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Highlights 

• Liver macrophages have an important role in promoting hepatic inflammation in 

nonalcoholic steatohepatitis (NASH) 

• In both mice and human NASH liver macrophages are enlarged and contain lipid vesicles 

• Despite inflammatory features, enlarged macrophages in NASH show an increased 

production of anti-inflammatory mediators 

• Enlarged macrophage accumulation in NASH may influence hepatic inflammatory 

responses 

 

Abstract 

Nonalcoholic steatohepatitis (NASH) is characterized by extensive hepatic monocyte infiltration 

and monocyte-derived macrophages have an important role in regulating the disease evolution. 

However, little is known about the functional changes occurring in liver macrophages during NASH 

progression. In this study, we investigated phenotypic and functional modifications of hepatic 

macrophages in experimental NASH induced by feeding C57BL/6 mice with a methionine–choline 

deficient (MCD) diet up to 8 weeks. 

In mice with steatohepatitis liver F4/80-positive macrophages increased in parallel with the disease 

progression and formed small clusters of enlarged and vacuolated cells. At immunofluorescence 

these cells contained lipid vesicles positive for the apoptotic cell marker Annexin V suggesting the 

phagocytosis of apoptotic bodies derived from dead fat-laden hepatocytes. Flow cytometry revealed 

that these enlarged macrophages expressed inflammatory monocyte (CD11b, Ly6C, TNF-α) 
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markers. However, as compared to regular size macrophages the enlarged sub-set was characterized 

by an enhanced production of arginase-1 and of the anti-inflammatory mediators IL-10 and annexin 

A1. Similar vacuolated macrophages producing annexin A1 were also evident in liver biopsies of 

NASH patients. In mice with NASH, the accumulation of enlarged F4/80
+
 cells paralleled with a 

decline in the expression of the macrophage M1 activation markers iNOS, IL-12 and CXCL10, 

while the levels of M2 polarization markers arginase-1 and MGL-1 were unchanged. Interestingly, 

the lowering of IL-12 expression mainly involved the macrophage sub-set with regular size. 

We conclude that during the progression of NASH fat accumulation within liver macrophages 

promotes the production of anti-inflammatory mediators that influence hepatic inflammatory 

responses. 

Abbreviations 

 NAFLD, nonalcoholic fatty liver disease;  

 NASH, nonalcoholic steatohepatitis;  

 MCD, methionine–choline deficient diet;  

 (iNOS), inducible NO synthase;  

 (AnxA1), annexin A1 

Keywords 
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 Liver inflammation 

 

1. Introduction 

Growing evidence indicates that macrophages are important players in the evolution of hepatic 

inflammation in NASH. At the onset of the disease, Kupffer cell activation significantly contributes 

to the production of pro-inflammatory mediators and, by releasing chemokines such as CCL1, 

CCL2, and CCL5, they stimulate liver infiltration by circulating Ly6C
high

 monocytes (Tosello-

Trampont et al., 2012 and Leroux et al., 2012). In turn, these latter rapidly differentiate to M1 

polarized macrophages further contributing in expanding inflammatory responses (Maina et al., 

2012). Moreover, macrophage interaction with CD4
+
 helper T-lymphocytes and NKT cells has an 

important role in sustaining lobular inflammation during the disease progression (Sutti et al., 

2014 and Wehr et al., 2013). Accordingly, Kupffer cell depletion at the onset of NASH or the 

interference with monocyte recruitment through CCL2/CCR2 signaling prevents hepatic injury and 

inflammation in experimental models of NASH (Baeck et al., 2012 and Miura et al., 2012). What is 

less clear is how liver macrophages behave during the disease progression particularly in relation 

with the development of fibrosis (Tacke and Zimmermann, 2014). Recent studies have pointed out 

that hepatic macrophages in human NASH, but not in patients with simple steatosis often cluster 

around lipid droplets derived from death hepatocytes forming crown-like aggregates similar to those 

present in the inflamed visceral adipose tissue of obese patients (Rensen et al., 2009, Caballero et 

al., 2012 and Ioannou et al., 2013). Furthermore, these macrophages appear enlarged and contained 

lipid vesicles and cholesterol crystals resembling foam cells of atherosclerotic plaques (Ioannou et 

al., 2013). Interestingly, clusters of foamy macrophages are also evident in several mice models of 
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experimental NASH in association with lobular inflammation and hepatic fibrosis (Itoh et al., 

2013 and Ioannou et al., 2015). 

As recent evidence indicates that lipid accumulation in macrophages of either the adipose tissue or 

the liver promotes pro-inflammatory responses and primes these cells to lymphocyte recruitment 

(Leroux et al., 2012 and Prieur et al., 2011), we have investigated the phenotype and the possible 

role of foamy macrophages in modulating lobular inflammation during to the evolution of 

steatohepatitis to fibrosis. 

2. Material and methods 

2.1. Animals and experimental protocol 

Eight weeks old male C57BL/6 mice were purchased from Harlan-Nossan (Corezzana, Italy) and 

fed for 4 or 8 weeks with either methionine–choline deficient (MCD) or control diets (Laboratorio 

Dottori Piccioni, Gessate, Italy). The experimental protocols were approved by the University 

Commission for Animal Care and by the Italian Ministry of Health according to the current law for 

the use of laboratory animals. 

2.2. Biochemical analysis 

Plasma ALT and liver triglycerides were determined by spectrometric kits supplied by Radim 

S.p.A. (Pomezia, Italy) and Sigma Diagnostics (Milano, Italy), respectively. Circulating IL-12 was 

evaluated by a commercial ELISA kit (R&D Systems; Abingdon, UK). 

2.3. Histology and immunohistochemistry 

Liver biopsies from NASH patients were available from the Pathology Unit of the Ospedale 

Maggiore della Carità of Novara. Liver macrophages were identified in formalin-fixed sections 
using either anti-mouse F4/80 or anti-human CD68 antibodies (eBioscience, San Diego CA, USA) 

in combination with peroxidase-linked goat anti-rat IgG or horse-radish peroxidase polymer kit 

(Biocare Medical, Concord, CA, USA). AnxA1 producing cells were detected using specific 

antibodies from Zymed Laboratories-Invitrogen (Carlsbad, CA, USA). Hepatic collagen deposition 

was evidenced by Picro-Sirius Red staining. Immunofluorescence double staining were performed 

in frozen mice liver sections using fluorescein-labeled annexin 5 (Roche Diagnostics, Penzberg, 

Germany) and Texas Red-labeled goat anti-rat IgG antibodies (Sigma, Milan, Italy). 

2.4. mRNA extraction and real time PCR 

Liver RNA was retro-transcribed with High Capacity cDNA Reverse Transcription Kit (Applied 

Biosystems Italia, Monza, Italy). RT-PCR was performed in a Techne TC-312 thermacycler 

(TecneInc, Burlington NJ, USA) using TaqMan Gene Expression Master Mix and TaqMan Gene 

Expression probes for mouse TNF-α, IL-1β, IL-12p40, iNOS, arginase-1, MGL-1, and beta-actin 

(Applied Biosystems Italia, Monza, Italy). All samples were run in duplicate and the relative gene 

expression was calculated as 2
− ΔCt

 and expressed as fold increase over control samples. 

2.5. Isolation and purification of liver macrophages 

Liver macrophages were isolated from the livers of either controls or MCD-fed mice by collagenase 

perfusion according to Froh et al. (2003) and purified using biotinylated anti-F4/80 antibodies 
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(eBiosciences, San Diego, CA, USA) and streptavidin-coated magnetic beads (Miltenyi Biotec, 

Germany). Cell purity, as estimated by flow cytometry following immunostaining for CD45 and 

F4-80, was above 85%. The cells were processed for mRNA extraction using ChargeSwitch® Total 

RNA Cell Kit (Invitrogen, Frederick, MD, USA). 

2.6. Isolation of intrahepatic mononucleated cell and flow cytometry analysis 

Liver mononucleated cells were isolated from the livers of naive and MCD-fed mice and purified 

on a density gradient (Lympholyte®-M, Cedarlane Laboratories Ltd. Burlington, Canada) as 

described in Crispe (1997). Cells were then washed with Hank's medium and incubated 30 min with 

de-complemented mouse serum to block unspecific immunoglobulin binding. The cells were then 

stained with fluorochrome-conjugated antibodies for CD45, CD11b, Ly6C, MHCII, (eBiosciences, 

San Diego, CA, USA), F4/80 (Invitrogen, Abingdon, UK) and analyzed with a FACScalibur 

(Becton Dickinson, Franklin Lakes, NJ, USA) flow cytometer. Intracellular staining for TNF-α, IL-

12 and IL-10 was performed using specific fluorochrome-conjugated antibodies supplied by 

(eBiosciences, San Diego, CA, USA). AnxA1- and arginase-1-producing cells were detected using 

polyclonal rabbit antisera against, respectively AnxA1 (Millipore, Temecula, CA, USA) and 

arginase-1 (Genetex, San Antonio, TX, USA) in combination with phycoerythrin-conjugated anti-

rabbit IgG (Sigma-Aldrich, Milan, Italy). 

2.7. Data analysis and statistical calculations 

Statistical analyses were performed by SPSS statistical software (SPSS Inc. Chicago, IL, USA) 

using one-way ANOVA test with Tukey's correction for multiple comparisons or Kruskal–Wallis 

test for non-parametric values. Significance was taken at the 5% level. Normality distribution was 

preliminary assessed by the Kolmogorov–Smirnov test. 

3. Results 

Steatohepatitis in mice receiving the methionine–choline deficient (MCD) diet was characterized by 

a time dependent worsening of liver histology, triglyceride accumulation and transaminase release 

that led to appreciable fibrosis after 8 weeks of treatment (Supplementary Fig. 1). In these animals, 

immunohistochemistry for the monocyte/macrophage marker F4/80 evidenced that the livers of 

MCD-fed mice showed the diffuse presence of small clusters of enlarged and vacuolated 

macrophages that were particularly evident after 8 weeks of treatment (Fig. 1). Double staining of 

frozen sections with anti-F4/80 antibodies and the lipid dye Oil Red O confirmed that the 

cytoplasmic vacuoles contained lipid droplets (Fig. 1). Furthermore, a fraction of the cytoplasmic 

vacuoles in F4/80
+
 cells were also stained with the apoptotic cell marker annexin 5 (Fig. 1), 

suggesting the phagocytosis of apoptotic bodies originating from dying fat-laden hepatocytes. In 

line with these findings, flow cytometry analysis of hepatic mononuclear cells from controls or 

MCD-fed mice evidenced a steadily increase in F4/80-positive cells during the progression of 

NASH (Fig. 2). In parallel, we observed that among F4/80
+
 cells the fraction of enlarged cells, as 

evidenced by a high forward scatter (FSC-H) parameter, also significantly increased in the livers of 

animals with more advanced disease (Fig. 2). Further characterization of high volume macrophages 

associated with NASH revealed that these cells had an enhanced expression of leucocyte activation 

markers CD11b (CD18b) and CD11c (CD18) as well as of Class II Major Histocompatibility 

Complex (MHCII) (Fig. 2). Furthermore, enlarged F4/80
+
 cells associated with NASH were 

prevalently Ly6C
high

, in line with an origin from circulating inflammatory monocytes (Fig. 2). 
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Fig. 1.  

Morphological changes in liver macrophages during the evolution of steatohepatitis. 

Mice were fed methionine–choline supplemented (Cont) or deficient (MCD) diets over an 8-

week time period. (Panel A) Hepatic macrophages were evidenced by immunohistochemical 

staining with anti-F4/80 antibodies (magnification 40 ×). (Panel B) Double staining of 

frozen liver sections with the lipid dye Oil Red O (red) and anti-F4/80 antibody (green 

http://www.sciencedirect.com/science/article/pii/S0014480015001331#gr1


immunofluorescence; magnification 40 ×). (Panel C) Co-localization of macrophages 

stained with Texas Red anti-F4/80 antibodies (red) and fluorescein-labeled annexin 5 

(green) in frozen sections from NASH livers. Cell nuclei were courter-stained with DAPI. 

Images are representative of 3–4 distinct samples. 

  



 
Fig. 2.  

Flow cytometry analysis of hepatic macrophages during the evolution of steatohepatitis. 

http://www.sciencedirect.com/science/article/pii/S0014480015001331#gr2


CD45
+
 mononucleated cells were isolated from the livers of mice fed methionine–choline 

supplemented (Cont) or deficient (MCD) diets over an 8-week time period. (Panel A) F4/80
+
 

macrophages were analyzed for cell volume (forward scatter; FSC-H) and the monocyte 

marker Ly6C distribution. The percent values refer to the number of cells gated as F4/80
+
. 

The data were from 3–4 animals per group. (Panel B) Expression of leucocyte activation 

markers CD11b, CD11c and Class II Major Histocompatibility Complex (MHCII) among 

regular or enlarged F4/80
+
 cells. Dotted lines refer to isotypic controls. One experiment 

representative of three. 

  

Previous studies have shown that lipid-laden macrophages in human NASH had pro-inflammatory 

features and stained positive for myeloperoxidase and TNF-α (Rensen et al., 2009). We observed 

that enlarged F4/80
+
 cells not only express more TNF-α but also had a higher production of 

interleukin-12 (IL-12), a marker of M1 activation (Supplementary Fig. 2). In spite of these pro-

inflammatory features, the accumulation of enlarged fat-laden macrophages during the progression 

of experimental NASH was associated with changes in hepatic inflammatory pattern. In fact, the 

expression of macrophage M1 activation markers such as inducible NO synthase (iNOS), IL-12p40 

sub-unit and CXCL10 peaked in mice receiving the MCD diet for 4 weeks and declined thereafter 

(Supplementary Fig. 3). In line with these findings, macrophages isolated from the livers of MCD-

fed mice at different stages of the disease showed that iNOS and IL-12p40 mRNA levels were 

significantly lower in the cells obtained from mice with advanced NASH as compared to those in 

the early phase of the disease (Fig. 3). The same pattern was also confirmed by evaluating IL-12 in 

F4/80
+
 macrophages by flow cytometry or by measuring circulating IL-12 levels (Fig. 3). 

Interestingly, the lowering of IL-12 expression mainly involved the macrophage sub-set with 

regular size (Fig. 3). On the other hand, macrophage expression of the M2 polarization markers 

arginase-1 and galactose-type C-type lectin-1 (MGL-1/CD301) was not affected in advanced NASH 

(Supplementary Fig. 4). It is noteworthy, that the up-regulation in macrophage arginase-1 that 

characterized steatohepatitis prevalently involved enlarged cells (Supplementary Fig. 4). 
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Fig. 3.  

The evolution of steatohepatitis is associated with a down-modulation in the M1 activation 

of liver macrophages. 

Mice were fed methionine–choline supplemented (Cont) or deficient (MCD) diets over an 8-

week time period. (Panels A) Isolated intrahepatic macrophages were isolated using 

magnetic beads coated with anti-F4/80 antibodies and evaluated for the expression of M1 

activation markers inducible NO-synthase (iNOS) and IL-12p40 by RT-PCR. The values are 

expressed as fold increase over control values after normalization to the β-actin gene. The 

http://www.sciencedirect.com/science/article/pii/S0014480015001331#gr3


data are from 4 animals per group. (Panel B) intrahepatic F4/80
+
 macrophages were 

analyzed by flow cytometry for intracellular IL-12 expression and IL-12 distribution in 

relation to cell volume (forward scatter; FSC-H). The values refer to the percent of cells 

gated as F4/80
+
 and represent 3–4 animals per group. (Panel C) Circulating IL-12 levels 

were determined control and MCD fed mice by immunoenzymatic assay. The data are from 

5–6 animals per group; boxes include the values within 25th and 75th percentiles, while the 

horizontal bars represent the medians. The extremities of the vertical bars (10th–90th 

percentiles) comprise the eighty percent of the values. 

  

To get more inside in the mechanisms leading to the decline of M1 responses we measured 

macrophage production of anti-inflammatory proteins such as interleukin-10 (IL-10) and annexin 

A1 (AnxA1) that have been previously implicated in modulating hepatic inflammation in NASH 

(Wan et al., 2014, Moschen et al., 2012 and Locatelli et al., 2014). Flow cytometry showed that the 

fraction of cells producing IL-10 and AnxA1 increased among F4/80
+
 hepatic macrophages cells 

isolated from 8 weeks MCD-fed mice (Fig. 4). Interestingly, the expression of both these anti-

inflammatory mediators was 3–7 folds higher in the enlarged F4/80
+
 cell sub-set (Fig. 4). This 

suggested that AnxA1 and IL-10 released by enlarged lipid-laden macrophages can down-regulate 

M1-polarized responses. 
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Fig. 4.  

Enlarged macrophages associated with the advanced phases of steatohepatitis show 

increased production of anti-inflammatory mediators interleukin-10 (IL-10) and annexin A1 

(AnxA1). 

CD45
+
 mononucleated cells were isolated from the livers of mice fed methionine–choline 

supplemented (Cont) or deficient (MCD) diets over an 8-week time period. (Panel A) Dotted 

lines refer to isotypic controls. F4/80
+
 macrophages were analyzed for the production of IL-

10 and AnxA1. (Panel B) Expression of IL-10 and AnxA1 among regular or enlarged 

F4/80
+
 cells. The percent values refer to the number of cells gated as F4/80

+
. The data were 

from 3–4 animals per group. 

Figure options 

According to previous studies (Rensen et al., 2009, Caballero et al., 2012, Ioannou et al., 

2013 and Itoh et al., 2013), enlarged vacuolated macrophages with morphology comparable to those 

detected in the livers of MCD-fed mice were also detected by CD68 immunostaining in liver 

biopsies from NASH patients (Fig. 5). These cells were also selectively stained with anti-AnxA1 

antibodies (Fig. 5), confirming that also in human NASH lipid-laden macrophages contributed to 

AnxA1 production. 
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Fig. 5.  

Immunohistochemical detection of enlarged-foamy macrophages in human NASH. 

Formalin-fixed sections of liver biopsies from NASH patients were immunostained with 

anti-human CD68 (Panel A) or anti-AnxA1 (Panel B) antibodies in combination with horse-

radish peroxidase polymer kit (magnification 20 ×). 

  

4. Discussion 

Small macrophage clusters around lipid vesicles or surrounding fat-containing hepatocytes, 

generally referred as lipogranulomas, are common in adult human NASH (Yeh and Brunt, 2014) as 

well as in many experimental models of the disease (Itoh et al., 2013). The macrophages in these 

clusters are enlarged and have a foamy appearance due to the accumulation of cytoplasmic lipid 

droplets and cholesterol crystals (Ioannou et al., 2013 and Ioannou et al., 2015). These histological 

features are reminiscent of crown-like structures detectable in the adipose tissue of obese subjects 

that are characterized by macrophages forming aggregates around dead adipocytes and scavenging 

cell debris and residual lipids (Shapiro et al., 2013). Although fat-laden macrophages in the crown-

like structures have been associated with the evolution of adipose tissue inflammation (McNelis and 

Olefsky, 2014), the actual significance of similar cells in NASH is less well defined. 

The recruitment of circulating monocyte through CCL2/CCR2 signaling is considered the main 

responsible for the expansion of liver macrophage pool in NASH (Tacke and Zimmermann, 

2014 and Zimmermann et al., 2012). Circulating monocytes are currently differentiated in two sub-

sets. The first include inflammatory monocytes characterized as Ly6C
high

/CCR2
+
/CX3CR1

−
 in mice 

or CD14
+
/CD16

−
 in humans that migrate to tissues in early phase of the response to injury 

producing pro-inflammatory mediators (Murray and Wynn, 2011). The second population, defined 

as Ly6C
−
/CCR2

−
/CX3CR1

+
 in mice or CD14

−
/CD16

+
 in humans has less characterized functions 

and it is though to contribute to tissue healing (Zimmermann et al., 2012 and Murray and Wynn, 

2011). Immunohistochemical studies in human liver biopsies have shown that fat-laden 

macrophages in NASH express leucocyte activation marker CD11b and CD11c along with TNF-α 

and myeloperoxidase suggesting pro-inflammatory capability (Rensen et al., 2009 and Itoh et al., 

2013). On the same line, Ioannou and co-workers have shown that the presence of cholesterol 

crystals drives the activation of NLPR3 inflammasome in crown-like macrophages associated with 

experimental NASH (Ioannou et al., 2015). Our present data add on these findings by showing that 

beside an increased expression of CD11b, CD11c, enlarged macrophages associated with NASH are 

prevalently Ly6C
high

, supporting an origin from circulating Ly6C
high

/CCR2
+
 monocytes. However, 

despite showing a pro-inflammatory phenotype, these same cells display an increased production of 

the anti-inflammatory mediators annexin A1 (AnxA1) and IL-10 along with a high expression of 

arginase-1. Such a mixed phenotype is consistent with that observed by Zigmond and co-workers 

(Zigmond et al., 2014) in Ly6C
high

 monocyte-derived macrophages, which infiltrates the liver 

immediately after acute injury. Interestingly, AnxA1 is also selectively expressed by enlarged 

vacuolated CD68
+
 macrophages in liver biopsies from NASH patients. AnxA1 is a 37 kDa calcium-

phospholipid-binding protein that is produced by myeloid cells in response to glucocorticoids 

(Perretti and D'Acquisto, 2009). By interacting with its receptor formyl peptide receptor 2/Lipoxin 

A4 receptor (FPR2/ALX) AnxA1 reduces phagocyte recruitment/activation, down-regulates the 

production of pro-inflammatory mediators and promotes IL-10 production (Perretti and D'Acquisto, 
2009 and Cooray et al., 2013). In inflamed tissues AnxA1 is mainly produced by infiltrating 

macrophages following the phagocytosis of apoptotic bodies and plays an important role in driving 
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the termination of acute inflammation and in promoting tissue healing (Ariel and Timor, 

2013 and Ortega-Gómez et al., 2013). 

Hepatocyte apoptosis is a common in NASH as a result of lipotoxicity and endoplasmic reticulum 

stress (Leamy et al., 2013 and Gentile et al., 2011). We have observed that annexin 5 stains 

intracellular lipid vesicles in F4/80
+
 cells, suggesting that the phagocytosis of apoptotic bodies 

derived from dead fat-laden hepatocytes might contribute to AnxA1 up-regulation. Furthermore, 

intracellular lipid accumulation in foam cells of atherosclerotic plaques has also been shown to 

promote macrophage functional changes by stimulating liver X receptors (LXPs) and peroxisome 

proliferator activated receptors (PPARs) (Leitinger and Schulman, 2013). Thus, it is possible that as 

a result of these events fat-laden macrophages accumulating in NASH livers might acquire an 

enhanced capacity of producing anti-inflammatory mediators in spite of having a phenotype similar 

to that of Ly6C
high

 macrophages present in the early phases of acute injury (Cooray et al., 2013). 

As a result of AnxA1 and IL-10 up-regulation in enlarged lipid-laden macrophages we have 

observed a down-modulation of liver M1-polarized responses that mainly involves the macrophage 

sub-set with regular size, suggesting that AnxA1 and IL-10 act in an autocrine/paracrine loop 

affecting pro-inflammatory responses by hepatic macrophages. Accordingly, we have recently 

reported that the induction of NASH in AnxA1-deficient mice is characterized by enhanced lobular 

inflammation due to increased macrophage recruitment and the exacerbation of the M1 phenotype 

(Locatelli et al., 2014). Furthermore, the addition of recombinant AnxA1 to hepatic macrophages 

isolated from NASH livers promotes IL-10 production and the down-modulation of M1 responses 

(Locatelli et al., 2014). In the same vein, Wan and co-workers (Wan et al., 2014) have shown that in 

mice with NAFLD IL-10 secretion induces the apoptosis of M1-activated macrophages hampering 

the severity of lobular inflammation. 

In conclusion, our data indicate that, despite their pro-inflammatory phenotype, fat-laden 

macrophages accumulating during the progression of NASH produce anti-inflammatory mediators 

suggesting their contribution in the down-modulation of hepatic inflammation associated with the 

development of fibrosis. 
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