This is the author's manuscript #### AperTO - Archivio Istituzionale Open Access dell'Università di Torino ### An integrated approach to monitor and control the invasive fungal pathogen Heterobasidion irregulare in European forest stands | Original Citation: | |--| | | | Availability: | | This version is available http://hdl.handle.net/2318/155477 since | | Publisher: | | Publishing House of the University of Agriculture in Krakow | | | | | | Terms of use: | | Open Access | | Anyone can freely access the full text of works made available as "Open Access". Works made available under a Creative Commons license can be used according to the terms and conditions of said license. Use of all other works requires consent of the right holder (author or publisher) if not exempted from copyright protection by the applicable law. | | | (Article begins on next page) ## UNIVERSITÀ DEGLI STUDI DI TORINO #### This is an author version of the contribution published on: Questa è la versione dell'autore dell'opera: [Book of abstracts 11th Conference of the European Foundation for Plant Pathology – Healthy plants – healthy people, 2014] #### The definitive version is available at: La versione definitiva è disponibile alla URL: [http://www.kongres-fitopatologiczny.pl/kongres.php?id=book] # An integrated approach to monitor and control the invasive fungal pathogen *Heterobasidion irregulare* in European forest stands <u>Paolo Gonthier¹</u>, Naldo Anselmi², Paolo Capretti³, Filippo Bussotti³, Matteo Feducci³, Luana Giordano¹, Tommaso Honorati², Guglielmo Lione¹, Nicola Luchi⁴, Marco Michelozzi⁵, Bruno Paparatti², Martina Pollastrini³, Fabiano Sillo¹, Anna Maria Vettraino², Matteo Garbelotto⁶ ¹Department of Agricultural, Forest and Food Sciences, University of Torino, Grugliasco, ITALY; ²Department for Innovation in Biological, Agro-food and Forest Systems, University of Tuscia, Viterbo, ITALY; ³Department of Agri-Food Production and Environmental Sciences, University of Firenze, Firenze, ITALY; ⁴CNR - Institute for Plant Protection, Sesto Fiorentino, ITALY; ⁵IBBR-FI/CNR - Institute of Biosciences and Bioresources, Sesto Fiorentino, ITALY; ⁶Department of Environmental Science, Policy and Management, University of California at Berkeley, Berkeley, USA *paolo.gonthier@unito.it* The North American fungal pathogen *Heterobasidion irregulare* is currently distributed in pine and oak stands along 103 km of coastline of central Italy. This paper reviews the pathways of introduction and invasion, the factors driving the invasion, and the dispersal abilities of this pathogen in Italy. Furthermore, an integrated disease management program to minimize the risk of spread of the fungus in Europe is suggested, based both on published literature and on new unpublished data. Observational and genetic evidence support a single introduction through infected wood during WWII, and a subsequent invasion through spore dispersal. Experimental evidence suggests transmission potential of the pathogen rather than hyper-susceptibility of native hosts is the major determinant of invasion. The current range of *H. irregulare* is too vast to suggest eradication, however we recommend minimizing the risk of spread of *H. irregulare* outside the zone of infestation while reducing the magnitude of infestations within its current range. We provide evidence suggesting the most cost-effective management approach hinges on preventing the saprobic establishment of the fungus in stumps in a "buffer" area surrounding the current zone of infestation.