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Abstract 

The EGFR-targeted antibodies cetuximab and panitumumab are used to treat metastatic colorectal 

cancers. Mutations in KRAS, NRAS and BRAF and amplification of ERBB2 and MET, drive primary 

(de novo) resistance to anti-EGFR treatment. Recently, the emergence of alterations in the same 

genes was detected in patients who responded to EGFR blockade and then relapsed.  These 

results enlighten a striking overlap between genes that, when mutated, drive primary and 

secondary resistance to anti-EGFR antibodies. Remarkably, while the mechanisms of resistance 

are genetically heterogeneous, they biochemically converge on key signaling pathways. This 

knowledge is being translated in the rational design of additional lines of therapy. 

 

Statement of Significance: Anti-EGFR targeted therapies are used for the treatment of metastatic 
colorectal cancer. Molecular heterogeneity impairs their efficacy by fuelling de-novo and acquired 
resistance. In this review, we highlight how genetically distinct resistance mechanisms, 
biochemically converge on a limited number of signalling pathways which can be therapeutically 
intercepted. 
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The heterogeneous molecular landscape of colorectal cancer 

On December 27 1831, Charles Darwin leaves Plymouth Harbor on board of the H.M.S. Beagle to 

begin a long journey that, more than any other transformed scientific knowledge. While traveling, 

Darwin had the possibility to observe and collect samples from heterogeneous animal and vegetal 

species around the landscape of multiple continents. His rigorous scientific method established the 

bases of the unifying theory of life sciences, ultimately explaining the diversity of life. 

Planet Earth hosts ecosystems endowed with extraordinarily diverse environmental conditions; the 

latter exert selective pressures, which enable evolution. Comparable selective pressures foster the 

development of parallel evolutionary results of unrelated species living in distinct ecosystems 

(convergent evolution). Classic examples of this phenomenon are the convergent evolution of 

wings or fins in birds and mammals.  

In addition to his exceptional intuitive thinking, Darwin was able to “quantify” his observations by 

visiting several locations and analyzing the results of evolutionary processes in all of these 

environments. 

In 1976, Peter Nowell stated that ”… tumor progression results from acquired genetic variability 

within the original clone allowing sequential selection of more aggressive sub-lines” and, most 

importantly, that “more research should be directed toward understanding and controlling the 

evolutionary process in tumors before it reaches the late stage usually seen in clinical cancer ” (1).  

Each individual tumor can be seen as a microcosm under incessant variation based on genetic 

diversity (heterogeneity), selection and evolution; the very same mainstays on which life is based, 

although tumors proceed through them at a much faster pace. Just like Darwin did more than a 

century ago with the complexity of speciation, research in oncology strives to understand cancer’s 

intricacy. 

The ability to explore (which we define as the ability to molecularly annotate) cancer genomes can 

be seen as a modern version of the H.M.S. Beagle. By applying next-generation sequencing (NGS) 

technologies to scan the cancer genome, the oncology community has recently (re)discovered 

molecular heterogeneity in tumor samples (2), including those of colorectal origin (3).  

Colorectal cancer (CRC), the third most common cancer type in western countries, affects more 

than 200,000 patients worldwide every year (4). Screening, surgery and medical therapies are 

successful in the management of early-stage CRC, but far less efficacious in advanced stages of 

the disease. A key reason of the limited success of CRC-directed therapies is its intrinsic 

heterogeneity, which is more prominent in the metastatic setting (5,6). Molecular characterization 

of CRCs revealed that heterogeneity plays an important role especially in the context of resistance 

to therapy. Over half CRCs display heterogeneous genetic alterations in genes involved in EGFR 
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signaling, which negatively impact response to the monoclonal antibodies cetuximab and 

panitumumab.  Molecular heterogeneity has been recognized as pivotal in the evolution of clonal 

populations during anti-EGFR therapies. In this review, we provide an outline of how genetic 

diversity (molecular heterogeneity) influences primary (de novo) and secondary (acquired) 

resistance to EGFR targeted therapies in CRC. 

 

 Mechanisms of primary resistance to EGFR targeted therapy in CRC 

Known culprits  

The EGFR-directed monoclonal antibodies cetuximab and panitumumab were approved to treat 

chemorefractory metastatic colorectal cancer (mCRC) patients in 2004 and 2006, respectively (Fig. 

1). Both drugs have very similar efficacy, achieving objective response rates of approximately 10% 

when used as monotherapy for irinotecan- and/or oxaliplatin- refractory mCRC (7,8). Investigations 

on the molecular basis of response to EGFR blocking antibodies started in 2005 and were based 

on retrospective analyses of archived tumor tissue from subsets of patients participating in clinical 

trials (9). Since then, a rapidly accumulating body of knowledge has indicated that resistance to 

EGFR blockade in mCRC is related to constitutive activation of signaling pathways downstream of 

EGFR. Mutations in KRAS occurring at codons 12 and 13 were the first to be causally implicated in 

resistance to EGFR targeted monoclonal antibodies initially in small patient cohorts (10,11). 

Randomized phase III studies provided compelling evidence that led regulatory authorities to 

exclude chemorefractory mCRC patients with tumors bearing KRAS mutations from treatment with 

single-agent cetuximab or panitumumab (12,13). In 2009, the analysis of KRAS codon 12 and 13 

mutations as a test to restrict the use of cetuximab in combination with chemotherapy to first-line 

mCRC patients with wild-type tumors gained regulatory approval (14,15).  

Since not all KRAS wild type patients benefit from treatment with EGFR directed therapy, research 

has flourished to identify additional biomarkers of resistance that could account for the 

heterogeneity in clinical response. Sequencing studies revealed that while over 80% of KRAS 

variants occur in exon 2 at codons 12 and 13, oncogenic mutations also affect KRAS codons 59, 

61, 117 and 146 (16-18).  Additional mutations of the NRAS isoform occur at codons 12, 13 and 61 

in approximately 3-5% of CRC samples (19). Figure 2 summarizes the incidence of RAS mutations 

in exon 2 (including codons 12 and 13), exon 3 (comprising codons 59 and 61) and exon 4 (which 

includes codons 117 and 146). Mutations in KRAS or NRAS lead to continuous activation of 

downstream ERK signaling regardless of whether the EGFR is pharmacologically inactivated. 

While the role of the canonical exon 2 mutations is considered uncontroversial, the exact properties 

of the less frequent mutations have not been fully elucidated. However, data from retrospective 

studies indicate that RAS mutations occurring beyond KRAS exon 2 could also underlie lack of 
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response to single-agent cetuximab or panitumumab in chemorefractory mCRC patients (20-23). 

Multiple studies have recently shown that mutations in KRAS exons 3 and 4, or NRAS exons 2 to 4 

can also predict lack of clinical benefit to EGFR targeted antibodies given in combination with first-

line chemotherapy (24-26). 

While the presence of RAS mutations accounts for around 50-60% mCRC patients refractory to 

EGFR blockade, molecular alterations in additional nodes of the EGFR signaling network also 

appear to be clinically relevant. Among them, BRAF mutations occur in approximately 5-8% of the 

cases and are associated with poor prognosis in the metastatic setting. Experiments in CRC cells 

and mouse models demonstrated a strong causal relationship between the presence of BRAF 

V600E and resistance to cetuximab or panitumumab (27-29). Several reports have shown a 

significant negative predictive value for BRAF V600E mutations in relation to response to single-

agent cetuximab or panitumumab (20,21,23,27,30,31). Recent studies in patients receiving EGFR 

targeted monoclonal antibodies in combination with first-line chemotherapy have not found a 

statistically significant correlation between BRAF V600E mutations and response (presumably due 

to lack of statistical power), but they confirmed the link between BRAF V600E mutations and poor 

prognosis in mCRC (24,26).   

Under scrutiny  

When combined, RAS and BRAF mutations account for over 60% mCRC patients who show de-

novo resistance to EGFR targeted monoclonal antibodies. Beyond RAS and BRAF point mutations, 

numerous genetic alterations in genes implicated in EGFR signaling play a role in de novo 

resistance. Importantly, although molecularly heterogeneous, these alterations biochemically 

converge on activation of the RAS-MEK-ERK pathway.  

KRAS gene amplification occurs in 1-2% of CRC cases and has been reported to be nearly always 

mutually exclusive with KRAS mutations (18,32,33). KRAS gene amplification has been shown to 

cause resistance to cetuximab in functional genetics experiments and has been associated with 

lack of response to anti-EGFR treatment (32,33). Given the low prevalence of KRAS gene 

amplification, its association with refractoriness to EGFR blockade did not reach statistical 

significance.  Analysis from the TCGA CRC database (34) has revealed that gene amplification can 

also occur in NRAS, BRAF and CRAF, at a very low prevalence (< 1% cases for individual genes), 

and the clinical relevance of these findings is unknown. 

Additional genetic mechanisms have been proposed to activate the EGFR-RAS pathway in the 

absence of molecular alterations affecting RAS or its immediate downstream effectors. Genetic 

aberrations of the receptor tyrosine kinases ERBB2 and MET have been shown to bypass EGFR 

signaling and activate the MEK-ERK cascade.  ERBB2 gene amplification was found in a small 

fraction of RAS and BRAF wild-type mCRC patient-derived xenografts that were insensitive to 
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cetuximab treatment. These results were corroborated by the identification of ERBB2 amplification 

in samples from mCRC patients who did not benefit from EGFR targeted treatment (29). 

Concordant data was obtained by Yonesaka and colleagues who showed that activation of ERRB2 

signaling dependent either by gene amplification or overproduction of the ERBB3 ligand, heregulin 

was present in a subset of mCRC patients exhibiting de-novo resistance to cetuximab-based 

therapy (35). Another tyrosine kinase receptor, MET, is amplified in a small fraction (2%) of mCRC 

samples unselected for their sensitivity to anti-EGFR therapy (34,36-38). Once again, amplified 

MET was found in a small fraction of RAS and BRAF wild-type mCRC patient derived xenografts 

that were insensitive to cetuximab treatment (38). Therefore these pathways may offer primary 

‘escape mechanisms’, allowing tumors to circumvent one pathway that has been pharmacologically 

blocked.  

By-standers or partners in crime? 

 The overall scenario is further complicated by the existence of additional CRC genetic alterations 

in EGFR signaling which might confer resistance to cetuximab or panitumumab. For example, the 

PI3K-AKT-PTEN pathway can also be triggered by EGFR activation; therefore, several studies 

were conducted to define whether molecular alterations of these genes could also impair response 

to EGFR targeted monoclonal antibodies. Results obtained by multiple laboratories associate 

PIK3CA exon 20 mutations with unresponsiveness to anti-EGFR monoclonal antibodies; however 

the correlation is not strong enough to be applied as a clinically valuable negative predictive marker 

of response, possibly due the relatively small sample size of each study and the confounding effect 

of concomitant chemotherapy administration (20,39-48). PTEN status is also associated with a lack 

of response, but also in this case, results remain inconclusive partially because of difficulties in 

assessing the status of PTEN in clinical specimens (30,40,42,49-56). Moreover, PIK3CA and 

PTEN alterations (around 10-15% overall) often co-occur with KRAS or BRAF mutations 

(20,30,34,44), a feature, which further complicates their assessment. In summary, the role of 

PIK3CA and PTEN in conferring resistance to EGFR directed therapy in CRC remains highly 

controversial.  

Other suspects 

The genetic mechanisms described above do not account for the totality of patients who show 

clinical resistance to anti-EGFR drugs. Indeed, for approximately 10% of cases the genetic 

alteration which confers de-novo resistance is presently unknown. We hypothesize that when a 

patient fails to respond to EGFR treatment the most likely cause is the occurrence of a yet to be 

reported genetic alteration in either a RTK, or a downstream amplifier of the RTK initiated signal or 

a key node of the EGFR signaling pathway.  
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Most likely these will be found in genetic alterations in known oncogenes, such as amplification or 

translocations of RTKs identified by the TCGA in CRC samples that do not harbor RAS or BRAF 

mutations such as NTRK, RET, ALK or ROS1  (34). These additional oncogenic events are present 

at low prevalence (1-5%) and analyses of large datasets will be required for their clinical validation. 

Alternatively, it is possible that well known alleles (such as RAS mutations) are present in the tumor 

at prevalence that cannot be detected by commonly used techniques. The low sensitivity issue has 

its roots in tumor heterogeneity. Tissue biopsies represent a small fraction of the entire tumor 

burden. This assumption means that, because of intra-tumor and/or inter-metastases 

heterogeneity, analysis of tissue from an individual biopsy may not capture its entire molecular 

complexity. The analysis of multiple biopsies form a single patient, revealed the presence of 

several sub-clones which can be present or absent in different metastases or primary site.  

Furthermore, the same single lesion can harbor more than one independent clone (2,57,58). These 

observations are particularly relevant when considering that previous studies mainly involved 

analysis of KRAS exon 2 mutations and that the most commonly used techniques (Sanger 

sequencing) has a limit of detection of approximately 15-20% (59). Of interest, it has been shown 

that more sensitive approaches such as pyrosequencing or digital PCR can increase the detection 

of mutant RAS alleles which in turns could translate into the detection of additional refractory 

patients (22,57,58,60,61).   

Finally, while in this report we focused mainly on genetic heterogeneity as a basis for the 

complexity observed in resistance to EGFR inhibition in CRC, non-genetic mechanisms could also 

play a role in resistance to EGFR blockade (and are definitely relevant with other targeted agents in 

different cancers). Intriguingly, in biopsies from patients who relapsed upon cetuximab or 

panitumumab therapy only a fraction of cells carry RAS mutations, suggesting that wild-type cells 

can also survive the treatment (62). This suggests that non-genetic mechanisms could also play a 

role in driving acquired resistance to EGFR blockade. For example, a recent report shows that 

sensitive (wild type) cells can survive in the presence of cetuximab when in the company of their 

resistant derivatives. Notably, it was found that cells bearing acquired RAS mutations over-secrete 

the EGFR ligands TGFα and amphiregulin, which protect the surrounding wild-type cells (63). This 

paracrine network could potentially be targeted to increase the efficacy of anti-EGFR therapies.    

 

What drives sensitivity to EGFR blockade in CRC? : The EGFR ligands hypothesis  

The molecular basis underlying response to EGFR targeted therapies in CRC remains obscure. 

Several studies showed that increased EGFR gene copy number correlates with response to 

cetuximab or panitumumab, in preclinical models and in retrospective clinical analyses (9,64-69). 
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Nevertheless this alteration is not currently used as a predictive biomarker because of the 

difficulties in inter-laboratory reproducibility of the diagnostic assay(70).  

Although the molecular bases of sensitivity to EGFR blockade are unclear, the clinical efficacy of 

EGFR targeted monoclonal antibodies provides evidence that EGFR signaling plays a prominent 

role in certain CRCs. We propose that dependency on EGFR ligands (via a paracrine-juxtacrine 

network) is the main oncogenic driver in the CRC that display sensitivity to cetuximab and 

panitumumab. In these CRCs, activation of the EGFR RAS-MEK axis is not sustained by mutations 

of downstream effectors rather may be achieved by overproduction of EGFR ligands. Classical 

studies on viral oncogenes led to the identification of EGFR ligands as being equally effective in 

triggering cell transformation as RAS. In these colorectal tumors anti EGFR antibodies may act by 

interfering with ligand-dependent activation of EGFR leading to downregulation of the receptor from 

the cell surface (71,72).  

 

Mechanisms of secondary resistance to anti-EGFR therapy in CRC 

 

Mutations of the EGFR extracellular domain 

 In a subset of CRC patients, addition of anti-EGFR monoclonal antibodies to the conventional 

chemotherapeutic regimens expands response rates, increases progression-free survival, and 

improves the quality of life. However, the duration of this response is only transient and does not 

last more than 3-12 months, after which secondary resistance occurs. Several studies based on 

preclinical models and tumor samples obtained at relapse identified molecular mechanisms, which 

lead to acquired resistance to EGFR blockade in CRC.   

Montagut and colleagues discovered a point mutation in the extracellular domain of EGFR (S492R) 

in a CRC cell line made resistant to cetuximab (73). This mutation impairs binding of the antibody 

to the receptor and was found also in very few patients at relapse after cetuximab treatment. The 

S492R mutation does not interfere with binding of panitumumab. Thus, patients with tumors 

showing the S492R mutation at relapse could be, in principle, treated with panitumumab. Indeed, 

they reported that a patient harboring the S492R allele as mechanism of secondary resistance to 

cetuximab was subsequently treated with panitumumab and responded transiently to this therapy. 

Notably the crystal structure of cetuximab bound to the extracellular domain of the EGFR indicates 

that S492R likely interfere with ligand binding (74). Since other residues in the extracellular region 

could equally affect the binding of cetuximab to the EGFR we postulated that molecular profiling of 

these regions in tumors which developed resistance to EGFR antibodies may reveal additional 

mutations capable of conferring acquired resistance to cetuximab or panitumumab.   
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Amplification of receptor tyrosine kinases  

Amplification of genes encoding for receptor tyrosine kinases is also associated with secondary 

resistance to anti-EGFR monoclonal antibodies. ERBB2 or MET gene amplifications were 

described as drivers of acquired resistance to EGFR blockade in cell models and patients samples 

(35,38). Several reports confirmed the initial results on the emergence of MET gene amplification in 

patients who develop acquired resistance to EGFR blockade (75,76).  

Mutations in RAS genes 

The most common molecular mechanisms that drive secondary resistance to anti-EGFR therapy in 

CRC are genetic alterations of the KRAS gene (both point mutations and gene amplification). The 

emergence of NRAS and BRAF mutations is likewise associated to secondary resistance (62,77-

79).  

Of note, KRAS, NRAS and BRAF mutations as well as amplification of the MET or ERBB2 genes 

are also key drivers of primary resistance to anti EGFR antibodies in CRC. Remarkably, while the 

genetic drivers of primary resistance are usually homogeneously within an individual tumor, more 

than one driver alteration can emerge in a single tumor at relapse.  

CRC cell lines made resistant to cetuximab or panitumumab, showed the concomitant presence of 

diverse genetic mechanisms: for instance, in one single resistant cell model we were able to 

identify multiple KRAS mutations together with NRAS mutant clones as well (78). The genetic 

landscapes of cell models are generally considered as molecularly homogeneous, however these 

experiments suggest that the resistant population may arise upon selection of multiple clones 

which were presumably already present at the beginning of treatment.  

The intrinsic genetic heterogeneity, which sustains acquired resistance to anti EGFR antibodies in 

preclinical models, was confirmed in clinical samples from CRC patients at relapse after anti-EGFR 

treatment. Bettegowda and colleagues analyzed circulating cell free tumor DNA obtained from 

plasma samples of CRC patients at relapse with ultra-sensitive technologies (79). Seventy-six 

genetic alterations were detected at resistance which were all absent in samples from the same 

patients at the beginning of treatment. Half of the alterations were in KRAS codons 12 or 13; 

mutations in BRAF (V600E) were observed in two patients. Interestingly, in two patients mutations 

in the kinase domain of EGFR (codons 714 and 794) were identified. These genetic alterations 

were not previously described as mechanism of de-novo or acquired resistance. Consequently, 

further studies are needed to understand whether these mutations can confer resistance to anti-

EGFR therapy. 
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Altogether these results demonstrate that heterogeneity is a feature of resistance to anti-EGFR 

therapy in CRC and that intra-tumor molecular complexity is even more evident in the contest of 

acquired resistance (Fig. 3 and Table 1). We postulate that the effect of pharmacological treatment 

represents a selective pressure, which allows the selection of (pre-existing) sub-clones that confer 

resistance to the drug. If this is the case, a number of questions arise. Is the presence of the 

resistant alleles a completely stochastic process? Or does a tumor maintain a reservoir of these 

sub-clones? Furthermore, why were these mutations not selected before the drug pressure 

similarly to those that confer primary resistance? It is conceivable that sub-clones that emerge after 

drug treatment are less fit in the untreated tumor and acquire fitness as a consequence of 

adaptation to the perturbation induced by the treatment itself. This event has been previously 

shown to occur in other cancer types. Chmielicki and colleagues  demonstrated that erlotinib 

resistant NSCLC cells grew slower than their sensitive counterparts and, interestingly, resistance 

was not maintained in the absence of drug (80). A similar phenomenon has been described for 

BRAF mutant melanoma cells, which become resistant to vemurafenib through expression of 

EGFR (81). 

These data also enlighten the importance of the use of high sensitivity sequencing technologies for 

the detection of mutant alleles in CRC samples. A considerable fraction of patients that is eligible 

for anti-EGFR treatment develop secondary resistance in a very short timeframe. This could be 

explained as a higher frequency of pre-existing resistant clones in the initial population, which 

cannot be detected by standard sequencing but could be found with more sensitive technologies. 

The overall compendium of molecular mechanisms driving acquired resistance to cetuximab and 

panitumumab is likely incomplete. While the role of RAS mutations and MET gene amplification in 

conferring acquired resistance to EGFR blockade has been confirmed by several studies both in 

preclinical models and in patients (62,75-79), candidate gene analysis does not always explain the 

mechanism by which a CRC becomes resistant to anti-EGFR therapy. Accordingly, further studies 

will likely characterize additional oncogenic alterations involved in acquired resistance to cetuximab 

and panitumumab in CRCs. Importantly, results from both cell models and clinical specimens 

indicate that every patient and possibly every metastatic lesion will develop several independent 

mechanisms of resistance to EGFR blockade (38,76,78). It is therefore unlikely that we could 

obtain a complete profile of the molecular changes occurring in each metastatic patient who 

become resistant.  

Primary and acquired resistance to EGFR blockade: what is the difference?  

The primary = secondary rule 

EGFR targeted therapies are commonly used in the treatment of different tumor types of epithelial 

origin including NSCLC and CRC (82). Although the role of EGFR in the pathogenesis of these two 



11 
 

cancer is distinct (in NCSLC EGFR is activated by mutations, while in CRC it is stimulated by 

ligands), interesting observations can be made comparing these two malignancies. 

The mechanisms of acquired resistance to anti-EGFR antibodies in CRC can be broadly 

categorized in three groups (Fig 4). The first includes mutations that disrupt binding of cetuximab 

(or panitumumab) to the EGFR.  This mechanism is analogous to the T790M mutations that 

emergence when NSCLC are treated with the kinase inhibitors erlotinib and gefitinib and render the 

receptor insensitive to the drug (83). The second mechanism involves pathway bypass mutations, 

such as KRAS or BRAF alterations. These are most common in CRC treated with anti EGFR 

antibodies but have been occasionally found also in NSCLC treated with EGFR TKi (84). The third 

mechanism is common to both tumors and involves activation of parallel pathways driven by RTK 

such as MET or ERBB2 (85,86). 

Nearly all the genetic alterations, which sustain de-novo resistance to EGFR blockade in mCRC, 

have also been identified as mechanisms of acquired resistance. Vice versa, mechanisms defined 

in the secondary setting can be also validated as primary resistance mechanisms. What are the 

implications of these findings? The striking overlap of primary and acquired resistance to EGFR 

blockade likely indicates that the selection applied by anti EGFR monoclonal antibodies to CRC 

cells is possibly analogous to the selective pressure exerted by the environment during cancer 

progression. It is conceivable that the pressure that selects for KRAS , NRAS or BRAF mutations 

must act in a similar manner in both settings. What are these pressures? We speculate that during 

the transition from adenoma to carcinoma (that is when RAS mutation events are thought to occur 

in the colorectal tumorigenesis sequence) a sudden lack of EGFR activation triggers the outgrowth 

of clones that are EGFR independent, but still dependent on its downstream signaling. Indeed, it is 

known that intestinal epithelial cells depend upon EGFR ligands (87). We speculate that a sudden 

loss in availability of EGFR ligands during the adenoma-carcinoma sequence selects for cancerous 

cells carrying RAS mutations. In a few instances, CRC cells overcome this pressure not by 

acquiring downstream pathway mutations but by gaining the ability to self-produce the EGFR 

ligands needed to sustain pathway activation. Such tumors maintain dependency/sensitivity to 

EGFR blockade in the later stages of CRC progression and define the subset of patients that 

obtain a clinical benefit from cetuximab and panitumumab.  

The primary = secondary rule has exceptions 

The EGFR extracellular domain mutation S492R represents the most notable exception to the 

primary = secondary rule. The S492R allele has never been detected to date in untreated CRC (88) 

and is apparently found only in CRC samples from patients who have been previously exposed to 

cetuximab. This is consistent with the hypothesis that this allele evolves as cells strive to evade the 

EGFR blockade imposed by the monoclonal antibody cetuximab, and accordingly remain sensitive 



12 
 

to panitumumab which binds to a different EGFR epitope located on the extracellular domain of 

EGFR.  

Even more intriguing is the other exception to primary=acquired rule. Remarkably, the relative 

frequency of individual KRAS alleles is similar but not identical in the primary and acquired 

resistance. For instance, mutations of codon 61 in either the KRAS or NRAS genes are more 

prevalent in the acquired than in the primary resistance setting (79). This suggests that the 

selective pressure which result in the acquisition of KRAS mutations during the transition from 

adenoma to carcinoma is again similar but not identical to the one applied by EGFR blockade (Fig. 

4). 

 

Genetic heterogeneity and biochemical convergence 

All roads lead to Rome  

In colorectal tumors that respond and then relapse after anti-EGFR treatment several genetic 

alterations concomitantly emerge. This phenomenon is best observed by analyzing circulating free 

DNA from patients at relapse (62,76-79), which offer a wide-angle perspective of the overall 

heterogeneity of the disease. This indicates that drug treatment triggers the evolution of multiple 

sub-clones each carrying distinct genetic alterations. Not unlike classical Darwinian evolution, the 

concomitant presence of several escape mechanisms reflects the high level of molecular 

heterogeneity present in each metastatic site, which enables the evolutionary processes. 

The evolution of secondary resistance to anti-EGFR therapy can be defined as the consequence of 

a perturbation in a system, in which the initial equilibrium is based on cells, which are highly 

dependent on EGFR signaling. The finding that most of the mutations which emergence upon 

treatment involve genes which are direct members of the EGFR pathway (EGFR, KRAS, NRAS or 

BRAF) indicates that to escape the perturbation the cells must settle on a new balance which is 

(has to be) again based on a certain level of EGFR signaling output. 

This hypothesis is supported by biochemical analysis of cell models of CRC that developed 

resistance to EGFR blockade regardless of the gene/mutation that confers resistance; the net 

output was always sustained activation of MEK and ERK, thus defining an example of convergent 

evolution (78).  

Convergent evolution occurs when different species phylogenetically unrelated but placed in the 

same kind of environment or stimuli, develop parallel morphological features. A classic example of 

convergent evolution is observed when unrelated species such as mammals, reptiles and birds 

evolved “mechanical” features (wings) to be able to fly. Analogously, we postulate that when EGFR 
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blockade occurs in a CRC patient with multiple metastatic lesions, the drug pressure triggers the 

convergent biochemical evolution of independent clones each of which reactivate the EGFR 

signaling output. Accordingly, although individual metastases develop what appear to be 

genetically heterogeneous resistance mechanisms these are in-fact highly related as they are 

aimed at reactivating at the biochemical level the EGFR signaling pathway. These findings have 

several implications that are discussed in the next paragraph.  

 

Conclusions  

Exploiting the knowledge: The preemptive strike hypothesis 

The awareness that solid tumors, which initially respond and then relapse to a targeted therapy, will 

eventually become highly molecularly heterogeneous poses a formidable therapeutic challenge. At 

first glance, it would seem arduous to overcome the multiple resistance mutations that arise in each 

individual patient. While the overall picture is looming and complex, this knowledge offers several 

opportunities, which may be therapeutically exploited. For example, in CRC patients who receive 

anti EGFR therapies the plethora of alterations that emerge at relapse biochemically converge to 

activate the EGFR-RAS-MAPK pathway. This knowledge can be exploited in several ways. First, it 

suggests that at relapse the distinct resistance mechanisms can be intercepted by interfering 

downstream in the pathway where the signal outputs generated by the distinct genetic events 

converge: in this case at the MAPK-ERK level. A second and possibly even more relevant 

implication is that it may be more challenging for a colorectal tumor to escape EGFR blockade if 

the initial treatment is designed to concomitantly block the signaling nodes which we now know 

provide an escape (resistance) route. We hypothesize that blocking from the beginning (without 

offering the tumor the possibility to first escape the initial treatment) the most probable escape 

route the time required to develop resistance will be extended. In this regards, it will be important to 

assess -initially in preclinical models- whether the time it takes for CRC cells to develop resistance 

to EGFR blockade is extended significantly when the probable resistance pathway output (MEK 

reactivation) is concomitantly tackled. We postulate that if the latter scenario is confirmed this 

theory will provide unique opportunities for the design of innovative clinical trials, which will not 

await the inevitable development of resistant clones but rather will attempt at their pre-emptive 

suppression. 
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Legend to Figures and Tables 

Figure 1: Development of the anti EGFR antibodies cetuximab and panitumumab in metastatic 
colorectal cancer.  

The timeline charts the key steps of the anti-EGFR targeted therapies approval for metastatic 
colorectal cancer treatment together with the most significant discoveries that supported these 
achievements. FDA: US Food and Drug Administration; EMA: European Medicine Agency. 

Figure 2: Prevalence of genetic alterations associated with de-novo resistance to anti-EGFR 
therapies in metastatic colorectal cancer 

Donut-chart of the genetic alterations involved in primary resistance to EGFR targeted monoclonal 
antibodies in mCRC. KRAS wild type population represents the sum of the anti-EGFR therapies 
responders (around 10%) and the fraction of patients who do not benefit from those treatments 
even in the absence of known primary resistance mutations. KRAS exons 3 and 4, NRAS exons 2, 
3, 4 and amplification of KRAS, HER2 and MET account for around 20% of mCRC patients which 
do not benefit from anti-EGFR treatment. Data were collected from: Vaughn et al. 2011 (19), 
Bertotti et al. 2011 (65), Valtorta et al. 2013 (32), Bardelli et al. 2013 (38), Study 20020408 (89), 
PRIME trial (24)(90), Schwartzberg et al. 2014 (25), FIRE-3 trial (26). 

Figure 3: Molecular heterogeneity drives secondary resistance to anti-EGFR therapies in 
metastatic colorectal cancer 

Response to anti-EGFR targeted therapies in metastatic colorectal cancer is accompanied by 
selection of pre-existing resistant clones present in the initial metastasis burden. Conceivably 
resistant clones can also emerge during treatment. Clones, carrying distinct molecular alterations 
such as KRAS, NRAS, EGFR and BRAF mutations or KRAS, HER2 or MET amplifications, can co-
exist in the same metastatic site or in different metastatic sites. CT scans were obtained from a 
CRC patient who showed the first response to cetuximab observed at Ospedale Niguarda Ca' 
Granda in 2001. 

Figure 4: Molecular mechanisms of primary and secondary resistance to anti-EGFR therapies in 
metastatic colorectal cancer 

The genetic mechanisms responsible for de-novo and acquired resistance largely overlap. With the 
exception of EGFR mutations, which were described only in the acquired setting, all of the genetic 
alterations defined as mechanism of de-novo resistance are also responsible for acquired 
resistance. Differences can be found in the frequency of individual genetic alterations, such as 
KRAS and NRAS exon 3 mutations, which occur more frequently in the acquired rather than in the 
de-novo setting. 

Table 1: Summary of genetic alterations associated with secondary resistance to EGFR blockade 
in mCRCs 
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Reference/Study 
Genetic alterations at secondary 

resistance 
Tumor sample type 

Number of 
patients 

Number of patients 
displaying more than one 

genetic alterations at 
onset of resistance 

Yonesaka, 2011 HER2 amplification Tissue 2/2 none 

Montagut, 2012 

EGFR mutations Tissue 2/10 

none KRAS mutations Tissue 1/10 

BRAF mutations Tissue 1/10 

Diaz, 2012 KRAS mutations Plasma 9/24 3/24 

Misale, 2012 
KRAS mutations Plasma and Tissue 5/11 

1/11 
KRAS amplification Plasma and Tissue 1/11 

Bardelli, 2013 
MET amplification Plasma and Tissue 3/7 

none 
KRAS mutations Plasma and Tissue 3/7 

Bettegowda, 2014 

KRAS mutations Plasma 22/24 

15/24 
NRAS mutations Plasma 9/24 

BRAF mutations Plasma 1/24 

EGFR mutations Plasma 2/24 

Misale, 2014 
KRAS mutations Plasma 3/4 

3/4 
NRAS mutations Plasma 2/4 

Mohan, 2014 
KRAS amplification Plasma 4/10 

1/10 
MET amplification Plasma 1/10 

Table 1 


