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Abstract We investigate the use of a large class of discrete
random probability measures, which is referred to as the class
Q, in the context of Bayesian nonparametric mixture mod-
eling. The class Q encompasses both the the two-parameter
Poisson–Dirichlet process and the normalized generalized
Gamma process, thus allowing us to comparatively study the
inferential advantages of these two well-known nonparamet-
ric priors. Apart from a highly flexible parameterization, the
distinguishing feature of the class Q is the availability of a
tractable posterior distribution. This feature, in turn, leads
to derive an efficient marginal MCMC algorithm for poste-
rior sampling within the framework of mixture models. We
demonstrate the efficacy of our modeling framework on both
one-dimensional and multi-dimensional datasets.
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1 Introduction

A general approach for modeling continuous data in Bayesian
nonparametrics was first proposed by Lo (1984) in terms of
an infinite dimensional mixture model, and it is nowadays the
subject of a rich and active literature. Let P = ∑

i≥1 PiδX̃i
be a random probability measure (RPM) such that (Pi )i≥1

are non-negative r.v.s. that add up to one and (X̃i )i≥1 are
r.v.s., independent of (Pi )i≥1, and independent and identi-
cally distributed. Given a collection of continuous observa-
tions Y1, . . . ,Yn , the infinite dimensional mixture model is
defined as

Yi | Xi
ind∼ G(· | Xi )

Xi | P iid∼ P i = 1, . . . , n

P ∼ P, (1)

where G(· | Xi ) is a continuous distribution parameterized by
Xi and admitting a density function g(· | Xi ) with respect to
a dominating measure. The distribution G(· | Xi ) is referred
to as the kernel, whereas P is the mixing measure. By the
a.s. discreteness of P , each pair of the Xi ’s takes on the same
value with positive probability, with this value identifying a
mixture component. In such a way, the r.v.s. Xi ’s allocate
the Yi ’s to a random number of mixture components, thus
providing a model for the unknown number clusters within
the data.

Lo (1984) assumed P to be the Dirichlet process (DP)
by Ferguson (1973). Under this assumption (1) is termed DP
mixture model. Several MCMC methods have been proposed
for posterior sampling from the DP mixture model. On one
hand, marginal MCMC methods remove the infinite dimen-
sional aspect of the mixture model by exploiting the tractable
marginalization with respect to the DP. See, e.g., Escobar
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(1994), MacEachern (1994) and Escobar and West (1995)
for early contributions, and Neal (2000) for an overview with
noteworthy developments such as the celebrated Algorithm
8. On the other hand, conditional MCMC methods maintain
the infinite dimensionality of the DP mixture model and find
appropriate ways for sampling a sufficient but finite number
of the atoms of the DP. See, e.g., Ishwaran and James (2001),
Muliere and Tardella (1998), Walker (2007), Papaspiliopou-
los and Roberts (2008), Papaspiliopoulos (2008) and Kalli et
al. (2011).

It is apparent that one can replace the DP mixing mea-
sure with any discrete RPMs. Ishwaran and James (2001)
proposed to replace the DP with the two parameter Poisson–
Dirichet (PD) process, also known as Pitman–Yor process,
introduced in Perman et al. (1992). See Pitman and Yor
(1997) and Pitman (2006) for a detailed account on the two
parameter PD process. Nieto-Barajas et al. (2004) proposed
to replace the DP with the normalized random measures
(NRMs) introduced in Regazzini et al. (2002). See Lijoi and
Prünster (2010) for an up-to-date review of NRMs. As a
notable example of NRM, Lijoi et al. (2007) focussed on
the normalized generalized Gamma (GG) process. Marginal
and conditional MCMC methods have been developed under
mixing measures belonging to the classes of stick-breaking
random probability measures and NRMs. See, e.g., Ishwaran
and James (2001), Lijoi et al. (2007), Griffin and Walker
(2009), Barrios et al. (2013), Favaro and Teh (2013) and
Favaro and Walker (2013).

The two parameter PD process and the normalized GG
process are noteworthy examples of σ -stable Poisson–
Kingman models. These models form a large class of discrete
RPMs, and correspond to the Gibbs-type RPMs with positive
indices, introduced by Pitman (2003) and further investigated
by Gnedin and Pitman (2005). Ishwaran and James (2001)
and Lijoi et al. (2007) showed that the two parameter PD
process and the normalized GG process are valid alternatives
to the DP: while they preserve almost the same mathemati-
cal tractability as the DP, they have more elaborate clustering
properties. Precisely, it is well known that the DP allocates
observations to a specific mixture component with a proba-
bility depending solely on the number of times that the mix-
ture component occurs. In contrast, under the two parameter
PD process and the normalized GG process, the allocation
probability depends heavily on the number of mixture com-
ponents. Such a more flexible allocation mechanism, which
is peculiar to σ -stable Poisson–Kingman models, turns out
to be a key feature for making inference under the mixture
model (1). See De Blasi et al. (2013) for an up-to-date review.

While the main advantages of replacing the DP with the
two parameter PD process and the normalized GG process
are well known from the seminal papers Ishwaran and James
(2001) and Lijoi et al. (2007), there are no comprehensive
studies which investigate the inferential advantages, if there

are some, of replacing a two parameter PD process with a
normalized GG process and vice versa. More generally, in
the context of Bayesian nonparametric mixture modeling,
there are no comprehensive studies which investigate the use
of σ -stable Poisson–Kingman models different from the two
parameter PD process and the normalized GG process. In
this paper we shed some light on these aspects by suitably
reparameterizing the two parameter PD process and the nor-
malized GG process into a unique class of discrete RPMs.
Such a class will be referred to as the class Q.

The definition of the class Q arises from Proposition 21
in Pitman and Yor (1997), where a noteworthy relationship
between the two parameter PD process and the normalized
GG process is established. While maintaing the same mathe-
matical tractability and clustering properties as the two para-
meter PD process and the normalized GG process, the class
Q stands out for a highly flexible parameterization. Recently,
the idea of exploiting Proposition 21 in Pitman and Yor
(1997) in order to define a flexible class of tractable discrete
RPMs has been independently proposed in James (2013).
There, the class Q is referred to as the Poisson–Gamma (PG)
class, and an explicit stick-breaking representation for RPMs
in the PG class is derived and investigated. We point out that
the use of the class Q also appeared, although in a context dif-
ferent from Bayesian nonparametrics, in James (2010). Dif-
ferently from the contributions in James (2010) and (2013),
in this paper we study the use of the class Q in the con-
text of Bayesian nonparametric mixture modeling under the
hierarchical framework (1).

Within the class of σ -stable Poisson–Kingman models,
a distinguishing feature of the class Q is the availability of
a tractable posterior distribution. The posterior distribution
of the two parameter PD process was first derived in Pit-
man (1996a) by means of constructive arguments relying on
the sampling properties of the process. See Lijoi and Prün-
ster (2010) for an alternative proof. Recently, James et al.
(2009) provided a posterior characterization for the entire
class of NRMs and, as a special case, they obtained the pos-
terior distribution of the normalized GG process. See Lijoi
and Prünster (2010) for a posterior counterpart of Proposi-
tion 21 in Pitman and Yor (1997), namely a relation between
the posterior distributions of two parameter PD process and
the normalized GG process. In this paper we present a poste-
rior characterization of the class Q, thus providing a unified
framework for the posterior distributions of the two parame-
ter PD process and the normalized GG process.

The posterior characterization of the class Q leads to
derive a marginal MCMC algorithm for posterior sampling
from (1). This is the second distinguishing feature of the
class Q. Making use of our posterior analysis, we develop
an efficient marginalized sampler that is uniformly applica-
ble across the whole Q class. As compared to conditional
samplers, which explicitly instantiate the RPM underlying
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the model using a variety of truncation techniques, marginal
samplers integrate out the RPM, working directly with the
induced random partition, and can thus mix more rapidly. Our
marginal sampler is an extension, from NRMs to the class
Q, of the Algorithm 8 with Reuse developed by Favaro and
Teh (2013). We demonstrate that while our marginal sam-
pler is applicable to the entire class Q, for two-parameter PD
processes it is only slightly less efficient than the standard
marginal sampler which exploit the simple analytic form of
the distribution of the clustering structure.

The paper is structured as follows. In Sect. 2 we define the
class Q and we present some posterior and marginal charac-
terizations for priors belonging to the class Q. In Sect. 3 we
describe the Reuse algorithm for posterior sampling from (1)
with a mixing measure in the class Q, and we present some
simulation studies in Sect. 4.

2 Preliminaries

We start by recalling the definition of completely random
measure (CRM) introduced in Kingman (1967). Let X be a
Polish space endowed with the Borel σ -field X . A CRM μ

is a random element on the space of boundedly finite mea-
sures on X and such that, for any {A1, . . . , An} in X with
Ai∩A j = ∅ for i �= j , the r.v.s.μ(A1), . . . , μ(An) are mutu-
ally independent. The distribution of μ is characterized by
the Lévy Khintchine representation of the Laplace functional
transform of μ, namely

E
[
e−

∫
X

f (x)μ(dx)
]

= exp

{

−
∫ +∞

0

∫

X

(
1− e−s f (x)

)
ν(dx, ds)

}

,

for any f : X → R such that
∫
X
| f (x)|μ(dx) < +∞

a.s. The Lévy intensity measure ν determines uniquely μ.
Kingman (1967) showed that μ is discrete a.s. and, hence,
it can be represented in terms of nonnegative random jumps
(Ji )i≥1 at X-valued random locations (X̃i )i≥1, i.e.,

μ(·) =
∑

i≥1

JiδX̃i
(·).

In the present paper we consider Lévy intensity measures
that can be factorized as follows: ν(dx, ds) = ρ(ds)α0(dx)
where ρ is the Lévy measure driving the jump part of μ, and
α0 is the nonatomic probability measure driving the loca-
tion part of μ. Such a factorization, intuitively, implies the
independence between (Ji )i≥1 and (X̃i )i≥1. Therefore, with-
out loss of generality, the random locations (X̃i )i≥1 can be
assumed to be r.v.s. independent and identically distributed
according to α0.

2.1 σ -PK models

The class of σ -PK models was introduced in Pitman (2003)
as a generalization of the normalized σ -stable process by
Kingman (1975). See Pitman (2006) for a detailed account.
Specifically, for any σ ∈ (0, 1) let μσ be a σ -stable CRM,
namely a CRM characterized by the Lévy intensity measure

ν(dx, ds) = ρσ (ds)α0(dx) = σ

Γ (1− σ) s−σ−1dsα0(dx).

Since
∫ ε

0 ρσ (s)ds = +∞, for any ε > 0, Tσ = ∑
i≥1 Ji is

finite a.s. In particular, the total mass Tσ is a positive σ -stable
r.v. and its density function is denoted by fσ . The normalized
σ -stable process is defined as the a.s. discrete RPM

Pσ (·) = μσ (·)
Tσ
=

∑

i≥1

PiδX̃i
(·),

with Pi = Ji/Tσ and where (X̃i )i≥1 are r.v.s., independent of
(Pi )i≥1, and independent and identically distributed accord-
ing to α0. See Regazzini et al. (2002) and James et al. (2009)
for a generalization of Pσ by replacing μσ with any CRM.
Such a generalization gives rise to the class of NRMs.

A σ -PK model is defined as a generalization of Pσ which
is obtained by suitably deforming, or tilting, the distribution
of the total mass Tσ . Precisely, let (P(i))i≥1 be the decreasing
rearrangement of (Pi )i≥1 and let Tσ,h be a r.v. with density
function fTσ,h (t) = h(t) fσ (t), for any nonnegative function
h. Let PK(ρσ | t) be the conditional distribution of (P(i))i≥1

given Tσ,h = t . A σ -PK model with parameter h is defined
as the a.s. discrete RPM

Pσ,h(·) =
∑

i≥1

P(i)δX̃i
(·),

where (X̃i )i≥1 are r.v.s. independent of (P(i))i≥1 and inde-
pendent and identically distributed as α0, whereas (P(i))i≥1

is distributed as
∫ +∞

0 PK(ρσ | t) fTσ,h (t)dt . Accordingly, we
can write Pσ,h(·) = μσ,h(·)/Tσ,h where μσ,h is an a.s. dis-
crete random measure with distribution Pσ,h absolutely con-
tinuous with respect to the distribution Pσ of μσ , and such
that dPσ,h(μ)/dPσ = h(μ(X)), and Tσ,h is the total mass of
μσ,h with density function fTσ,h .

Clearly Pσ is the σ -PK model corresponding to the choice
h(t) = 1. The two parameter PD process and the normalized
GG process are other two noteworthy σ -PK models, and they
both include Pσ as a special case. In the next two examples
we briefly recall their definitions.

Example 1 For any σ ∈ (0, 1) and θ > −σ the two para-
meter PD process is a σ -PK model with parameter h of the
form

h(t) = p(t; σ, θ) = σΓ (θ)

Γ (θ/σ)
t−θ .
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We denote by Pσ,θ the two parameter PD process. We refer
to Perman et al. (1992), James (2002, 2013), Pitman and Yor
(1997) and James et al. (2008) for details on Pσ,θ .

Example 2 For any σ ∈ (0, 1) and τ > 0 the normalized
GG process is a σ -PK model with parameter h of the form

h(t) = g(t; σ, τ) = eτ
σ−τ t .

We denote by Gσ,τ the normalized GG process. We refer to
James (2002, 2013), Pitman (2003), Lijoi et al. (2005, 2007)
and Favaro et al. (2012) for details on Gσ,τ .

2.2 Sampling properties of σ -PK models

Pitman (2003), and later on Gnedin and Pitman (2005), pro-
vided a comprehensive study of the sampling properties of
σ -PK models. Let Pσ,h be the distribution of Pσ,h , and let
X = (X1, . . . , Xn) be a sample from Pσ,h , namely

Xi | Pσ,h iid∼ Pσ,h i = 1, . . . , n

Pσ,h ∼ Pσ,h,

By the discreteness of Pσ,h , X induces a random partition
Πn of [n] = {1, . . . , n}. Specifically, Πn is defined in such
a way that indices i and j belong to the same block c of Πn

if and only if Xi = X j . According to Pitman (1995), Πn is
exchangeable, namely the distribution of Πn depends only
on the number |Πn| of blocks and their frequencies {|c| : c ∈
Πn}. This distribution is known as the exchangeable partition
probability function (EPPF).

Pitman (2003) characterized the EPPF induced by the σ -
PK model in terms of a suitable product form, a feature which
is crucial for guaranteeing mathematical tractability. In par-
ticular, a sample X from Pσ,h induces an exchangeable ran-
dom partition Πn admitting the EPPF

Pr[Πn = π ] = Vn,|π |
∏

c∈π
(1− σ)|c|−1, (2)

where (a)(n) = ∏n−1
i=0 (a + i) with the proviso (a)(0) = 1,

and

Vn,|π | = σ |π |

Γ (n − |π |σ) (3)

×
∫ +∞

0

∫ t

0
sn−|π |σ−1t−nh(t) fσ (t − s)dsdt.

The EPPF (2), with Vn,|π | in (3), has been characterized by
Gnedin and Pitman (2005) in the class of the Gibbs-type
EPPFs. See also the monograph by Pitman (2006) for a com-
prehensive account on Gibbs-type EPPFs, and De Blasi et

al. (2013) for the use of Gibbs-type EPPFs in Bayesian non-
parametrics.

According to (2) and (3), σ and h play a crucial role in
determining the probabilistic structure of the random parti-
tion induced by the sample X from Pσ,h . By marginalizing (2)
with respect to the frequencies one recovers the distribution
of the number |Πn| of distinct observations in X. Specifically,

Pr[|Πn| = |π |] = Vn,|π |
C (n, |π |; σ)

σ |π |
, (4)

where C is the generalized factorial. See Charalambides
(2005) for details. From (2) and (4), the conditional dis-
tribution of Πn given |Πn| = |π | depends only upon σ .
In other words the frequencies of Πn are independent of h
given |Πn| = |π |. Hence, h determines the distribution of
Πn only via |Πn|.

The important role of σ and h also appears in the study
of the large n asymptotic behaviour of |Πn|. This asymptotic
behaviour has been characterized in Proposition 13 by Pitman
(2003) by means of a positive and almost surely finite r.v.
Sσ,h . Specifically, as n→+∞, one has

|Πn|
nσ

a.s.−→ Sσ,h .

The r.v. Sσ,h , which is referred to as the σ -diversity of Pσ,h ,
is related to the total mass Tσ,h by the following identity

Sσ,h
d= (Tσ,h)−σ . (5)

The distribution of Tσ,h is governed by σ and h through fTσ,h
and, hence, the asymptotic behaviour of |Πn| is ultimately
governed by σ and h. The specification of σ and h thus
encodes a knowledge on the asymptotic number of blocks
in the partition induced by a sample from Pσ,h .

3 The class Q

The definition of the class Q aries from Proposition 21 in
Pitman and Yor (1997), where a noteworthy relationship
between Pσ,θ and Gσ,τ is established. Such a result holds
for any σ ∈ (0, 1) and θ > 0 and it relies on a suitable
randomization of the parameter τ in Gσ,τ . In particular, let

Fσ,θ (dτ) = σ

Γ (θ/σ)
τ θ−1e−τσ dτ, (6)

for any σ ∈ (0, 1) and θ > 0. Then, the marginal distribution
of Gσ,τ when τ is randomized with respect to Fσ,θ coincides
with the distribution of Pσ,θ . This link can be shown in terms
of the parameters p and g defining the distributions of Pσ,θ
and Gσ,τ , respectively. Indeed
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Fig. 1 Relationships between the class Q and the Dirichlet process
(DP), the normalized σ -stable process (NS), the normalized inverse
Gaussian process (NIG), the normalized GG process (NGG), the two
parameter PD process (PY), the class of σ -stable PK models (σ -PK)

p(t; σ, θ) =
∫ +∞

0
g(t; σ, τ)Fσ,θ (dτ).

It is apparent that one can replace the distribution (6) with
any other distribution F over the positive real line, or over
a subset of it. This procedure leads to the definition of the
class Q, namely a flexible class of priors indexed by σ and
F , and including as special cases both the Pσ,θ and Gσ,τ .

Definition 3 A prior in the class Q is a σ -PK model with
parameter

h(t) = q(t; σ, F) =
∫

D
g(t; σ, τ)F(dτ), (7)

where F is a distribution over any subset D of the positive
real line.

We denote by Qσ,F a prior in the class Q. Accord-
ing to Definition 3, Qσ,F (·) = μσ,q(·)/Tσ,q where μσ,q
is an a.s. discrete random measure with distribution Pσ,q

absolutely continuous with respect to Pσ , and such that
dPσ,q(μ)/dPσ = q(μ(X); σ, F), and Tσ,q is the total mass
of μσ,q with density function fTσ,q (t) = q(t; σ, F) fσ (t). If
F is the generalized Gamma distribution in (6), then Qσ,F

coincides with Pσ,θ . Note that such a choice of F does not
include the case −σ < θ < 0. If F = δτ , for any τ > 0,
then Qσ,F coincides with Gσ,τ . The normalized σ -stable
process by Kingman (1975) corresponds to Gσ,0 and Pσ,0,
whereas the normalized inverse Gaussian process by Lijoi et
al. (2005) corresponds to G1/2,τ . Figure 1 shows the relation-
ships between elements in Q.

Intuitively, the interpretation of F is directly related to
the interpretation of the parameter τ in the normalized GG
process Gσ,τ . In this respect, Lijoi et al. (2007) showed that

τ and σ tune the distribution of |Πn| in a sample from Gσ,τ .
See also Lijoi et al. (2005) for details. The parameter τ > 0
controls the location of the distribution of |Πn|: the bigger τ
the larger the expected number of distinct observations tends
to be. The parameter σ ∈ (0, 1) controls the flatness of the
distribution of |Πn|: the bigger σ the flatter is the distribu-
tion of |Πn|. Accordingly, the more general parameterization
of Qσ,F determines a more flexible control in the clustering
behaviour induced by Qσ,F . Note however, from our discus-
sion in Sect. 2 on the random partition induced by a sample
from a σ -PK model, that the only effect of F on the clus-
tering behaviour is through the number of cluster |Πn|, with
the clustering behaviour conditioned on |Πn| = |π | only
depending on the parameter σ .

3.1 Posterior analysis

Let X be a sample of size n from Qσ,F , and recall that one can
always represent X in terms of a random partitionΠn of [n],
consisting of |Πn| distinct observations, where each c ∈ Πn

corresponds to a distinct observed value X̃c with frequency
|c|. Given X, hereafter we present a comprehensive posterior
analysis of Qσ,F . We start by providing a posterior character-
ization ofμσ,q in terms of auxiliary r.v.s. This, then, will lead
to the distribution of Qσ,F |X. The posterior characterization
of μσ,q follows by combining the definition of μσ,q with the
posterior characterization of μσ,g derived from Theorem 1
of James et al. (2009). Indeed, given a r.v. T with distribution
F , μσ,q | T is an a.s. discrete random measure with distribu-
tion Pσ,g absolutely continuous with respect to Pσ , and such
that dPσ,g(μ)/dPσ = g(μ(X); σ, T ). See Example 3.24 in
Lijoi and Prünster (2010) for details. To make the paper self-
contained, in the online Appendix we present a proof of the
next proposition which relies on the absolute continuity of
Pσ,q with respect to Pσ . This approach was first exploited in
Lijoi and Prünster (2010) to provide an alternative proof of
the posterior distribution of the two parameter PD process.

Proposition 4 Let X be a sample from Qσ,F and let (T ,U )
be a r.v. such that

Pr[T ∈ dτ,U ∈ du |X]

= un−1eτ
σ−(u+τ)σ (u + τ)σ |π |−nduF(dτ)

∫
D

∫ +∞
0 un−1eτσ−(u+τ)σ (u + τ)σ |π |−nduF(dτ)

.

Then,

μσ,q | (T ,U,X) d=
∑

c∈π
Jc,T ,U δX̃c

+ μσ,g∗ (8)

where

123



72 Stat Comput (2015) 25:67–78

(i) μσ,g∗ is an a.s. discrete random measure with distribution
Pσ,g∗ absolutely continuous with respect to Pσ , and such
that dPσ,g∗(μ)/dPσ = g(μ(X); σ, T +U )

(ii) the Jc,T ,U ’s are independent r.v.s., independent ofμσ,g∗ ,
and distributed according to a Gamma distribution with
parameter (|c| − σ, T +U ), for any c ∈ π .

Note that the continuous part of (8) coincides with μσ,g∗ ,
which depends on T and U only through V = U + T .
Accordingly, the continuous part of Qσ,F |X will be also in
the class Q with the distribution of V |X playing the role
of the mixing parameter F . See the online Appendix for an
explicit expression of the distribution of V |X. In the next two
examples we apply Proposition 4 under the assumptions that
F coincides with (6) and F coincides with δτ , for any τ > 0,
respectively. The former assumption leads to the posterior
characterization of the two parameter PD process in Lijoi
and Prünster (2010), whereas the latter leads to the posterior
characterization of the normalized GG process in James et
al. (2009).

Example 5 For any σ ∈ (0, 1) and θ > 0, let X be a sample
from Pσ,θ . Then,

μσ,p | (V,X) d=
∑

c∈π
Jc,V δX̃c

+ μσ,g∗ ,

where

Pr[V ∈ dv |X] = σ

Γ (θ/σ + |π |)v
θ+|π |σ−1e−vσ dv.

The Jc,V ’s are independent Gamma r.v.s. with parameter
(|c| − σ, V ).

Example 6 For any σ ∈ (0, 1) and τ > 0, let X be a sample
from Gσ,τ . Then,

μσ,g | (V,X) d=
∑

c∈π
Jc,V δX̃c

+ μσ,g∗ ,

where

Pr[V ∈ dv |X] = σv|π |σ−n(v − τ)n−1e−vσ
∑n−1

i=0

(n−1
i

)
(−τ)iΓ (|π | − i/σ, τσ )

dv.

The Jc,V ’s are independent Gamma r.v.s. with parameter
(|c| − σ, V ).

We conclude by stating the aforementioned posterior char-
acterization of Qσ,F . Of course an application of the next
proposition under the assumptions that F coincides with (6)
and F coincides with δτ , for any τ > 0, leads to the posterior
characterizations originally provided by Pitman (1996a) and
James et al. (2009), respectively.

Proposition 7 Let X be a sample from Qσ,F . Then, the ran-
dom probability measure Qσ,F |X is equal in distribution
to
∑

c∈π
WcδX̃c

+W|π |+1Qσ,F∗ ,

where Qσ,F∗ is a prior in the class Q with F∗ being the
distribution of V |X, and (W1, . . . ,W|π |,W|π |+1) is a r.v. on
the |π |-th dimensional simplex with density function

g(W1,...,W|π |)(w1, . . . , w j )

= Γ (n)
∏

c∈π Γ (|c| − σ)
∏

c∈π
w|c|−σ−1

c

(

1−
∑

c∈π
wc

)|π |σ−1

×
∫

D E[(Tσ )−|π |σ e
τσ−τ Tσ

1−∑
c∈π wc ]F(dτ)

∫
D

∫ +∞
τ

v|π |σ−n(v − τ)n−1eτσ−vσ dvF(dτ)
.

The r.v. (W1, . . . ,W|π |,W|π |+1) is independent of Qσ,F∗ if
and only if F is the generalized Gamma distribution (6).

3.2 Sampling properties

Apart from the posterior distribution of Qσ,F , we are also
interested in distributional properties of a sample X from
Qσ,F . Since Qσ,F is a σ -stable PK model, X induces an
exchangeable random partition of [n] which is distributed
according to an EPPF of the form (2) with Vn,|π | obtained by
combining (3) with (7). In the next proposition we present a
characterization of this EPPF in terms of auxiliary r.v.s. This
characterization follows by combining the definition of Qσ,F

with Proposition 3 in James et al. (2009). See also Lijoi and
Prünster (2010) for details.

Proposition 8 Let X be a sample from Qσ,F . Then, one has

Pr[Πn = π, {X̃c ∈ dxc : c ∈ π}, T ∈ dτ,U ∈ du]
= un−1

Γ (n)
e−ψσ,τ (u)duF(dτ)

∏

c∈π
κσ,u+τ (|c|)α0(dx̃c),

where ψσ,τ (u) = (u + τ)σ − τσ and κσ,u+τ (m) = σ(1 −
σ)m−1/(u+τ)m−σ are the Laplace exponent ofμσ,g and the
m-th moment of ρ(ds) = e−(u+τ)sρσ (ds), respectively.

Proposition 8 provides an augmented version, with respect
to the auxiliary r.v. (T ,U ), of the EPPF induced by Qσ,F .
In the next section Proposition 8 will be applied in order to
implement the Algorithm 8 with Reuse for posterior sampling
from Bayesian nonparametric mixture models with a mixing
measure in the class Q.

The class Q generalizes the two-parameter PD process
and the normalized GG process in order to incorporate a large
and tractable family of σ -PK models. Each member of Q is
characterized by the distribution F over the tilting parameter
τ of the normalized GG process. When viewed as a prior
over exchangeable random partitions, each member of the
class Q gives rise to a different distribution over the number
|Πn| = |π | of clusters in the induced random partition |Πn|,
while all other aspects of |Πn| depend only on the parameter
σ .
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Fig. 2 Distribution over the number of clusters |Πn | = |π | under the
normalized generalized Gamma process as a function of τ , withσ = 0.5
and n = 100. Top visualizing the probability mass function and mean
of |Πn | as a function of log10(τ ). Bottom the probability mass function
of |Πn | for τ = 10−2, 10−1, . . . , 107

In Fig. 2 we visualize the distribution over |Πn| as it varies
with τ , for σ = 0.5 and n = 100. We see that there is a
monotonically increasing relationship between the two vari-
ables. Different distributions F induce different priors over
|Πn| simply via the following convolution form

Pr[Πn = |π | | σ, F]
=

∫ +∞

0
Pr[Πn = |π | | σ, τ ]F(dτ)

A number of prior distributions over the random partition
|Πn| achievable in the model are shown in Fig. 3, where we
see that a variety of effects can be achieved with different
distributions F , including multi-modality and larger spread
as compared to the two parameter PD process.

4 Marginalized samplers

In this section, we develop a marginal MCMC algorithm for
posterior simulation from a Bayesian nonparametric mixture
model with a mixing measure in the class Q. We have n
observations Y = (Y1, . . . ,Yn), each observation Yi being

0 20 40 60 80 100
0

0.01

0.02

0.03

0.04

0.05

0.06

K

P
( 

K
 )

0 20 40 60 80 100
0

0.005

0.01

0.015

0.02

0.025

0.03

K

P
( 

K
 )

0 20 40 60 80 100
0

0.005

0.01

0.015

0.02

0.025

K

P
( 

K
 )

0 20 40 60 80 100
0

0.005

0.01

0.015

0.02

0.025

K

P
( 

K
 )

Fig. 3 Distribution over the number of clusters |Πn | = |π | under a
prior in the class Q with σ = 0.5, n = 100, and different choices of the
distribution F . From top to bottom a generalized Gamma distrbution
leading to the two-parameter Poisson–Dirichlet process with θ = 10,
a Normal distribution over log(τ ) with parameters μ = 2 log(10)
and σ 2 = log(10), a Uniform distribution over log(τ ) with range
[log(10), log(104)], and a discrete distribution with probability 1/4 at
points τ = 1, 102, 103, 104

associated with a latent r.v Xi . The latent r.v.s. are modeled
as independent and identically distributed draws from a RPM
Qσ,F . Formally, we can write
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Yi | Xi
ind∼ G(· | Xi )

Xi |Qσ,F
iid∼ Qσ,F i = 1, . . . , n

Qσ,F = μσ,q

Tσ,q

μσ,q ∼ Pσ,q , (9)

where G(· | Xi ) denotes a continuous distribution admitting
a density function g(· | Xi )with respect to a dominating mea-
sure. The marginal characterization in Proposition 8 turns out
to be fundamental for deriving a marginal MCMC algorithm,
the so-called Algorithm 8 with Reuse, for posterior sampling
from the mixture model (9).

4.1 Algorithm 8 with Reuse

Since Qσ,F is discrete a.s., the r.v.s. X may take on repeated
values. LetΠn the random partition of [n] induced by X, with
each cluster c ∈ Πn corresponding to a unique value X̃c. We
will make use of Proposition 8 to marginalize out the random
measure μσ,q , leaving T , U , Πn and {X̃c : c ∈ Πn} as the
r.v.s. whose joint posterior distribution is to be simulated.
Such a posterior distribution is

Pr[T ∈ dτ,U ∈ du,Πn = π, {X̃c ∈ dxc : c ∈ Πn} |Y]
∝ un−1(u + τ)σ |π |−nσ |π |e−(u+τ)σ+τσ duF(dτ)

×
∏

c∈π
(1− σ)|c|−1α0(dxc)

∏

i∈c

G(Yi | X̃c).

and a Gibbs sampler can be derive from it. In particular, the
conditional distributions for T , U and {X̃c : c ∈ Πn} are

Pr[T ∈ dτ | rest] ∝ (u + τ)σ |π |−ne−(u+τ)σ+τσ F(dτ),

Pr[U ∈ du | rest] ∝ un−1(u + τ)σ |π |−ne−(u+τ)σ du,

and

Pr[X̃c ∈ dxc | rest] ∝ α0(dxc)
∏

i∈c

G(Yi | X̃c),

respectively. These conditional distributions are not in forms
from which values can be easily simulated. Instead a variety
of MCMC simulation techniques can be employed, including
Metropolis–Hastings, slice sampling, or Hamiltonian Monte
Carlo. In our simulations we used slice sampling updates to
the logarithms of the auxiliary variables for numerical sta-
bility, using the Stepping Out procedure, with steps of size 2
and a maximum of 20 steps (Neal 2003). Slice sampling is a
simple and efficient update which does not require gradient
information and is robust against the need to specify appropri-
ate length scales to update the variables. We used conditional
Gibbs updates for the cluster variables X̃c as this is suitable
for the mixture component hierarchy we considered.

Finally, we can use the Algorithm 8 with Reuse of Favaro
and Teh (2013) to update the partition Πn given the other
r.v.s. The Reuse algorithm uses C ∈ N auxiliary r.v.s.
(Xe

1, . . . , Xe
C ) which play the role of parameters associated

with empty clusters, and are independent and identically dis-
tributed according to α0. Each update of the Reuse algorithm
updates the cluster assignment of an observation, say i ∈ [n],
according to the following scheme.

(1) Remove i from the cluster it belongs to, say c ∈ Π .
(2) If c becomes empty as a result, pick k ∈ [C] uniformly at

random and replace Xe
k with the value of the parameter

X̃c associated with cluster c, and remove c from Πn .
(3) Assign i to the clusters with the following probabilities:

Pr[assign i to cluster c′ | rest]

∝
⎧
⎨

⎩

(|c′| − σ)G(Yi | X̃c′) for c′ ∈ Πn,

σ (U + T )σ
C

G(Yi | Xe
c′) for c′ ∈ [C].

The first terms on the right hand side is proportional to
the conditional probability of being assigned to the cor-
responding cluster (with the C empty clusters sharing the
probability of creating a new cluster), while the second
terms are the likelihoods associated with observation Yi

given the cluster parameters.
(4) If an empty cluster c′ ∈ [C] was chosen, then we assign

i to a new cluster in Πn with parameter Xe
c′ , and replace

Xe
c′ with a new independent draw from α0.

At regular intervals, e.g., after the cluster assignments of all
observations have been updated, the parameters of the empty
clusters are refreshed by drawing them as independent and
identically distributed according to α0. The main steps of
the Algorithm 8 with Reuse are summarized in the following
Algorithm 1 and Algorithm 2. Each iteration of the algorithm
takes O(n|Πn|C) time, where C is the unit cost of a clus-
ter likelihood computation or of updating one cluster with
respect to one observation. This computational complexity
has the same scaling as existing marginal samplers for other
Bayesian nonparametric mixture models.

Algorithm 1 MS(T ,U, {X̃c}c∈Πn ,Πn, {Yi }i∈[n])
for t = 1→ i ter do

Update T : Slice sample Pr[T ∈ dτ | rest]
Update U : Slice sample Pr[U ∈ du | rest]
for c ∈ Πn do

Update X̃c: Slice sample Pr[X̃c ∈ dxc | rest]
end for
Update Πn : ReUse(Πn,C, {X̃c}c∈Πn , rest)

end for
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Algorithm 2 ReUse(Πn,C, {X̃c}c∈Πn , rest)

Draw {Xe
j }Cj=1

i.i.d.∼ α0
for i = 1→ n do

Let c ∈ Πn be such that i ∈ c
c← c \ {i}
if c = ∅ then

k ∼ DiscreteUniform( 1
C )

Xe
k ← X̃c

Πn ← Πn \ {c}
end if
Set c′ according to Pr[assign i to cluster c′ | rest]
if c′ ∈ [C] then
Πn ← Πn ∪ {{i}}
X̃{i} ← Xe

c′
Xe

c′ ∼ α0
else

c′ ← c′ ∪ {i}
end if

end for

In the special case of the two-parameter PD process, the
generalized gamma distribution (6) leads to a significant sim-
plification of the conditional joint distribution of T and U
given the rest. In particular, by using the reparameterization
V = U + T and Z = U/V , we obtain

Pr[V ∈ dv, Z ∈ dz | rest]
∝ zn−1(1− z)θ−1vθ+σ |π |−1e−vσ .

Hence the r.v.s. V and Z are conditionally independent and
distributed according to a Beta distribution and a generalized
Gamma distribution, respectively. Therefore, it is possible to
marginalize out the r.v.s. V and Z , resulting in an expression
for the well-known EPPF of the two-parameter PD process.
See Pitman (1995) for details.

4.2 Simulation studies

In Sect. 4.1 we described a novel marginalized sampler for
posterior sampling from Bayesian nonparametric mixture
models reposing on prior distributions in the class Q of mix-
ing measures. In particular, under the assumption of the two
parameter PD process, a variant based on the reparameteriza-
tion V = U +T and Z = U/V leads to a simpler marginal-
ized sampler. Marginalizing out V and Z finally leads to the
EPPF induced by a sample from a two parameter PD process,
on which we can base an even simpler marginalized sampler.

We explored the relative efficiencies of the three resulting
marginalized samplers on the galaxy dataset1. This dataset
consists of n = 82 velocities of galaxies and it is an obliga-
tory exercise when working with infinite mixture models. See
Roeder (1990) for details. Specifically we used a Gaussian

1 This dataset is included in the MASS package in the R statistical
computing environment.

Table 1 Comparison of sampler efficiencies on the galaxy dataset

Algorithm Effective sample size

|Πn | = |π | log τ

Standard Q 4,772 NA

V and Z updates 4,767 NA

Marginalized 2PPD 4,588 NA

Standard Q 2,835 1,986

V and Z updates 2,636 3,534

Marginalized 2PPD 3,572 8,107

Each of 10 runs produces 10,000 samples, at intervals of 10 iterations,
after an initial burn-in period of 10,000 iterations. First three lines are
with fixed hyperparameters, while second set of three lines are with
updates to hyperparameters σ and θ

component models parameterized by cluster-specific means
and variances with a non-conjugate base distribution. We
refer to Favaro and Teh (2013) for additional details. All
algorithms were implemented in Java and used the same code
base. We have found that the run times of all three algorithms
are comparable.

We considered two scenarios. In the first scenario we fixed
the hyperparameters at σ = 1/3 and θ = 1, whereas in the
second scenario we allowed σ and θ to be sampled as well,
with prior σ ∼ Beta(2, 4) and θ ∼ Gamma(1, 1). These pri-
ors are chosen to be broad and not very informative, with a
preference for smaller values of σ . The fixed values are cho-
sen as the corresponding prior means. The reported results are
qualitatively not sensitive to the choices made here. Table 1
shows the effective sample sizes (ESSs) obtained by the three
algorithms. For each algorithm we collected 10,000 samples
with a thinning factor of 10 and an initial burn-in phase of
10,000 iterations. ESSs were computed using the R Coda
package. When the hyperparameters are fixed we see that all
algorithms achieved comparable and good ESSs. However
when the hyperparameters are allowed to vary, the ESSs of
the samplers with additional auxiliary variables are lowered.
This is to be expected, since the additional auxiliary variables
induce additional dependencies which slows down conver-
gence. However, the ESSs of the data augmentation schemes
are still good, while being applicable to the much larger Q
class of priors. Although in these experiments we have found
little difference between the samplers using the T ,U and the
V, Z representations, we expect the V, Z sampler to perform
better on average and on more complex models.

In order to demonstrate that the algorithm running on a
non-standard Q class prior, we applied the model with a log-
normal F distribution over τ with log-scale 0 and shape 1,
to the galaxy dataset, and to a dataset of vegetable oil spec-
tral profiles2. There are 120 observations in the oil dataset,

2 This dataset can be obtained from the University of Copenhagen,
Department of Food Science repository of public datasets for multi-
variate analysis: http://www.models.life.ku.dk/oliveoil.
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Fig. 4 Galaxy data. Left posterior distribution over the density. The thick curve is the mean density while the shaded area gives the 95 % credible
intervals. Right posterior distribution over the number of clusters
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Fig. 5 Vegetable oils data. Right dendrogram summarizing the posterior distribution over partitions of the data. Colours denote the proportion of
oils in each subset belonging to each class (blue vegetable oil, green olive oil, red blends). Left five subsets of oils obtained by thresholding the
dendrogram at 0.95

consisting of olive oils, other vegetable oils, and blends (See
De la Mata-Espinosa et al. (2011) for details). The spectral
profiles are 4001 dimensional, which we pre-process using
PCA to reduce the dimensionality to 6. This retained 95 %
of the variance.

Figure 4 shows the posterior distribution over densities
obtained by the model and over the number of clusters in the
model applied to the galaxy dataset. The posterior densities
are a good fit to the dataset, and are consistent with previous
analysis. Note that the posterior number of clusters in the

partition is relatively large compared to the clusters exhibited
by the dataset. This is due to the fact that such nonparametric
priors always produce a number of small clusters in posterior
samples. Such clusters are spurious in nature and often can be
suppressed easily using posterior summarization techniques
as in our analysis of the vegetable oils dataset.

Figure 5 shows a summary of the posterior clustering
structure obtained on the vegetable oils dataset. The dendro-
gram is obtained by a complete linkage algorithm, where the
distance between two observations Xi and X j is the posterior
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probability that i and j are not in the same cluster. The dataset
consists three classes of oils, which are represented by three
colours on the dendrogram: blue for vegetable oil, green for
olive oil, and red for blends. Each segment on the dendro-
gram corresponds to a subset of observations, and is coloured
depending on the proportion of each class of observations in
the subset. We see that the model has successfully separated
the olive oils from the vegetable oils, while the blended oils
were not successfully separated from the vegetable oils.

We can further visualize the partitioning structure by
thresholding the dendrogram at a level of 0.95. This is given
by the vertical black line in the dendrogram plot. Note that
there are five subsets at this level, with all pairs of observa-
tions in each subset being placed in the same cluster in Πn

with posterior probability greater than 1− 0.95 = 0.05. We
also plotted the profiles of the observations in the five subsets
in the Fig. 5, with the plots coloured depending on the class
of each oil.

We see that the clustering obtained is reasonably sensible.
The first subset consists of only one spectral profile, which
is an outlier as it has an upward trend and may indicate an
error in the processing which produced the data. The third
subset consists mostly of olive oils, plus a vegetable oil with
similar spectral profile as the olive oils. The second, fourth
and fifth subset are mostly vegetable oils, though the spec-
tral profiles of the three subsets are indeed quite distinct from
each other, perhaps corresponding to different types of veg-
etable oils. The second subset has a bump on the left which
is not present in other subsets. The fourth subset has a larger
fifth pair of bumps, while the fifth subset has a larger second
and third pair of bumps. The spectral profiles of the vegetable
oils and blends in the fourth subset are reasonably similar to
each other.
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