase 

quantitative chain reaction (RT-qPCR) analysis in wild type and Snai1-ER expressing ESCs treated 

for 12 hours with OHT or EtOH. Values are normalized to Actin β expression and represented as 

fold change, comparing OHT to EtOH treated cells (expressed in log10 scale). Oct3/4 expression 

analysis was performed as negative control. Data represent average values ±SD of three 

independent experiments. P value was calculated with the Student's t test by comparing mRNA fold 

change of wt cells to fold change of Snai1-ER expressing cells.  

 

Fig. 3. Snai1 binds to the promoter regions of pluripotency genes.  (A) ChIP of Snai1-ER 

expressing ESC treated with 1 µΜ OHT or EtOH for 2 hours and immunoprecipitated with Snai1 

antibody. Enrichment relative to the Actin β promoter subtracted of IgG background is measured by 

RT-qPCR using the primers specific for the indicated genes. Data represent average ±SD of three 

independent experiments. P value was calculated with the Student's t test by comparing OHT to 

EtOH treated cells.  (B) Western blot analysis of Nanog expression in ESCs Snai1-ER transduced 

with GFP (negative control) or Nanog (Nanog). (C) RT-qPCR expression analysis of the indicated 

genes. Values are normalized to Actin β expression and represented as fold change, comparing 

OHT to EtOH treated cells. Data represent average values ±SD of three independent experiments. P 

value was calculated with the Student's t test by comparing normalized mRNA values of treated 

cells to untreated cells. (D) Western blot analysis of Snai1 in control or silenced cells as indicated. 

(E) Morphology and Alcaline phosphatase (ALP) staining of control or Snai1 silenced ESCs. Snai1 

silenced cells present a more regular ESCs colony morphology and an increased and uniform ALP 

staining.  (F) RT-qPCR expression analysis of key pluripotency genes in control or Snai1 silenced 

ESCs. Data represent average values ±SD of three independent experiments. P value was calculated 
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with the Student's t test. 

 

Fig. 4. (A) Schematic representation of the experimental procedure used to test the ESCs 

differentiation potential after a single pulse treatment with OHT. (B) Time course analysis of the 

indicated genes by RT-qPCR. Values are normalized to Actin β expression and represented as fold 

change relative to value of day 2. Gray line indicates the single pulse OHT treatment. Data 

represent average values ±SD of three independent experiments. P value was calculated with the 

Student's t test by comparing mRNA fold change of EtOH treated cells to fold change of OHT 

treated cells.  

 

 

 


