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Abstract 

Recently, a better understanding of the specific mechanisms of oncogene addiction has led to the development of 
antitumor strategies aimed at blocking these abnormalities in different malignancies, including lung cancer. These 
abnormalities trigger constitutive activation of tyrosine kinase receptors (RTKs) involved in fundamental cell mechanisms 
such as proliferation, survival, differentiation and migration, and consequently the aberrant signaling of RTKs leads to 
cancer growth and survival. The inhibition of aberrant RTKs and downstream signaling pathways has opened the door to 
the targeted therapy era. 

In non-small-cell lung cancer (NSCLC), molecular research has allowed the discrimination of different aberrant RTKs in 
lung cancer tumorigenesis and progression, and thus the identification of several targetable oncogenic drivers. Following 
the development of small molecules (gefitinib/erlotinib and crizotinib) able to reversibly inhibit the epidermal growth factor 
receptor (EGFR) and signaling pathways mediated by anaplastic lymphoma kinase (ALK), respectively, the MET 
signaling pathway has also been recognized as a potential target. Moreover, according to current knowledge, MET could 
be considered both as a secondary oncogenic mechanism and as a prognostic factor. Several therapeutic strategies for 
inhibiting activated hepatocyte growth factor receptor (HGFR) and the subsequent downstream signaling transduction 
have been improved in order to block tumor growth. This review will focus on the MET pathway and its role in resistance 
to EGFR TK (tyrosine kinase) inhibitors, the different strategies of its inhibition, and the potential approaches to 
overcoming acquired resistance. 
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1. Introduction 

Recently, improved understanding of the molecular mechanisms underlying oncogene addiction has led to the 
classification of non-small-cell lung cancer (NSCLC) into different molecular types and to the introduction of new targeted 
agents which have dramatically changed the natural history of this disease. Excellent examples of these agents 
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comprise erlotinib and gefitinib for NSCLC patients whose tumors harbor drug-sensitizing mutations in the EGFR TK 
domain [1], [2] and [3] and, more recently, crizotinib for NSCLCs carrying ALK translocations [4], [5], [6], [7] and [8]. 

Among different targets, the proto-oncogene c-MET, its product (HGFR, hepatocyte growth factor receptor) and its ligand 
(hepatocyte growth factor, HGF) have also been recognized as molecular targets. Indeed, aberrant MET pathway 
activation has been identified as an important oncogene addiction mechanism in different solid tumors [9] and [10] and it 
seems to correlate with poor clinical outcome and metastatic progression [11], [12], [13] and [14]. 

HGFR/HGF signaling has therefore become a new potential target for anticancer therapy through different blocking 
strategies, and new compounds have been tested to overcome resistance mechanisms. 

 

2. HGFR/HGF structure and normal functions 

2.1. HGFR 

The MET gene is located on chromosome 7q21-31 and encodes a protein product called the HGF receptor (HGFR). The 
HGFR is a single-chain heterodimer consisting of an extracellular α-chain linked by a disulfide bond to a transmembrane 
β-chain possessing intracellular catalytic activity ( Fig. 1 A). 

 
Fig. 1.  
Structures of the c-MET receptor (A) and HGF (B). 
 

The extracellular domain is composed of several domains. The semaphorin (Sema) domain, a key site for ligand binding 
and receptor dimerization, includes the entire α-chain and the N-terminal part of the β-chain; a plexin–semaphorin–
integrin (PSI) domain and four immunoglobulin-like (IPT) domains follow, which in turn are connected to the intracellular 
part of the β-chain (Fig. 1A). 
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The intracellular domain (Fig. 1A) is composed of: (1) a juxtamembrane region which contains both a serine residue 
(Ser975) and a tyrosine residue (Tyr1003); these are responsible for inhibiting the MET kinase activity and for degrading 
the receptor, respectively; (2) a catalytic region which contains two tyrosine residues (Y1234 and Y1235) that modulate 
the enzyme activity; and (3) a C-terminal tail, the so-called docking site [15], which contains two other tyrosine residues 
(Y1349 and Y1356) capable of recruiting many intracellular effectors, such as the p85 regulatory subunit of PI3K, Src 
and GRB2[15] and [16], and adaptors such as SHP2, PLCγ1 and GAB1 [15], [16] and [17], as well as 
STAT3[18] and [19] (Fig. 2). 

 
Fig. 2.  
MET signaling pathways and different blocking mechanisms. In addition to ligand–receptor interaction, a network of signaling co-
receptors – such as the EGFR/ERB family, CD44v6, plexinB and α6β4 integrin – can interact with MET, even in an HGF-
independent manner, promoting cell proliferation, invasive growth and survival. HGF inhibitors interfere with HGF binding to MET; 
MET antibodies prevent receptor dimerization; decoy MET prevents both HGF binding to receptor and MET dimerization; MET 
kinase inhibitors block MET kinase activity. ARQ 197 (?): question mark indicates that this compound is not a bona fide c-MET 
inhibitor. 
 

2.2. HGF 

HGF, the unique ligand of HGFR, belongs to the plasminogen family. It has a high affinity for HGFR and leads to 
activation of its receptor only in its cleaved mature form: a disulfide-bonded heterodimer which consists of an N-terminal 
domain, four domains known as kringle domains, and a C-terminal domain (Fig. 1B). The HGF residues that form the 
receptor binding site are unknown, although several studies have pointed out different roles for the α- and β-
chains [20], [21] and [22]. In particular, it would seem that a high-affinity site in the α-chain is able to bind to the receptor 
in a manner independent of HGF maturation, even though the binding with a low-affinity site, accessible only when HGF 
is fully active, is necessary for receptor dimerization. 
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2.3. MET signaling activation and its normal function 

Upon Sema domain–HGF binding, the MET receptor dimerizes and phosphorylation of its TK domain leads to the 
activation of different important pathways, such as PI3K–Akt signaling [15] and [16], Ras–MAP kinase 
cascades [16] and [23], STAT and the nuclear factor-κB complex [24] and [25], which promote cell proliferation, 
angiogenesis, morphogenesis, survival, cell scattering, migration and invasiveness (Fig. 2). 

Moreover, HGFR can crosstalk with other pathways, such as the EGFR/ERBB family of receptors [26], even through its 
ligand TGF-α and K-RAS signaling [27], and it has been shown that these activated signaling pathways may be sensitive 
to MET inhibition both in vitro [28] and in vivo [29] ( Fig. 2). 

Nevertheless, it is noteworthy that a hypoxic status in tissues enhances both HGF levels and HGFR expression [30]. 
MET activation can also occur by semaphorins after HGFR–plexins interaction[31] and [32] (Fig. 2). In fact, HGFR and 
some classes of plexins share a highly homologous Sema domain, so that HGFR can be transactivated after 
oligomerization with plexins in response to their semaphorin ligands, also in the absence of its ligand. Moreover, MET 
signaling activity can be maintained even after receptor internalization [33], [34], [35], [36], [37], [38], [39] and [40]. After 
being internalized from the cellular membrane, the MET receptor continues to be active through its recruitment into early 
endosomes, favoring either HGF-induced cell migration via protein kinase C (PKC) and extracellular signal-regulated 
kinase (ERK), or phosphorylation and subsequent translocation into the nucleus of STAT3. 

HGFR and its ligand are widely expressed in a variety of normal cells and tissues of epithelial and mesenchymal origin, 
respectively, and MET signaling activation has a key role in both embryonic and adult life. In particular, during embryonic 
development MET signaling transduction plays a crucial role in several processes, such as 
motogenesis [41], [42], [43] and [44], angiogenesis [45] and [46], mitogenesis [47] and morphogenesis [48] and [49]. In 
adult life, its signaling transduction has an important role in tissue repair and organ regeneration following acute tissue 
injury [50]. 

 

3. MET signaling in NSCLC 

Several studies have demonstrated that an aberrant MET signaling pathway plays an important role in promoting tumor 
growth, progression and invasion in many cancers [51] and [52]. 

 

3.1. The different mechanisms of aberrant MET signaling activation 

MET receptor overexpression has been reported in both small-cell lung cancer (SCLC) and 
NSCLC [53],[54] and [55] and, in particular, has been identified in up to 40% of lung cancer tissues [56]. A significant 
correlation between MET receptor overexpression/hyperactivation and poor outcome has been demonstrated in different 
solid tumors [11], [13] and [14]. HGFR overexpression, high MET gene copy number and MET gene amplification, as 
well as high HGF levels, also have a negative prognostic significance in 
NSCLC [12], [57], [58], [59], [60], [61], [62], [63] and [64]. Besides being a consequence of HGF or HGFR 
overexpression – usually due to transcriptional upregulation – aberrant MET signaling can be also caused by gene 
amplification, activating gene mutations, or alternative splicing [53], [56] and [65]. 

3.1.1. HGF/HGFR overexpression 

High HGF levels secreted by both primary and metastatic tumors (autocrine mechanism) and mesenchymal cells 
(paracrine mechanism) have been reported as ligand-dependent mechanism of aberrant MET signaling 
activation [66], [67], [68], [69] and [70]. Others studies have pointed out the importance of other tissue and transcriptional 
factors such as cytokines, growth factors and ETS (transcriptional factors involved in tumor invasion program), in 
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inducing MET upregulation and ultimately receptor overexpression, regardless of HGF 
stimulation [30], [71], [72], [73], [74], [75] and [76]. 

Hypoxic conditions can also stimulate both higher HGF levels and HGFR transcriptional levels via hypoxia-inducible 
factor-1α (HIF-1α), which renders the cells more sensitive to HGF stimulation in the tumor invasion process; therefore, 
MET overexpression by itself nourishes this hypoxia-dependent invasion mechanism [30]. 

 

3.1.2. MET gene mutations 

Activating point mutations in the MET coding sequence have been reported as somatic and germline variants in many 
solid tumors, albeit infrequently. In NSCLC, MET gene mutations can occur in the semaphorin extracellular domain, in 
the juxtamembrane region and also in the kinase domain. Missense mutations found in the Sema domain, encoded by 
exon 2 and necessary for MET dimerization, have been reported as germline mutations [77]. The mutations found in the 
juxtamembrane domain, encoded by exons 14–15, seem to be involved in tumorigenesis [78], [79], [80] and [81]. 
Nevertheless, the MET juxtamembrane region, necessary for receptor downregulation, contains a tyrosine residue 
(Tyr1003) which is able to bind to the c-Cbl TK domain; this complex in turn promotes MET polyubiquination and 
receptor degradation. A point mutation in this tyrosine residue does not permit the formation of the complex and 
polyubiquination, leading conversely to MET oncogenic activity [82]. 

Mutations in the MET tyrosine kinase domain [53] and [83], primarily described in patients with hereditary and sporadic 
papillary renal cell carcinoma [84] and head/neck squamous-cell carcinoma [85], have been found rarely in NSCLC as a 
secondary event resulting from exposure to prior therapies, such as tyrosine kinase inhibitors [86] and [87]. 

 

3.1.3. MET gene amplification 

MET gene amplification has been reported in many primary human tumors and acts as a primary “oncogenic driver” in 
2–21% TKI-naïve lung adenocarcinomas [53]. MET amplification has also been detected as a secondary event, both in 
preclinical and clinical studies, in EGFR–TKI-resistant NSCLC after exposure to gefitinib or erlotinib [88] and [89] with a 
frequency ranging from 5% to 25% [88], [89], [90],[91] and [92]. In this NSCLC population, TKI treatment specifically 
selects preexisting MET-amplified clones in which the ERBB3/PI3K/AKT signaling pathway is active, thus suggesting the 
potential impact of a concomitant blockade of MET for overcoming EGFR–TKI resistance [93] and [94]. The combination 
treatment strategy has proved capable of also overcoming primary EGFR–TKI resistance, as recently shown in xenograft 
models [95]. In another study, the use of golvatinib, a multitarget small-molecule inhibitor, has been shown to restore 
sensitivity to EGFR–TK inhibition and to prevent the emergence of resistant cell clones after continuous HGF exposure 
in vitro [96]. Indeed, another mechanism of both primary and acquired resistance to EGFR–TKIs is represented by HGF 
overexpression [97]. Furthermore, gefitinib-resistant MET-amplified NSCLC (HCC827 GR) cells showed an increased 
activation of the tyrosine kinase Src [98], and the use of Src inhibitors resulted in tumor-cell inhibition and apoptosis [99]. 

 

3.2. Mechanisms of acquired resistance to MET inhibition 

As is known with EGFR and ALK inhibition, MET-driven NSCLC patients treated with a specific targeted strategy also 
invariably develop secondary resistance mechanisms which lead to tumor progression. To our knowledge, two 
mechanisms are involved in acquired resistance to MET inhibition, and both of them are simultaneously present: a point 
mutation in the MET tyrosine kinase domain at the tyrosine residue Y1230, and TGF-α overexpression, a condition that 
can activate alternative EGFR pathways [100]. In these cases, a treatment strategy combining both MET and EGFR 
inhibitors might allow to overcome resistance [53]. Other acquired mechanisms of resistance to MET inhibition have 
been identified in different solid tumors, such as papillary renal-cell carcinoma; these include an increased 
representation of a preexisting sensitive de novo somatic M1268T mutation associated with a copy number gain and 
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expression of genomic duplication [101]. On the other hand, aberrant MET signaling activation can represent a 
mechanism of oncogene expedience as a secondary event owing to the interference of other oncogenes (K-RAS), pro-
inflammatory cytokines, HGF itself, and microenvironmental conditions (hypoxia) that can enhance invasiveness and 
metastatic properties of neoplastic cells. 

 

4. Current treatment strategies targeting MET in NSCLC 

Different targeting strategies to inhibit the aberrant MET signaling in NSCLC have been developed. In particular, MET 
signaling can be blocked at the ligand–receptor level by new drugs directed against HGF (HGF antagonists) or HGFR, 
such as anti-MET receptor monoclonal antibodies and decoy MET (the latter has so far been tested only in preclinical 
phase studies), or at the tyrosine kinase domain level by small-molecule MET kinase inhibitors (Fig. 1). 

Currently, many molecules, either alone or in combination with other drugs, are under investigation in clinical trials on 
NSCLC in order to prevent or overcome possible mechanisms of resistance. A summary of these trials is provided 
in Table 1 and Table 2. 

 
Table 1. 
Ongoing studies with MET inhibitors in non-small-cell lung cancer (NSCLC)  
 

Experimental 
drug 

Combined 
treatment drug(s) Study design Description and primary end-points 

HGF inhibitors 

AMG 102 
(rilotumumab) 

Erlotinib Phase I/II trial AMG 102 + erlotinib in previously treated advanced 
NSCLC 

   Primary: safe dose to combine with erlotinib 

AV-299 
(ficlatuzumab) 

Gefitinib Phase I/II trial AV-299 + gefitinib AND gefitinib alone in NSCLC 
Asian patients 

   Primary: DLTs and RP2D; ORR 

Anti-MET monoclonal antibodies 

MetMab 
(onartuzumab) 

Bevacizumab 4-arm phase II 
trial 

MetMab + different chemotherapy treatments versus 
placebo + the same chemotherapy regimen in 
untreated advanced non-squamous NSCLC 
patients. 

 Platinum-based 
chemotherapy 
doublets 

 Primary: PFS in both the entire population and 
patients with MET/IHC+tumors 
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Experimental 
drug 

Combined 
treatment drug(s) Study design Description and primary end-points 

 Placebo   

MetMab Platinum-based 
chemotherapy 
doublet 

2-arm phase II 
trial 

MetMab + platinum-based chemotherapy doublet 
versus placebo + platinum-based chemotherapy 
doublet in untreated advanced squamous NSCLC 
patients 

 Placebo  Primary: PFS both in ITT population and in patients 
with MET-positive squamous tumors, as assessed 
by IHC 

MetMab Erlotinib 2-arm phase III 
trial 

MetMab + erlotinib versus placebo plus erlotinib in 
pretreated NSCLC patients with MET-positive 
tumors 

 Placebo  Primary: OS 

MET tyrosine kinase inhibitors 

PF 02341066 
(crizotinib) 

PF 00299804 2-arm phase I 
trial 

PF 02341066 + PF 00299804 versus PF 00299804 
followed by PF 02341066 plus PF 00299804 in 
advanced NSCLC patients 

   Primary: safety profile 

PF 02341066 PF 00299804 Phase I trial PF 02341066 + PF 00299804 in pretreated 
advanced NSCLC patients. 

   Primary: safety profile 

ARQ 197 Sorafenib Phase I trial ARQ 197 + sorafenib in advanced solid tumors 

   Primary: MTD and/or RP2D 

   Secondary: PK; antitumor activity; changes of HGF, 
VEGF and c-MET in peripheral blood 

ARQ 197 Erlotinib 2-arm phase II 
trial 

ARQ 197 + erlotinib versus single-agent 
chemotherapy in previously treated advanced 
NSCLC carrying K-RAS mutation 



Experimental 
drug 

Combined 
treatment drug(s) Study design Description and primary end-points 

 Pemetrexed  Primary: PFS 

 Docetaxel   

 Gemcitabine   

ARQ 197 Erlotinib Phase II trial ARQ 197 + erlotinib in advanced NSCLC patients 
with tumors harboring EGFR mutation progressing 
on EGFR TKI monotherapy 

   Primary: ORR 

ARQ 197 Erlotinib 2-arm phase III 
trial 

ARQ 197 + erlotinib versus placebo + erlotinib in 
pretreated advanced non-squamous EGFR wild-type 
NSCLC Asian patients 

 Placebo  Primary: OS 

XL184 
(cabozantinib) 

Erlotinib Phase I/II trial XL184 + erlotinib (Part 1) AND XL184 + erlotinib 
compared to XL184 alone (Part 2) in NSCLC 
patients beyond erlotinib progression 

   Primary: safety, tolerability and MTD; PK; PD; ORR 

XL184 Placebo Phase II 
discontinuation 
trial 

Responding patients will continue treatment, those 
with stable disease will be randomized to continue 
XL184 until disease progression versus placebo; a 
non-randomized expansion cohort is expected for 
patients receiving placebo. Patients progressing on 
XL184 will discontinue study treatment. 

   Primary: efficacy 

   Secondary: safety and tolerability; PK and PD; 
correlation between MET expression and clinical 
outcome 

XL184 Erlotinib 3-arm phase II 
trial 

Erlotinib versus XL184 versus erlotinib plus XL184 
as 2nd or 3rd line therapy in metastatic EGFR wild-
type NSCLC patients. 



Experimental 
drug 

Combined 
treatment drug(s) Study design Description and primary end-points 

   Primary: PFS 

GSK 1363089 
(foretinib) 

Erlotinib 2-arm phase I/II 
trial 

GSK 1363089 + erlotinib versus erlotinib alone in 
previously treated NSCLC patients 

   Primary: RP2D of GSK 1363089 in combination with 
erlotinib; safety, tolerability and DLTs; PK; toxicity; 
ORR 

INC280 Gefitinib Phase Ib/II INC280 + gefitinib in EGFR-mutated and c-MET 
amplified NSCLC patients who have progressed 
after EGFR inhibitor treatment 

   Primary: DLTs (Phase I) and ORR (Phase II) 

   Secondary: OS, safety, inhibition of c-MET signaling, 
PK 

PK, pharmacokinetics; PD, pharmacodynamics; MTD, maximum tolerated dose; DLTs, dose limiting toxicities; RP2D, recommended 
phase 2 dose; HGF, hepatocyte growth factor; VEGF, vascular endothelial growth factor; VEGFR, vascular endothelial growth factor 
receptor; DCR, disease control rate; ORR, objective response rate; PFS, progression free survival; OS, overall survival; ITT, intent to 
treat; IHC, immunohistochemistry. 

 

Table 2. 
Ongoing phase I/II studies with new small molecules targeting MET  

Trials 
(ClinicalTrials.gov 
Identifier) 

Experimental 
drug(s) 

Mechanism of 
action Description and End-points 

NCT01014936 EMD 
1214063 

MET kinase 
inhibition 

Open-label, dose-escalation, first-in-man, non-
randomized trial in patients with advanced solid 
tumors under different regimens. 

   Primary: MTD 

   Secondary: safety profile and tolerability; PK; PD; 
safety profile; anti-tumor effects, and PK/PD in 
subjects with and without specific c-Met 
alterations, anti-tumor effects and others 

NCT01253707 AMG 337 MET kinase Open-label, first-in-human, sequential dose-

http://clinicaltrials.gov/show/NCT01014936
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Trials 
(ClinicalTrials.gov 
Identifier) 

Experimental 
drug(s) 

Mechanism of 
action Description and End-points 

inhibition escalation and expansion trial in adults with 
advanced solid tumors. 

   Primary: safety and tolerability; PK and MTD 

   Secondary: clinical response and tumor anti-
proliferative response 

NCT00813384 AMG 208 MET kinase 
inhibition 

Open-label, first-in-human, sequential dose-
escalation and expansion trial in adults with 
advanced solid tumors. 

   Primary: MTD; clinical response; PK; safety and 
tolerability 

   Secondary: decrease in tumor cell proliferation 
according to PET scanning; tumor volume 
changes according to CT/MRI scanning; 
biomarkers on skin specimens; correlation 
between c-MET expression, amplification or 
mutation and response 

NCT01721148 BMS 777607 MET kinase 
inhibition 

Phase I multiple ascending dose study in patients 
with advanced/metastatic solid tumors 

   Primary: MTD 

   Secondary: PK and antitumor activity 

NCT01428141 E7050 MET kinase 
inhibition (and 
VEGFR2) 

Phase I study in adults with advanced solid 
tumors (and gastric cancer). 

   Primary: MTD 

NCT01433991 E7050 MET kinase 
inhibition 

Open-label phase Ib/II study to assess the 
combination of E7050 and E7080 in adults with 
advanced tumors (dose-escalation part) and with 
recurrent glioblastoma or unresectable stage III/IV 
melanoma (expansion cohort and phase II) 

http://clinicaltrials.gov/show/NCT00813384
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Trials 
(ClinicalTrials.gov 
Identifier) 

Experimental 
drug(s) 

Mechanism of 
action Description and End-points 

 E7080 Multi-target 
inhibition 

Primary: DLTs and MTD (phase Ib), antitumor 
activity (Phase II) 

   Secondary: PK and PD of the two drugs, 
administered alone or in combination; antitumor 
activity 

NCT00697632 MGCD265 Multi-target 
inhibition 
(including MET 
Kinase) 

Open-label, phase I dose-escalation study to 
evaluate MGCD265 administered without 
interruption in patients with advanced tumors 

   Primary: safety and tolerability 

   Secondary: PK, PD and clinical response 

NCT00975767 MGCD265 Multi-targets 
inhibition 
(including MET 
kinase) 

Phase I/II study combining MGCD265 with 
erlotinib or docetaxel in patients with advanced 
tumors and advanced NSCLC 

 Erlotinib  Primary: safety profile (phase I); antitumor activity 
(Phase II) 

 Docetaxel  Secondary: PK, PD and antitumor activity (Phase 
I); safety profile (Phase II) 

NCT01588821 Cabozantinib Multi-target 
kinases inhibition 
(including MET 
and VEGFR2) 

Phase II trial in patients with advanced solid 
(except breast and prostate) tumors and bone 
metastases 

   Primary: effect on bone biomarkers, such as NTx, 
CTx and others 

   Secondary: rate of SRE; QoL; ORR; correlation 
between response and MET amplification; 
response in metastatic bone sites; time to SRE 

MTD, maximum tolerated dose; PK, pharmacokinetics; PD, pharmacodynamics; PET, positron emission tomography; CT, computed 
tomography; MRI, magnetic resonance imaging; VEGFR2, vascular endothelial growth factor receptor 2; DLTs, dose-limiting 
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toxicities; NTx, N-terminal telopeptide; CTx, C-terminal telopeptide; SRE, skeletal-related events; QoL, quality of life; ORR, objective 
response rate. 

 

4.1. HGF antagonists 

AMG-102 (rilotumumab) and AV-299 (ficlatuzumab) are the two anti-HGF monoclonal antibodies currently in the most 
advanced phases of clinical investigation. 

 

4.1.1. AMG-102 

AMG-102, a fully human anti-HGF IgG2 monoclonal antibody, has shown preclinical activity both in vitro and in vivo by 
enhancing temozolomide and docetaxel efficacy in xenograft models overexpressing the HGF/MET pathway [102]. In the 
ensuing phase I trial, the maximum tolerated dose (MTD) was set at 20 mg/kg and was administered according to a 2-
week schedule; the main adverse events (AEs) were fatigue, nausea, constipation, peripheral edema and hypertension 
of low to moderate grade [103]. This experimental drug has also shown good tolerability in association with antivascular 
agents [104]. AMG-102in association with standard chemotherapy in patients with advanced or metastatic gastric or 
gastroesophageal junction cancers has shown encouraging results, particularly in those with MET-positive tumors [105]. 
This compound is currently under evaluation in MET-positive gastric and gastroesophageal junction cancers and in 
pretreated NSCLC in combination with erlotinib. 

 

4.1.2. AV-299 

AV-299, a human anti-HGF IgG1 monoclonal antibody, showed a good tolerability profile and additive activity when 
combined with chemotherapy and an anti-EGFR drugs [106]. In a phase I trial AV-299 was administered at the previous 
MTD (20 mg/kg every 2 weeks) in combination with gefitinib (250 mg once daily); five out of 15 Asian NSCLC patients 
achieved a response and treatment was well tolerated. The most frequent AEs were rash, cough, diarrhea, decreased 
appetite, edema, drug hypersensitivity reactions and fatigue [107]. A randomized phase II study is evaluating AV-299 in 
combination with gefitinib in never smokers or light smokers and untreated Asian patients. 

 

4.2. Anti-HGFR monoclonal antibodies 

MetMab (onartuzumab) is a humanized, monovalent, monoclonal antibody directed against the MET receptor which 
inhibits HGF/MET binding without exerting agonistic activity and inducing MET dimerization. It demonstrated significant 
antitumor activity both in glioblastoma featuring an HGF-dependent autocrine loop [108] and in 
pancreatic [109] xenograft models. In the following phase I trialMetMab was well tolerated both as a single agent and in 
combination with bevacizumab, and the phase II recommended dose was set at 15 mg/kg every 3 weeks [110]. 

More recently, a global randomized phase II study (OAM4558g) comparing MetMab in combination with erlotinib or 
placebo as second- or third-line treatment for NSCLC has been completed and the efficacy data presented ( Table 
3) [111]. This study showed no significant improvement in progression-free survival (PFS) or overall survival (OS) in the 
intent-to-treat (ITT) population (137 patients). However, according to MET status determined by immunohistochemistry 
(IHC), patients with MET-positive (IHC score: 2+ or 3+) tumors benefited significantly from the addition of MetMab to 
erlotinib in terms of both median PFS (HR = 0.53, P = 0.04) and OS (HR = 0.37, P = 0.002). A significant improvement in 
OS was also observed in MET fluorescence in situ hybridization- (FISH-) positive (HR = 0.60) and MET FISH-
negative/IHC-positive (HR 0.37, P = 0.01) NSCLC patients, which suggests that IHC might be a more sensitive tool for 
predicting a clinical benefit from MetMab. A significant improvement in OS (HR 0.45) was also observed in MET FISH-
negative/IHC-positive/EGFR wild-type NSCLCs. Conversely, the addition of MetMab resulted in a detrimental effect in 
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patients with low MET expression (0 and 1+) tumors. MetMab in combination with erlotinib was well tolerated. Adverse 
events – such as rash, diarrhea, fatigue and nausea/vomiting – were comparable between the two treatment arms; 
peripheral edema was the only adverse event which occurred with a significantly higher frequency in the combination 
drug group (22.9% versus 6.5%). 

 
Table 3. 
Randomized phase II/III trials with MetMab [111] and Tivantinib [122] and [123]. 

OAM4558g – Randomized phase II study to evaluate MetMab or placebo in combination with erlotinib in 
advanced NSCLC[111] 

 

 

n 

Median OS 
(months) 

 HR CI 95% p 

Median PFS 
(months) 

 HR CI 95% P 

  

PE ME 

   

PE ME 

   ITT 
population 

137 7.4 8.9 0.80 0.50–
1.28 

0.34 2.6 2.2 1.09 0.73–
1.62 

0.69 

c-MET IHC+ 66 4.6 12.6 0.37 0.19–
0.72 

0.002 1.5 2.9 0.53 0.28–
0.99 

0.04 

c-MET 
IHC−a 

56 15.3 8.1 1.78 0.79–
3.99 

0.16 2.7 1.4 1.82 0.99–
3.32 

0.05 

Randomized phase II study to evaluate erlotinib plus tivantinib versus erlotinib plus placebo in previously 
treated, EGFR inhibitor-naive NSCLC patients [122] 

 

 

n 

Median OS 
(months) 

 HR CI 95% p 

Median PFS 
(months) 

 HR CI 95% p 

  

EP ET 

   

EP ET 

   ITT population 167 6.8 8.5 0.87 0.59–
1.27 

0.47 2.3 3.8 0.81 0.57–
1.16 

0.24 

Non–SQCC 
histology 

117 6.8 9.9 0.72 0.44–
1.17 

0.18 2.2 4.3 0.71 0.46–
1.10 

0.12 
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Randomized phase III study to evaluate erlotinib plus tivantinib versus erlotinib plus placebo in previously 
treated, EGFR inhibitor-naive non-squamous NSCLC patients [123] 

 

 

n 
Median OS 
(months) HR 

CI 
95% p 

Median 
PFS 
(months) HR 

CI 
95% p 

ITT population 

Erlotinib + Tivantinib 526 8.5 0.98 0.84–
1.15 

0.81 3.6 0.74 0.64–
0.85 

<0.001 

Erlotinib + Placebo 522 7.8    1.9    

MET high IHC bsubgroup population 

Erlotinib + Tivantinib 104 9.3 0.70 0.49–
1.01 

0.03 3.6 0.72 0.52–
0.98 

0.014 

Erlotinib + Placebo 107 5.9    1.9    

MET low IHC subgroup population 

Erlotinib + Tivantinib 107 8.5 0.90 0.64–
1.26 

0.53 3.7 0.66 0.49–
0.89 

0.006 

Erlotinib + Placebo 127 7.7    1.9    

EP: erlotinib plus placebo; ET: erlotinib plus tivantinib; SQCC: squamous cell carcinoma. 

ITT: intent to treat; OS: overall survival; PFS; progression free survival; HR: hazard ratio; CI: confidence interval; IHC: 
immunohistochemistry. 

a 

Initial data cut; OS: overall survival; PFS; progression free survival; HR: hazard ratio; CI: confidence interval; ITT: intent to treat; PE: 
placebo plus erlotinib; ME: MetMab plus erlotinib; NA: not available; IHC: immunohistochemistry. 

b 

MET high IHC: ≥50% of tumor tissue stained with an intensity of 2+ and/or 3+. 

 

 

MetMab also induced a 2-year complete response in a young patient with pretreated metastatic gastric cancer 
expressing high MET gene polysomy [112]. 
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A randomized phase III study in pretreated NSCLC patients is currently evaluating MetMab in combination with erlotinib 
versus erlotinib alone in MET 2+/3+ tumors [113]. 

Another specific monoclonal antibody, LY-2875358, has been tested so far only in a phase I trial [114]. 

 

4.3. MET tyrosine kinase inhibitors 

The inhibition of MET tyrosine kinase activity represents the last strategy developed to block the aberrant MET signaling 
pathway. A myriad new small molecules targeting the MET tyrosine kinase domain are currently under investigation in 
phase I–II trials, such as INC-280, EMD 1214063, EMD 1204831, PF-04217903, AMG 337, AMG 208, BMS-777607, LY-
2801653, E-7050, MK2461, JNJ-38877605, MP470, SGX523, and MGCD-265 [53] and [114] (Table 2). 

More recently, EMD 1214063 and EMD 1204831 showed a highly potent and reversible c-MET phosphorylation 
inhibition both in vitro and in vivo, which resulted in tumor regression in xenograft models in both an HGF-dependent and 
-independent manner [115]. 

Tivantinib (ARQ197), cabozantinib (XL184), foretinib (XL880) and crizotinib (PF 02341066) are in the more advanced 
phases of clinical development (Table 1). 

 

4.3.1. Tivantinib (ARQ 197) 

Until recently tivantinib (ARQ 197) has been considered a non-competitive ATP small molecule that inhibits in a very 
highly selective manner the inactive form of the MET tyrosine kinase domain. In fact, it demonstrated cytotoxic effects 
both in vitro and in vivo by inhibiting MET phosphorylation and its downstream effectors [116]. Conversely, as recently 
demonstrated in different cell models and in contrast to our previous understanding, the stabilization of microtubules 
represents the real mechanism of action of this compound [117]. Tivantinib showed its activity against both c-MET-
dependent and -independent cell lines. In particular, in addition to inhibition of c-MET signaling, its potent activity 
primarily involved disruption of the microtubule dynamics via inhibition of tubulin polymerization, a mechanism similar to 
that of vinca alkaloids [118]. 

This compound has been studied in different tumor types, including NSCLC, both alone and in combination with 
erlotinib [119], [120] and [121]. In a phase I trial enrolling unselected patients with advanced solid tumors, six out of eight 
NSCLC patients treated with tivantinib plus erlotinib achieved prolonged disease stability, and the recommended phase 
II study dose was set at 360 mg twice daily. Combination treatment was well tolerated, and fatigue, nausea/vomiting and 
diarrhea were the most common treatment-related adverse events [119]. Following these results, a randomized, double-
blind, placebo-controlled phase II trial, having PFS as the primary endpoint, was designed to evaluate erlotinib plus 
tivantinib in previously treated, EGFR-TKI-naïve, advanced NSCLC patients [122]; 167 patients were randomized in a 
1:1 fashion to receive erlotinib (E) plus tivantinib (T) or placebo (P) (Table 3). For patients randomized to receive EP, 
crossover to ET was allowed on disease progression. Median PFS in the ITT population did not differ significantly 
between the two treatment arms (HR = 0.81, P = 0.24). After adjusting for key prognostic factors, PFS in the ITT 
population was significantly better in the experimental arm (HR = 0.68, P = 0.04). Notably, a significant advantage in 
terms of PFS (adjusted HR = 0.61; P = 0.04) and OS (adjusted HR = 0.58; P = 0.04) was observed in the non-squamous 
NSCLC subgroup treated with ET, with an impressive delay of 7.4 months in the development of new metastases. 
Nevertheless, the K-RAS-mutated NSCLC subgroup significantly benefited from ET treatment (median PFS 2.9 versus 
1.0 months; HR =  0.18; CI95% 0.05–0.70; P = 0.01); also EGFR wild-type NSCLC population had a longer median PFS 
when treated with combined drugs (3.2 versus 1.9 months; HR 0.70; CI95% 0.44–1.10), P = 0.12). The most common 
AEs of all grades were rash, diarrhea, fatigue, anorexia, and nausea/vomiting. There were no significant differences in 
either overall or serious AEs between the two arms. 
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A phase II trial to evaluate tivantinib plus erlotinib compared to single-agent chemotherapy in previously treated 
advanced non-squamous KRAS-positive NSCLCs is currently ongoing. 

A phase III study (MARQUEE trial) [123] in previously treated, but EGFR- and MET-inhibitors-naïve, non-squamous 
NSCLC patients was discontinued early because the preplanned interim analysis failed to demonstrate a significant 
advantage in terms of OS, its primary end-point. Final results have recently been given at the 38th ESMO Annual 
Meeting (Table 3). The study confirmed that in the ITT population there was a significant improvement in PFS (HR 
0.74, P < 0.001) and ORR in favor of the combination arm, but this advantage did not translate into a significant 
improvement in OS (HR 0.98, P = 0.81). The combined treatment was generally well tolerated; patients treated with 
erlotinib plus tivantinib developed a higher incidence of neutropenia of grade ≥3 (10% versus 1.0%). However, in the 
subgroup of patients whose tumors had higher MET IHC expression (2+ or 3+), the addition of tivantinib did improve OS 
significantly (HR = 0.70, P =  0.03), suggesting the potential for efficacy in a biomarker-selected population. 

CYP2C19 is known to be the main enzyme system involved in tivantinib metabolism. Specific CYP2C19 polymorphisms, 
expressed mainly in Asian populations (20% versus 3% in Caucasian populations), define a subgroup of patients as 
poor metabolizers; for these patients, the tivantinib dose has been set at 240 mg twice daily [124]. Another phase III trial 
(ARQ197-006) in advanced non-squamous EGFR wild-type NSCLC Asian patients is currently ongoing to evaluate the 
combination of tivantinib and erlotinib versus erlotinib plus placebo. Tivantinib dose administration is based on CYP2C19 
polymorphism (ATTENTION, NCT01377376). 

 

4.3.2. Cabozantinib (XL184) 

Cabozantinib (XL184) is a multitarget ATP competitive inhibitor of MET, VEGFR2 and RET, and it has shown antitumor 
activity in experimental MET-driven and not-MET-driven models [125]. Cabozantinib has been studied either alone or in 
association with erlotinib in NSCLC with acquired resistance to erlotinib; the results were encouraging, with several 
partial responses and prolonged disease stabilization, especially in NSCLC patients with MET-amplified tumors and 
harboring EGFR T790M mutation [126]. In the following phase II randomized discontinuation trial, which enrolled 483 
patients with different solid tumors, cabozantinib demonstrated good activity [127]. In particular, in the NSCLC subgroup 
ORR was 13% (6/47 patients), with a disease control rate of 40%. In the overall population, the most common AEs of 
grade ≥3 were fatigue (9%), hand–foot syndrome (8%) and hypertension (5%). Interestingly, the presence of EGFR/K-
RAS mutations was a predictor of clinical benefit; soft tissue, visceral and bone lesions were identified as the tumor sites 
where the drug was more active. 

In other phase II discontinuation trials, cabozantinib has been shown to be active also in advanced ovarian[128] and 
prostate [129] cancers. 

 

4.3.3. Foretinib (XL880) 

Foretinib (XL880, GSK1363089) is a multitarget inhibitor directed against MET/VEGFR, RON, AXL, PDGFR-β, KIT, 
FLT3 and TIE-2. Foretinib has shown antitumor activity in vivo [130]. Results of a phase I study enrolling 40 patients with 
chemorefractory advanced solid tumors [131] showed partial responses in one medullary thyroid carcinoma and in two 
papillary renal-cell carcinomas. MTD was set at 3.6 mg/kg administered for 5 consecutive days every 2 weeks; the 
investigational drug was well tolerated. Hypertension, fatigue, diarrhea, vomiting, proteinuria and hematuria were the 
most common adverse events. At maximum administered dose (4.5 mg/kg), grade 3 elevations in aminotransferase 
(AST) and lipase levels were reported. 

Recently, the results of a phase II study of foretinib in 74 patients with papillary renal-cell carcinoma confirmed the 
antitumor activity of the compound, especially in tumors with germline MET mutations [132]. At present, two phase II 
studies of foretinib in other cancers have been completed and results are awaited; moreover, the inhibitor is currently 
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under investigation in a phase I/II study in patients with previously treated, advanced or metastatic NSCLC (erlotinib 
versus erlotinib plus foretinib). 

 

4.3.4. Crizotinib (PF 02341066) 

Crizotinib (PF 02341066), a strong ALK inhibitor approved in August 2011 by the FDA for the treatment of ALK-
rearranged NSCLC, was initially investigated as a c-MET inhibitor. Crizotinib showed a good antitumor activity in both 
preclinical [133] and [134] and phase I [135] studies, demonstrating that its activity correlated with its ability to inhibit 
MET phosphorylation. More recently, crizotinib was highly effective in a patient with NSCLC harboring a de novo MET 
amplification [136] and in MET-amplified gastroesophageal adenocarcinomas and glioblastoma [137] and [138]. 
Therefore, it is possible that crizotinib might possess a different antitumor activity according to MET gene 
alterations [139]. In a more recent study, Zhang et al. investigated crizotinib efficacy in different brain tumor cells. 
Interestingly, the authors demonstrated a heterogeneous antitumor activity and identified high HGF expression as a key 
determinant of major responsiveness to crizotinib through inhibition of the ERK/JAK/p53 pathway [140]. Surprisingly, a 
short-term pretreatment with exogenous HGF resulted in a greater cell apoptosis and tumor growth inhibition after 
crizotinib exposure than in non-pretreated cells both in vitro and in vivo. 

Two phase I trials combining crizotinib with a pan-HER inhibitor in advanced NSCLC are currently ongoing. 

 

4.4. On-target-based toxic effects of MET inhibition etc. 

On-target toxicity refers to the exaggerated and adverse class effects due to inhibition of the direct target in normal cells 
and tissues. 

Regarding MET inhibitors, particularly monoclonal antibodies and small molecules, these compounds have to date 
demonstrated few adverse effects in normal tissues. In fact, several MET inhibitors have been investigated in full doses 
both in combination with chemotherapy and other targeted drugs (EGFR-TK and VEGF inhibitors), and any combination 
treatment was well tolerated without enhanced known toxic effects. In particular, peripheral edema seems to be a 
peculiar on-target toxicity. Other adverse events seen in the trials with MET inhibitors – such as fatigue, anorexia, 
nausea/vomiting, fever and hypersensitivity reactions – arose regardless of their target. 

Off-target toxicity refers to adverse effects related to inhibition activity on other targets. It occurs when a TK inhibitor 
causes a toxic effect by the inhibition of a kinase not known to be the target of a specific compound. 

Regarding MET inhibitors, the majority of off-target adverse effects, such as proteinuria, hematuria, hypertension and 
bleeding, seem to be correlated with inhibition of other targets (VEGFR and others). 

Drug-related toxicity refers to the physicochemical properties of a specific compound and their effects on cell 
compartments and metabolism. 

A selective MET inhibitor, SGX523, was found to be safe and very effective in preclinical studies, but was discontinued 
early in a phase I trial because of the appearance of renal failure. This unexpected drug-related toxicity in humans was 
due to the presence of two insoluble drug metabolites that crystallized in renal tubules, leading to tubulointerstitial 
nephritis [141]. 

Although several toxicities are driven by plasma free drug levels, on-target tissue toxicities seem to be also correlated 
with drug concentrations in the target tissue. A recent pharmacokinetic study demonstrated that the significant liver 
toxicity of GEN-203, a small molecule MET inhibitor, was correlated with its lipophilic characteristics which enhance its 
distribution into liver tissue. By modifying the chemical properties of the compound, the authors were able to reduce its 
basicity and tissue concentrations, improving the safety profile of the drug [142]. 

http://www.sciencedirect.com/science/article/pii/S1040842813002539#bib0665
http://www.sciencedirect.com/science/article/pii/S1040842813002539#bib0670
http://www.sciencedirect.com/science/article/pii/S1040842813002539#bib0675
http://www.sciencedirect.com/science/article/pii/S1040842813002539#bib0680
http://www.sciencedirect.com/science/article/pii/S1040842813002539#bib0685
http://www.sciencedirect.com/science/article/pii/S1040842813002539#bib0690
http://www.sciencedirect.com/science/article/pii/S1040842813002539#bib0695
http://www.sciencedirect.com/science/article/pii/S1040842813002539#bib0700
http://www.sciencedirect.com/science/article/pii/S1040842813002539#bib0705
http://www.sciencedirect.com/science/article/pii/S1040842813002539#bib0710


5. Conclusions 

Many preclinical and clinical studies have demonstrated the important role of the MET pathway in tumors, and also in 
NSCLC. The MET pathway can be aberrantly activated as a consequence of HGF or HGFR transcriptional upregulation, 
MET gene amplification and, rarely, as the final event of a MET gene mutation. Other signaling co-receptors can 
crosstalk with MET, even in an HGF-independent manner, providing an alternative way to induce proliferation, survival 
and invasive growth. On the other hand, aberrant MET signaling activation can represent an oncogene expedience to 
enhance invasiveness and metastatic properties of pretreated neoplastic cells. 

Different compounds targeting MET have been developed and have shown antitumor activity; some of them, such 
as MetMab and tivantinib, are currently under advanced clinical development in NSCLC. A plethora of new molecules 
targeting MET or acting as multitarget inhibitors is emerging, but the increasing availability of new compounds might 
represent a double-edged sword. In fact, whereas ever-growing pharmaceutic efforts have led to the introduction of new 
molecules into preclinical and clinical studies, this race might generate confusion about the exact mechanisms through 
which these new drugs block tumor growth and those through which tumor cells are able to escape their effects. In this 
regard, we hope that the lesson learned from tivantinib will serve as a warning. 

According to the safety profile of these drugs, overall selective MET inhibitors seem to have no particular toxicity issues, 
and the main expected toxicities are manageable. However, we think that our experience of the toxicity profile of these 
molecules is very limited, in particular regarding the late toxic effects. 

Several questions remain to be answered to optimize MET-targeted therapy. First, we need to understand 
comprehensively if and when genetic alterations involving MET induce “oncogene addiction” or “oncogene expedience”. 
This is a relevant issue because of its therapeutic implications; the mechanism underlying MET oncogene addiction is 
not yet fully elucidated, whereas a role for MET is now emerging in oncogene expedience which can potentiate other 
oncogenes and accelerate tumor progression. Therefore, we need to identify definitively the subgroup of tumors that can 
benefit from MET inhibition. Second, the best treatment strategy has yet to be determined; in particular, we have to 
clarify the best drug combination treatment (MET and EGFR inhibitors, MET and other inhibitors) and if and when a MET 
monotarget approach might have a role. Third, we have to determine the best sequence to use and the most appropriate 
setting in which we should consider its use. Finally, we need to identify specific tools as predictive factors of better 
outcome of MET inhibition. In this regard, at present MET IHC overexpression seems to have a promising role, but other 
efforts are required to detect new circulating predictive biomarkers. 

Understanding the specific mechanisms of drug resistance is critical in selecting and evaluating subsequent therapeutic 
approaches. The strategy of combining treatments targeting several molecules, or molecules blocking downstream 
signaling transducers, might be used in order to address the common problem of crosstalk between signaling pathways 
and thus the development of resistance. 

With the efforts of translational and clinical research, in a few years MET-targeted therapies will surely impact on lung 
cancer outcome, and they must be welcomed as one of the possible therapeutic options for patients with NSCLC. 
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