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Abstract 

 

Purpose: The objective of this study was to compare a clustering approach to conventional analysis 

methods for assessing changes in pharmacokinetic parameters obtained from dynamic contrast-

enhanced magnetic resonance imaging (DCE-MRI) during antiangiogenic treatment in a breast 

cancer model. 

Materials and methods: BALB/c mice bearing established transplantable her2+ tumors were treated 

with a DNA-based antiangiogenic vaccine or with an empty plasmid (untreated group). DCE-MRI 

was carried out by administering a dose of 0.05 mmol/kg of Gadocoletic acid trisodium salt, a Gd-

based blood pool contrast agent (CA) at 1T. Changes in pharmacokinetic estimates (K
trans

 and vp) in 

a nine-day interval were compared between treated and untreated groups on a voxel-by-voxel 

analysis. The tumor response to therapy was assessed by a clustering approach and compared with 

conventional summary statistics, with sub-regions analysis and with histogram analysis. 

Results: Both the K
trans

 and vp estimates, following blood-pool CA injection, showed marked and 

spatial heterogeneous changes with antiangiogenic treatment. Averaged values for the whole tumor 

region, as well as from the rim/core sub-regions analysis were unable to assess the antiangiogenic 

response. Histogram analysis resulted in significant changes only in the vp estimates (p<0.05). The 

proposed clustering approach depicted marked changes in both the K
trans

 and vp estimates, with 

significant spatial heterogeneity in vp maps in response to treatment (p<0.05), provided that DCE-

MRI data are properly clustered in three or four sub-regions. 

Conclusions: This study demonstrated the value of cluster analysis applied to pharmacokinetic 

DCE-MRI parametric maps for assessing tumor response to antiangiogenic therapy. 
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1. Introduction 

Tumor angiogenesis is a key process for solid tumors to survive, grow and metastatize [1]. The 

development of novel anticancer strategies targeting the angiogenic step calls for imaging methods 

able to assess the early response to new antiangiogenic treatments, comprising vascular disrupting 

agents (which destroy existing vessels) or antiangiogenic drugs (which block new vessels 

formation) [2, 3]. 

Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) is the methodology of choice 

for the evaluation of tumor angiogenesis, and it has been proposed as an imaging biomarker of drug 

efficacy in phase I clinical trials of angiogenesis inhibitors [4]. DCE-MRI allows investigating 

microvascular structure and function by tracking the pharmacokinetics of an injected Gd-based 

contrast agent (CA) as it passes through the tumor vasculature. The obtained enhancement patterns 

reflect vascular perfusion and permeability of the tumor, showing the potential to monitor changes 

in the tumor microvasculature following antiangiogenic therapy [5-7]. Despite these promising 

capabilities, clinical adoption of DCE-MRI as an imaging biomarker is still hampered by challenges 

related to the lack of standardized methods for both image acquisition and quantification. 

Two methods are currently employed to analyze DCE-MRI data to yield quantitative 

(pharmacokinetic modelling) or semiquantitative (shape analysis) results, respectively. In the 

semiquantitative approach, features directly obtained from the signal intensity time curve (e.g. 

maximum relative enhancement, initial slope, time to peak, area under the curve) are used to get a 

simple description of the CA distribution [8]. These parameters depend on a combination of blood 

flow, permeability, perfusion and blood volume, therefore represent composite information of the 

underlying physiological processes. A major drawback of this approach is that it is quite susceptible 

to minor changes in acquisition protocols, sequence parameters and individual examinations, 

making direct comparison difficult. In the quantitative approach, pharmacokinetic models are 

applied to contrast agent concentration data to enable estimates of physiological parameters, 

including plasma volume (vp), forward vascular transfer constant (K
trans

) and the reverse vascular 

transfer constant (kep). Several pharmacokinetic models have been proposed since the seminal 

papers by Tofts and Brix [9, 10], either requiring a measured/assumed arterial input function (AIF), 

or neglecting the need for the AIF as in the reference region models [11]. 

The values of the biomarkers derived from the analysis of the DCE-MRI data strongly depend on 

the characteristics of the CAs used. This affects the overall ability to assess tumor microvasculature. 

Clinical studies have been carried out mainly by using small-sized Gd-containing contrast media 

(i.e. gadoteridol), whereas at pre-clinical level several contrast agents having different size and 
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protein binding capability have been investigated, either at intermediate or high magnetic field (2-

4.7T) [12-15]. Intermediate molecular weight (MW) and macromolecular CAs have been shown to 

be more sensitive to changes in vascular permeability upon antiangiogenic therapies in comparison 

to low molecular weight CAs thanks to their reduced extravasation in healthy tissues [12, 16, 17]. 

Even though many efforts have been devoted in the last years to optimize the relaxometric 

properties and the HSA binding affinities of the CA (in order to attain improved contrast 

enhancement characteristics)[18-21], to date, only one blood pool Gd-based CA has entered into 

clinical practice. We have recently shown that, exploiting the magnetic field-dependence of the Gd-

complexes relaxivity, intermediate MW Gd-based agents show greater performance at 1T [22]. In 

addition, high temporal resolution is not a stringent requirement for intermediate MW-enhanced 

MRI [23, 24]. 

During growth, tumors develop a highly heterogeneous microenvironment, characterized by severe 

structural abnormalities of the microvasculature network [25]. Furthermore, it has been shown that 

treatment of tumors with antiangiogenic drugs promote alternative angiogenic growth factor 

pathways, further contributing to the increased tumor heterogeneity [26]. There is an overall 

agreement in considering tumor heterogeneity as one of the key factors of the disease. It is directly 

related to some tumor properties and reflects its ability to respond/escape to therapeutic treatments 

[4, 27].  Conversely, the values of the DCE-MRI estimates are therefore strongly dependent on how 

the tumor ROIs are drawn and on the applied statistic analysis. So far, there is no consensus on 

which is the optimal method for tumor heterogeneity assessment. ROIs can be drawn to encompass 

the entire tumor region, or to split the tumor into regions which are spatially defined (poorly 

enhanced inner regions or core and strongly enhanced periphery regions or rim) [28]. Consequently, 

the spatial heterogeneity information is discarded by current quantitative analysis methods 

employing simple summary statistics (e.g. mean or median values on the whole tumor region) or by 

pre-defined rigid boundaries between rim and core regions [29]. Histogram analysis is considered to 

be more sensitive in detecting changes in tumor heterogeneity after treatment, than conventional 

summary statistics, looking to changes in histogram shape (kurtosis) and asymmetry (skewness), 

although it does so at the expense of including spatial information [28, 30]. Alternative techniques 

are those based on texture-analysis, providing quantitative estimates of tumor heterogeneity, also 

considering their spatial distribution [31]. Similarly, novel methods based on clustering approaches, 

aiming at grouping pixels sharing similar enhancement properties, have been recently proposed. 

However, to date, clustering methods have only been used for classification of time intensity curve 

shapes [32] and for discriminating between benign and malign lesions [8, 33] or combined with 

diffusion based multispectral analysis techniques [34]. 
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The purpose of this study is to investigate the ability of a clustering approach on assessing tumor 

heterogeneity and thereof changes in the evaluation of the response to a DNA-based antiangiogenic 

treatment employing a blood-pool contrast agent at 1 T. Within the clustering approach, based on a 

pixel-by-pixel analysis, the whole tumor has been segmented into several sub-regions according to 

their enhancement/permeability properties. Moreover, we evaluated if the number of clusters may 

influence the ability to assess the response to the antiangiogenic treatment. In addition, a 

quantitative comparison with conventional summary statistics (mean values on the whole tumor or 

mean values on rim/core tumor sub-regions), and with histogram analysis (skewness and kurtosis) 

was performed, to test the ability of the clustering approach on the assessment of subtle spatial 

changes following the therapeutic protocol. 

 

2. Material and methods 

 

2.1. Contrast Agent 

Gadocoletic acid trisodium salt (B22956/1), a Gd-based blood pool CA with high affinity for 

human serum albumin (relaxivity of 25 mM
−1

 s
−1

 at 40 MHz in human serum at 298 K [35]) was 

kindly provided by Bracco Imaging S.p.A. (Colleretto Giacosa, Italy). 

 

2.2. Animal Studies and antiangiogenic DNA vaccination 

 

Animal studies were approved by the local ethics committee of our University and carried out in 

accordance with the EU guidelines under Directive 2010/63. Wild type BALB/c mice (n=12) were 

injected subcutaneously in the inguinal region with 1×10
5
 TUBO cells (a cloned Her2/neu+ cell line 

established from a lobular carcinoma of a BALB-neuT mouse [36]). Mice were vaccinated by 

electroporation with DNA plasmid coding human p80 Amot (pAmot or Angiomotin) and control 

pcDNA3 (generated as previously described [37]) when tumor mass reached 4 mm mean diameter 

and, again, 7 days after. Briefly, 50 μg of plasmid in 20 μl of 0.9% NaCl were injected in the 

quadriceps muscle of anesthetized mice n = 6 for both treated (Angiomotin plasmid) and untreated 

(pcDNA3 plasmid) groups, respectively. Immediately after the injection, two 25 ms trans-cutaneous 

electric low voltage pulses (150 V amplitude) separated by a 300ms interval were administered at 

the injection site via a multiple needle electrode connected to an electroporator (Cliniporator™, 

IGEA s.r.l., Carpi, Italy). 
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All animals were maintained under specific pathogen-free conditions inside the animal facility and 

received standard rodent chow and had free access to tap water. 

 

2.3. MRI Protocols 

Magnetic resonance images were acquired on anesthetized mice with an Aspect M2 MRI System 

(Aspect Magnet Technologies Ltd., Netanya, Israel) working at 1 Tesla. The anesthetized animals 

were warmed with a heat lamp before MRI and then wrapped in warm towels to maintain body 

temperature and placed supine in a transmit/receive solenoid coil with an inner diameter of 3.5 cm. 

A phantom filled with diluted gadoteridol (Bracco Imaging SpA, Milan, Italy) was included in the 

field of view (FOV), close to each animal, as a reference, to allow correction for changes in the 

instrument performance. After the scout image acquisition, a T2-weighted (T2w) anatomical image 

was acquired with a Fast Spin Echo sequence (TR 2500 s; TE effective 41 ms; number of slices 10; 

slice thickness 1.5 mm; FOV 40 mm; acquisition matrix 128 × 128; four averages; acquisition time 

2 m 40 s).  

Baseline T1 maps were acquired using the variable flip angle (VFA) method with a 2D spoiled 

gradient echo sequence with the following flip angle values: 15°-30°-45°-60°-75°-160° and the 

same geometry of the anatomical image (TR 40 ms; TE 1.8 ms; number of slices 10; slice thickness 

1.5 mm; FOV 40 mm; acquisition matrix 128 × 128). The accuracy has been validated comparing 

T1 estimates using an Inversion Recovery Spin Echo imaging sequence (Fig. S1). 

DCE–MRI was performed using an axial 2D T1w spoiled gradient echo sequence (TR 40 ms; TE 1.8 

ms; flip angle 75°; number of slices 10; slice thickness 1.5 mm; FOV 40 mm; acquisition matrix 

128 × 128; 58 s per image volume). The dynamic imaging protocol consisted of three baseline 

acquisition followed by the manual injection of Gadocoletic acid trisodium salt through the tail vein 

at a dose of 0.05 mmol/kg (ca. 60-80 µL within 10 s); 47 dynamic post-contrast images were 

acquired over a period of 45 min.  DCE acquisitions were performed 1 day before the first (PRE) 

and 1 day after the second (POST) vaccination in two groups of mice vaccinated with Angiomotin 

(n = 6, treated group) or with pcDNA3 (n = 6, untreated group), respectively. 

Mice were anesthetized by injecting a mixture of tiletamine/zolazepam (Zoletil 100; Virbac, Milan, 

Italy) 20 mg/kg and xylazine (Rompun; Bayer, Milan, Italy) 5 mg/kg and placed in a 30 mm insert 

coil. Breath rate was monitored throughout in vivo MRI experiments using a respiratory probe 

(SAII Instruments, Stony Brook, NY - USA).  

 

2.4 DCE-MRI Analysis 
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All the DCE-MRI images were analyzed using an in-house developed software in C++ code 

implementing MITK (http://www.mitk.org/MITK), ITK and VTK libraries for the quantification of 

pharmaco-kinetic parameters and in Matlab (MathWorks, Natick, MA) for the comparison between 

clustering, histogram and simple summary analysis. 

 

2.4.1 Quantitative Analysis 

DCE images were coregistered by using a rigid body registration algorithm which searches for the 

optimal rotation and translational parameters by minimizing the mean squared difference between 

the moving and the reference image as cost function [38]. 

Pre-contrast T1 has been determined using a variable flip angle fast gradient echo technique [39].  

Dynamic post-contrast T1 relaxation was calculated from the SI curves after conversion into 

longitudinal relaxation rate R1 (1/T1) assuming a linear relationship between R1 and CA 

concentration according to the following equation: 

      

 
  

   
   

 

   
 

Where 1/T10 is the pre contrast longitudinal relaxation rate, 1/T1 is the post contrast longitudinal 

relaxation rate and r1p is the longitudinal relaxivity of the contrast agent that was assumed to be 

equal to the value (25 mM
-1

 s
-1

) measured in blood serum. The extended Tofts’ model with a 

individually measured arterial input function (AIF) has been used.[9]. This model assumes a 

bidirectional exchange between two compartments, the intravascular and the extravascular 

extracellular space (EES). In order to extract the kinetic parameters (K
trans

, vp and kep) on a voxel-

by-voxel basis, the concentration curve in the tissue Ct(t) has been fitted against the solution of the 

differential equation: 

                                     

where Ct(t) is the contrast agent concentration in the tissue at time t, vp is the fractional blood 

plasma volume, Cp(t) is the contrast agent blood plasma concentration at time t (AIF), K
trans

 is the 

volume transfer constant between the intravascular and the EES (K
trans

=kepve), kep is the rate 

constant from EES to blood plasma and is the convolution operator. The AIF and the injection 

time have been automatically determined by the software using a three-dimensional region growing 

algorithm with an artery seed point automatically determined from the maximum increase of signal 

enhancement in the dynamic series. The results of the automated AIF detection methods were 

inspected visually to confirm that the AIF voxels identified were located within the abdominal aorta 

and this procedure succeeded for all the analyzed mice (Fig. S2). The parametric maps were further 

http://www.mitk.org/MITK
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post-processed to discard voxels that showed poor quality of fit by calculating the root mean 

squared error (RMSE): 

      
         

 

   

      
 

   

 

 

where E and M are experimental and modeled data, respectively. A RMSE threshold value of 0.75 

was empirically determined according to the overall signal-to-noise ratio in the DCE-MRI data 

being analyzed. Voxels showing non-physiological estimates for pharmacokinetic parameters (i.e., 

values outside of the following ranges: 0 < K
trans

 < 1 min
-1

, 0 < vp < 1 or 0 < ve <1 ) were also 

excluded before they were included in the statistics. Muscle region showed ve values in the 

physiological range of about 0.07± 0.03 (Fig. S3). 

For each tumor, a region of interest (ROI) was manually drawn by the same operator encompassing 

all the tumor volume taking the T2w images as reference. 

 

2.4.2 Simple summary analysis 

The three-dimensional ROIs encompassing the whole tumors were directly applied to the 

parametric maps, and for each animal, the mean and standard deviations of K
trans

 and vp values were 

calculated for the whole tumor.  

 

2.4.3 Regional rim/core analysis 

For regional analysis of DCE-MRI parameters, tumor quantitative estimates were evaluated by 

calculating mean values for pixels in the rim region (defined as the outer area having 1/3 of the 

diameter of tumor) and in the core region (defined as the inner area having 2/3 of the diameter of 

tumor) [40]. 

 

2.4.4 Histogram analysis 

Histogram analyses were applied to the quantitative parametric maps defined by tumor ROIs, 

calculating skewness (representing the distribution pattern around the mean) and kurtosis 

(indicating the position of the peak height) measures [41].  

 

2.4.5 Cluster analysis 

Partitioning all tumor pixels into k sets (or clusters) was done by exploiting a k-means algorithm 

using a Euclidean distance [42]. Parametric maps were clustered independently, testing different 

numbers of clusters: two, three and four. Each cluster consists of voxels that exhibit a similar value, 
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such that the within-cluster sum of squares (Euclidean distance) between the voxel value and the 

corresponding centroid is minimized. In each classification run, k-means clustering was restarted 5 

times with random initial centroids to avoid convergence to a local minimum. The mean values for 

the pharmacokinetic model parameters K
trans

 and vp for each cluster have been calculated. 

 

2.5 Statistical analysis 

Results are expressed as mean values ±SD. The group average in each measure was calculated for 

each time point, and the significance of the changes in these measures, before and after treatment, 

and between untreated and treaded groups was evaluated by a post-hoc analysis using a one-way 

non-parametric ANOVA test followed by Dunn’s correction for multiple comparisons using a cut-

off P-value level of <0.05. 

Sample size estimates were performed based on as assumed power of 0.9 and a two-sided 

significance level of 5%”  [43]. All statistical testing was performed using the GraphPad Prism 

Software (GraphPad Inc., San Diego, CA). Statistical significance was assigned for P values < 0.05. 

 

 

3. Results 

 

All the twelve mice were successfully imaged twice, before and after the treatment. Quantification 

of tumor T1 by MRI at baseline gave a mean ± SD of 940 ±200 msec (both groups, n = 12). 

Tumor volumes, as determined by manual identification of tumor boundaries from T2w MRI images 

were similar at baseline, but grew faster in untreated mice in comparison to treated one (Fig. 1A). 

Tumor growth was significantly reduced after nine days in angiomotin-treated animals, with an 

average increase of tumor volume of 141 ±52% in comparison to untreated mice (234±70%, 

P<0.05), as shown in Fig. 1B. 

Fig. 2 highlights the intrinsic high heterogeneity in tumor K
trans

 distribution and the proposed 

clustering approach by applying a k-means alogorithm with three clusters. Figure 2(c,d) show the 

corresponding blood-pool contrast agent uptake curves for the arterial input function and for three 

different voxels inside the tumor region, along with the two-compartments model fits. Most notable 

is that for each single voxel, selected from the three clusterd subsets, is associated a different 

contrast uptake pattern. Voxels in the peripheral regions exhibited a washout (triangles) or steadily 

increase (squares) concentration-time pattern (depicted in white and yellow in the cluster map in 

Fig. 2b), whereas the central voxels (red in the cluster map) were associated with a delayed and 

very slow uptake of contrast (circles). Fitting of the corresponding ΔR1 curves to the two-

compartment pharmacokinetic Tofts’ model resulted in high quality RMSE values (RMSE >0.85 

for all the three voxels in Fig. 2d). 
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Figure 3 shows representative parameter maps of baseline and nine-days post-treatment distribution 

of tumor K
trans

 and vp values in a pair of mice (one treated, one untreated), clearly demonstrating an 

inherent heterogeneity. Prior to treatment, both untreated and treated tumors show voxels with a 

wide range of K
trans

 values. After nine days, an increase of the number of voxels with high K
trans

 

values was seen in the pAmot-treated tumor, but not in the untreated mouse. Representative tumor 

vp maps also exhibit spatial heterogeneity (Fig. 3). Treated mouse shows an increase in high vp 

values 9 days post-treatment, in comparison to vp values prior to treatment. Conversely, a slight 

reduction of the number of voxels with high vp values was observed for the untreated mouse.  

Mean values for the parameters obtained from applying the quantitative kinetic modeling, for 

several descriptive measures of  the tumor voxel distributions at baseline (before treatment), and 

after the DNA-based treatment are reported in Table 1 (K
trans

) and Table 2 (vp), respectively. For 

tumor K
trans

 and vp estimates, spatial heterogeneity statistics are typically more discriminative than 

conventional summary statistics. 

 

3.1 Simple summary analysis 

No significant differences were found between the two quantitative parameters, with respect to 

baseline, when mean values were averaged over the whole tumor ROIs (Fig. 4A and 6A). Overall 

the quantitative estimates from the single whole ROI for treated and untreated group, before and 

after the treatment, showed similar K
trans

 and vp tumor average values (Tables 1 and 2).   

 

3.2 Regional rim/core analysis 

K
trans

 in tumors, calculated using the rim/core analysis, showed no significant differences between 

the mean values of treated and untreated mice, for both the rim and the core sub-regions (Table 1 

and Fig. 4B). For treated mice, sub-regions vp estimates were not able to show any difference with 

respect to baseline (Table 2 and Fig. 6B). A slight reduction was observed in vp values in the core of 

the tumor for untreated mice, although not statistically significant. 

 

3.3 Histogram analysis 

Figure 4C and Table 1 compare the descriptive measures (skewness and kurtosis) of the K
trans

 

histograms before and after the treatment. While the mean skewness of the K
trans

 distribution 

showed only a slight increase after pAmot treatment, with no significant change for the untreated 

group, a marked increase in the kurtosis K
trans

 histogram distribution was observed for the treated 

group, although without a significant change between pre- and post-treatment (mean kurtosis = 84 

±36 and 280 ±215 for the baseline and post treatment values, respectively p>0.05). The same results 
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were obtained for the vp histograms indicators, where the most sensitive variable for identifying the 

difference between the control and the treated group was the kurtosis descriptor (Table 2 and Fig. 

6C). A marked and statistically significant increase was observed in the treated group, with the 

kurtosis of the vp histogram metric increasing from 11 ±5 to 19 ±11 (p<0.05). 

 

3.4 Clustering analysis 

The results of k-means clustering of K
trans

 and vp provided maps are shown in Tables 1 and 2, 

respectively. The final number of clusters was varied between two and four to take into account the 

dependence of the obtained results on the number of clusters.  

When tumor voxels were clustered into two distinct clusters, a general trend of increased tumor 

K
trans

 and vp estimates was observed within treated group (Fig. 5A and 7A) but without statistically 

significance. In untreated mice, no significant differences were found with respect to baseline, in 

any of the two clusters in which K
trans

 and vp tumor heterogeneity was assessed. 

When the number of clusters was increased to three, two out of three tumor sub-regions showed a 

significant increase of the tumor vp estimates in treated mice, corresponding to cluster #2 and 

cluster #3 (Table 2 and Fig. 7B). Pre-treatment tumor K
trans

 were similar for both treated and 

untreated groups for all the clusters, but a marked increase was observed between pre- and post-

treatment tumor K
trans

 values for treated group in both the cluster #2 and cluster #3 (8.1 E-4 ±7.6E-4 

and 2.2 E-3 ±3.0E-3 for pre and post treatment, for cluster #2, p>0.05 and 2.3 E-3 ±1.2E-3 and 

9.7E-3 ±1.1E-2 for pre and post treatment, for cluster #3, p> 0.05, respectively). A similar trend 

was observed for tumor vp values when comparing average pre- and post-treatment for treated 

group in cluster #2 and #3 (Table 2 and Fig. 7B). In the treated group, the average post-treatment 

tumor vp value was 0.09 ±0.07 compared to a baseline vp of 0.03 ±0.01 (p<0.05) for cluster #2; in 

addition, the average post-treatment tumor vp value was 0.21 ±0.17 compared to a baseline vp of 

0.07 ±0.02 (p<0.05) for cluster #3 (Table 2). Tumor vp values for post-treatment group were 

significant higher for treated mice in comparison to untreated ones (p<0.05 for both cluster #2 and 

#3, Table 2 and Fig. 7B). 

Clustering tumor voxels into four different sets was not more discriminative of treatment than the 

three-groups based clustering (Fig. 5C and 7C). In the treated group, tumor K
trans

 values prior to 

treatment showed a marked increase after 9 days (p>0.05) for cluster #2. Post-treatment tumor vp 

measures showed significant changes for treated group, increasing from 0.07 ±0.04 to 0.26 ±0.17 

(p>0.05) for cluster #4 (Table 2). 

The changes of tumor K
trans

 and vp, in all the four clusters, did not differ significantly for untreated 

group mice. 
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4. Discussion 

DCE-MRI has been used in the last decades in a number of pre-clinical and clinical trials to assess 

the effect of antiangiogenic agents, owing to its ability to provide biomarkers characterizing the 

tumor vasculature, gaining a strong interest by clinical oncologists. Despite the capability of this 

non-invasive technique to provide functional parameters which allow to detect early effect and to 

predict clinical outcome after both cytotoxic, radiation and angiogenesis inhibitor therapies [44], its 

clinical adoption is still moving slowly, being hampered by the complexity of the data analysis and 

the reliability of the obtained values. A major issue is related to the heterogeneous nature of the 

tumor, possessing regions with different permeability/perfusion properties according to the balance 

between pro- and anti-angiogenic factors which may evolve differently inside the whole tumor and 

during its growth. This is clearly visible when comparing K
trans

 and vp tumor maps in which 

heterogeneous spatially distributed values are seen, both before and after the antiangiogenic 

treatment (Fig. 3). Such heterogeneity poses big challenges to the definition and selection of the 

more representative tumor regions. Therefore in the present study various estimated parameters, 

obtained applying a pharmacokinetic model to the DCE-MRI data, were compared for their 

effectiveness in identifying significant differences between pAmot-treated and untreated groups. 

We used a tumor xenograft model to evaluate treatment effects associated with a DNA-based 

antiangiogenic treatment targeting Amot, an angiostatin receptor overexpressed by endothelial cells 

of tumor vessels. It was recently shown that anti Amot DNA vaccination significantly delayed the 

progression of transplantable TUBO tumor in wild-type BALB/c mice with an increase of tumor 

vessel permeability and vessel diameter [45]. 

Our findings confirm that in evaluating the effect of an antiangiogenic treatment, the heterogeneity 

plays an important role that has to be addressed in order to quantify properly the therapeutic 

response [46]. In the present study mean K
trans

 and vp values calculated from single three-

dimensional ROIs covering the entire tumor were compared with mean values extracted by a 

rim/core sub-regions analysis, with descriptive measures of histogram characteristics and with mean 

values obtained subdividing the whole tumor into several sub-regions exploiting a clustering 

approach. The mean values extracted from a single averaged ROI encompassing the whole tumor 

did not assess differences in relative changes between treated and untreated mice, due to the level-

off of the effects when considering the tumor as a whole. The rim/core sub-regions analysis 

provided information approximately equal to that obtained from a whole-tumor ROI analysis. These 

observations agree with previous observation on the mean of K
trans

 distribution [46]. Histogram 

analysis, as presented in this work, provided one descriptive measure (kurtosis) sensitive for 
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assessing the efficacy of the antiangiogenic therapy. Previous studies already suggested that 

histogram analysis applied to quantify the heterogeneity of tumor response to therapy may improve 

the ability of DCE-MRI to provide useful information on the efficacy of the treatment [47]. 

Accordingly with previously published results, we observed a large increase in the kurtosis of 

histograms for the treated mice group [48]. Moreover, the results obtained in this study revealed 

that also the clustering approach can be a valuable tool to assess the heterogeneity of the tumor 

allowing the detection of local permeability changes induced by the treatment. K-means clustering 

is an iterative unsupervised learning process that attempts to determine the best separation of 

observations, based on the minimizing function (in this study the Euclidean distance) from each 

input parameter to the cluster centroid. Within the k-means clustering approach, used to partition 

the pixels in the K
trans

 and vp maps, pixels were allocated to several sets sharing similar perfusion 

values. The number of clusters was varied between two and four, and its influence was assessed on 

the discrimination of DCE-MRI estimates before and after treatment. Only the partitioning of 

quantitative tumor vp estimates was able to detect substantial changes before and after treatment for 

treated mice, and set#2 and #3 within the three-cluster approach detected significant differences 

between treated and untreated groups. 

The clustering approach with only two clusters is likely similar to the rim/core sub-regions analysis, 

but the number of pixels belonging to one of the two sub-regions is not a priori determined, 

consequently, the ability to detect estimates changes is presumably superior (Fig. 4B and Fig. 5A) . 

Notably, not all the sets in the three- and four-clusters subdivision changed to the same extent 

following the treatment, likely due to a not-homogenous immune response in different areas of a 

tumor. Actually the clustering analysis with three- to four-clusters showed that marked differences 

were present in clusters with higher K
trans

 and vp values. In addition, the clustering approach 

identifies the spatial information of this response. In this study, we observed in the untreated group 

a marked reduction of voxels with medium-to-high vp and K
trans

 values (set #2 and #3 for a three-

groups subdivision) in the inner regions of the tumor, whereas the more vascularized regions were 

preserved in the rim region during the tumor growth (Figure 3). Conversely, we observed for treated 

mice an increase of voxels showing medium K
trans

 and vp values in the central region of tumor (set 

#2 for a three-group subdivision, Figure 3). The increased values of tumor K
trans

 and vp in specific 

tumor sub-regions correctly reflected previous findings of histological and immunofluorescence 

analysis, where vascular morphology and vessel permeability were shown to be markedly changed 

in pAmot-treated tumors [45]. The effect of an enhanced microvasculature permeability following 

the antiangiogenic treatment has already been reported in several cases, a process known as 

vasculature normalization [49]. In fact, our findings are in agreement with recently published data 
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reporting an increase of permeability transfer constant under antiangiogenic treatment by exploiting 

intermediate MW contrast agents [50, 51]. 

Therefore, the clustering sub-regions analysis allows detecting subtle drug effects which may be 

otherwise obscured when analyzing whole tumor ROIs or when employing other conventional 

summary analysis. In addition, a manual delineation of sub-regions inside the tumor ROIs, like rim 

and core regions, or the “hot spot” analysis may introduce an individual bias in the calculated 

values, whereas automatic classification procedures are less operator-dependent [52]. Other groups 

have also used clustering approaches, but only for discriminating normal from tumor regions [32, 

42].  

In the present study a blood-pool CA was used to assess tumor vascular permeability estimates, 

which are lower, in magnitude, than those measured with a low molecular weight CA, due to its 

larger size. In fact, clinical contrast agents are low molecular contrast agents that rapidly diffuse 

from the vascular compartment to the interstitial space, resulting in overestimated tumor vascular 

parameters. They extravasate nonselectively through normal and lesion vasculature, which limits 

their ability to distinguish between normal and tumor tissues in DCE-MRI. Conversely, the herein 

used contrast agent, an intermediate MW one, does not extravasate across the normal vasculature 

and can selectively penetrate tumor vasculature due to tumor vascular hyperpermeability. As a 

consequence, blood pool CAs have been showed to be more sensitive to changes in vessel 

permeability than low molecular CAs [12]. Although a smaller amount of CA is expected to 

extravasate, the sensitivity is higher thanks to the increased relaxation efficiency (and following 

contrast ability) of the blood-pool CA in comparison to the smaller clinical ones. In addition, we 

used a low-field 1 Tesla MRI scanner to exploit at best the relaxivity enhancement peak that this 

class of CAs shows around 40 MHz, providing higher signal enhancements even with lower doses 

[53]. These inherent properties associated to the larger size of the HSA-supramolecular adducts 

allow them to be more successful in the evaluation of antiangiogenic treatments [54, 55] as well as 

for assessing differences in tumor vascularization [56]. 

This study had some limitations. First, clustering approaches require the definition of the number of 

sub-regions (clusters) into which the tumor pixels will be grouped. The arbitrary numbers of two, 

three and four groups were chosen to segment the whole tumor into sub-regions having different 

permeability/perfusion properties. Ideally the several clusters should reflect tumor sub-regions 

corresponding to low, medium and high vascularized regions based on the magnitude of K
trans

 and 

vp values. A different number of clusters may be more indicated to highlight vascular 

dissimilarities, although we believe that vascular differences between three to four sub-regions are 

easier to understand as representative of tumor tissue properties in comparison to higher number of 
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clusters. Second, the algorithm chosen to perform the clustering step (k-means, Fuzzy C-means, 

subtractive method) may affect the composition of the tumor sub-regions, partitioning tumor pixels 

into different subsets, therefore the mean parametric values for each subset may not be equal, but 

this will be investigated in another study. Analogously, automatic clustering methods (operator 

independent), able to subdivide automatically the tumor pixels in a different number of sub-regions, 

were not investigated in this study. Further work is required to establish whether this clustering 

approach can be extended to other pre-clinical tumor models and for assessing other therapeutic 

treatments (e.g. chemiotherapy, radiotherapy, or other antiangiogenic protocols). Third, contrast 

agent was delivered by a manually injection that could introduce variability in the rate and total 

contrast agent dose administered, despite similar volumes and injection times were employed for all 

the investigated mice. 

 

5. Conclusion 

In conclusion, these results support the view that the heterogeneous nature of the tumor has to be 

taken in great consideration to properly assess vascular changes induced by antiangiogenic 

treatments. A clustering analysis was performed on a voxel-by-voxel basis to evaluate spatial 

distribution of tumor K
trans

 and vp parametric maps. This study indicates that improvement in the 

visualization and quantification of heterogeneity in the angiogenic response of tumor to therapy can 

be assessed by a clustering approach, even when not-homogeneous permeability changes occurred 

in different areas of a tumor. 
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Table 1 

Group-averaged descriptive measures of tumor Ktrans 

K
trans

 (min
-1

) 

Treated  Untreated 

PRE POST PRE POST 

    

Conventional 

analysis 

   

    Mean 2.0 ±1.7E-04 1.4 ±1.0E-04  2.6 ±1.9E-04 2.7±1.6E-04 

Sub-regions 

analysis 
  

 
  

    Rim 2.4 ±2.1E-04 2.1 ±1.3E-04  2.9 ±2.2E-04 3.0±1.7E-04 

    Core 1.5 ±1.3E-04 2.0 ±2.5E-04  2.2 ±1.7E-04 1.7 ±1.2E-04 

Histogram 

analysis 
  

 
  

    Skewness 7 ± 2 13 ± 6  9 ± 5 12 ± 6 
    Kurtosis 84 ± 36 280 ± 215  125 ± 109 138 ± 73 

Clustering 

analysis 
  

 
  

Cluster                 #1 1.6 ±1.4E-04 1.5 ± 1.1E-04  1.7 ± 1.1E-04 2.0 ±1.3E-04 

#2 24±36E-04  59 ± 67E-04  41 ± 62E-04 45± 30E-04 

      

#1 1.1 ± 0.6E-04 1.3 ± 1.0E-04  1.1 ± 0.6E-04 1.5 ± 0.9E-04 

#2 8.1± 7.7E-04 22 ± 30E-04  6.2 ± 2.7E-04             10 ± 6E-04 

#3 23 ± 12E-04 100 ± 110E-04  45 ± 59E-04 76 ± 25E-04 
      

#1 0.8 ± 0.6E-04 1.1 ± 0.8E-04  0.9 ± 0.6E-04 1.2 ± 0.8E-04 

#2 4.7 ± 6.0E-04 15 ± 22E-04  5.2 ± 3.3E-04 9.7 ± 4.7E-04 
#3 15 ± 21E-04 37 ± 55E-04  23 ± 30E-04  27 ± 11E-04 

#4 47 ± 59E-04   90 ± 110E-04  81 ± 86E-04             120±110E-04 

Values are grouped means with SD from all the animals studied. Number of mice: N=6 for the pAmot-treated group, N=6 for the untreated 

group. 
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Table 2 

Group-averaged descriptive measures of tumor vp 

vp 

Treated  Untreated 

PRE POST PRE POST 

    

Conventional 

analysis 

   

    Mean 0.04 ± 0.02 0.04 ± 0.02  0.03 ± 0.02 0.03 ± 0.01 

Sub-regions 

analysis 
  

 
  

    Rim 0.04 ± 0.02 0.04 ± 0.02  0.03 ± 0.02 0.03 ± 0.01 

    Core 0.03 ± 0.02 0.04 ± 0.04  0.03 ± 0.02 0.02 ± 0.01 

Histogram 

analysis 
  

 
  

    Skewness 3 ± 2 3 ± 1  3 ± 1 3 ± 2 
    Kurtosis              11 ± 5  19 ± 11a                  14 ± 4                 17 ± 6 

Clustering 

analysis 
  

 
  

Cluster                 #1 0.02 ± 0.01 0.03 ± 0.04  0.02 ± 0.01 0.01 ± 0.01 

#2 0.07 ± 0.03           0.14 ± 0.10  0.07 ± 0.03 0.05 ± 0.02 

      

#1 0.01 ± 0.01 0.02 ± 0.02   0.01 ± 0.01 0.01 ± 0.01 

#2 0.03 ± 0.01  0.09 ± 0.07a  0.03 ± 0.01  0.03 ± 0.01b 

#3 0.07 ± 0.02  0.21 ± 0.17a  0.07 ± 0.03  0.06 ±.0.02b 
      

#1  0.01 ± 0.01 0.01 ± 0.05  0.01 ± 0.01 0.01 ± 0.01 

#2 0.03 ± 0.01 0.04 ± 0.03  0.02 ± 0.01 0.02 ± 0.01 
#3 0.05 ± 0.02  0.10 ± 0.07  0.04 ± 0.02 0.04 ± 0.01 

#4 0.07 ± 0.04  0.26 ± 0.17a  0.08 ± 0.04 0.08 ± 0.03 

Values are grouped means with SD from all the animals studied. Number of mice: N=6 for the pAmot-treated group, N=6 for the untreated 

group. a Statistically significant difference between pre- and post-treatment studies, P<0.05. b Statistically significant difference between treated 

and untreated groups in post-treatment studies. 
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Figure Legends 

 

 

Figure 1 Inhibition of tumor growth in mice by angiomotin vaccine treatment. (A) Tumor volumes 

before and after treatment show a significant increase for untreated mice (P<0.01). (B) Percentage 

change in tumor volume after angiomotin treatment show significant inhibition for treated mice in 

comparison with control (Δ = 141 ±52% and 234±70% for treated and untreated, respectively; 

P<0.05). 

 

Figure 2 Color maps of quantitative tumor K
trans

 (min
-1

) for a representative untreated mouse (A).  

Tumor voxels were clustered into three subsets according to their K
trans

 values by a k-means 

algorithm and color coded in red, green and blue for subsets #1, #2 and #3, respectively (B). 

Representative tracer uptake curves as changes in relaxation rate (ΔR1) obtained from (C) the AIF 

(cross symbol) and (D) single voxels selected from the three subsets with the corresponding fit. The 

three selected voxels belong to tumor regions that have been clustered as set #1 (squared symbols), 

set #2 (circle symbols) and set #3 (triangle symbols). 

 

Figure 3 Representative quantitative tumor K
trans

 maps and corresponding cluster using a three-

clusters set (top), and quantitative tumor vp maps with corresponding clustering using a three-

clusters set (bottom) of a transaxial section through the tumor of one treated (left) and one untreated 

(right) mouse before and after the treatment. Parametric maps are overimposed on the T2w 

anatomical image and shown inside the tumor region. Tumor pixels have been clustered into three 

sub-regions color-coded in red, green and blue, corresponding to groups with low-, medium- and 

high-values of K
trans

 and vp estimates, respectively.  
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Figure 4 Bar graph plots of quantitative tumor K
trans

 (min
-1

) estimates calculated by (A) simple 

summary statistics, (B) sub-regions analysis, (C) histogram analysis from averaged-groups treated 

and untreated mice shown in Table 1. Values are shown as mean ±SEM. 

 

Figure 5 Bar graph plots of quantitative tumor K
trans

 (min
-1

) estimates calculated by clustering 

analysis exploiting the following number of clusters: (A) two-clusters, (B) three-clusters, (C) four-

cluster, from averaged-groups treated and untreated mice shown in Table 1. Values are shown as 

mean ±SEM. 

 

Figure 6 Bar graph plots of quantitative tumor vp estimates calculated by (A) simple summary 

statistics, (B) sub-regions analysis, (C) histogram analysis from treated and untreated mice shown in 

Table 2. Values are shown as mean ±SEM where *P< 0.05. 

 

Figure 7 Bar graph plots of quantitative tumor vp estimates calculated by clustering analysis 

exploiting the following number of clusters: (A) two-clusters, (B) three-clusters, (C) four-cluster, 

from averaged-groups treated and untreated mice shown in Table 1 Values are shown as mean 

±SEM where *P< 0.05. 
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Figure 1 Inhibition of tumor growth in mice by angiomotin vaccine treatment. (A) Tumor volumes 

before and after treatment show a significant increase for untreated mice in comparison to untreated 

ones (P<0.01). (B) Percentage change in tumor volume after angiomotin treatment show significant 

inhibition for treated mice in comparison with control (Δ = 141 ±52% and 234 ±70% for treated and 

untreated, respectively; P<0.05). 
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Figure 2 Color maps of quantitative tumor K
trans

 (min
-1

) for a representative untreated mouse (A). 

Tumor voxels were clustered into three subsets according to their K
trans

 values by a k-means 

algorithm and color coded in red, yellow and white for subsets #1, #2 and #3, respectively (B). 

Representative tracer uptake curves as changes in relaxation rate (ΔR1) obtained from (C) the AIF 

(cross symbol) and (D) single voxels selected from the three subsets with the corresponding fit. The 

three selected voxels belong to tumor regions that have been clustered as set #1 (squared symbols ), 

set #2 (circle symbols) and set #3 (triangle symbols). 
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Figure 3 Representative quantitative tumor K
trans

 maps and corresponding cluster using a three-

clusters set (top), and quantitative tumor vp maps with corresponding clustering using a three-

clusters set (bottom) of a transaxial section through the tumor of one pAmot-treated (left) and one 

untreated (right) mouse before and after the treatment. Parametric maps are overimposed on the T2w 

anatomical image and shown inside the tumor region. Tumor pixels have been clustered into three 

sub-regions color-coded in red, green and blue, corresponding to groups with low-, medium- and 

high- values of K
trans

 and vp estimates, respectively.  
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Figure 4 Bar graph plots of quantitative tumor K
trans

 estimates calculated by (A) simple summary 

statistics, (B) sub-regions analysis, (C) histogram analysis from averaged-groups treated and 

untreated mice shown in Table 1. Values are shown as mean ±SEM. 
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Figure 5 Bar graph plots of quantitative tumor K
trans

 estimates calculated by clustering analysis 

exploiting the following number of clusters: (A) two-clusters, (B) three-clusters, (C)  four-cluster, 

from averaged-groups treated and untreated mice shown in Table 1. Values are shown as mean 

±SEM. 
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Figure 6 Bar graph plots of quantitative tumor vp estimates calculated by (A) simple summary 

statistics, (B) sub-regions analysis, (C) histogram analysis from treated and untreated mice shown in 

Table 2.Values are shown as mean ±SEM where *P< 0.05. 
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Figure 7 Bar graph plots of quantitative tumor vp estimates calculated by clustering analysis 

exploiting the following number of clusters: (A) two-clusters, (B) three-clusters, (C) four-cluster, 

from averaged-groups treated and untreated mice shown in Table 1. Values are shown as mean 

±SEM where *P< 0.05. 

 

 


