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1 Introduction and motivation

Determining the phase diagram of strongly interacting matter is a major challenge in

elementary particle physics, both theoretically and experimentally.

From the theoretical point of view, the qualitative expectation that, when the tem-

perature or the density is sufficiently high, usual hadronic matter gives way to a state

of deconfined particles, is a straightforward consequence of asymptotic freedom, and has

been around since the early days of QCD [1, 2]. However, a derivation of the quantitative

details of the QCD phase diagram is complicated by the fact that perturbative methods

in thermal gauge theories are typically hindered by severe infrared divergences [3, 4], and

cannot be reliably applied close to the deconfinement point, where the physical coupling is

not small. This leaves numerical computations based on the lattice regularization of QCD

as the main tool for a first-principle study of the QCD phase structure as a function of the

temperature T , and for vanishing or small values of the quark chemical potential µ: recent

results are summarized in refs. [5–9].

On the other hand, on the experimental side, the creation of a deconfined plasma

of quarks and gluons (QGP) in the laboratory has been the goal of a three-decade-long

programme of heavy ion collision experiments, first at AGS and SPS, then at RHIC, and

currently at LHC. In particular, the SPS, RHIC and LHC runs have provided convincing

evidence for the creation of a state of deconfined matter, which achieves rapid thermaliza-

tion, and can be characterized as a nearly ideal fluid [10–22].
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It is important to point out that, in these experiments, the physical features of the

deconfined plasma are studied indirectly, namely, they are reconstructed from the proper-

ties (yields, momentum distributions et c.) of the hadrons produced after the expansion

and freeze-out of the “fireball”. The statistical analysis of these results is based on the

assumption that, below the characteristic temperature range where deconfinement takes

place (approximately between 150 and 190 MeV), thermal QCD can be modelled as a gas

of massive, non-interacting hadronic resonances [23]. In fact, the very idea of a deconfine-

ment temperature, as the limiting upper temperature at which the exponential growth of

the density of states in the hadronic spectrum would lead to a divergence of the partition

function, is even older than QCD [24, 25].

Since hadrons are intrinsically non-perturbative objects, any first-principle test of the

thermodynamic description of the confining QCD phase via the hadron resonance gas model

necessarily requires lattice simulations. It should be noted that this is a computationally

challenging task, because in the confining phase all equilibrium thermodynamic observables

(such as pressure, energy density and entropy density) take values, which are much smaller

than in the deconfined phase. However, the steady increase in computer power and major

algorithmic improvements have now driven lattice QCD into an era of precision calculations,

making it possible to reliably investigate the fine details of physical observables, even with

limited computational resources.

Moreover, the most demanding technical aspects in lattice QCD computations involve

the regularization of fermions, and thus can be easily bypassed, by restricting one’s atten-

tion to the pure-glue sector — which captures most of the features of the full theory, at least

at the qualitative or semi-quantitative level. The hadronic spectrum of pure Yang-Mills

theories has been investigated extensively in highly accurate lattice computations [26–30],

and several low-lying states are by now well-known: in particular, the lightest state in the

SU(3) spectrum is a glueball with quantum numbers JPC = 0++ and mass (in physical

units) about 1.4 GeV — significantly heavier than the lightest mesons in the physical QCD

spectrum. The masses of glueballs with different quantum numbers are also known, and

the most recent lattice calculations provide precise results for several excited states, too.1

Looking at pure Yang-Mills theories also offers the further advantage of a cleaner sym-

metry pattern: as opposed to the full-QCD setup, global transformations associated with

the center of the gauge group are an exact symmetry of the Lagrangian, whose sponta-

neous breakdown can be studied by looking at the expectation value of the associated

order parameter, namely the trace of the Polyakov loop. The latter provides an unambigu-

ous definition of the deconfinement temperature Tc, which separates the center-symmetric,

confining phase at low temperatures, from the deconfined phase at high temperatures.

The restriction to the Yang-Mills sector is also relevant in the ’t Hooft limit of QCD,

i.e. in the double limit when the number of colors N tends to infinity, and the coupling g2

tends to zero, with the ’t Hooft coupling λ = g2N fixed [32–35]. In this limit, elementary

combinatorics arguments show that quark-dynamics effects are subleading (more precisely:

1While the extraction of the latter involves a rapidly increasing computational complexity, the spec-

tral density of glueball states at higher energies is expected to be approximately described by effective

models [31], based on the picture of glueballs as closed rings of glue.
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suppressed by powers of N−1) with respect to contributions involving gluons only, and

generic amplitudes for physical processes can be rearranged in double series, in powers of

the ’t Hooft coupling λ, and of N — revealing a striking similarity to an analogous expan-

sion in closed string theory: see, e.g., ref. [36] for a discussion. While these observations

date back to more than thirty years ago, it is interesting to note that the large-N limit

also plays a technically important role in more modern analytical approaches to strongly

coupled systems, based on the conjectured correspondence between gauge and string theo-

ries [37–39]: according to this correspondence, the string-theoretical dual of a gauge theory

simplifies to its classical gravity limit, when both the ’t Hooft coupling and the number of

colors in the gauge theory are taken to be large.

Finally, the emergence of a Hagedorn-like spectrum (i.e. an exponential growth in the

number of hadronic states, as a function of their mass) has been studied in the large-N

limit of QCD, in both D = 2+1 and 3+1 spacetime dimensions, in a very recent work [40].

With these motivations, in this paper we report our investigation of the equation of

state in the confining phase of Yang-Mills theories in 2 + 1 dimensions: we compare our

results with a hadron resonance gas, using the glueball masses directly extracted from

lattice simulations [41], as well as a bosonic string model for the hadronic spectrum. This

also allows one to achieve a better understanding of the many non-trivial features of effective

string models — see, e.g., ref. [42] and references therein.

Our computations can be compared with those reported in ref. [43] for SU(3) in D =

3 + 1: in fact, our work can be seen as an extension (in the lower-dimensional case) of the

latter study, to theories with a different number of colors. This is partially motivated by

recent works [44–53], revealing that the equation of state of the deconfined gluon plasma

is characterized by a very mild dependence on the number of colors — up to a (trivial)

proportionality to the number of gluon degrees of freedom — showing that equilibrium

thermodynamic observables in the SU(3) theory [54, 55] are close to the large-N limit,

and lending support to computations based on holographic methods [56–66] and/or on

quasiparticle approaches [67–72]. By contrast, for temperatures T < Tc, confinement into

color-singlet hadrons leads to the expectation that the number of physical states (and the

equilibrium thermodynamic quantities) should scale as O(N0), i.e. be independent of N ,

in the large-N limit. On the other hand, our choice to look at the D = 2 + 1 setup (rather

than D = 3 + 1) is motivated by an important technical aspect: while the deconfinement

phase transition of SU(3) Yang-Mills theory in 3 + 1 dimensions is of first order, in 2 + 1

dimensions it is a second-order one. As a consequence, it is expected that the Hagedorn

temperature TH should be the same as the deconfinement temperature Tc, thereby removing

the TH/Tc parameter to be fitted from the data, and providing a more stringent test of

the description of the glueball spectral density through a string model. Another lattice

study of the equation of state in 2 + 1 dimensions (but for the SU(3) gauge theory only) is

reported in ref. [73].

The structure of this paper is the following: in section 2, we briefly recall the contin-

uum formulation and most interesting physical features of SU(N) Yang-Mills theories in

2 + 1 spacetime dimensions, define their lattice regularization, and summarize some basic
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technical information about our determination of the thermodynamic quantities on the

lattice. In section 3, we present the numerical results of our simulations, and compare

them with the equation of state predicted for a gas of non-interacting glueballs, using the

glueball masses known from lattice computations. In section 4, we define the effective de-

scription of the glueball spectrum of SU(N) Yang-Mills theories in 2 + 1 dimensions in the

large-N limit through a bosonic string model, and derive the corresponding predictions for

the equilibrium thermodynamic quantities considered in this work. Finally, in section 5 we

discuss our findings and their implications. The computation of the partition function for

an ideal relativistic Bose gas is reviewed in the appendix A, while appendix B reports the

derivation of the spectral density for a bosonic closed string model. Preliminary results of

this study have been presented in ref. [74].

2 Non-Abelian gauge theories in 2+1 dimensions in the continuum and

on the lattice

In this section, we first introduce the continuum formulation of SU(N) Yang-Mills the-

ories in 2 + 1 dimensions in subsection 2.1, then we discuss their lattice regularization

in subsection 2.2, which also includes some technical details about our computation of

thermodynamic quantities.

2.1 Formulation in the continuum

Contrary to the D = 1 + 1 case, SU(N) gauge theories in D = 2 + 1 spacetime dimensions

exhibit non-trivial dynamics, and share many qualitative features with Yang-Mills theories

in D = 3+1. They are formally defined through the following Euclidean functional integral:

Z =

∫

DAe−SE

, SE =

∫

d3x
1

2g2
0

Tr F 2
αβ . (2.1)

In D = 2 + 1 dimensions, the bare square gauge coupling g2
0 has energy dimension 1, so

that bare perturbation theory calculations at a momentum scale k are organized as series

in powers of the dimensionless ratio g2
0/k [75, 76]. Like in D = 3 + 1 dimensions, also in

D = 2+1 non-Abelian gauge theories are asymptotically free at high energy, and confining,

with a finite mass gap and a discrete spectrum, at low energy. Their phase diagram as a

function of the temperature consists of a confined phase (with color-singlet physical states,

which can be classified according to the irreducible representations of the O(2) group and

charge conjugation) at low temperatures, and a deconfined phase at high temperatures.

The deconfinement transition occurs at a finite critical temperature Tc, where the

global ZN center symmetry gets spontaneously broken, and the order parameter in the

thermodynamic limit is the trace of the vacuum average Polyakov loop. In D = 2 + 1

dimensions, the deconfinement transition turns out to be a second-order one for SU(2) and

SU(3), while it is a very weakly first-order one for SU(4), and a stronger first-order one for

SU(N ≥ 5) [77–81].
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Equilibrium thermodynamic quantities for SU(N) Yang-Mills theories in D = 2 + 1

dimensions can be easily obtained from elementary thermodynamic identities. Let Z(T, V )

denote the partition function for an isotropic system of two-dimensional “volume” V at

temperature T ; the free energy density f :

f = −T

V
ln Z(T, V ) , (2.2)

is related, in the thermodynamic limit, to the pressure p via:

p = − lim
V →∞

f . (2.3)

In turn, the trace of the energy-momentum tensor ∆ = T µ
µ is related to the pressure by:

∆

T 3
= T

d

dT

( p

T 3

)

, (2.4)

so that the energy and entropy densities (denoted as ǫ and s, respectively) can be ex-

pressed as:

ǫ = ∆ + 2p (2.5)

and

s =
∆ + 3p

T
. (2.6)

2.2 Lattice regularization

In this work, we studied non-perturbatively theories based on SU(N) gauge groups with

N = 2, 3, 4, 5 and 6 colors, by regularizing them on a finite, isotropic cubic lattice Λ.

In the following, let a denote the lattice spacing and L2
s × Lt = (N2

s × Nt)a
3 the lattice

volume. The lattice formulation regularizes the functional integral in eq. (2.1), trading it

for the finite-dimensional multiple integral:

ZL =

∫

∏

x∈Λ

3
∏

α=1

dUα(x)e−SE
L , (2.7)

where dUα(x) is the Haar measure for each Uα(x) ∈ SU(N) link matrix, and SE

L
denotes

the standard Wilson lattice gauge action:

SE

L
= β

∑

x∈Λ

∑

1≤α<β≤3

[

1 − 1

N
ReTr Uαβ(x)

]

, with: β =
2N

g2
0a

, (2.8)

where:

Uαβ(x) = Uα(x)Uβ(x + aα̂)U †
α(x + aβ̂)U †

β(x). (2.9)

Expectation values of gauge-invariant physical observables O are defined by:

〈O〉 =
1

ZL

∫

∏

x∈Λ

3
∏

α=1

dUα(x) O e−SE
L (2.10)
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N N2
s × Nt nβ β-range nconf at T = 0 nconf at finite T

2 483 81 [7.97, 10.97] 1 × 105 —

902 × 6 — 1 × 105

563 81 [9.235, 12.735] 1 × 105 —

1052 × 7 — 1 × 105

643 90 [9.5, 14.5] 1 × 105 —

1202 × 8 — 1 × 105

3 642 × 8 29 [15.0, 20.0] 1 × 105 5 × 105

[23.0, 24.4] 1 × 105 8 × 105

[24.6, 32.0] 1 × 105 6 × 105

4 482 × 6 161 [30.0, 46.0] 2 × 104 1.6 × 105

562 × 7 188 [34.5, 53.2] 2 × 104 1.6 × 105

642 × 8 200 [39.0, 58.9] 2.5 × 104 2 × 105

5 482 × 6 24 [51.0, 53.2] 1 × 105 1 × 105

[54.0, 58.5] 1 × 105 5 × 105

[59.0, 60.0] 1 × 105 3 × 105

[61.0, 64.0] 1 × 105 1 × 105

6 482 × 6 16 [75.0, 78.0] 1 × 105 1 × 105

[79.0, 83.0] 1 × 105 4 × 105

[84.0, 86.0] 1 × 105 2 × 105

[88.0, 95.0] 1 × 105 1 × 105

Table 1. Parameters of the main set of lattice simulations used in this work: N denotes number

of colors, Nt and Ns are, respectively, the lattice sizes along the time-like and space-like directions

(in units of the lattice spacing). nβ denotes the number of β-values (i.e. of temperatures) that were

simulated, in each βmin ≤ β ≤ βmax interval; the T = 0 and finite-T statistics at each β-value are

shown in the last two columns. For N > 2, all T = 0 simulations were performed on lattices of

size (aNs)
3.

and can be estimated numerically, via Monte Carlo sampling over a finite set of {Uα(x)}
configurations; in the following, the number of configurations used in our computations is

denoted by nconf.

The numerical results presented in this work are based on sets of configurations (see

table 1 for details) produced via a Markovian process with local updates; our code imple-

ments a combination of local heat-bath [82, 83] and overrelaxation steps [84, 85] on SU(2)

subgroups [86]. For part of our simulations, we also used the Chroma suite [87]. To convert

the lattice results obtained from simulations into physical quantities, one has to set the

physical scale, i.e. to determine the value of the spacing a as a function of the bare gauge

coupling. This determination is done non-perturbatively, via the lattice computation of

a reference quantity relevant for low-energy scales (such as, for example, the asymptotic

slope σ of the confining potential V (r) between a pair of static sources at zero tempera-

ture at large distances r, or the critical deconfinement temperature Tc). In this work, the
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determination of the scale is done using lattice results available in the literature [81], and

is expressed by the following formula:

T

Tc
=

β − 0.22N2 + 0.5

Nt · (0.357N2 + 0.13 − 0.211/N2)
. (2.11)

Essentially, the accuracy limits on this formula are set by the precision in the determination

of the Tc/
√

σ ratio in the continuum limit and in the large-N limit from ref. [81]. The

latter reports 0.9026(23) for the N → ∞ limit of this ratio, with a finite-N correction term

proportional to N−2 with coefficient 0.880(43) (this fit is shown to describe well the data,

all the way down to N = 2). As a consequence, the uncertainty on our determination of the

temperature scale can be estimated to be of the order of 1%, and has a negligible impact

on our analysis (for the sake of clarity, we omit the corresponding horizontal errorbars

from our plots).

More generally, it is worth noting that, given that all numerical simulations are done at

finite values of the spacing a, on the lattice different observables can be affected by different

discretization artifacts, thus the choice of a particular observable to set the scale introduces

a systematic uncertainty. However, the quantitative effect of such uncertainty is small,

O(a2); for a comparison with alternative definitions of the scale, see, e.g., refs. [73, 88].

The lattice simulation of Yang-Mills theories in thermodynamic equilibrium is straight-

forward: the temperature (in natural units ~ = c = kB = 1) is defined by the inverse of the

lattice size, T = 1/(aNt), along a compactified direction, with (anti-)periodic boundary

conditions for bosonic (fermionic) fields, while the sizes in the other directions are kept

sufficiently large, Ns ≫ Nt, to enforce a good approximation of the thermodynamic limit

— see, e.g., refs. [89, 90] for a discussion. To obtain the temperature dependence of all

equilibrium thermodynamic quantities (or, more precisely, of their difference with respect

to the value at T = 0 — for which we run simulations on lattices of size (aNs)
3) we var-

ied the temperature by changing a (which is a function of β) at fixed Nt and Ns = 8Nt

(except for the SU(2) gauge group: see table 1 for details), and repeated the computa-

tions at increasing values of Nt to estimate discretization effects and perform a continuum

extrapolation. As compared to the so-called “fixed-scale approach” [91], this method al-

lows one to perform efficiently a fine and accurate temperature scan. The trace of the

energy-momentum tensor can be obtained from:

∆ =
3

a3

∂β

∂ ln a
(〈U�〉T − 〈U�〉0) , (2.12)

where 〈U�〉T denotes the expectation value of the average plaquette at the temperature T ,

while the pressure can be determined using the “integral method” [92]:

p =
3

a3

∫ β

β0

dβ′ (〈U�〉T − 〈U�〉0) , (2.13)

where β0 is a value of the Wilson parameter corresponding to a temperature sufficiently

deep in the confined phase. In the present work, the numerical evaluation of the integral in

eq. (2.13) was done by the trapezoid rule, except for the SU(4) gauge theory, for which we

– 7 –
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used the method described by eq. (A.4) in ref. [93], which is characterized by systematic

errors O(n−4
β ). Thus, the uncertainty on the pressure depends on the statistical precision

of the plaquette differences, and on the systematic uncertainty related to the choice of

the lower integration extremum β0. Since the plaquette differences at different values of β

are obtained from independent simulations, the statistical errors on p are obtained using

standard error propagation. As for the systematic uncertainty related to the choice of the

lower integration extremum, we checked that, by virtue of the exponential suppression of

the plaquette differences in the confined phase, pushing β0 to even lower values than those

we used, would not have any significant impact on our results for the pressure. The energy

and entropy densities are then obtained from eq. (2.5) and from eq. (2.6), respectively.

As a technical remark, note that eq. (2.12) and eq. (2.13) show that the determina-

tion of thermodynamic quantities from very fine lattices can be computationally rather

demanding, given that they are extracted from differences of plaquette expectation values

at zero and finite temperature, and such differences scale like a3 (or a4 in the D = 3 + 1

case). However, our numerical results reveal a mild cutoff dependence (at least in the range

of Nt values that we simulated), allowing one to get a reliable extrapolation to the con-

tinuum limit. In particular, leading-order discretization terms affecting the Wilson lattice

gauge action eq. (2.8) are quadratic in a, so that continuum results can be obtained by

extrapolation of fits in 1/N2
t to the Nt → ∞ limit. These results can then be compared

with the theoretical predictions of effective models for the equation of state of Yang-Mills

theories in the confined phase, as discussed below.

3 Numerical results

Figure 1 shows our numerical results for the dimensionless ratio of the trace of the energy-

momentum tensor over the cube of the temperature, ∆/T 3, as a function of T/Tc, for

the various SU(N) gauge groups. In the confining phase, the thermodynamics is that of

an ensemble of color-singlet states, and, since the number of the latter does not depend

on N (with the exception of N = 2, for which, due to the (pseudo-)real nature of all

irreducible representations of SU(2), there exist no states with charge conjugation quantum

number C = −1), it is reasonable to expect that the equilibrium observables should not

depend strongly on the rank of the gauge group. This is indeed observed in figure 1,

showing the approximate collapse of data from different groups onto a universal curve,

up to temperatures around 0.95Tc, or even larger. In the same figure, we also show the

comparison with the curve (dashed line) describing the trace of the energy-momentum

tensor for a relativistic gas of massive, non-interacting glueballs, using the glueball masses

extracted from lattice computations in ref. [41], and restricting to states below the two-

particle threshold; the leading contribution is given by the lightest glueball (dotted line).

As it will be discussed in section 4, both these curves severely underestimate the lattice

results at temperatures larger than approximately 0.9Tc.

The plot also shows that, very close to the deconfinement transition, the data corre-

sponding to different gauge groups start arranging themselves according to the multiplicity

given by the number of gluon degrees of freedom in the deconfined phase, O(N2). The
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0.75 0.8 0.85 0.9 0.95 1
T / Tc

0

0.5

1

1.5

2

∆ 
/ T

3

SU(2)
SU(3)
SU(4)
SU(5)
SU(6)
all glueballs below the two-particle threshold
contribution from the lightest glueball

Trace of the energy-momentum tensor and glueball gas

Figure 1. Trace of the energy-momentum tensor (in units of T 3) as a function of T/Tc, for the

SU(N) gauge groups studied in this work. The results displayed are obtained from simulations on

lattices with Nt = 6 sites in the Euclidean time direction, except for the SU(3) Yang-Mills theory

and for the points at the nine lowest temperatures of the SU(2) theory, obtained from simulations

on lattices with Nt = 8. The dashed curve is the theoretical prediction for ∆/T 3, assuming that

the system can be described as a gas of non-interacting glueballs, and the dotted curve represents

the contribution from the lightest state in the spectrum.

fact that this already occurs for temperatures below (albeit close to) Tc is likely due to

residual finite-volume artifacts of the lattice simulations, which become particularly se-

vere for second-order (or very weak first-order) phase transitions such as those of SU(2),

SU(3) and SU(4).

From the data for the trace of the energy-momentum tensor, it is then straightforward

to obtain the other bulk thermodynamic quantities p, ǫ and s by numerical integration:

the results are shown in figure 2, where the left, central, and right panels respectively show

the pressure, the energy density and the entropy density (in units of the appropriate power

of the temperature).

Let us now discuss the continuum extrapolation of our lattice results. Since our nu-

merical data are obtained from simulations of the pure-glue sector with the Wilson action

eq. (2.8), leading-order discretization effects are proportional to a−2, i.e. to N−2
t . To esti-

mate the quantitative impact of deviations with respect to the continuum limit, we repeated

our simulations of the SU(2) and SU(4) gauge theories on lattices with Nt = 6, 7 and 8,

keeping the temperature and physical volume fixed. Going from Nt = 6 to Nt = 8 is

expected to reduce the dominating cutoff effects by a factor around one half, while keeping
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Figure 2. The pressure (left panel) and the energy density (central panel), in units of T 3, and

the entropy density (right panel) in units of T 2, as a function of T/Tc, for the theories studied in

this work.
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Figure 3. Cutoff dependence of our results for the trace of the energy-momentum tensor (in units

of T 3). These panels show the results obtained at the same temperatures, from simulations at three

different values of the spacing a, corresponding to lattices with Nt = 6 (circles), 7 (squares) and 8

(triangles), for the SU(2) (left panel) and SU(4) gauge groups: the discretization effects appear to

be comparable with or smaller than the statistical precision of our data.

the computational costs at a constant signal-to-noise ratio limited. In figure 3 we com-

pare the values for ∆/T 3 for these two groups, as obtained from the three different sets

of simulations: in the confined phase, discretization effects are very small, and compatible

with the statistical errorbars. For this reason, one can safely assume that the systematic

discretization effects affecting our Nt = 6 results (as well as finite-volume effects) are negli-

gible with respect to the statistical errors and systematic uncertainties related to the scale

determination.

4 Comparing with a glueball gas

Since the models that we are studying are pure gauge theories, the only physical states in

the confined phase are massive glueballs. Hence, as a first approximation, it is reasonable

to expect that the behavior of the thermodynamic observables shown in figure 1 and in

figure 2 could be described in terms of a free relativistic gas of these glueball states. It

is far from obvious that these glueballs should behave as free particles (at least for small
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values of N), and testing this assumption is the first goal of our analysis. As we shall see,

this also requires an Ansatz for the glueball spectrum at high energies (in the vicinity of

a possible Hagedorn-like transition), which, in turn, will allow us to discuss some subtle

features of the phenomenological models used to describe this spectrum. Testing these

string-inspired models is the second goal of our analysis.

We performed the comparison of our data to the ideal glueball gas predictions in

three steps:

1. firstly, we assumed the gas to be dominated by the lightest glueball only;

2. then, we included all the glueballs below the two-particle threshold, using the very

precise numerical estimates available in the lattice literature;

3. finally, we compared our data with the whole glueball spectrum, assuming a spectral

density Ansatz inspired by the effective bosonic string model.

A similar approach has been followed in ref. [43] for the SU(3) Yang-Mills theory in D =

3 + 1 dimensions.

In D = 2 + 1 spacetime dimensions, the pressure associated with a free, relativistic

particle species of mass m is

p =
mT 2

2π

∞
∑

k=1

1

k2
exp

(

−k
m

T

)

(

1 +
T

km

)

, (4.1)

from which the other equilibrium thermodynamic quantities can be derived. In particular,

the trace of the energy-momentum tensor can be written as

ǫ − 2p

T 3
=

m2

2πT 2

∞
∑

k=1

1

k
exp

(

−k
m

T

)

= − m2

2πT 2
ln
(

1 − e−
m

T

)

(4.2)

(see also eq. (A.8) in the appendix A).

For the first two steps in the comparison of our lattice data to the glueball spectrum, we

used the numerical values of the glueball masses and the parametrizations of the appropriate

scaling functions, which are reported in ref. [41].

The curves in figure 1 show the expected behavior of ∆/T 3, for a gas of non-interacting

glueballs: in particular, the dashed line is obtained summing the contributions from all

glueball species (below the elastic scattering threshold) which are known from lattice spec-

troscopy calculations, while the dotted curve represents the leading contribution given by

the lightest glueball. As already mentioned above, it is easy to see that both these curves

fail to reproduce the data for T/Tc larger than (approximately) 0.9. This has also been

observed in recent, high-precision lattice computations of the equation of state for SU(3)

Yang-Mills theory in D = 3 + 1 dimensions [43, 55].

Another feature, which is immediately manifest from the data, is the large separation

between the bands of data corresponding to the SU(2) and the SU(N ≥ 3) gauge groups.

Since the value of the lowest glueballs (in units of Tc) is almost the same for SU(2) and

for the other SU(N ≥ 3) gauge groups, this gap must be the consequence of the fact that
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in the two cases the theories have different spectra, due to the aforementioned absence of

C = −1 states in the SU(2) Yang-Mills theory. This is an important difference with respect

to the spectrum of the theories based on the other SU(N ≥ 3) gauge groups, admitting

both C = +1 and C = −1 states (not mutually degenerate). The fact that our SU(2) results

for ∆/T 3 start to strongly deviate from those of the other groups at T/Tc ≃ 0.9 indicates

that in this region the thermodynamics is likely dominated by effects due to the density of

glueball states, rather than by just the lightest state in the spectrum.

To describe the full glueball spectrum, various phenomenological models have been

proposed in the literature: these include, in particular, bag-type models [94, 95] and string-

inspired models [31]. In the following we focus on the latter, and summarize their main

features; besides the original work, the interested readers can find a discussion of its more

recent generalizations in ref. [30].

In the original proposal by Isgur and Paton [31], glueballs are modelled as “rings of

glue”, i.e. as closed tubes of chromoelectric flux, which are described as closed bosonic

string states. In particular, this implies that each glueball state corresponds to a given

phonon configuration (i.e. to a given bosonic closed string state), and for each phonon

combination there exists an infinite tower of radially excited states of increasing mass.

This model can then be generalized, by including possible k-glueball states (for N ≥ 4),

which correspond to closed k-strings, metastable “adjoint string glueballs” (which become

stable in the large-N limit and may explain the splitting between the sectors of opposite

C), as well as the finite thickness of the flux tube, which is usually modelled introducing an

additional phenomenological parameter. This generalized version of the Isgur-Paton model

turns out to be in remarkably good agreement with the low-lying spectrum of Yang-Mills

theories, as calculated from first principles by means of lattice simulations [30].

An interesting feature of this model is that, essentially, these extensions lead to copies

of the original spectrum, which are shifted towards higher values of the masses: thus,

the thermodynamic contribution of the corresponding states is exponentially suppressed,

except in a close neighborhood of a Hagedorn-like temperature. Furthermore, the correction

to the spectrum due to the finite thickness of the flux tube becomes negligible for heavy

glueballs, so that, as a first approximation, the glueball spectral density can be modelled

in terms of the spectrum of a closed bosonic string (see the appendix B for details):

ρ̃D(m) =
(D − 2)D−1

m

(

πTH

3m

)D−1

em/TH . (4.3)

For SU(N ≥ 3), the model predicts a further twofold degeneracy, accounting for the two

possible orientations of the flux tube.

Using this expression in eq. (4.2), assuming TH = Tc and a Nambu-Goto string, for

which T 2
c = 3σ/π in D = 2 + 1 spacetime dimensions,2 one obtains the prediction shown

2It is interesting to note that, in D = 2 + 1 dimensions, the effective Nambu-Goto string model for

confinement predicts a numerical value for the ratio of the deconfinement temperature over the square root

of the zero-temperature string tension Tc/
√

σ approximately equal to one, in good numerical agreement

with recent, accurate lattice determinations [81, 96].
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Trace of the energy-momentum tensor and string model

Figure 4. Same as in figure 1, but comparing our simulation results to the theoretical prediction

including the contribution obtained from a bosonic string model for the glueball spectral density,

as discussed in the text. The solid curve is the prediction for the SU(N > 2) theories, while the

dash-dotted curve accounts for the lack of C = −1 states in the SU(2) gauge theory.

in figure 4. In particular, the solid curve, which accounts for states of opposite charge-

conjugation quantum number, is relevant for the trace anomaly in SU(N > 2) theories,

while the dash-dotted curve, obtained including only C = +1 states, is expected to provide

a more adequate description for the SU(2) theory. As the figure shows, both curves are in

remarkably good agreement with our data, for all temperatures up to the region where the

results corresponding to the different gauge groups start splitting from each other. This

agreement is a strong piece of numerical evidence supporting the Isgur-Paton model, and,

more generally, bosonic string models as effective theories for the confining regime of non-

Abelian gauge theories. These results also support the hypothesis that glueball interactions

are weak, and that the confined phase thermodynamics can be accurately approximated in

terms of a relativistic gas of free massive bosons.

In order to have a better feeling of the quality of the agreement between lattice data

and the effective string prediction, it is also useful to compare our simulation results with

the prediction that one would obtain, using the density of states of the open (rather than

closed) string. This is displayed in figure 5, where we compare the two curves to our data for

SU(4) (the gauge group for which we performed the finest temperature scan) in the region

where the contribution from the density of states of heavy glueballs dominates over the

lightest ones: the precision of our simulations is sufficient to show that a model based only
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Figure 5. Dependence of the theoretical prediction for the equation of state on the string spectrum

details: our simulation results for the SU(4) Yang-Mills theory are compared with the bosonic string

prediction for the equation of state, assuming the glueballs to be modelled either as closed (solid

curve) or open (dotted curve) strings.

on open strings is clearly incompatible with the lattice results. However, our work does not

rule out the possibility of modelling the glueballs in terms of a combination of closed and

open string states in the adjoint (or in a higher) representation, as suggested in ref. [30].

Finally, in the close vicinity of Tc, our results show that the contribution from heavier

glueballs (or from interactions) becomes more and more important: this drives the change

of behavior observed in the figures. It is interesting to note that, while the original Isgur-

Paton model predicts exactly the same glueball spectrum for any number of colors N

(except for the missing C = −1 states for N = 2), the extension discussed in ref. [30]

predicts a dependence on N , related to the larger number of k-glueball states which become

available when N is increased.

5 Conclusions

In this work, we presented high-precision lattice results for the equation of state of SU(N)

Yang-Mills theories in 2 + 1 dimensions. We focused onto the confining phase, where the

thermodynamics of these strongly coupled theories is expected to be described in terms of

color-singlet hadronic states (glueballs).

At low enough temperatures, the equilibrium thermodynamic properties are described

well by a gas of non-interacting glueballs, with masses compatible with the results obtained

from the accurate lattice determinations available in the literature.
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Close to the deconfinement temperature, however, this very simple model fails to

reproduce the lattice data, and the contribution due to heavier glueball states has to be

taken into account. The latter can be evaluated using a simple bosonic string model, like

the one originally proposed in ref. [31] for the D = 3 + 1 case, or a refinement thereof [30].

The resulting equation of state, assuming that the Hagedorn temperature can be identified

with the deconfinement temperature, and taking the effective string to be described by the

Nambu-Goto model, is in very good agreement with the data from our lattice simulations.

This gives further support to the validity of bosonic string models as effective theories for

the confining phase in non-Abelian gauge theories.

Our findings can be compared with those obtained in a similar computation for the

SU(3) Yang-Mills theory in D = 3 + 1 dimensions [43], which also reported excellent

agreement with an equation of state obtained extending the sum over known glueball

masses with an exponential Hagedorn-like spectrum. One difference with respect to the

latter work, however, is that in the present work we did not fit the value of the Hagedorn

temperature TH : in the D = 2 + 1 setup the deconfinement phase transition is a second-

order one also for the SU(3) gauge theory — and a very weakly first-order one for SU(4)

— and for continuous phase transitions it is expected that TH should be equal to Tc.
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A Ideal relativistic Bose gas in d + 1 spacetime dimensions

The logarithm of the canonical partition function Z(T,V ) of an ideal relativistic Bose gas is:

ln Z = − V Ωd

(2π)d

∫ ∞

0

dp pd−1 ln
(

1 − e−
√

m2+p2/T
)

, (A.1)

where m is the mass of the boson and Ωd = 2πd/2/Γ(d/2) is the d-dimensional solid angle.

Integration by parts yields:

ln Z =
V Ωd

Td(2π)d

∫ ∞

0

dp
pd+1

√

m2 + p2

1

e
√

m2+p2/T − 1

=
V Ωd

Td(2π)d

∞
∑

k=1

∫ ∞

0

dp
pd+1

√

m2 + p2
e−k

√
m2+p2/T

=
md+1V Ωd

Td(2π)d

∞
∑

k=1

∫ ∞

0

du e−k m

T
cosh u sinhd+1 u

=
2V

T

(

m2

2π

)

d+1

2
∞
∑

k=1

(

T

km

)
d+1

2

K d+1

2

(

k
m

T

)

, (A.2)
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where we set cosh u =
√

1 + p2

m2 , and used the following integral representation:

Kν(z) =

√
π
(

z
2

)ν

Γ
(

ν + 1
2

)

∫ ∞

0

du e−z cosh u sinh2ν u (A.3)

for the modified Bessel function of the second kind of index ν.

In the thermodynamic limit the pressure is

p =
T

V
ln Z = 2

(

m2

2π

)

d+1

2
∞
∑

k=1

(

T

km

)
d+1

2

K d+1

2

(

k
m

T

)

. (A.4)

The other equilibrium thermodynamics observables can be obtained from the above ex-

pressions for the pressure. For instance, the entropy density s is given by

s =
∂p

∂T
. (A.5)

Similarly, the internal energy density ǫ reads:

ǫ =
T 2

V

∂

∂T
ln Z = −p + sT . (A.6)

Combining eq. (A.4) with the expression for the trace of the energy-momentum tensor in

d spatial dimensions, ∆d = ǫ − d · p, and using the recurrence relations of modified Bessel

functions, one finds that the ideal Bose gas enjoys a remarkable identity:

∆d = 2

(

m2

2π

)

d+1

2
∞
∑

k=1

(

T

km

)
d−1

2

K d−1

2

(

k
m

T

)

, (A.7)

namely, the trace of the energy-momentum tensor for the Bose gas in d spatial dimensions

is proportional to the pressure pd−2 of a Bose gas in d − 2 spatial dimensions:

∆d =
m2

2π
pd−2 . (A.8)

Finally, note that using the asymptotic expansion

Kν ≃
√

π

2z
e−z

[

1 +
4ν2 − 1

8z
+ O

(

1

z2

)]

, (A.9)

valid for large |z|, one obtains:

p ≃ T

(

Tm

2π

)
d

2
∞
∑

k=1

1

k
d

2
+1

exp
(

−k
m

T

)

[

1 +
d(d + 2)

8k

T

m

]

, (A.10)

which, for d = 2, reduces to eq. (4.1).
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B Spectral density of closed bosonic strings

We assume that the glueballs can be modelled as “rings of glue”, which are described, in

the limit of large masses, by the Nambu-Goto model of closed bosonic strings. The mass

spectrum in D = 2 + 1 spacetime dimensions reads:

m2 = 4πσ

(

nL + nR − 1

12

)

with: nL = nR = n , (B.1)

where σ is the string tension, the integers nL and nR describe the total contribution of the

left- and right-moving phonons along the closed string, and the −1/12 term arises from

the zero-point energy contribution. The degeneracy of these single-particle states is given

by the number of partitions of nL and nR (see, for instance, ref. [97]), hence the total

degeneracy ρ(n) for the physical states is

ρ(n) = π(nL)π(nR) = π(n)2 , (B.2)

where π(n) denotes the number of partitions of n, and can be calculated using the gener-

ating function
∞
∏

k=1

1

1 − qk
=

∞
∑

n=0

π(n)qn . (B.3)

For n large, one can resort to the Ramanujan asymptotic formula:

π(n) ≃ 1

4n
√

3
exp

(

π

√

2n

3

)

, (B.4)

which gives:

ρ(n) ≃ 1

48n2
exp

(

2π

√

2n

3

)

. (B.5)

In D spacetime dimensions, the Hagedorn temperature TH [24, 25] is related to the string

tension by:

TH =

√

3σ

π(D − 2)
, (B.6)

thus, for large m,

m

TH
= 2π

√

2(D − 2)n

3
, (B.7)

so in D = 2 + 1 one gets:

ρ(n) =
4

33

(

π
TH

m

)4

em/TH . (B.8)

The spectral density as a function of the mass ρ̃(m) is defined via

ρ̃(m) dm = ρ(n) dn . (B.9)

Using eq. (B.7), one gets:

dn =
3mdm

4π2(D − 2)T 2
H

, (B.10)
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thus in D = 2 + 1 dimensions one obtains:

ρ̃(m) =
π2

9TH

(

TH

m

)3

em/TH . (B.11)

The generalization to arbitrary D = d + 1 is straightforward: for a closed string in D

spacetime dimensions, one finds:

ρD(n) = 12(D − 2)D
(

πTH

3m

)D+1

em/TH . (B.12)

Combining this expression with eq. (B.9) and eq. (B.10), one obtains:

ρ̃D(m) =
(D − 2)D−1

m

(

πTH

3m

)D−1

em/TH . (B.13)
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