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ABSTRACT 

Hydrogels are promising materials in regenerative medicine applications due to their 

hydrophilicity, biocompatibility and capacity to release drugs and growth factors in a 

controlled manner. In this study, biocompatible and biodegradable hydrogels based on 

blends of natural polymers were used in in vitro and ex vivo experiments as a tool for 

VEGF controlled release to accelerate the nerve regeneration process. Among different 

candidates, the angiogenic factor VEGF was selected since angiogenesis has been long 

recognized as an important and necessary step during tissue repair. Recent studies 

pointed out that VEGF has a beneficial effect on motor neuron survival and Schwann 

cell vitality and proliferation. Moreover, VEGF administration can sustain and enhance 

the growth of regenerating peripheral nerve fibres. Hydrogel preparation process was 

optimized to allow VEGF functional incorporation, while preventing its degradation and 

denaturation. VEGF release was quantified through ELISA assay whereas released 

VEGF bioactivity was validated in Human Umbilical Vein Endothelial Cells (HUVEC) 

and in a Schwann cell line (RT4-D6P2T) by assessing VEGFR-2 and downstream 

effectors Akt and Erk1/2 phosphorylation. Moreover, dorsal root ganglia explants 

cultured on VEGF releasing hydrogels displayed increased neurite outgrowth proving 

confirmation that released VEGF maintained its effect, as also confirmed in 

tubulogenesis assay. In conclusion, a gelatin based hydrogel system for bioactive VEGF 

delivery was developed and characterized for its applicability in neural tissue 

engineering.  

KEY WORDS: peripheral nerve, tissue engineering, drug releasing hydrogel, gelatin 

hydrogels, vascular endothelial growth factor, nerve regeneration 



1. INTRODUCTION 

The peripheral nervous system (PNS) is characterized by an intrinsic regenerative 

potential following nerve injury; nevertheless in many cases regeneration is insufficient, 

leading to poor functional recovery and lifelong disturbances or loss of functions 

mediated by the injured nerve. Moreover, development of neuropathic pain is often 

perceived following nerve damages. Thus, peripheral nerve injury (PNI) importantly 

compromises the quality of life of affected individuals and has a noteworthy 

socioeconomic impact (Nicholson and Verma 2004, Taylor 2006).  

Traumatic PNI may lead to a gap between nerve ends. When the direct suture of 

proximal and distal stumps is not practicable, the current gold standard is the 

interposition of an autologous nerve graft. This approach has several disadvantages, 

such as graft availability, size mismatch, and donor site morbidity. The most important 

problem of grafting is that nerve regeneration is never complete. Over the past decades 

the development of artificial nerve guidance channels (NGCs) has therefore been of 

great interest (Battiston et al. 2005, Deumens et al. 2010, Schlosshauer et al. 2006, 

Slutsky 2005). Until now, the use of these channels has not lead to results comparable to 

autologous nerve grafting. A NGC should have a tridimensional structure capable of 

providing structural support to the newly formed tissue, allowing cell adhesion, 

proliferation and migration, tissue in-growth and vascularization. Several methods have 

been used to enhance NGC potential for nerve regeneration. Numerous modifications to 

NGC have been investigated to increase the length of the gap that can be bridged and to 

improve axonal regeneration (Giacca and Zacchigna 2012, Kempton et al. 2009, Ruiz 

de Almodovar et al. 2009, Zhang H. et al. 2013). These modifications include the 

addition of Schwann cells, the use of internal scaffolds (such as sponge, filaments, 



multichannel nerve tubes and conductive polymers structures to regulate flexibility, 

conduit diameter dimensions and porosity degree), and the addition of growth factors 

(GFs) to promote axonal outgrowth, neuronal survival and Schwann cell proliferation 

and migration (Giacca and Zacchigna 2012, Haninec et al. 2012, Moimas et al. 2013).  

An increasing number of studies pointed the attention on vascular endothelial growth 

factor (VEGF) as potential therapeutic in nerve repair (Giacca and Zacchigna 2012, 

Haninec et al. 2012, Kempton et al. 2009, Moimas et al. 2013, Pereira Lopes et al. 2011, 

Ruiz de Almodovar et al. 2009, Schratzberger et al. 2000, Zhang H. et al. 2013). VEGF 

is a potent angiogenic factor that stimulates endothelial cell migration and proliferation, 

blood vessel formation and vascular permeability increase (Holmes and Zachary 2005, 

Neufeld et al. 1999, Ruiz de Almodovar et al. 2009). VEGF gene gives rise to several 

isoforms by alternative splicing. The three major VEGF isoforms, consisting of 121, 

165 and 189 aminoacids in humans, are named VEGF-A121, VEGF-A165, and VEGF-

A189. VEGF-A121 isoform is freely diffusible, whereas VEGF-A189 binds 

extracellular matrix proteins, thus remaining spatially localized. VEGF-A165 isoform 

displays intermediate characteristics remaining partly bound to the pericellular matrix 

and partly diffusible. VEGF-A165 isoform binds to both tyrosine-kinase receptors 

VEGFR-1 (fms-like tyrosine kinase 1 or Flt1) and VEGFR-2 (kinase insert domain 

containing receptor, KDR in humans or fetal liver kinase 1, Flk1 in mice). VEGF-A165 

also binds to both neuropilin-1 (NRP1) and neuropilin-2 (NRP2). NRPs are single 

transmembrane glycoproteins that may enhance VEGF signaling by acting as 

coreceptors of VEGF receptors. Binding of VEGF to its receptor results in receptor 

dimerization and phosphorylation. In particular, phosphorylation of tyrosine residue 

1175 results in activation of extracellular signal-regulated kinase 1/2 (Erk1/2) and Akt 



signaling pathway, leading to positive regulation of proliferation and survival 

(Grunewald et al. 2010, Neufeld et al. 1999, Robinson and Stringer 2001, Ruiz de 

Almodovar et al. 2009). Several methods have been implemented to deliver growth 

factors into NGCs (de Ruiter et al. 2009, Deumens et al. 2010). The most common 

system for delivering growth factors is to fill the NGC lumen with carriers such as gels 

(des Rieux et al. 2011, Hao et al. 2007, Lee et al. 2004, Norton et al. 2005, Sun et al. 

2011, Zhang W. et al. 2011), fibers (Zhang H. et al. 2013), nano-micro-particles 

(Cleland et al. 2001, des Rieux et al. 2011, Jay and Saltzman 2009, Shin et al. 2013, Tan 

et al. 2011) and fibrin-based scaffolds (Briganti et al. 2010). Ideally, these matrices can 

be loaded with growth factors for a controlled release for a defined time, at a therapeutic 

concentration. Hydrogels have long received attention because of their thixotropic and 

injectable nature and easiness of growth factor incorporation, which makes them 

trouble-free to employ as internal fillers for hollow guides. In a previous study 

agar/gelatin blends (A/GL), cross-linked with genipin (A/GL-GP) have been prepared 

with a weight ratio of 20/80 (wt./wt.) and characterized to have suitable injectable 

nature (Tonda-Turo et al. 2014). The prepared biomaterial allowed glial cell growth 

providing confirmation of its biocompatibility. Moreover, the hydrogel fabrication 

process has been set up in mild conditions in order to allow growth factor incorporation 

(body temperature, no organic solvents or presence of stabilizing additives) (Tonda-

Turo et al. 2014).  

In this study, the possibility to encapsulate VEGF and to obtain a controlled release of 

bioactive VEGF from the developed hydrogel was investigated. Different amounts of 

VEGF-A165 were encapsulated into A/GL-GP and the release kinetics were analyzed. 



Sequential observations were carried out to evaluate the release rate and bioactivity of 

VEGF-A165 incorporated into the hydrogel. 



2. MATERIALS AND METHODS 

2.1 Hydrogel preparation and VEGF-A165 incorporation and release 

Agar (A, Sigma Aldrich) was dissolved in phosphate buffered saline (PBS, Sigma 

Aldrich), at 90°C, to a final concentration of 0.04%. After 1 hour of incubation, 0.16% 

gelatin (GL, type A from porcine skin, Sigma Aldrich) was added and dissolved at 50°C 

for 30 minutes. The cross-linking process was performed by dissolving 0.05% genipin 

(Challenge Bioproducts LTD), at 50°C for 30 minutes. The resulting solution (A/GL-

GP solution) was poured into a Petri dish or on glass coverslips depending on the assay 

to be performed and allowed to solidify O/N (overnight) at RT (room temperature). 

VEGF-A165 was incorporated at the end of the cross-linking step, the temperature was 

cooled down to 37°C (to preserve VEGF-A165 bioactivity) and recombinant Human 

VEGF-A165 (R&D Systems) was added at the concentration of 50, 100 and 200 ng per 

ml and mixed within the hydrogel solution as schematized in figure 1 A. The hydrogel 

preparations containing VEGF-A165 were allowed to solidify overnight at 4°C in order 

to preserve VEGF-A165 bioactivity. The amount of VEGF-A165 to be incorporated 

within the gel was chosen based on literature data (Deister and Schmidt 2006, Fu et al. 

2007, Hao et al. 2007, Jay and Saltzman 2009, Pereira Lopes et al. 2011, Sondell et al. 

1999, Sondell et al. 2000).  

2.2 In vitro VEGF-A165 release kinetics 

50, 100 and 200 ng of VEGF-A165 were incorporated in 1 ml of gel. The different 

hydrogels were poured in 35 mm diameter tissue culture dish and covered with 2.5 ml 

of serum free Dulbecco’s Modified Eagle’s Medium (DMEM, Sigma Aldrich) and 

incubated at 37°C under 5% CO2. For ELISA and Western blot quantification 0.5 and 2 



ml supernatants aliquots were harvested respectively (Fig. 1 B). For tubulogenesis and 

DRG explants outgrowth assay 0.5 ml of M199 serum free medium and F12-BME 

medium were used respectively to cover different hydrogels preparations. Supernatants 

were collected all together up to a final volume of 15 ml (Fig. 1 B). The supernatants 

were retrieved and replaced with fresh medium at predetermined time intervals (1, 3, 

and 6 hours 1, 3, 6, 8, 10, 13, 15, 17, 20, 22, 24, 27, 29, 31, 34, 36, 38, 41, 43, 45, 48, 

50, 52, 54, 56, 58, 61, 63, and 65 days). The amount of VEGF-A165 in the single 

harvested supernatants was determined using Human VEGF-A165 Immunoassay 

(Quantikine, R&D Systems) following the manufacturer’s instruction. 

2.3 Cell culture  

RT4-D6P2T schwannoma cell line was purchased from American Type Culture 

Collection (ATCC- catalog number CRL-2768) and cultured following manufacturer’s 

instruction. 

Human Umbilical Vein Endothelial Cells (HUVEC) were isolated from umbilical cord 

veins and cultured as previously described (Bussolino et al. 1992, di Blasio et al. 2010). 

2.4 Bioactivity assay-Western blot 

Both HUVEC and RT4-D6P2T cells were stimulated with 1 ml of single harvested 

supernatants. As negative and positive controls HUVEC or RT4-D6P2T cells were 

stimulated with serum free culture medium without or with 30 ng VEGF-A165/ml 

respectively. Protein extraction and Western blot were performed as previously 

described (di Blasio et al. 2010, Tonda-Turo et al. 2011) using the following primary 

antibodies: phospho-VEGF Receptor 2 (Tyr1175) (19A10) rabbit mAb (#2478, Cell 

Signaling), VEGF receptor-2 (55B11) rabbit mAb (#2479, Cell Signaling), phospho-



p44/42 MAPK (Erk1/2) (Thr202/Tyr204) (E10) mouse mAb (#9106, Cell Signaling), 

p44/42 MAPK (Erk1/2)(137F5) rabbit mAb (#4695, Cell Signaling), phospho-Akt 

(Ser473) (587F11) mouse mAb (#4051, Cell Signaling) and Akt rabbit mAb (#9272, 

Cell Signaling). All antibodies were used at a final dilution of 1:1000. 

2.5 Bioactivity assay-HUVEC tubulogenesis assay 

The formation of capillary-like structures was examined on growth factor-reduced 

matrigel® in 24 wells plate. Matrigel® was added to each coverslip at a concentration 

of 8 mg/ml (300 µl) and incubated at 37°C for 30 minutes to allow polymerization. 

HUVEC were plated at cell density of 5 x 10
4
/well onto matrigel®. 1 ml of M199 serum 

free medium (negative control), M199 complete medium containing bovine brain 

extract (positive control), M199 serum free medium containing 50, 100 or 200 ng 

VEGF-A165/ml (positive control) and supernatants pools harvested from hydrogels 

containing 50, 100 or 200 ng VEGF-A165/ml of hydrogel were added to each well and 

refreshed twice. After 4h of incubation in 5% CO2 humidified atmosphere at 37°C, cell 

organization was examined. Cells were immunostained as previously described using 

VEGFR-2 Rabbit mAb primary antibody (Cell Signalling, 55B11) and Cy3-conjugated 

goat αRb IgG (H+L) as secondary antibody (diluted 1:200 in PBS, 111-165-003, 

Jackson Immuno Research) and DAPI was used to stain nuclei. The length of capillary-

like structures was acquired at the confocal microscope (Leica) and quantified with the 

imaging software ImageJ. Data were expressed as mean ± SEM. 

2.6 Bioactivity assay-axonal outgrowth 

In order to evaluate the bioactivity of released VEGF-A165 after its incorporation, two 

different assays were performed.  



In the first assay DRG explants were cultured on matrigel® (Fornaro et al. 2008) and 

stimulated with 2 ml of conditioned medium harvested from hydrogels in which 0, 50, 

100 or 200 ng VEGF-A165/ml of gel were incorporated. As negative and positive 

control no GFs or 50 ng of NGF /ml of medium were added according to literature data 

(Deister and Schmidt 2006, Gorokhova et al. 2014). Conditioned medium used in this 

assay was F12-BME medium. DRGs explants were harvested from adult female Wistar 

rats (Charles River Laboratories, Milan, Italy) weighing approximately 190-220g. A 

total of six ganglia were mounted per coverslips. A total of 9 rats have been used in 

order to perform experiments in technical and biological triplicate. Rats were sacrificed 

by a lethal i.m. injection of tiletamine + zoletil. All procedures were performed in 

accordance with the Ethics Committee and the European Communities Council 

Directive of 24 November 1986 (86/609/ EEC). Adequate measures were taken to 

minimize pain and discomfort taking into account human endpoints for animal suffering 

and distress.  

In the second assay, DRG explants were cultured on hydrogel or matrigel® in which no 

GFs (negative control), or 50 ng NGF /ml of hydrogel (positive control) or 50, 100 or 

200 ng VEGF-A165/ml of hydrogel were incorporated by adding the GFs directly to the 

gel solution before the polymerization step as described above. Ganglia were mounted 

on coverslips coated with 100 l matrigel® or hydrogel, containing or not the GFs. A 

total of six ganglia were mounted per coverslips. A total of 18 rats have been used in 

order to perform experiments in technical and biological triplicate.After 30 minutes 

incubation at 37°C, to allow matrigel® or hydrogel polymerization, 2 ml of complete 

F12-BME medium (Gibco) were added. 



After 48h incubation, explants were fixed with 4% paraformaldehyde (PFA) for 20 

minutes at RT. Immunocytochemistry, to stain neurite, was performed using -tubulin 

mouse mAb (diluted 1:1000, T8328, Sigma) and AlexaFluor488 goat αMs IgG (H+L) 

diluted 1:200 (A11029, Invitrogen). Nuclei were stained with 4’,6-diamidino-

2phenylindole (diluted 1:1 000, Sigma Aldrinch). Samples were observed with a Nikon 

Eclipse E800 epifluorescence microscope under appropriate filters and a Leica TCS SP5 

confocal laser scanning microscope (Leica, Mannheim, Germany). For quantification, 

the whole explants were acquired through an optical video-confocal microscope (Nikon 

Eclipse 80i) and the supporting software Image ProPlus (Media Cybernetics USA). 

Image analysis was performed by applying a threshold, in order to discriminate between 

white background pixels and black pixels corresponding to areas covered by neurites, 

thus obtaining a binary image. Three different measurements were taken. First, area 

occupied by axons was normalized to the area occupied by the DRG body; second, 

number of pixel occupied by axons and; third axons length (Gilardino et al. 2009, 

Zamburlin et al. 2006). 

2.7 Statistics 

All the experiments were performed in triplicate. Data were expressed as mean  ± SEM. 

Statistical analysis was carried out using single-factor analysis of variance (ANOVA) 

post hoc Bonferroni. Values of *p≤0.05, **p≤ 0.01, ***p≤0.001 were considered as 

statistically significant.  



 

3. RESULTS  

3.1 VEGF-A165 was successfully released from the hydrogel. 

Gelatin-based hydrogels containing 50, 100 or 200 ng VEGF-A165 per ml of gel 

solution were prepared and the release behavior of proteins was monitored in vitro 

every 2-3 days up to 65 days (Fig. 2). The capability of gelatin-based hydrogel to 

release VEGF-A165 was quantified by ELISA immunoassay. VEGF-A165 release was 

monitored until it was possible to quantify it through ELISA. After 65 days it was not 

possible to detect VEGF-A165 protein in the harvested supernatants. There was a 

VEGF-A165 burst release up to 20 days of in vitro culture (Fig. 2). After 20 days the 

amount of released VEGF-A165 becomes lower depending on the amount of initial 

incorporated VEGF-A165 (Fig. 2A ). VEGF-A165 was released up to 58, 63 and 65 

days in vitro from the 50, 100 and 200 ng VEGF-A165/ml hydrogel respectively. After 

these time points was not possible to detect the VEGF-A165 protein in the harvested 

supernatants through ELISA (Fig. 2A). From day 1 to day 20 incorporated VEGF-A165 

was released by the hydrogel at a rate of 0.96 ± 0.11 ng (from 50 ng VEGF-A165/ ml 

gel), 1.85 ± 0.19 ng (from 100 ng VEGF-A165/ml gel) and 3.69 ± 0.36 ng (from 200 ng 

VEGF-A165
/
ml gel). From day 20 to day 43 the releasing rate decreases 5 times and 

incorporated VEGF-A165 was released by the hydrogel at a rate of 0.21 ± 0.03 ng (from 

50 ng VEGF-A165/ml gel), 0.36 ± 0.07 ng (from 100 ng VEGF-A165/ml gel) and 0.86 

± 0.17 ng (from 200 ng/ml gel). From day 43 to day 65 incorporated VEGF-A165 was 

released by the hydrogel at a rate of 29.76 ± 10.35 pg (from 50 ng VEGF-A165/ml gel), 

41.73 ± 4.78 pg (from 100 ng VEGF-A165/ml gel) and 162.49 ± 21.20 pg (from 200 ng 



VEGF-A165/ml gel) (Fig. 2A). The VEGF-A165 releasing rate SEM is low and stable 

in the first two releasing phases (from day 1 to day 43). The higher SEM observed in 

the third releasing phase (from day 43 to day 65) might be due to the heterogeneous 

degradation and releasing rate of the different hydrogel preparations overtime. The total 

amount of released VEGF-A165 was 13.89 ± 0.04 ng (from 50 ng VEGF-A165/ml gel), 

26.28 ± 0.14 ng (from 100 ng VEGF-A165/ml gel) and 54.55 ± 1.03 ng (from 200 ng 

VEGF-A165/ml gel); when the amount of released molecule is expressed as percentage 

of the total amount of incorporated molecule, it results to be 27.77 % ±0.08 (from 50 ng 

VEGF-A165/ml gel), 26.28 % ± 0,14 (from 100 ng VEGF-A165/ml gel) and 27.28 % ± 

0.51 (from 200 ng VEGF-A165/ml gel) (Table 1). 

3.2 VEGF-A165 is released from hydrogel and maintains its ability to activate 

VEGFR-2, Erk1/2 and Akt phosphorylation. 

VEGF-A165 bioactivity was evaluated by stimulating HUVEC with the harvested 

medium as described in materials and methods section. Stimulation of HUVEC with the 

harvested supernatants resulted in VEGFR-2 phosphorylation leading to Akt and Erk 

pathways activation. Figure 3 reports the western blot analysis of the phosphorylated 

and total VEGFR-2, Erk1/2 and Akt proteins and the relative quantification of the level 

of phosphorylation for each protein - normalized to the total protein - for the three 

different VEGF-A165 concentrations used. VEGF-A165 present in the harvested 

supernatants induces VEGFR-2 phosphorylation up to 50 days for all the tested 

concentrations. VEGFR-2 phosphorylation level is high up to 41, 43 and 48 days when 

cells are stimulated with supernatants harvested from 50, 100 and 200 ng VEGF-

A165/ml hydrogel respectively, then it starts to decrease. Akt and Erk-1/2 are 

phosphorylated up to 65 days. Erk-1/2 phosphorylation level is high up to 29 days, 



when cells are stimulated with supernatants harvested from 50 and 100 ng VEGF-A165 

/ml hydrogel and 38 days when cells are stimulated with supernatants harvested from 

200 ng VEGF-A165/ml hydrogel, then it starts to decrease. Akt phosphorylation level 

does not change overtime for the three different tested conditions. The amount of 

VEGFR-2, Akt and Erk1-2 protein phosphorilation (Fig. 3) is strictly correlated to the 

total amount of released VEGF-A165 detected with the ELISA assay (Fig. 2A) resulting 

in a phosphorilation decrease overtime (Fig. 3). 

VEGF-A165 released from the hydrogel leads to Erk1/2 and Akt phosphorylation in 

Schwann cells. In order to evaluate whether VEGF-A165 released from the hydrogel 

can exerts a biologic effect on Schwann cells, a western blot analysis on proteins 

extracted from RT4-D6P2T cells stimulated with VEGF-A165 was performed. 

Although RT4-D6P2T show low VEGFR-2 mRNA and protein expression (unpublished 

data) VEGF-A165 stimulation results in Erk-1/2 and Akt specific activation. Indeed 

stimulation of RT4-D6P2T cells with supernatants harvested from hydrogels containing 

different VEGF-A165 amounts resulted in phosphorylation and activation of Akt and 

Erk (data no shown). 

3.3 VEGF-A165 released from hydrogel maintains its angiogenic effect 

Tubulogenesis assay was performed on HUVEC plated onto matrigel® and stimulated 

with a pool of supernatants harvested from hydrogels containing different amounts of 

VEGF-A165. HUVEC capillary-like structure formation after VEGF-A165 stimulation 

was evaluated. 

Results show that the formation of capillary-like structures occurred both when cells are 

stimulated with culture medium supplemented with 50, 100 or 200 ng VEGF-A165/ml 



or with the pool of supernatants, collected from hydrogel containing the different 

amounts of VEGF-A165 (Fig. 4 A-H). There is no significant difference between tube 

length of HUVEC stimulated with the pool of supernatants collected from the hydrogel 

containing 50 ng/ml VEGF-A165 and HUVEC stimulated with 50 ng/ml VEGF-A165 

medium. Similar results were obtained with the supernatants containing 100 and 200 

ng/ml VEGF-A165. There is no difference in tubes length among the three hydrogel 

conditions, whereas tube length increases when cells are stimulated with VEGF-A165 at 

a concentration of both 100 and 200 ng/ml in comparison with 50 ng/ml (Fig. 4 I).  

3.4 VEGF-A165 released from hydrogel promotes axon outgrowth. 

The biologic effect of released VEGF-A165 was tested on DRG explants cultured on 

matrigel®. Negative and positive control conditions were performed by culturing DRG 

explants without or with NGF stimulation at a final concentration of 50 ng/ml (Fig. 5 A 

and B, respectively). DRGs were stimulated with supernatant pool harvested from 

hydrogels containing different VEGF-A165
 
concentrations (Fig. 5 C-E). Confocal 

pictures show that VEGF-A165 released from the hydrogel (harvested as pool) induced 

neurite outgrowth. Neurite density, sprouting area and neurite length were quantified 

(Fig. 5 F-H). DRG stimulation with supernatant pool from hydrogel containing 200 ng 

VEGF-A165/ml results in higher neurite density, sprouting area and neurite length 

compared to hydrogel containing 50 and 100 ng VEGF-A165/ml. There are no 

significant differences in neurite outgrowth of DRG stimulated with supernatants 

harvested from hydrogels containing 50 ng NGF /ml or 200 ng VEGF-A165/ml. 

 

 



3.5 Gelatin-based hydrogel containing VEGF-A165 allows axon outgrowth 

In order to further evaluate VEGF-A165
 
release and bioactivity, DRG explants were 

cultured on both matrigel® or hydrogel containing different amounts of VEGF-A165 

(50, 100 or 200 ng/ml). 

Negative and positive control conditions were performed by culturing DRG explants on 

matrigel® or hydrogel without or with 50 ng NGF /ml respectively (Fig.6 A and B). 

DRGs cultured on gels containing NGF and VEGF-A165
 
result in neurite sprouting 

(Fig.6 C-J). Neurite density, sprouting area and neurite length were measured (Fig.6 K-

M).  

NGF incorporation in both matrigel® and hydrogel results in higher neurite density in 

comparison with all the different amounts of incorporated VEGF-A165. Incorporation 

of 200 ng VEGF-A165/ml in both matrigel® and hydrogel results in higher neurite 

density in comparison with 50 and 100 ng VEGF-A165/ml incorporation (Fig.6 K).  

Incorporation of 50 ng NGF /ml and 200 ng VEGF-A165/ml results in higher neurite 

sprouting area in comparison with 50 and 100 ng VEGF-A165/ml for both matrigel® 

and hydrogel condition (Fig. 6 L). 

NGF incorporation in both matrigel® and hydrogel results in higher neurite length in 

comparison with all the different amounts of incorporated VEGF-A165. Incorporation 

of 200 ng VEGF-A165/ml in matrigel® results in higher neurite length in comparison 

with 50 and 100 ng VEGF-A165/ml incorporation and 200 ng VEGF-A165/ml 

incorporation in the hydrogel (Fig. 6 M).  

 



4. DISCUSSION 

The peripheral nervous system is characterized by an intrinsic potential for regeneration. 

Long gap nerve injuries can be successfully repaired using the autograft technique. 

Since this technique has some disadvantages, NGCs can be applied as artificial graft to 

repair nerve injuries. In this context, the presence of an appropriate microenvironment, 

providing molecular cues such as growth factors, plays a crucial role in nerve 

regeneration process. 

In this work, VEGF-A165
 
was selected for its angiogenic and neuroprotective properties 

(Rosenstein et al. 2010, Rosenstein et al. 2003, Storkebaum et al. 2004). In recent years, 

more attention has been given to the potential role of VEGF in the nervous system 

suggesting its involvement in neuroprotection (Beazley-Long et al. 2013, Mohammadi 

et al. 2013, Rosenstein et al. 2003, Silverman et al. 1999, Yue et al. 2014). It has been 

reported that VEGF exerts a trophic effect on primary cortical neurons and dorsal root 

ganglia (DRG) by promoting neurite outgrowth (Jin et al. 2006, Rosenstein et al. 2003, 

Silverman et al. 1999, Sondell et al. 1999, Sondell et al. 2000). VEGF also increases 

neuron and satellite cell survival, and Schwann cell proliferation rate (Sondell et al. 

1999). Moreover, VEGF may induce Schwann cell migration (Schratzberger et al. 

2000) and microglial cell migration and proliferation (Forstreuter et al. 2002). Finally, 

few studies reported that the delivery of VEGF through plasmid injection (Pereira 

Lopes et al. 2011), transfected stem cells (Kempton et al. 2009), VEGF releasing nerve 

graft (Sondell et al. 1999) or VEGF releasing matrigel® filler (Hobson 2002, Hobson et 

al. 2000) enhance nerve regeneration. The major problem in systemic VEGF delivery is 

its short circulation half-life (Fu et al. 2007), due to the binding of VEGF to unspecific 

substrates and low stability and leading to a high degradation rate and consequently 



poor effect. Actually, relatively high VEGF local concentrations are required to have a 

biological effect.  

The major advantage of the developed gelatin-based hydrogel system is to guarantee 

VEGF-A165 controlled release and bioactivity. Moreover, the injectable properties of 

the gelatin-based hydrogel are beneficial in nerve tissue engineering application, since it 

can be easily used to fill a tube cavity during surgery.  

The developed gelatin-based hydrogel displayed a permeable three-dimensional 

structure allowing a sustained release of VEGF-A165
 
release up to 65 days. The gelatin-

based hydrogel displays the same release kinetics independently of the initial amount of 

incorporated VEGF-A165, reaching a 27% release percentage. The release kinetics 

displayed a multi-time deliveries that can be divided in three phases depending on the 

amount of released VEGF-A165. High VEGF-A165 release rate was displayed up to 20 

days, then the amount of released VEGF-A165 decreased over time. Increasing the 

amount of incorporated VEGF-A165 results in longer releasing rate.  

The initial VEGF-A165 burst release might come from the instauration of electrical 

interactions between the gelatine polymer and the VEGF-A165 molecule. The lower 

and controlled release rate observed after 20 days in vitro might be due to the 

instauration of stronger interaction (i.e. covalent interaction) between the gelatine 

polymer and the VEGF-A165 with might stabilize the growth factor structure within the 

hydrogel overtime leading to a long term bioactivity and controlled release. 

As discussed the gelatine-based hydrogel do not release more than 27% of the initial 

amount of incorporated VEGF-A165, this might be due to the non complete hydrogel 

degradation at 58-65 days in vitro resulting in retirement of the growth factor. 



Moreover, the instauration of covalent interaction between the gelatine polymer and the 

VEGF might not allow the complete VEGF release until complete hydrogel degradation 

occurs. Another hypothesis is that the incorporation process leads to a partially 

denaturation and/or degradation of the initially incorporated VEGF leading to a 

reduction of the growth factors releasing rate. 

The bioactivity of growth factors released from a biomaterial is of critical importance to 

allow proper tissue regeneration. VEGF-A165 was released in a bioactive form, from 

the gelatin-based hydrogel, leading to VEGFR-2, Erk-1/2 and Akt phosphorylation up 

to 65 days in vitro in HUVEC cells. VEGFR-2, Erk-1/2 and Akt phosphorylation levels 

were high up to 20 days and then these began to decrease, depending on the amount of 

released VEGF-A165, being active up to 65 days according to ELISA results. The 

tested gelatin-based hydrogel leads to longer VEGF-A165 delivery and bioactivity in 

comparison with carrier system described by other authors (Ennett et al. 2006, Golub et 

al. 2010, Parajo et al. 2010). Furthermore, the gelatin-based hydrogel preparation 

method is simple and convenient for VEGF-A165 incorporation, avoiding its 

denaturation and degradation as demonstrated with the western blot analysis on RT4-

D6PT and HUVEC cells, tubulogenesis assay and DRG explants axons outgrowth 

assay. The total VEGF-A165 degradation or denaturation following its incorporation 

into the gelatine-based hydrogel would not lead to VEGFR-2, Akt and Erk1-2 

phosphorylation and capillary-like structure formation in HUVEC cells or axonal 

sprouting in DRGs explants following stimulation with the harvested supernatants. 

Altogether, these data provide evidence about the optimization of the hydrogel 

preparation protocol to allow functional VEGF-A165 incorporation avoiding VEGF-

A165 degradation and denaturation. 



Concerning the angiogenic effect of VEGF-A165, the released VEGF-A165 induced 

capillary-like structure formation from HUVEC cells seeded on Matrigel®. Increasing 

the amount of incorporated VEGF-A165 results in increased tube length, whereas 

conditioned medium from hydrogel containing different amounts of VEGF-A165
 
does 

not affect capillary-like tube length. These data suggest that the gelatin-based hydrogel 

system allows a slow and controlled VEGF-A165
 
release.  

Bioactivity of released VEGF-A165 was evaluated using Schwann cells and DRG 

explants since they represent an in vitro model of the two main cell components 

involved in peripheral nerve regeneration process: glia and motor neurons. Following 

stimulation of Schwann cells with conditioned medium, Erk-1/2 and Akt displayed a 

phosphorylation trend similar to the one observed in HUVEC cells. Moreover, pool of 

conditioned medium induced neurite outgrowth from DRG explants; neurite density, 

sprouting area and length showed a proportional increase depending on the amount of 

incorporated VEGF-A165. Conditioned medium harvested from the hydrogel 

containing 200 ng VEGF-A165/ml resulted in a neurite outgrowth trend similar to NGF 

condition. DRG explants cultured on matrigel® or hydrogel containing NGF or VEGF-

A165
 
result in neurite outgrowth. These data provide confirmation of the successful 

VEGF-A165
 

incorporation and release from the gelatin-based hydrogel and its 

bioactivity effect on DRG explants. Moreover, these results show that DRG can be 

successfully cultured on the gelatin-based hydrogel providing confirmation of its 

biocompatibility. 

The characterized gelatin-based hydrogel system can be injected into empty nerve 

guidance channels. The resulting device can be used to bridge a gap in peripheral nerves 

following an injury in order to improve peripheral nerve regeneration process. 



Further in vivo experiments will be performed in order to investigate the potential 

application of the VEGF-A165 loaded gelatin-based hydrogel system in comparison to a 

non-loaded gelatin-based hydrogel system in rat median nerve injured model. 

5. CONCLUSION 

The gelatin-based hydrogel system can be a useful vehicle to encapsulate and slowly 

release VEGF-A165 in a controlled manner overtime. In vitro results showed that 

gelatin-based drug releasing hydrogel can be suitable for bioactive VEGF-A165 release, 

inducing capillary-like tube formation and axonal outgrowth ex vivo. Growth factor 

delivery through the gelatin-based hydrogel provides multi-time deliveries that can be 

suitable for peripheral nerve regeneration application. In particular, a high release rate 

within the first 20 days from nerve injury may promote angiogenesis, stimulate 

Schwann cell migration and increase the number of re-growing axons, thus enhancing 

the regeneration process.  
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Figure 1. Experimental set up. Schematization of VEGF incorporation procedure into 

the gelatin-agar hydrogel (A). Harvesting medium procedure schematization (B). 



 

Figure 2. VEGF-A165 releasing rate from gelatin-based hydrogel. Total (A) and 

cumulative (B) amount of VEGF-A165 released from gelatin hydrogels incorporated 

with 50 (black), 100 (dark gray) and 200 ng (light gray) VEGF-A165
 
per ml of gel 

solution. Data are expressed as mean ± SEM. 



 



Figure 3. HUVEC stimulation with supernatants harvested from gelatin-based hydrogel 

containing different amounts of VEGF-A165. Western blots of phospho-VEGFR-2, 

VEGFR2, phospho-Erk-1/2, Erk-1/2, phospho-Akt and Akt after HUVEC stimulation 

with supernatants harvested from gelatin-based hydrogel containing 50, 100 or 200 

ng/ml of VEGF-A165/ml (A). Phospho-VEGFR-2/VEGFR, phospho-Akt/Akt and 

phospho-Erk-1/2/Erk-1/2 relative quantification after stimulation of HUVEC with 

supernatants harvested from gelatin-based hydrogel containing 50 (black), 100 (dark 

gray) or 200 (light gray) ng VEGF-A165/ml(B).   



 

Figure 4. HUVEC tubulization assay. Representative images of HUVEC organization. 

Negative control condition (A), positive control condition (B), positive control 

condition performed by stimulating cells with 50 (C), 100 (D) and 200 (E) ng VEGF-

A165/ml, stimulation with a pool of supernatants harvested from hydrogels containing 

50 (F), 100 (G) and 200 (H) ng VEGF-A165/ml. Quantification of tube length (I). Data 

are expressed as mean ± SEM. Scale bar 100 µm. 



 

Figure 5. DRG explants stimulation with pool of supernatants harvested from gelatin-

based hydrogel containing different amount of VEGF-A165. Negative control (A); 

positive control (50 ng NGF/ml (B); explants stimulated with a pool of supernatants 

harvested from hydrogels containing 50 (C), 100 (D) and 200 (E) ng VEGF-A165/ml of 

gel. Quantification of neurite density (F), sprouting area (G) and neurite length (H). 

Data are expressed as mean ± SEM. Scale bar 100 µm. 



 

Figure 6. DRG explants cultured on matrigel® and hydrogel containing different 

amounts of VEGF-A165. Negative control (A and B) and positive control (50 ng NGF 

/ml) (C and D) performed on both matrigel® (A and C) and hydrogel (B and D); 

explants cultured on matrigel® containing 50, 100 or 200 ng VEGF-A165/ml (E, G, I); 

explants cultured on hydrogel containing 50, 100 or 200 ng VEGF-A165/ml (F, H, J). 

Hydrogel appears in red due to genipin auto-fluorescence. Evaluation of neurite density 

(K); sprouting area (L) and neurite length (M). In plot K the *** and ### refer to the 



statistical difference between matrigel® and hydrogel containing respectively 50 ng 

NGF/ml and all the VEGF-A165 conditions. $ and @ refer to statistical differences 

between matrigel® and hydrogel containing 200 ng VEGF-A165/ml and all the other 

VEGF-A165 condition. In plot L, *** and ### refer to the statistical difference between 

matrigel® and hydrogel containing 50 ng NGF /ml with matrigel® and hydrogel 

containing 50 and 100 ng VEGF-A165/ml. $$$ and @@ refer to the statistical 

difference between matrigel® and hydrogel containing 200 ng NGF /ml with matrigel® 

and hydrogel containing 50 and 100 ng VEGF-A165/ml. In plot M, *** and ### refer to 

the statistical difference between hydrogel containing 50 ng NGF /ml and all the VEGF-

A165 conditions. $$ and @  refer to statistical difference between matrigel® containing 

200 ng VEGF-A165/ml and all the VEGF-A165 incorporated hydrogel or matrigel®. 

Data are expressed as mean ± SEM. Scale bar 100 µm. 



 

 50 ngVEGF-

A165/ml  
100 ngVEGF-

A165/ml  
200 ngVEGF-

A165/ml  

release rate day 1-20 (ng) 0.96 ± 0.11 1.85 ± 0.19 3.69 ± 0.36 

release rate day 20-43 (ng) 0.21 ± 0.03 0.36 ± 0.07 0. 86 ± 0.17 

release rate day 43-65 (pg) 29.76 ± 10.35 41.73 ± 4.78 162.49 ± 21.20 

total release (ng) 13.89 ± 0.04 26.28 ± 0.14 54.55 ± 1.03 

% release 27.77 ± 0.08 26.28 ± 0.14 27.28 ± 0.51 

total days of release 58 63 65 

 

Table 1. The release rate, total amount of released VEGF-A165, percentage of release 

and total days of release from the different hydrogels containg 50, 100 and 200 ng of 

VEGF-A165. 
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