Dear Author,

Please check your proof carefully and mark all corrections at the appropriate place in the proof (e.g., by using on-screen annotation in the PDF file) or compile them in a separate list. Note: if you opt to annotate the file with software other than Adobe Reader then please also highlight the appropriate place in the PDF file. To ensure fast publication of your paper please return your corrections within 48 hours.

For correction or revision of any artwork, please consult http://www.elsevier.com/artworkinstructions.

We were unable to process your file(s) fully electronically and have proceeded by

- Scanning (parts of) your article
- Rekeying (parts of) your article
- Scanning the artwork

Any queries or remarks that have arisen during the processing of your manuscript are listed below and highlighted by flags in the proof. Click on the ‘Q’ link to go to the location in the proof.

<table>
<thead>
<tr>
<th>Location in article</th>
<th>Query / Remark: click on the Q link to go please insert your reply or correction at the corresponding line in the proof</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q1</td>
<td>Citation “Vitullo et al., 2007” has not been found in the reference list. Please supply full details for this reference.</td>
</tr>
<tr>
<td>Q2</td>
<td>Bold emphasis was removed as it appeared to have no particular significance. Please check, and correct if necessary.</td>
</tr>
<tr>
<td>Q3</td>
<td>Your article is registered as a regular item and is being processed for inclusion in a regular issue of the journal. If this is NOT correct and your article belongs to a Special Issue/Collection please contact c.emmanuel@elsevier.com immediately prior to returning your corrections.</td>
</tr>
<tr>
<td>Q4</td>
<td>Please confirm that given names and surnames have been identified correctly.</td>
</tr>
<tr>
<td>Q5</td>
<td>The citation “Aeschimann et al., 2012” has been changed to match the author name/date in the reference list. Please check here and in subsequent occurrences, and correct if necessary.</td>
</tr>
<tr>
<td>Q6</td>
<td>“Crammont” also appears as “Crammont”. Please check.</td>
</tr>
<tr>
<td>Q7</td>
<td>Citation “Motta et al., 2000” has not been found in the reference list. Please supply full details for this reference.</td>
</tr>
<tr>
<td>Q8</td>
<td>Citation “Motta et al.2010” has not been found in the reference list. Please supply full details for this reference.</td>
</tr>
<tr>
<td>Q9</td>
<td>The term “preferably” was changed to “usually”. Please check if the original meaning of the statement is still intact, and amend if necessary.</td>
</tr>
<tr>
<td>Q10</td>
<td>The citation “Reichelt and Williams, 1973” has been changed to match the author name/date in the reference list. Please check here and in subsequent occurrences, and correct if necessary.</td>
</tr>
<tr>
<td>Q11</td>
<td>Citation “Langhammer, 1982” has not been found in the reference list. Please supply full details for this reference.</td>
</tr>
<tr>
<td>-----</td>
<td>--</td>
</tr>
<tr>
<td>Q12</td>
<td>The citation “Thuiller et al., 2000” has been changed to match the author name/date in the reference list. Please check here and in subsequent occurrences, and correct if necessary.</td>
</tr>
<tr>
<td>Q13</td>
<td>The term “accordance” was changed to “accord”. Please check if the original meaning of the statement is still intact, and amend if necessary.</td>
</tr>
<tr>
<td>Q14</td>
<td>The citation “Bouget and Duelli, 1994” has been changed to match the author name/date in the reference list. Please check here and in subsequent occurrences, and correct if necessary.</td>
</tr>
<tr>
<td>Q15</td>
<td>Please check if a sentence has been inadvertently deleted at the end of this paragraph.</td>
</tr>
<tr>
<td>Q16</td>
<td>Uncited reference: This section comprises references that occur in the reference list but not in the body of the text. Please position each reference in the text or, alternatively, delete it. Thank you.</td>
</tr>
<tr>
<td>Q17</td>
<td>Citation “Braun-Blanquet, 1932” has not been found in the reference list. Please supply full details for this reference.</td>
</tr>
<tr>
<td>Q18</td>
<td>Please provide an update for reference “Lonati et al. in press”.</td>
</tr>
</tbody>
</table>

Please check this box if you have no corrections to make to the PDF file.

Thank you for your assistance.
Effect of avalanche frequency on forest ecosystem services in a spruce–fir mountain forest

Giorgio Vacchiano a,b,⁎, Margherita Maggioni a,b, Giulia Perseghin a, Renzo Motta a,b

a Department of Agricultural, Forest and Food Sciences, Università di Torino, Largo Braccini 2, 10095 Grugliasco (TO), Italy
b NatRisk — Centro interdipartimentale sui rischi naturali in ambiente montano e collinare, Università di Torino, Via Leonardo da Vinci 44, 10095 Grugliasco (TO), Italy

• We quantified ecosystem services in a spruce–fir forest under variable avalanche frequency.
• The avalanche track had higher plant diversity and lower carbon (C) stocks.
• 50 years after disturbance, the forest was dominated by aspen, and optimal for rockfall protection.
• Wild ungulates found suitable habitats in the avalanche track and in the control.
• Maintaining avalanche-disturbed areas in the landscape can benefit biodiversity and wildlife habitat.

http://dx.doi.org/10.1016/j.coldregions.2015.03.004
0165-232X/© 2015 Published by Elsevier B.V.

Please cite this article as: Vacchiano, G., et al., Effect of avalanche frequency on forest ecosystem services in a spruce–fir mountain forest, Cold Reg. Sci. Technol. (2015), http://dx.doi.org/10.1016/j.coldregions.2015.03.004
Supplementary Material S1 Species list and abundance scores (Braun-Blanquet, 1932) for the regeneration, shrub, and herbaceous layers of the control site, the old disturbance, and the more recently disturbed site.

Map KML file containing the Google map of the most important areas described in this article.
Effect of avalanche frequency on forest ecosystem services in a spruce–fir mountain forest

Giorgio Vacchiano a,b,⁎, Margherita Maggioni a,b, Giulia Perseghin a, Renzo Motta a,b

Department of Agricultural, Forest and Food Sciences, Università di Torino, Largo Braccini 2, 10095 Grugliasco (TO), Italy

Abstract

Mountain forests provide important ecosystem services, such as protection against natural hazards, carbon sequestration, and plant and animal biodiversity. Natural disturbances occurring in forests can alter the provision of ecosystem services to local and offsite communities, but their influence on multiple service tradeoffs has rarely been analyzed.

Our aim is to analyze the effect of avalanche frequency on the provision of ecosystem services in a mountain forest in the Italian Alps. We sampled tree and understory vegetation, soil carbon, and intensity of the browsing damage at 10 plots at each of the following observation sites: (1) an active avalanche track ("recent disturbance"), (2) an area last disturbed in 1959 by avalanches ("old disturbance"), occupied now by a dense aspen forest, and (3) the regularly managed spruce–fir stand ("control"). We computed metrics of plant diversity (Shannon and evenness indices), aboveground and belowground carbon stocks, and a browsing index on regeneration and shrubs as a proxy for ungulate habitat. Finally, we assessed the ability of forests in each site to mitigate rockfall hazard.

In our study, higher avalanche frequency was associated with lower carbon stock, higher species diversity, and lower protection against rockfall. Of all species found in the avalanche track, 54% were exclusive to that site. After 50 years, the post-disturbance stand provided a very high protection effect against rockfall, but was temporarily unsuitable for wild ungulate habitat, due to the high tree density and lack of open areas. Species richness and diversity were lower in older than in more recently disturbed sites, and not significantly different than the control stand. The control stand fulfilled the requirements for minimal protection against rockfall, but may lose its effectiveness in the near future due to senescence or disturbance-related mortality of canopy trees.

Elucidating the tradeoffs between ecosystem services and disturbance frequency will support managers in planning management actions (e.g., avalanche protection measures), and assess tradeoffs between the need to mitigate rockfall hazards and the opportunity to improve the provision of ecosystem services where some disturbance can be allowed to occur.

© 2015 Published by Elsevier B.V.

1. Introduction

Mountain forests throughout the world provide a variety of important ecosystem services, including protection against natural hazards (e.g., floods, avalanches, and landslides), carbon sequestration, provision of natural resources (e.g., dairy products, timber as renewable raw material for energy production and for construction), tourism and recreation, fresh water regulation, and plant and animal biodiversity (Grêt-Regamey et al., 2008a). Even where production or supply services are not the main interest, e.g., in those parts of the Alps where timber extraction has ceased to be profitable due to socio-economic changes (Conti and Fagarazzi, 2004; Walther, 1986), regulatory functions play an important role for both local and offsite communities.

In particular, Alpine regions have developed programs to identify and manage direct protection forests, i.e., forests that protect human settlements or infrastructures from gravitational hazards such as rockfall, avalanches, and debris flow (Berger and Rey, 2004; Brang, 2001; Brang et al., 2006; Wehrl et al., 2007). The effectiveness of forest stands, or of specific stand structures, in mitigating natural hazards has been assessed by field surveys, experiments, and empirical or physical models (Bigot et al., 2008; Dorren et al., 2004; Motta and Haudemand, 2000; Teich et al., 2013). Such research has provided land administrators with quantitative tools to assess risk and management priorities in time and space (Frehner et al., 2005; Grêt-Regamey et al., 2008b;
However, their role in relation to the provision of ecosystem services
in connectivity and the spatial pattern of the forest matrix (Butler, 2001). (Viglietti et al., 2010), but also at landscape scale, e.g., by modifying con-
turbances on multiple service tradeoffs has rarely been analyzed
in climate change on the provided services (Elkin et al., 2013; Lindner
sied to maximize carbon stocking is subject to many uncer-
turman (1985; Rixen et al., 2007). On the other hand, low-
tended biodiversity. The alpine biogeographic region of Europe hosts about 7000 plant
species (Ozenda and Borel, 1994), that is more than a third of the flora
recorded in Europe west of the Urals, and almost 400 endemic plants
(Aeschimann et al., 2004). The fauna of the Alps might reach 30,000 spe-
cies (Chemini and Rizzoli, 2003). A total of 165 species and subspecies
are highly protected (Annex II of the Habitats Directive 92/43/ECC,
while the region includes important refugia for plants and especially
Dec et al., 2006).
In the 20th century, the abandonment of mountain fields, meadows
and grazing lands, and the expansion of shrubs and forests with an
accompanied reduction of clearings, as well as the intensification of
tourism and human presence, have greatly affected suitable habitats
for plant and animal species, determining an increase of forest-related
taxa and a demise of grassland species (Falcucci et al., 2006; Laiolo
et al., 2004; Niedrist et al., 2008; Pellissier et al., 2013).
Finally, many temperate mountain forests are currently a carbon
sink (Gis et al., 2008; Goodale et al., 2002), due to their predominantly
young age, the naturally occurring afforestation of fallow lands, and the
ongoing environmental changes, i.e., climate warming and nitrogen
(N) deposition (Bellassen et al., 2011). However, adapting forest
management to maximize carbon stocking is subject to many uncer-
tainties, such as the quantity and processes of carbon in the forest soil
(Lal, 2005), or the effect of natural disturbances (Gimmi et al., 2008;
Liu et al., 2011).
Disturbances are ubiquitous in forest ecosystems (Franklin et al., 2002).
In forests of the European Alps, large, stand-replacing distur-
bances are relatively rare due to the high degree of landscape fragment-
tation and to the pervasive control by man, e.g., by active fire and
avalanche suppression (Brotons et al., 2013; Kulakowski et al., 2006)
or insect outbreak monitoring and control (Faccoli and Stergulc,
2004). However, disturbances still occur at spatio-temporal scales relevant to the provision of ecosystem services to local communities,
especially in occasions of extreme fire seasons (Veraverbeke et al., 2010),
regional drought spells inducing forest decline events (Rigling et al.,
2013), or extra-tropical cyclones (Ulbrich et al., 2001). Recent research
has been addressing the questions related to: a) the quantification of
ecosystem services (Haines-Young et al., 2012; Millennium
Ecosystem Assessment, 2005), b) the resolution of conflicts between
non-compatible ecosystem services (Briner et al., 2013; Bullock et al.,
2011; Grét-Regamey et al., 2013; Nelson et al., 2009), and c) the impact
of climate change on the provided services (Elkin et al., 2013; Lindner
et al., 2010; Metzger et al., 2006). However, the influence of natural dis-
turbances on multiple service tradeoffs has rarely been analyzed
e.g., Spencer and Harvey, 2012), especially in forest ecosystems.

Avalanches are one of the dominant disturbance agents in the
Alps (Bebi et al., 2009), High-frequency avalanches shape the ecosys-
tem in which they occur, and exert a strong selective pressure on
plant and animal species living in the avalanche track and runout
zone (Butler, 1985; Rixen et al., 2007). On the other hand, low-
frequency, high-intensity events have the potential to reset the ecolog-
ical succession, by replacing mid-seral species by early-seral colonizers
capable of taking advantage of the new environmental conditions in
the avalanche aftermath (Erschbamer, 1989). In both cases, avalanches
can greatly affect the provision of ecosystem services and the function-
ing of forest ecosystems, not only in the area directly perturbed
(Viglietti et al., 2010), but also at landscape scale, e.g., by modifying con-
nnectivity and the spatial pattern of the forest matrix (Butler, 2001).
However, their role in relation to the provision of ecosystem services
is still unexplored.

The aim of this paper is to analyze the effect of avalanche frequency
on the provision of ecosystem services in a mountain forest. We quanti-
fied carbon stocking, wild ungulate habitat, plant diversity, and rockfall
protection and compared all of them across three contiguous sites of (1)
a yearly disturbed area, (2) a 50-year old disturbance, and (3) a reg-
ularly managed forest not disturbed by avalanches (“control”). Finally, we
modeled the effect of disturbance frequency and other environmen-
tal predictors (i.e., stand structure, species composition, and soil cover
classes) on the current level of forest ecosystem service provision, in
order to assess which agent was responsible for the largest effects on
the chosen services.
2. Material and methods

2.1. Sampling design

We established a chronosequence of increasing disturbance frequency, and decreasing time since the last disturbance, by comparing the following sites: 1) recent disturbance (R) by using the track width of the majority of the avalanches recorded in the Cadastre (i.e., avalanche return period of one to a few years); 2) old disturbance (O), by reconstructing the perimeter of the 1959 event from pre-disturbance historical aerial imagery (1954) and oblique photographs of the event (i.e., avalanche return period of more than 50 years), and 3) the control (C) forest (regular forest management, no avalanches). In order to control for undesired topographic and climatic variability, we constrained sampling between elevations of 1125 and 1300 m a.s.l., corresponding to the top and bottom boundary of forest management unit 38 (source: municipal Forest Management Plan). Within each site, we randomly established 10 sampling plots, ensuring a minimum distance of 20 m from the site edge, and of 25 m between plots. The maximum distance between any two plots was 280 m (Fig. 1).

Sampling was carried out in summer 2012. In each plot we sampled the following: (1) diameter at breast height (DBH), height (H) and species of all living trees (DBH > 2.5 cm) within a 12 m radius from the plot center; (2) percent cover by the tree, shrub, herbaceous layers, and exposed mineral soil, within a 5 m radius from the plot center; (3) species and frequency of all regeneration individuals (H > 10 cm, DBH < 2.5 cm) in the 5 m plot; (4) species and visually estimated cover of evergreen and deciduous vegetation in the 5 m plot (floristic nomenclature according to Aeschimann et al., 2004); (5) severity of browsing damage (0: none, 6: 100% browsing or dead individual) (Motta, 1996) to all regeneration individuals and all living trees within each 5 m plot. Finally, we estimated tree age based on increment cores extracted at 50 cm height from one randomly selected tree in each of the small (DBH < 15 cm), medium (15 < DBH < 25 cm), and large (DBH > 25 cm) tree size classes per 12 m plot.

For the analysis of carbon stocks, we sampled the following: (6) height and average crown radius (CR) of all shrubs with CR > 100 cm; (7) diameter and decay class (1: sound, 3: soft) of all coarse woody debris (CWD) elements (diameter > 10 cm) along two perpendicular linear transects (length = 24 m per transect) concentric to the plot center; (8) herbs and litter in three 40×40 cm subplots, at the plot center and at a 2 m distance in a northward and southward direction; (9) mineral soil at 0–5 cm depth, sampled at each subplot by using a 5 cm × 25 cm² metal cylinder. Herbs, litter, and soil samples were subsequently pooled, oven dried (105 °C for 72 h) and weighted in the lab to obtain their biomass; soil samples were preliminarily sieved at 0.5 mm.

2.2. Data analysis

For each sampling plot, we computed total tree density, basal area, species composition by density and basal area, quadratic mean diameter (QMD), mean height, and total tree volume (V) by applying DBH–to-volume equations for spruce (Nosenzo, 2005) and broadleaves (Castellani et al., 1984). Following preparation of tree cores (Stokes and Smiley, 1996), we computed the total tree age at coring height from each core by summing the tree ring count and an estimate of missing rings near the pith obtained by means of a pith locater. Using the sample of measured ages, we fitted a linear Age–DBH model for each, and used it to compute missing ages for all tallied trees.

The volume and dry biomass of coarse woody debris (W_{CWD}) were obtained by applying the equations for line intercept sampling (Pearson et al., 2007) (Eq. 1):

\[W_{CWD} = \frac{1}{8} B L \sum (d_{CWD}^2) \]
The avalanche event in 1959 (a) and 2009 (b), with indication of the control (C), old (O), and recent (R) avalanche sites. Image (a) by Ufficio Neve e Valanghe — Regione Autonoma Valle d’Aosta, (b) by the authors.

Where L is transect length, d_{CWD} is the measured diameter of each coarse woody debris element, and k is the wood density associated with each decay class (class 1: 0.43 t m$^{-3}$, class 2: 0.34 t m$^{-3}$, class 3: 0.19 t m$^{-3}$) (Pearson et al., 2007). The dry biomass of living trees (W_T) was obtained by applying a biomass expansion equation to the total standing volume of each plot (Penman et al., 2003) (Eq. (2)):

$$W_T = (1 + R)(V \cdot BEF \cdot k_T),$$

where BEF is biomass expansion factor, R is the belowground: aboveground biomass ratio, and k_T is species-specific wood density (Table 1). Shrub biomass (W_S) was computed allometrically (Ohmann et al., 1976) (Eq. (3)):

$$W_S = ax^b,$$

where x is shrub height for hazel (Corylus avellana L) and crown area (CR^2) for all other species, and a and b are species-specific allometric coefficients (Table 2). Carbon in the coarse woody debris, trees, shrubs, herbs, and litter fractions were computed on a per-hectare basis by assuming a carbon content of 50% in the dry biomass. Soil carbon content (C_{soil}) was determined in the lab by dry combustion using a Carlo Erba elemental analyzer, and subsequently converted to carbon biomass on a per-hectare basis (C_{total}) (Eq. (4)):

$$C_{total} = C_{soil} \cdot BD \cdot depth,$$

where BD is dry bulk density of the soil, and depth is the sampled soil depth (5 cm).

Plant diversity was assessed at the plot level by computing total species richness (SR), Shannon diversity index (H', Eq. (5)) and Shannon equitability index (E, Eq. (6)) (Magurran, 1988):

$$H' = -\sum p_i \ln p_i,$$

$$E = \frac{H'}{\ln SR}.$$
developed for lodgepole pine (Pinus contorta Douglas) (Smith and Long, 1987). The algorithm assumes uniform tree spacing and crown height higher than 1 m (i.e., tree crowns do not contribute to hiding), and assumes that hiding cover is adequate when an average of 90% of an adult elk is hidden at a distance of 60 m.

\[
HC = 100 - 115.8(0.61)^{0.0003937} \sum \text{dbh}
\]

Finally, we assessed rockfall protection by using the online tool RockfallNET, that computes the percentage of rocks that surpasses the forested area (Probable Residual Rockfall Hazard, PRH) given rock size, topography, and stand structural characteristics (Berger and Dorren, 2007). Parameters entered in RockfallNET were: rock density = 2700 kg m\(^{-3}\), rock shape = rectangle, rock dimensions = (a) 50 × 50 × 20 cm (moderate size) and (b) 100 × 100 × 40 cm (large), height of cliff = 50 m, mean gradient of the slope = 35°, length of unforested slope = 20 m. The length of forested slope was set at a constant value of 250 m in order to make meaningful comparisons between stands regardless of their actual position on the slope (Cordonnier et al., 2013). Stand density, basal area (DBH > 8 cm), and tree species composition were entered on a per-plot basis.

Carbon stock, ungulate habitat metrics, plant diversity metrics and PRH were compared across sites by means of non-parametric Kruskal–Wallis test with pairwise post-hoc Tukey comparison (p < 0.05).

3. Results

3.1. Forest and vegetation structure

The avalanche radically changed the forest composition and structure (Table 4) in both the avalanche recent disturbance and the old disturbance. The main impacts of increasing avalanche frequency were: lower tree age and size, higher share of deciduous species in both adult and juvenile layers, higher shrub and herb cover, and a bell-shaped response of tree density and cover (i.e., higher for intermediate time since disturbance) (Fig. 3). Between-plot variability was generally higher in the old disturbance and control sites, while the recent disturbance site exhibited pretty homogenous conditions, except for herb, shrub, and bare soil cover.

In the control area the forest was dominated by Norway spruce (53% basal area on average), silver fir (20%), and larch (10%), with sporadic broadleaves (0–20%). The trees were quite dense (1760 per hectare on average, DBH > 2.5 cm), with a mean diameter around 21 cm and a typical uneven-aged size distribution (Fig. 4). Maximum tree age in the dendrochronological subsample trees ranged from 71 years (aspen) to 210 years (spruce); after fitting DBH-age models (Fig. 5), we estimated that the oldest trees in the control area could be around 230 years old. The canopy had a variable tree cover of 20–80%, with treefall gaps allowing the accumulation of coarse woody debris on the ground, and the establishment of dense patches of regeneration of spruce and broadleaves alike. Herb and shrub cover was scarce (5% and 13% on average, respectively).

In the old disturbance site the forest was dominated by a dense layer of pole-stage Aspen (4000 trees per hectare on average, QMD = 13 cm) (Table 4). The canopy was closed. Spruce was less abundant both in the canopy (37% of basal area on average) and in the regeneration layer, except for some older spruce trees (>100 years) that were probably left as living legacies from before the last disturbance event. Mean tree age (from both measured and modeled ages) was 45 years; some spruce trees older than 50 years were found, probably as legacies of the pre-disturbance stand (i.e., trees that were tilted but not broken by the avalanche), but none was older than 130 years (Fig. 6).

Finally, in the avalanche track, the high frequency of disturbances resulted in a young stand dominated by young, sprouting broadleaves (98% of basal area on average, QMD = 6 cm). All trees were younger than 50 years (mean tree age: 24 years), and most stems were shorter than 8 m in height. Tree density, volume, basal area, and tree cover were all very low (Table 4). Regeneration was dominated by deciduous species, reaching up to 375,000 per hectare when individual sprouts on each stump were counted.

3.2. Ecosystem service assessment

The average amount of carbon in the aboveground, belowground, coarse woody debris, litter, and soil compartments was inversely proportional to the disturbance frequency, i.e., higher in the control and lower in the avalanche track (Fig. 7). The latter had more carbon in the herb and shrub layers, but the total amount was significantly higher in the control stand (400 Mg ha\(^{-1}\) on average) (Table 5). Soil carbon usually accounted for about 50% of the total. C/N ratio varied in the range of 18–26 in the control, 17–25 in the old disturbance, and 17–22 in the recent disturbance site.

Species richness of the regeneration, shrub and herbaceous layers in the control, old avalanche, and recent avalanche was 44, 43, and 77 species, respectively (Supplementary Material S1). Out of 98 species found, 27 were common to all sites, while 42 were exclusive of the avalanche track (i.e., 54% of all species found in that site). Six species were exclusive of the old disturbance, and only eleven of the control. Consequently, the avalanche track showed the highest plant diversity (Shannon index), although evenness was lower than in the other two sites, due to the dominance of a few shrubs (hazel: 32% average cover, Salix purpurea: 6%, Lonicera nigra: 8%), and gramnoid species (especially Trisetum flavescens, 9%). The old disturbance and control did not differ significantly in their diversity indices (Table 5).

Winter resource use by ungulates (i.e., intensity of browsing on regeneration and shrubs) was highest in the control plots and lowest in the old disturbance (p < 0.05), even if with a very large variability throughout the study area (0 to 90%). Silver fir was the most damaged species, followed by hazel, Lonicera (among shrubs), aspen, Salix, and

Please cite this article as: Vacchiano, G., et al., Effect of avalanche frequency on forest ecosystem services in a spruce–fir mountain forest, Cold Reg. Sci. Technol. (2015), http://dx.doi.org/10.1016/j.coldregions.2015.03.004
Acer (among tree species) (Table 3). Summer resource availability (herb and shrub cover) and hiding cover by trees were respectively higher and lower in the recent disturbance site (Table 5).

The most effective stand for rockfall protection was the old disturbance site. Currently, PRH against moderate-sized rocks reaches 95% in both the old disturbance and the control sites, and decreases to 83 and 74% respectively on large-sized rocks. In the avalanche track the protection effect is negligible (mean PRH: 11% against moderate sized rocks, and 4% against large rocks), due to insufficient tree density and large treeless areas (Table 5).

4. Discussion

Following stand-replacing disturbance, the dominant spruce–fir canopy (Fig. 8c) is replaced by early-seral broadleaves (Fig. 8a), eventually dominated by aspen that forms a dense pole-stage forest 50 years after the event (Fig. 8b). Spruce and fir regeneration can then establish below the aspen layer, taking advantage of its higher shade tolerance, of seeds dispersed by trees surviving the avalanche, and of disturbance legacies such as coarse woody debris and pit-mound topography (Bottero et al., 2013).

Please cite this article as: Vacchiano, G., et al., Effect of avalanche frequency on forest ecosystem services in a spruce–fir mountain forest, Cold Reg. Sci. Technol. (2015), http://dx.doi.org/10.1016/j.coldregions.2015.03.004
In the study area, higher avalanche frequency was associated with:

(1) lower aboveground and belowground carbon stock, (2) higher species richness (but no change in diversity), (3) higher summer resource availability, intermediate winter resource use and lower hiding cover for wild ungulates, and (4) lower protection against multiple-sized rockfall. After 50 years, high stem density of post-disturbance stands was optimal for protection against rockfall and ungulate hiding requirements, but at the same time resulted in poor resource availability for wild ungulates due to the scarce herb and regeneration cover. Species richness and diversity in the old disturbance site were not significantly

Fig. 4. DBH (frequency distribution) and age (smoothed relative frequency distribution) in the control, old, and recent avalanche sites.

Fig. 5. Individual tree DBH-age models for spruce (PA), silver fir (AA), birch (BP), aspen (PT) and other broadleaves (OB) in the study area (dendrochronological subsample, all treatments pooled). Model form was age = a + b DBH.

Please cite this article as: Vacchiano, G., et al, Effect of avalanche frequency on forest ecosystem services in a spruce–fir mountain forest, Cold Reg. Sci. Technol. (2015), http://dx.doi.org/10.1016/j.coldregions.2015.03.004
different than the control, where the forest was managed according to common single tree selection silvicultural practices.

4.1. Carbon stock

Carbon stocks followed a predictable gradient of post-disturbance recovery and buildup. Many studies of carbon stocks in post-disturbance chronosequences have highlighted a carbon source/sink dynamics for stand-replacing disturbance, involving a rapid pulse emission followed by net uptake that gradually declines with the aging of the canopy (Bond-Lamberty et al., 2004; Gough et al., 2007; Pregitzer and Euskirchen, 2004; Richter et al., 1999; Thornton et al., 2002). In our study area, the regularly managed forest stocked about 400 Mg C ha$^{-1}$ on average. Values for aboveground carbon stocks were consistent with those found in undisturbed spruce forests of the Alps (e.g., 207 Mg C ha$^{-1}$ in living trees at 130 years of age, Thuille et al., 2000). Soil stocks (>200 Mg C ha$^{-1}$ on average) were higher than some values found in literature for comparable ecosystems (e.g., 81 to 188 Mg C ha$^{-1}$ in the organic and mineral layers on acidic soils in Austria: Berger et al., 2002; Pötzelsberger and Hasenauer, 2015) but consistent with uneven-aged spruce forests of similar age in boreal ecosystems (e.g., 199 Mg ha$^{-1}$: Nilsen and Strand, 2013). Unless significantly disturbed by stochastic agents (e.g., wind damage, bark beetles, exceptional avalanches), the spruce forest has the ability to function as a sink well into its maturity stage, as shown by recent research on managed and old-growth forest (Gleixner et al., 2009; Krug et al., 2012; Luysaert et al., 2008; Zhou 2014).

Fig. 6. Scatterplot of tree ages (all species — both measured and modeled tree age) in all sampling plots from the control (C), old (O) and recent (R) avalanche sites.

Fig. 7. Carbon stocks [Mg ha$^{-1}$] by ecosystem component in the control (C), old (O), and recent (R) avalanche sites. Sites marked by similar letters did not differ significantly (Kruskal–Wallis test, $p > 0.05$).

Please cite this article as: Vacchiano, G., et al., Effect of avalanche frequency on forest ecosystem services in a spruce–fir mountain forest, Cold Reg. Sci. Technol. (2015), http://dx.doi.org/10.1016/j.coldregions.2015.03.004
Summary of ecosystem service values in the control, old, and recent avalanche sites. Sites marked by similar letters did not differ significantly (Kruskal–Wallis test, p > 0.05).

<table>
<thead>
<tr>
<th>Variable</th>
<th>Units</th>
<th>Control</th>
<th>Old disturbance</th>
<th>Recent disturbance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Herb + shrub cover (summer resource)</td>
<td>%</td>
<td>11 a 1.8</td>
<td>10 a 3.1</td>
<td>58 b 6.5</td>
</tr>
<tr>
<td>Browsing index (winter resource)</td>
<td>%</td>
<td>38 a 5.4</td>
<td>21 b 5.4</td>
<td>26 ab 4.7</td>
</tr>
<tr>
<td>Elk hiding cover</td>
<td>%</td>
<td>95 a 0.9</td>
<td>99 a 0.1</td>
<td>29 b 12.2</td>
</tr>
<tr>
<td>Total C</td>
<td>Mg ha$^{-1}$</td>
<td>402 a 30.1</td>
<td>222 b 26.2</td>
<td>64 c 11.8</td>
</tr>
<tr>
<td>Shannon index</td>
<td>-</td>
<td>1.5 a 0.12</td>
<td>1.6 a 0.12</td>
<td>2.1 a 0.41</td>
</tr>
<tr>
<td>Evenness</td>
<td>-</td>
<td>0.7 a 0.04</td>
<td>0.8 a 0.05</td>
<td>0.7 a 0.12</td>
</tr>
<tr>
<td>PRH (moderate size rocks)</td>
<td>%</td>
<td>95 a 5.2</td>
<td>99 a 2.3</td>
<td>11 b 6.7</td>
</tr>
<tr>
<td>PRH (large size rocks)</td>
<td>%</td>
<td>74 a 6.4</td>
<td>83 b 3.3</td>
<td>5 c 2.1</td>
</tr>
</tbody>
</table>

Table 5

Photographs taken during field sampling in the control (a), old (b), and recent (c) avalanche sites. Images by the authors.

Fig. 8. Photographs taken during field sampling in the control (a), old (b), and recent (c) avalanche sites. Images by the authors.

The 50-year old aspen forest is stocking about 200 Mg C ha$^{-1}$ on average, corresponding to a mean uptake of about 3 Mg C ha$^{-1}$ per year (assuming a baseline similar to the C stocked in the recently disturbed site following the last avalanche event). The maximum net biomass production for aspen is reported to occur after 18–32 years (Rytter and Stener, 2005). This reflects the very active juvenile growth during which the volume production per unit area of early-seral species such as aspen may exceed that of Norway spruce (Picea abies) (Børset, 1960). Starting at about 60 years of age, however, aspen stands gradually-in time reach a state of decline when mortality exceeds growth (Pothier et al., 2004). Therefore, when averaged over the entire life cycle, the more shade-tolerant Norway spruce allows for higher density and volume at similar site productivity indices (Børset, 1960). Light-demanding aspen and shade-tolerant spruce may supplement each other, if they constitute separate overstory and understory, respectively (Langhammer, 1982). However, the stand will gradually develop along a successional process leading to dominance of the spruce–fir mixture, similarly to the control stand.

Areas damaged by stand-replacing disturbances usually act as carbon sources for some years (Thuille et al., 2000). In forest damaged by wind or avalanche, unlike wildfires, no CO$_2$ is directly released to the atmosphere during the disturbance event. However, even without consumption of organic matter (such as during wildfires) or removal by salvage logging or gravity (as may be the case of the recently disturbed site), the biomass transferred from live to dead pools is subject to microbial decomposition and quickly loses carbon while decomposing (Liu et al., 2011). Finally, the avalanche can remove soil carbon by mechanical elimination of the upper soil layers (Confortola et al., 2012; Korup and Rixen, 2014). However, in our study area the recently disturbed site preserved a significant amount of soil carbon (78 Mg ha$^{-1}$ on average), most of which was stocked in soil. The lower C/N ratio in soils of the avalanche track indicated a higher fertility and slower C turnover, likely due to the prolonged permanence of snow and higher soil moisture.

We did not measure C fluxes, therefore the release of C from the recently disturbed site is unknown. More studies are needed to ascertain how much carbon is released following avalanche disturbances at the site and regional scale, and if and how long it takes for the post-disturbance vegetation to stock as much carbon as to equate the losses. The overall carbon balance can still be positive if losses in areas disturbed by avalanches are counteracted by mature and old-age forests serving as sinks in undisturbed areas between avalanche tracks.

Please cite this article as: Vacchiano, G., et al., Effect of avalanche frequency on forest ecosystem services in a spruce–fir mountain forest, Cold Reg. Sci. Technol. (2015), http://dx.doi.org/10.1016/j.coldregions.2015.03.004
4.2. Plant diversity

Plant diversity has long been related to disturbance frequency and severity, i.e., in the framework of the (much debated) intermediate disturbance hypothesis (IDH) (Connell, 1978; Fox, 2013). In our study, we found that the active avalanche track had the highest species richness and diversity (Shannon index, although not significantly). This is in contrast with the IDH, but in accord with previous research on the effect of disturbances on plant diversity in mountain forests, and particularly avalanche stands (Fischer et al., 2012; Illison et al., 2006; Rixen et al., 2007).

The plant community of the avalanche track can be described as a true avalanche grassland (Erschbamer, 1989), with species belonging to typical avalanche grasslands (Molinio-Armerinetaea) and to the adjacent mountain meadows (e.g., T. flavescens). High richness in the avalanche track can be explained by (1) gravitational transport of propagules of plants from higher elevations (Erschbamer, 1989); (2) increased habitat diversity due to the mosaic of areas with prolonged snow cover, eroded soil patches, or running melt water (Rixen and Brugger, 2004); (3) newly created forest edges (Duelli et al., 2002); (4) disturbance legacies (Franklin et al., 2002) such as coarse woody debris, pit-and-mound topography, and the mosaic of open areas and living legacies such as resprouting broadleaves (Rixen et al., 2007).

Therefore, the maintenance of a periodically disturbed portion of the land is beneficial for overall species richness and diversity, facilitating the persistence of more light-demanding, early-serial species (Lonati et al., in press).

Previous research found that the shift from shrub- to tree-dominated vegetation occurred when the average interval between avalanches was 15-20 years (Johnson, 1987). Plant communities of the old disturbance and control sites were very similar, and shared many species from both the Piceetalia and the Fagetalia classes. Consistent with our study, previous research found that strong changes in species composition result from multiple avalanche occurrences, rather than single events that affect the forest structure heavily but may not result in significant changes in soil microclimate and mechanical disturbance (Fischer et al., 2012).

If we focus on the study site as a unique ecosystem, we notice that only one-third of the total number of species found was common to all disturbance treatments, i.e., the total species richness was higher than in any individual disturbance treatment. The mosaic of disturbed and undisturbed patches allows for coexistence of both early-serial, open-field species, and shade-tolerant species under or in the vicinity of the tree and shrub canopies. Further research is needed to ascertain if this diversity effects occur in other taxa, e.g., invertebrates, fungi, or lichens. Coarse wood debris, a commonly used metric of diversity for forest biota (Bouget and Duelli, 2004), was higher in the control forest than in the avalanche track; however, management in the former, and diversity of microsites in the latter, act as confounding variables, and could mitigate or even invert the simplistic relationship between disturbance frequency, CWD, and invertebrate diversity (e.g., Negro et al., 2014).

4.3. Ungulate habitat

As ungulates use resources very differently during the year, it is difficult to condensate habitat suitability in a single, static metric. We chose to use three different proxies for ungulate habitat: hiding cover, expressed as a function of tree density and size (Smith and Long, 1987); summer food availability, expressed by herb and shrub cover as a proxy (Moser et al., 2008), and winter food availability, expressed by measured browsing intensity on tree regeneration and shrubs. The use of browsing index alone would in fact underestimate habitat suitability of open areas dominated by herb cover such as those in or near the avalanche track.

Logically, herb and shrub cover was much more abundant in open, recently disturbed sites (Krojerová-Prokešová et al., 2010). However, this lacked the necessary hiding requirements due to low or non-existent tree cover, and was also less used during winter — probably due to scarce food and high snow cover. In fact, browsing on trees and shrubs was more severe in the control site — even if treatment effect was weak — probably due to the fact that distance between sampling plots was well within the daily movement capabilities of individual ungulates (Pépin et al., 2004). Browsing can affect future species composition of the forest (Motta, 1996); in the study area, this effect could be important for silver fir (Klopfc et al., 2010), which is highly palatable, and, at the same time, not so abundant in the regeneration layer (Table 3).

In past studies, the optimal habitat for red deer and roe deer has been described as a mixture of open meadows and closed canopy, rich in forest edges so as to provide both food and shelter to the animals (Gill et al., 1996; Hanley, 1984; Licoppe, 2006). In areas hit by natural disturbance, coarse woody debris could also alter ungulate frequencing and feeding behavior. The effect of CWD on ungulate habitat use could be either positive — by stabilizing the snowpack, facilitating animal movement when snow is on the ground, or by the fact that saplings emerging from CWD are more readily visible to the deer (Pellerin et al., 2010) — or negative, if the abundance, size and spatial arrangement of CWD is such as to impair animal movement and feeding (de Chantal and Granström, 2007; Kupferschmid and Bugmann, 2005). We did not observe any site where this latter condition could be the case.

4.4. Protection from rockfall

Concerning protection against hazards, we assessed the effectiveness of the forest in stopping falling rocks of different sizes and preventing them from reaching the village and roads downhill (Fig. 1). The managed forest is currently effective against rockfall. In contrast, the (almost treeless) avalanche track is certainly not effective for rockfall protection, but any falling rock would be channeled within its steep banks and end up in the river below. The minimum required basal area for this slope is 20 m² ha⁻¹ to reach a PRH of 95% for moderate-sized rocks (RockforNET results). In the recent disturbance site, or in the eventuality of a new avalanche event as severe as the 1959 one, actions to mitigate the rockfall hazard should be carried out if the rockfall protection service is prioritized (e.g., rockfall nets or temporary log fences).

More interestingly, the old disturbance stand is currently very effective against rockfall protection (PRH: 99% for moderate-sized rocks, and 83% for large rocks), mainly because of the high density of stems, which may act as a fence blocking falling rocks (Gsteiger, 1993; Jancke et al., 2009; Vacchiano et al., 2008).

5. Conclusions

In order to maintain or replenish the provision of ecosystem services in the face of natural disturbances, managers need to understand the relationship between disturbance frequency, intensity, and the duration and magnitude of the consequent changes in ecosystem service provision.

This study assessed changes in ecosystem services provided by a spruce-fir mountain forest disturbed by avalanches, by comparing carbon stock, plant diversity, ungulate habitat, and protection against rockfall in stands experiencing zero, one, and multiple disturbance events. We showed that: (1) high disturbance frequencies are beneficial for overall species richness and diversity, facilitating the persistence of more light-demanding, early-serial species (Lonati et al., in press).

Please cite this article as: Vacchiano, G., et al., Effect of avalanche frequency on forest ecosystem services in a spruce-fir mountain forest, Cold Reg. Sci. Technol. (2015), http://dx.doi.org/10.1016/j.coldregions.2015.03.004
in undisturbed areas. Elucidating tradeoffs between ecosystem service provision and disturbance frequency will help managers in planning management actions (e.g., avalanche suppression) and distribute them across the landscape according to the ecosystem services to prioritize.

6. Uncited reference
Motta and Edouard, 2005

Acknowledgments

We acknowledge Luisselma Celi for soil analyses, Michele Lonati for plant determination, Corpo Forestale Regionale and Ufficio Neve e Valanghe — Regione Autonoma Val d’Aosta for data provision.

Appendix A. Supplementary data

Supplementary data associated with this article can be found in the online version, at http://dx.doi.org/10.1016/j.coldregions.2015.03.004. These data include Google maps of the most important areas described in this article.

Appendix A. Supplementary data

Supplementary data to this article can be found online at http://dx.doi.org/10.1016/j.coldregions.2015.03.004.

References

