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Abstract
The crosstalk between microRNAs (miRNAs) and other epigenetic factors may lead to novel hypotheses about carcinogenesis 
identifying new targets for research. Because a single miRNA can regulate multiple downstream target genes, its altered 
expression may potentially be a sensitive biomarker to detect early malignant transformation and improve diagnosis and 
prognosis. In the current study, we tested the hypothesis that altered methylation of miRNA encoding genes, associated 
with deregulated mature miRNA expression, may be related to dietary and lifestyle factors and may contribute to cancer 
development. In a case–control study nested in a prospective cohort (EPIC-Italy), we analysed DNA methylation levels of miRNA 
encoding genes (2191 CpG probes related to 517 genes) that are present in the Infinium Human Methylation450 BeadChip array 
in prediagnostic peripheral white blood cells of subjects who developed colorectal cancer (CRC, n = 159) or breast cancer (BC, 
n = 166) and matched subjects who remained clinically healthy. In the whole cohort, several differentially methylated miRNA 
genes were observed in association with age, sex, smoking habits and physical activity. Interestingly, in the case–control study, 
eight differentially methylated miRNAs were identified in subjects who went on to develop BC (miR-328, miR-675, miR-1307, miR-
1286, miR-1275, miR-1910, miR-24-1 and miR-548a-1; all Bonferroni-adjusted P < 0.05). No significant associations were found 
with CRC. Assuming that altered methylation of miRNAs detectable in blood may be present before diagnosis, it may represent a 
biomarker for early detection or risk of cancer and may help to understand the cascade of events preceding tumour onset.
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Introduction
DNA methylation is an epigenetic mechanism responsible for 
heritable phenotypic changes of cells with functional conse-
quences. It is an important phenomenon in early embryonic 
development, stem cell differentiation and tissue-specific gene 
expression (1). Methyltransferases add methyl groups to cyto-
sine residues followed by guanines (CpGs). CpG islands (CGI) are 
CpG rich regions often found in gene promoters, and the meth-
ylation state of a CpG island may correlate with the gene expres-
sion state (2). In normal cells, promoter-associated CGI are 
generally unmethylated, with the exception of X-chromosome 
inactivation or genomic imprinting. In cancer, tumour cells are 
characterized by global hypomethylation, but locus-specific 
hypermethylation of promoter-associated CGI resulting in gene 
silencing (3). 

MicroRNAs (miRNAs) are short non-coding RNA molecules 
(18–25 nucleotides) able to repress the translation of multiple 
protein-coding mRNAs by sequence-specific binding to the 
3′ untranslated region (4). It is currently estimated that there 
are more than 1800 mature miRNAs encoded from thousands 
of transcriptional units (miRNA genes) in the human genome 
(www.mirBase.org). Based on their genomic location, miRNA 
genes can be classified as intergenic or intragenic. Intergenic 
miRNAs are transcribed from non-coding regions in-between 
protein-coding and other non-coding genes. Instead intragenic 
miRNAs are encoded in the intron of, and mostly transcribed 
in parallel with, their host protein-coding or non-coding gene 
(5). MiRNAs participate in the regulation of about two-thirds of 
human genes and are involved in the determination of cell iden-
tity. The rapid developments in miRNA-related technologies, 
such as miRNA expression profiling and synthetic oligoRNA, 
have contributed to identify miRNAs involved in a number of 
physiological and pathological phenotypes (6). Even though the 
biogenesis of miRNAs has been intensely studied and described, 
the regulation of miRNA expression is not fully understood. 
Recently, accumulating studies have shown that subgroups of 
miRNAs are epigenetically regulated (7). MiRNA-coding genes 
appear to be regulated in a fashion similar to protein-coding 
genes, through the actions of transcription factors and epi-
genetic control mechanisms such as methylation of specific 
regulatory regions (7,8). As a consequence, alteration of these 
regulatory mechanisms can produce abnormal chromatin states 
and participate in disease pathogenesis. For example, aberrant 
methylation of tumour suppressive miRNAs has been reported 
in different cancer types (9).

For these reasons, miRNA targets of aberrant DNA methyla-
tion might be potentially used for diagnostic purposes, but also 
as potential targets for epigenetic drugs. Conversely, other sub-
sets of miRNAs may control the expression of important epi-
genetic regulators, including DNA methyltransferases, histone 
deacetylases and Polycomb-group genes. This complicated net-
work of feedback between miRNAs and epigenetic pathways 

appears to form regulatory circuits and organize the whole gene 
expression profile (6). However, several questions remain largely 
unanswered, such as: (i) for how many miRNAs the expression is 
effectively controlled by methylation (or in concomitance with 
other epigenetic mechanisms), (ii) what are the consequences of 
an aberrant miRNA methylation and (iii) which genes are regu-
lated by each miRNA.

The analysis of the crosstalk between miRNAs and other 
epigenetic modifications may lead to novel hypotheses about 
cancer onset and may identify new targets for research and 
hopefully therapies. There are several studies reporting deregu-
lated methylation patterns in miRNAs, mostly based on a can-
didate gene approach. Shen et  al. previously reported results 
from an analysis of 62 paired tumour and adjacent non-tumour 
tissues from hepatocellular carcinoma cases using the Infinium 
HumanMethylation27 DNA Analysis BeadChip, identifying the 
CpG sites that most significantly differed by tissue status. They 
evaluated the 254 CpG sites on the array that cover 110 miRNAs 
from 64 host genes, and detected aberrant miRNA gene meth-
ylation in hepatocellular carcinoma tissues (10).

In the current study, we tested the hypothesis that DNA meth-
ylation alterations in CpGs associated with miRNA encoding 
genes may be one of the causes of a deregulated mature miRNA 
expression in relation to colorectal cancer (CRC) and breast 
cancer (BC) onset. We described the results of two case–control 
studies nested in a prospective cohort in which we measured 
DNA methylation in peripheral white blood cells of subjects who 
later developed CRC or BC, and subjects who remained clini-
cally healthy. We estimated DNA methylation from the Infinium 
Human Methylation450 BeadChip (HM450) array, assuming that 
altered miRNA methylation may be present before the diagnosis 
and can be associated with cancer risk.

Material and methods

Subject recruitment
Study participants were drawn from the Italian component of the 
European Prospective Investigation into Cancer and Nutrition (EPIC) 
cohort. This subcohort consists of 46 857 volunteers, recruited from five 
different centres within Italy (Varese, Turin, Florence, Naples and Ragusa) 
with standardized lifestyle and personal history questionnaires, anthro-
pometric data and blood samples collected for DNA extraction (11).

For the present investigation, two nested case–control studies were 
designed, one on BC and one on CRC. Incident cases were identified 
through Cancer Registries with <2% losses to follow-up. Controls were 
individually matched on age (±5 years), sex, seasonality of blood collec-
tion and length of follow-up. All participants signed a written informed 
consent and the ethical review boards of the International Agency for 
Research on Cancer, and of the collaborating institutions responsible for 
subject recruitment in each of the EPIC recruitment centres approved the 
study.

Anthropometric and dietary/lifestyle factors
Height and weight were measured at enrolment with a standardized pro-
tocol and body mass index (BMI calculated as the ratio between weight 
in kg and squared height in metres) was treated as a continuous variable. 
Data on smoking status were collected at study enrolment through ques-
tionnaires and participants were categorized as never, former and current 
smokers. Information on dietary and alcohol intake was obtained via a 
semiquantitative Food Frequency Questionnaire from which estimated 
consumption of foods and alcohol in g/day was calculated (12). Alcohol 
consumption was treated as a continuous variable (g/day). Physical activ-
ity was assessed using the Cambridge Physical Activity Index (13), which 
combines self-reported occupational activity with time participating in 
cycling and other sports. Participants were divided into four categories: 
inactive (sedentary job and no recreational activity), moderately inactive 

Abbreviations 

BC breast cancer
BMI body mass index 
CRC colorectal cancer 
CGI CpG islands 
miRNAs microRNAs 
RPMM recursively partitioned mixture model 
SNPs single-nucleotide polymorphisms 
TSS transcription start site
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(sedentary job with >1 h of recreational activity per day), moderately 
active (standing or physical job with some recreational activity) and active 
(standing or physical job with some recreational activity or a heavy man-
ual job).

DNA preparation and Illumina Infinium Human 
methylation platform
DNA samples were extracted from buffy coats using the QIAsymphony 
DNA Midi Kit (Qiagen, Crawley, UK). Bisulphite conversion of 500 ng of 
DNA from each sample was performed using the EZ-96 DNA Methylation-
Gold™ Kit according to the manufacturer’s protocol (Zymo Research, 
Orange, CA). Bisulphite-converted DNA was used for hybridization on the 
HM450 array, following the manufacturer’s protocol. The array measures 
DNA methylation at 485 512 cytosine positions across the human genome, 
of which 482 421 CpG sites and 3091 non-CpG sites; hereafter the term CpG 
will be used to refer to all of these, unless otherwise specified. A whole 
genome amplification step was followed by enzymatic end-point frag-
mentation and hybridization to HM450 arrays at 48°C for 17 h, followed by 
single nucleotide extension. The incorporated nucleotides were labelled 
with biotin (ddCTP and ddGTP) and ddNP (ddATP and ddTTP). After the 
extension step and staining, the BeadChip was washed and scanned using 
the Illumina HiScanSQ system. Sample quality was assessed using con-
trol probes present on the microarrays. The intensities of the images were 
extracted using the GenomeStudio (v.2011.1) Methylation module (1.9.0) 
software, which normalizes within-sample data using different internal 
controls that are present on the HM450 array and internal background 
probes. The methylation level at each CpG was expressed as a β-value, 
which represents the fraction of methylated cytosines at that specific 
location. Data preprocessing was carried out using in-house software 
written for the R statistical computing environment as described in [14]. 
Probes not detected (P > 0.05) in more than 20% of samples were removed 
from the dataset. Missing data were first imputed using the k-nearest 
neighbours method as implemented in the R package ‘impute’ (15). The 
whole methylation data for the study population have been deposited and 
are available online (GSE51057).

Descriptive analysis of probes associated to miRNAs
In the present study, the analyses were focused on probes associated to an 
Illumina annotation for genes encoding for miRNAs. In the HM450 plat-
form, 3439 probes are associated with at least one miRNA.

The correspondence between annotations provided by Illumina 
manifest and the proximal gene occurring within a window of ± 100 kbp 
respect to each probe were verified in the preliminary selection of the 
probes related to miRNA-encoding genes. Only those miRNAs associated 
to an Illumina annotation also stored in both mirBase (release 20)  and 
HUGO Gene Nomenclature Committee database (http://www.genenames.
org/) were selected. In the preliminary phase, the following subgroups of 
probes were discarded: (i) those mapping on chromosome X, (ii) those 
including single-nucleotide polymorphisms (SNPs) (except for SNPs with 
minor allele frequency  =  0 in Caucasians from 1000 Genomes) and (iii) 
those associated to discordant miRNA annotations. Some inconsisten-
cies between the probe position and the coordinates of the associated 
gene were detected considering the transcription start site (TSS) as refer-
ence point. More in detail, each probe is usually associated with a gene 
annotated on a specific chromosome, but in some instances an incon-
sistency was found verifying the genomic coordinates of the associated 
gene in another repository. After the resolution of these contradictions 
(i.e. removing the incorrectly associated probes) and following the work-
flow described in Figure 1A, a set of 2191 probes (IlluProbes, 63.7% of the 
whole set of miRNA-related probes) has been obtained which is associated 
with 517 unique miRNA annotations (IllumiRNAs, 84.1% of the total miR-
NAs annotated in HM450 platform and in mirBase) used in the following 
analysis. Their genomic distribution is reported as Circos plot in Figure 1B. 
miRNA genomic distribution is essentially reflected in the number of 
probes in IlluProbes, except for chromosome 9 where the number of miR-
NAs exceeds the amount of probes. Two spikes of probes and miRNAs can 
be identified in chromosomes 14 and 19, corresponding to two well-known 
miRNA clusters (16). To assess probe and miRNA distribution over the 
genome, a probes/miRNAs ratio was computed. It is possible to observe a 
non-normal data distribution (Shapiro–Wilk Test, P < 0.0001) that reveals 

an average number of four probes associated to each miRNA (range 1–16), 
with 25% of miRNAs having only one probe associated, Figure 1C.

The IlluProbes list contains two classes of probes: ‘unique’, associated 
only to one miRNA and ‘multi’, associated to multiple miRNAs. Moreover, 
miRNAs may be associated to a probe signature composed by: (i) unique 
probes (distinctive), (ii) miRNA signatures composed by probes belonging 
to the multiclass (collective) and (iii) miRNAs associated to unique and 
multi probes (overlapping). Probes and miRNAs counts in each category 
are reported in Supplementary Table 1, available at Carcinogenesis Online.

The genomic context and CGI distribution of IlluProbes were inves-
tigated resulting in 89.3% of the probes mapped into promoter regions 
(within 200 and 1500 bps from a TSS) while the others were mapped 
in the body region of genes (Supplementary Figure  1A left, available at 
Carcinogenesis Online). Furthermore, more than 50% of IlluProbes fell 
into regions without CGI (Supplementary Figure  1A right, available at 
Carcinogenesis Online). Additionally, we verified the genomic annotations 
of probe and miRNA coordinates based on ENSEMBL (version 75). In par-
ticular, we computed the frequencies of four genomic groups: coding 
gene, non-coding region, intergenic or overlapping between a coding and 
a non-coding region. Note that non-coding regions include long non-cod-
ing RNAs, antisense, pseudo-genes, processed transcripts and sno/micro 
RNAs as reported in Supplementary Figure 1B, available at Carcinogenesis 
Online, which reports two pie charts that contain the IlluProbe and 
IllumiRNA counts.

Statistical analysis
The distribution of anthropometric and dietary/lifestyle factors in the 
study group was compared between cases (both BC and CRC or separately) 
and controls using Chi-square (categorical data) and Kruskal–Wallis (con-
tinuous data) tests.

Considering all probes for each IllumiRNA locus, a β-value resulting 
from the average of all β-values of this probe signature was computed. 
To identify differentially methylated miRNAs (DMmiRNAs) between two 
conditions (both for covariates analyses and case–control studies), an 
unpaired Wilcoxon Rank Sum test with Bonferroni correction was per-
formed. In particular, for each covariant considered (age at recruitment, 
smoking status, BMI, alcohol consumption, meat and folic acid intake and 
physical activity index) samples were divided into two categories, accord-
ing to median for continuous variables. A difference was declared statisti-
cally significant if the Bonferroni-adjusted P ≤ 0.05. The possibility that the 
identified associations could be explained by the confounders was verified 
by multivariate linear regression analysis.

The DMmiRNAs were used to cluster samples associated to simi-
lar methylation profiles, regardless of the case–control status, by the 
recursively partitioned mixture model (RPMM) implemented in the R 
package RPMM (17). Logistic regressions were computed considering 
either only selected risk factors or both risk factors and previously 
identified RPMM classes. Subsequently, the area under the curve 
was computed and the results were compared by the De Long test as 
described in [18].

To validate the most relevant results from the case–control studies, 
the dataset TCGA_BRCA_hMethyl450 by The Cancer Genome Atlas (TCGA) 
consortium (19) was downloaded through the UCSC Cancer Genomics 
Browser (https://genome-cancer.ucsc.edu) (20). This dataset includes 734 
primary BC and 98 normal tissue methylation profiles. For each identi-
fied DMmiRNA in the present study, a β-value was computed following 
the same approach as for our dataset. To identify DMmiRNAs, a Wilcoxon 
Rank-Sum test with Bonferroni correction was performed between cancer 
and control tissues.

All statistical analyses were conducted using the open source R envi-
ronment (www.r-project.org).

Results

Study population
The study was carried out among 650 individuals: 166 that devel-
oped BC, 159 that developed CRC and 325 matched healthy 
controls. Blood samples from cancer cases were taken on aver-
age 64.6 months (range: 0.5 to 187.9) before diagnosis of BC, and 
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74.1 months (range 0.2 to 172.8) for CRC. The main clinical, biologi-
cal and lifestyle characteristics of the study population are summa-
rized in Table 1. Controls and cases had the same age at recruitment 
and were matched by sex; moreover, they did not significantly differ 
for any recorded confounders, except for smoking status among BC 
cases and controls (P = 0.018), and BMI between cases and controls 
in the whole group (P = 0.027), and in the CRC group (P = 0.028).

Methylation profiles analysis
To evaluate the differences in methylation profiles in the present 
population, we analysed the data following these criteria: (i) all 
subjects together, independently of case–control status, to inves-
tigate the role of each assessed dietary and lifestyle factor on raw 
miRNA methylation profiles at recruitment, (ii) each case–control 
study separately, to investigate the potential associations between 
prediagnostic miRNA methylation profiles and either BC or CRC.

Among all the investigated factors (age at recruitment, 
smoking status, BMI, alcohol consumption, meat and folic acid 

intake and physical activity), four factors were associated to sig-
nificantly differentially methylated CpG sites of miRNAs after 
Bonferroni adjustment. In detail, 117 DMmiRNAs were associ-
ated with gender (39 hypermethylated and 78 hypomethylated 
in females versus males), 23 with age (17 hypomethylated and 
6 hypermethylated in older versus younger subjects, according 
to median age), 4 with physical activity status (2 hypermethyl-
ated and 2 hypomethylated miRNAs in active versus inactive) 
and 2 with smoking habit (1 hypermethylated in current smok-
ers versus never smokers and 1 hypomethylated in former 
smokers versus never smokers). All DMmiRNAs are shown in 
Supplementary Figure 2, available at Carcinogenesis Online.

With respect to the case–control studies, we analysed BC 
and CRC cases with their own matched controls separately. No 
DMmiRNAs were detected in CRC patients in comparison with 
healthy matched controls, also stratifying for tumor location. On 
the other hand, in BC samples we identified eight DMmiRNAs 
(miR-328, miR-675, miR-1307, miR-1286, miR-1275, miR-1910, 

Figure 1. (A) Work flow applied in the analysis to extrapolate the probe set. At each step of filtering, the resulting numbers of probes are shown. (B) Circos representa-
tion of the genomic distribution of human miRNAs and the Illumina HumanMethylation450K probes residing in miRNA genes. Each ideogram represents a human 
chromosome split in bins of 10 Mbp. Each bin is illustrated as a white segment delimited by vertical black lines. The number of probes used in the analysis (IlluProbes, 
dark grey bars) is reported on the top, while the number of resulting miRNAs (IllumiRNAs, white bars), and those annotated in mirBase (light grey bars) are shown at the 
bottom. (C) Histogram (left) and box plot (right) of the distribution of the number of probes associated to each miRNA.
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miR-24-1 and miR-548a1; Figure  2A), which were significantly 
hypomethylated in cases in comparison with controls (P val-
ues ranging from 0.001 to 0.017 after the Bonferroni correction, 
Table  2). All DMmiRNAs in the BC group were also confirmed 
after adjustment for covariates in multivariate linear regres-
sion analysis (Supplementary Table 2, available at Carcinogenesis 
Online). For BC, we had the possibility to stratify cases accord-
ing to morphology (ductal or lobular carcinoma) and invasive/in 
situ cancer. Apart from the already identified eight miRNAs, 
three additional differentially methylated miRNAs appeared for 
invasive breast carcinoma (miR-200B, miR-525, miR-96) and two 
more for lobular carcinoma (miR-1180, miR-601). However, the 
number of observations was reduced in subgroup analyses.

To exclude reverse causation, we removed all cases that devel-
oped BC within 1 year from the recruitment (n = 22). In this analy-
sis, seven out of the eight identified DMmiRNAs were confirmed, 
with miR-548a1 losing statistical significance. Interestingly, miR-
548a1 was the only miRNA whose different methylation levels 
between cases and controls increased with decreasing time 
interval between recruitment/sampling and cancer diagnosis 
(Supplementary Figure 3, available at Carcinogenesis Online).

Discriminatory ability of identified DMmiRNAs
The RPMM method identified seven clusters based on the meth-
ylation profiles of the 36 probes associated to the DMmiRNAs 

identified among the BC group. Subsequently, two logistic regres-
sions were computed considering: (i) one set of known risk fac-
tors for cancer (i.e. physical activity, BMI, alcohol consumption, 
red meat consumption and folate intake, as reported in Table 1), 
and those specific for BC (i.e. age at menarche, parity, breastfeed-
ing habits, age at menopause and family history of BC, though 
not significant as reported in Supplementary Table 3, available at 
Carcinogenesis Online), and matching variables (i.e. age and EPIC 
centre of recruitment), namely model1, or, (ii) the same set of risk 
factors/variables and the seven RPMM classes (Figure 3A) identified 
with respect to the miRNA methylation profiles, namely model2. 
The area under the curve was 0.62 (95% CI: 0.56–0.69) for model1 
and 0.71 (95% CI: 0.65–0.77) for model2. Figure 3B shows receiver 
operating characteristic (ROC) curves of model1 and model2. A sta-
tistically significant increment in sensitivity and specificity using 
both risk factors and epigenomic information was highlighted in 
model2 versus model1 by the De Long test (P = 0.003).

Methylation profiles of DMmiRNAs: validation 
datasets of TCGA tissue samples
We verified the methylation levels of the eight previously identi-
fied DMmiRNAs in 734 primary BC and 98 normal breast tissues 
collected by the TCGA consortium. Four probes (cg15317267, 
cg18002519, cg12974668 and cg05797594) out of the 36 associ-
ated to the eight DMmiRNAs were excluded since no data were 

Figure 2. (A) Heat map of log2 fold change methylation differences and the adjusted P value computed for each probe belonging to the 8 DM miRNAs obtained for the 
BC cohort. The case–control statistical analysis was performed by using Wilcoxon Rank-Sum method. (B) Network representation of Gene Ontology Biological Process 
terms enriched by Enrichr (22) for the list of validated target genes.
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available. A comparison of methylation levels between tumour 
and normal tissues showed, in agreement with our findings, a 
significant hypomethylation for four miRNAs: miR-675, miR-
548a1, miR-1910 and miR-1275 (P < 0.001 for all miRNAs, except 
miR-1275 P  =  0.041) while for miR-1307 hypomethylation was 
non-significant. In contrast, miR-24-1, miR-328 and miR-1286 
resulted hypermethylated in neoplastic tissue compared to con-
trol (Supplementary Figure 4, available at Carcinogenesis Online).

Target genes and gene enrichment analysis
We investigated targets of the identified DMmiRNAs by using 
the mirWalk database (21), considering only the validated target 
annotations. Three DMmiRNAs (miR-328, miR-1910 and miR-
548a) had Dicer1 as common target, while two DMmiRNAs (miR-
328 and miR-675) had the KRAS gene. No other overlap emerged 
(see Supplementary Table 4, available at Carcinogenesis Online for 
the complete list of targets). We performed a functional enrich-
ment analysis on the identified validated targets using the 
Enrichr algorithm (22). GO biological process terms associated 
with a significant P (P < 0.001) are reported in Figure 2B. Notably, 
significant terms were mainly related to apoptosis (GO:0006917, 
induction of apoptosis, adjusted P  <  0.001) and growth path-
ways (GO:0030308, negative regulation of cell growth, adjusted 
P < 0.001).

Discussion
Aberrant DNA methylation of miRNA encoding genes has 
received attention as an emerging mechanism for miRNA 
deregulation in cancer (23–25). If the DNA methylation patterns 
significantly correlate with repression/upregulation of relevant 
miRNAs, the biological effects should be greater than the effect 
on a single protein-coding gene since a single miRNA can regu-
late multiple downstream target genes. These amplified effects 
indicate that miRNAs may be potentially more sensitive bio-
markers to detect early malignant transformation and improve 
diagnosis and prognosis.

In the present study, we investigated the methylation levels 
of miRNA encoding genes in blood samples of subjects from two 
prospective case–control studies nested in the EPIC-Italy cohort. 
The main finding is that we have identified eight DMmiRNAs in 
prediagnostic samples of subjects who developed BC during fol-
low-up, in comparison with healthy subjects matched for main 
potential confounders. Interestingly, all significant DMmiRNAs 
resulted less methylated in subjects who developed BC and 
they, independently of other well-known investigated risk fac-
tors, contributed to increase sensitivity and specificity of logistic 
regression models. In contrast, no DMmiRNAs emerged among 
subjects who developed CRC.

Among the DMmiRNAs, we have found the intergenic 
miR-548a1, represented only by one TSS probe and coding for 
miR-548-3p. This miRNA is part of the miR-548 family, whose 
encoding genes are located across several human chromosomes 
(26). To the best of our knowledge, there are no published studies 
reporting an association between this miRNA and BC. More evi-
dence is available for other miRNAs. miR-675 is located in the first 
exon of the long non-coding RNA H19 gene that is imprinted and 
maternally expressed. Long non-coding RNAs and internal miR-
NAs may have versatile roles in multiple biological processes, 
including tumorigenesis, as potential non-coding RNA regula-
tory molecules (27). In particular, H19 has been observed several 
times in association with different cancers, among which BC, but 
the underlying mechanism of action remains unclear (27). miR-
675 is known to target the tumour suppressor retinoblastoma Ta
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gene and to promote growth and invasion of neoplastic cells 
(28). A non-overlapping simultaneous involvement of H19 and 
miR-675 in gastric cancer has also been recently shown (29). 
Few data are available about the methylation status of miR-1910 
and its relationship to BC or other cancers. Hypermethylation 
of its promoter has been observed in cell lines but not in breast 
tumour tissue (30). miR-1910 is intronic with respect to C16orf74 
(MGC17624), a gene locus on chromosome 16q24.1 whose func-
tion has yet to be characterized. C16orf74 expression has been 
associated with PRSS3 in bladder cancer (31). miR-1275 is part 
of a recently described signature of miRNAs upregulated in BC 
tissue of very young women (32). Notably, miR-548a1, miR-675, 
miR-1910 and miR-1275 resulted significantly hypomethylated 
also in breast tumour tissue as compared to normal tissue in the 
TCGA dataset, indicating that the observed alterations in DNA 
methylation levels might be clinically relevant.

Both miR-328 and miR-1307 were recently related to BC by 
studying a large cohort of samples from the TCGA consortium, 
as part of a prognostic miRNA/mRNA signature (33). Promoter 
methylation of miR-1307 was observed in cell lines but not in 
tumour tissue (30). MiR-328 regulates breast cancer resistance 
protein (BCRP) expression in cancer cells: the observed large 
interindividual differences in various human tissues has been 
ascribed to DNA methylation in the miR-328 promoter region 
(34). Finally, miR-24-1, located within an intron of C9orf3, forms 
a cluster together with miR-23b, miR-27b and miR-3074 whose 
ectopic expression has been implicated in BC progression (35). 
In our study, miR-24-1 presented one significantly hypomethyl-
ated probe in the body of the gene, while only TSS probes were 
differentially methylated in all other DMmiRNAs. Interestingly, 
miR-24-1 was also hypermethylated in tumours in comparison 
with healthy tissues in the TCGA BC dataset. miR-24-1 was pre-
viously shown to be increasingly expressed in BC tissue, pro-
moting its development (36). In addition, miR-24-1 was observed 
as differentially expressed in blood samples of healthy controls 
versus patients with early stage BC (37,38).

We also investigated the validated target genes of the 
eight DMmiRNAs, and a functional enrichment analysis high-
lighted that significant terms were mainly related to apoptosis 
and growth pathways. In a general scheme, overexpression of 
miRNAs, due to hypomethylation, might have a role in cancer 
onset by negatively regulating the above gene pathways. It is 
also expectable that the effects of such modest differences in 

methylation levels, while perhaps of little consequence individ-
ually, may globally affect transcription of a biological process or 
functional network when they co-occur with other changes in 
the methylome (39).

Epigenetic regulation is often studied in the context of envi-
ronmental and population health, as DNA methylation patterns 
are known to be affected by environmental, lifestyle and demo-
graphic factors that affect complex disease risk, such as diet, 
carcinogen exposure, reproductive factors and age, in different 
tissues including blood (40–42). Several lines of evidence are 
accumulating on differential miRNA expression, detected also in 
blood samples, according to age, sex, BMI, smoking activity and 
diet (43–45). When investigating potential confounders, the main 
differences in our study population were observed for gender: 
approximately two-thirds of miRNA encoding genes were hypo-
methylated in females. We also observed several DMmiRNAs in 
relation with age, with a predominance of hypomethylated miR-
NAs in older subjects. Zongli and Taylor (46) recently reported 
strong differences between island and non-island sites for the 
direction of methylation changes with age: while 80% of CpGs 
at island sites were increasingly methylated with age, 95% of 
CpGs at non-island sites became progressively demethylated. 
From our dataset, the majority of Illuprobes are not located on 
CGI, in line with above findings. Fewer DMmiRNAs were found 
associated to physical activity levels and smoking habits, while 
no association was observed for BMI and dietary factors includ-
ing alcohol consumption.

We are aware of some limitations of the current study. Despite 
the genome-wide approach to methylation analysis provided 
by the HM450 array and the relatively vast number of miRNA 
encoding genes represented (>600), the list is not fully exhaus-
tive for the human genome, thus resulting more a candidate 
approach. Moreover, many of the initially available probes were 
removed for the presence of SNPs, for being on chromosome 
X, for not being correctly annotated or not being consistently 
analysed in a large proportion of the subjects (>20%). Another 
important aspect is that methylation status was investigated 
in blood cells which are not the target tumour tissue. Several 
studies have assessed methylation in this surrogate tissue in 
relation to cancer (47) and in particular BC (48). Also for miRNA 
expression levels some relationships have been observed (38), 
particularly in normal tissue before disease onset (as reviewed 
in 42). However, in blood cells altered methylation levels may be 

Figure 3. (A) Distribution of BC cases/controls in the seven identified classes of methylation profiles according to RPMM algorithm. (B) Area under the curve for a set of 
BC risk factors (model1) and the same set and the seven RPMM classes according to miRNA methylation profiles (model2).
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unrelated to those in the primary tumour tissue, especially in 
earlier stages of the disease. In solving the question of whether 
DNA methylation at a specific locus actually influences tran-
scriptional activity, researchers should also aim to establish 
whether the small DNA methylation differences often observed 
between groups in surrogate tissues translate into differences in 
gene expression in the relevant tissue. In this context, we have 
queried the data generated on tissue samples by perusing the 
TCGA database, where the expression levels of four DMmiRNAs 
were available in the BC dataset: the only significant DMmiRNA 
was miR-24-1, whose expression was lower in tumour tissue, 
in line with hypermethylation in tumour samples. Finally, an 
important issue is that methylation levels in whole blood may 
be biased due to inter-individual heterogeneity of leukocyte 
subsets (49). In light of the considerations of the work of Reinius 
et al., we additionally investigated whether any of the IlluProbes 
in our set of DMmiRNAs fell among the list of CGI differentially 
methylated between different blood cell populations. Only four 
probes (two for miR-1910 and one, respectively, for miR-328 and 
miR-675) were identified among those potentially having cell 
type specific methylation status. However, none of them were 
among the list of probes used for the estimation of cell type pro-
portion in the Houseman algorithm (50) and, in addition, the use 
of average values for each of these IllumiRNAs in the statistical 
analyses reduce the potential bias due to the possible different 
cell composition.

Among the strengths of the present study, we can include 
the prospective nature of our investigation. Longitudinal stud-
ies are invaluable for establishing the temporal sequence and 
stability of disease-associated epigenetic variations, and hence 
help distinguish causal (driver) from consequential (passen-
ger) epigenetic changes (47,51). In our case, to take care of 
the reverse causation phenomenon, we repeated the analyses 
excluding subjects who developed cancer within 1 year from 
the sampling; all previously identified DMmiRNAs remained 
significant, with the only exception of miR-548a1. Interestingly, 
miR-548a1 was the only DMmiRNA showing a clear trend of 
decreasing methylation levels in relation to the time elapsed 
between recruitment and diagnosis. This finding suggests a 
possible role of miR-548a1 as an early marker for BC. For the 
analysis of miRNA methylation status, we have adopted a 
miRNA-centred approach, rather than the widely used probe-
centred analysis. An approach similar to ours was employed 
very recently by Aure et  al. (2) in BC tissue samples, where 
epigenetic (methylation) and genetic (copy number) markers 
were investigated in respect to miRNA expression. Despite the 
fact that we made use of a bioinformatics approach in under-
standing miRNA epigenetic status, all statistical analyses were 
also performed at the individual probe level. Thirteen out of 
48 significantly differentially methylated probes were associ-
ated to the eight DMmiRNAs previously identified in the BC 
case–control study.

Present results indicate that a panel of hypomethylated 
miRNAs measured in prediagnostic blood samples may be 
associated with BC risk. In this regard, more population-based 
genome-scale investigations are needed to document interindi-
vidual differences in DNA methylation and gene expression via 
miRNA regulation to evaluate the usefulness of an epigenetic 
cancer risk marker.

Supplementary material
Supplementary Tables 1–4 and Figures 1–4 can be found at 
http://carcin.oxfordjournals.org/
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