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ABSTRACT 

The Ce4+
↔ Ce3+ redox switch is at the basis of an all-inorganic catalytic cycle that is capable 

to mimic the activity of several natural redox enzymes. The efficiency of these artificial 

enzymes (nanozymes) strongly depends on the Ce4+/Ce3+ ratio. By capitalizing on the results 

obtained on oxide/oxide model systems, we implemented a simple and effective procedure to 

obtain conformal TiO2@CeOx core-shell nanoparticles whose thickness is controlled with 

single layer precision. Since the Ce3+ species are stabilized only at the interface by the 

electronic hybridization with the TiO2 states, the modulation of the shell thickness offers a 

simple method to tailor the Ce4+/Ce3+ ratio and therefore the catalytic properties. The activity 

of these nanoparticles as artificial peroxidase-like enzymes was tested, showing exceptional 
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performances, even better than natural horseradish peroxidase enzyme. The main advantage 

with respect to other oxide/oxide nanozymes is that our nanoparticles, having a tunable 

Ce4+/Ce3+ ratio, are efficient already at low H2O2 concentrations.   

 

INTRODUCTION 

Cerium oxide, CeO2, is one of the most interesting oxides in catalysis, being an efficient 

catalyst itself or a subtle structural and electronic promoter in several chemical 

processes.1,2,3,4,5 The key point at the basis of its catalytic activity is the low energy cost for 

the formation of oxygen vacancies and Ce3+ centers. Since these chemical species are 

extremely catalytically active, a huge amount of studies have focused on the strategies to 

maximize their amount, stability and organization. Among the several processes that are 

controlled by ceria defects, the oxygen activation is maybe the most important since it 

impacts very different chemical fields, such as high yield industrial reactions, fine chemical 

and even biological syntheses.6,7,8 Actually, the Ce4+
↔Ce3+ redox switch is the all-inorganic 

analogue of the catalytic cycle of redox enzymes9,10,11,12,13 where metal centers are used as co-

factors to promote reversible redox reactions and/or against intracellular oxidative 

stress14,15,16 in cell metabolism. 

So far, several strategies have been used to manipulate the Ce4+/Ce3+ ratio, such as reduction 

in the geometrical size,17,18 introduction of dopants or other oxides and kinetically controlled 

synthesis.19,20 ,21 ,22  The outcomes of these works have demonstrated that the presence of 

defects enhances significantly the reactivity, although in many cases, defects are metastable 

and their chemical activity is lost as a consequence of NPs coalescence and/or interaction 

with the reaction environment.  
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In this paper we propose a radically new approach, based on the creation of an oxide/oxide 

interface capable to provide a strong stabilization for defect centers. Following the blueprint 

outlined from theoretical23 and experimental model studies,24 it emerges the possibility of 

stabilizing Ce3+ by the interfacial hybridization with a reducible oxide support. In the case of 

titania, by virtue of the electronic hybridization between the TiO2 O 2p band and Ce 4f states, 

Ce3+ species are strongly stabilized with respect to unsupported ceria, allowing to obtain 

almost exclusively reduced species at the interface in a wide range of experimental 

conditions.23,25,26 Interestingly, the localized nature of electronic hybridization determines 

that the stabilization of reduced states is sensibly thickness dependent. Recently, it has been 

demonstrated that when the CeOx coverage exceeds the monolayer, the interface 

hybridization is progressively lost, so that stoichiometric CeO2 starts to grow.24 This opens 

the way to the control of the Ce4+/Ce3+ ratio simply by choosing the thickness of the ceria 

shell supported on TiO2.  

Taking the cue from this vision, in the following work we optimized a synthetic protocol 

based on atomic layer deposition of an organometallic Ce3+ precursor on a commercial TiO2 

powder suspension, with the aim of obtaining a of single layer of CeOx on TiO2, and 

therefore preparing thickness controlled TiO2@CeOx core-shell nanoparticles (NPs). The 

activity as a peroxidase-like enzyme of core-shell NPs with different Ce4+/Ce3+ ratios has 

been tested by means of a biomimetic assay.  

The success of this synthesis scheme indicates that the use of core-shell nanoparticles bearing 

controlled interfaces represents a suitable approach for the realization of nanostructures with 

specific functionalities. Actually, with respect to standard nanoparticles (e.g. simple 

nanoceria), core–shell systems can be designed in order to combine the bulk properties of the 

core (e.g. magnetism, light adsorption or emission) with very specific chemical properties of 
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the shell, so that the resulting system can explicate multiple functions.27,28 Moreover the 

strong electronic stabilization intrinsic to the formation of the oxide/oxide interface provides 

an effective strategy to promote biocompatibility, and to enhance chemical stability in harsh 

conditions.     

 

MATERIALS AND METHODS 

Synthesis of the TiO2@CeOx core-shell NPs 

The core-shell samples have been obtained by impregnation of a commercial TiO2 powder 

(Degussa Aeroxide© P25) in a Cerium (III) 2-ethylhexanoate (49% in 2-ethylhexanoic acid, 

Alfa Aesar) precursor solution.29 The TiO2 powder was pre-treated at 570 K in air to remove 

any water residual and then added to a 0.75 mol/L solution of the precursor in n-hexane at 

room temperature (thermostatic bath). The mixture was stirred for 5 hours, afterwards the 

powder was filtered and washed with n-hexane to remove any precursor residue. The product 

was dried and then calcined at 920 K (heating ramp of 5 K/min) in air for 8 hours.   

Structural and functional characterization  

Transmission electron microscopy (TEM) analysis of the powder samples deposited on a 

copper grid was performed in Torino, using a Jeol JEM 3010 (300 kV) microscope equipped 

with an EDS detector by Oxford Instruments.  

X ray photoelectron spectroscopy (XPS) spectra were collected in Padova in a Ultra High 

Vacuum chamber (base pressure 1.0×10-9 mbar) equipped with a VG MKII Escalab electron 

analyzer. Photoemission spectra were taken at room temperature in normal emission using a 

non-monochromatized Al anode X-ray source (hv=1486.6 eV). Powder samples were 
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suspended in bi-distilled water and drop casted on high purity copper foils. After drying in air 

the obtained films were introduced into the ultrahigh vacuum chamber and outgassed 

overnight. The charging observed during measurements was corrected using adventitious 

carbon as the internal reference. 

For peroxidase-like kinetic assays, 3,3’,5,5’-Tetramethylbenzidine (TMB) was purchased 

from Sigma Aldrich. All the tests were performed in a pH=4 citrate buffer using different 

concentrations of either TMB or H2O2 (35%, Sigma Aldrich) and 200 µg/mL of TC samples 

powder.  

The peroxidase-like reaction, catalyzed by TC powders, is the following: 

TMB(aq) + H2O2(aq) → oxTMB(aq) + 2H2O(l) 

This reaction follows a ping-pong mechanism, in which 3,3’,5,5’-tetramethybenzidine (TMB, 

transparent solution) is oxidized to 3,3’,5,5’-tetramethylbenzidine diimine (oxTMB, blue 

solution) and H2O2 is reduced to H2O.   

As long as the reaction proceeds and TMB is oxidized to oxTMB, the solution turns to blue 

(see Figure S1), thus the kinetics can be monitored acquiring the oxTMB absorbance peak, 

centered at λ=652 nm. The UV-Vis spectra were collected at 120 seconds steps in a Varian 

Cary-50 spectrometer, with a scan rate of 600 nm/min.  

 

RESULTS AND DISCUSSION 

Synthesis and characterization of core-shell NPs 



 

6 
 

CeOx nanostructures, where Ce3+ species are stabilized by the interaction with the substrate, 

were grown on TiO2 in ideal conditions (ultra high vacuum) by physical vapor deposition of a 

controlled amount of metallic Ce (electron beam evaporation from a metallic Ce target) in 

controlled oxygen environments, followed by thermal treatment.24 Nevertheless, a simpler 

and highly scalable synthetic route, characterized by the same level accuracy in the shell 

thickness, can be followed by taking advantage of the surface hydroxyl species on the TiO2 

support, which can be exploited to promote a surface sol-gel reaction with the Ce 

organometallic precursor. This reaction eventually leads to a Ti-O-Ce-(OR)x layer, whose 

organic component is removed during the calcination. Cerium (III) 2-ethylhexanoate was 

chosen due to the steric protection of the metallic center and the reaction was carried out in 

anhydrous conditions (anhydrous n-hexane solvent) to avoid any Ce3+ oxidation during the 

impregnation. In the following we will discuss the behavior of two samples obtained after:  

i) a single impregnation (5 hours in 0.75 mol/L n-hexane solution of the Ce precursor) + 

calcination (8 hours at 920 K in air) step (named TC1);  

ii) three consecutive impregnation steps (5 hours in 0.75 mol/L n-hexane solution of the Ce 

precursor) + calcination (8 hours at 920 K in air) steps (named TC3).  

We report the TEM images of TC1 and TC3 in Figure 1a,b, respectively. In the former case, 

it is possible to observe the typical TiO2 crystal shape, whose edges are outlined by a very 

thin darker border due to the presence of ceria, as confirmed by EDX measurements (see SI, 

Table S1). 

By repeating three times the impregnation + calcination procedure (TC3), a thicker layer (1-

1.5 nm i.e. ca 3 ML) of amorphous ceria covers conformally the titania nanocrystals, 

evidencing a layer by layer growth mode. Lower magnification TEM images (100000x) of 

TC1 and TC3 are reported in figure S2 and S3, respectively. Figure 32 demonstrates that all 
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the NPs are uniformly covered by the CeOx shell. An evaluation of the NPs average 

dimension has given 22.8±0.3 nm for TC1 and 25.9±0.9 nm for TC3. Such an increase could 

be due to the multiple heating treatments at 920 K performed on the latter.   

XPS data of the Ce 3d core levels are displayed in Figure 2. The photoemission spectrum of a 

CeO2 nanopowder, taken as a reference (see Figure S3 in SI), shows the three typical spin-

orbit-split doublets corresponding to the different 4f configurations in the photoemission final 

state.24,30 The component labeled uiii at 916.3 eV is indicative of the poorly screened Ce 

3d
94f

0 O 2p
6 final state, connected with the presence of Ce4+ ions. The XPS data of TC1 and 

TC3 strongly differ from the reference CeO2. The former, (Figure 2a), shows only two peaks 

at 881.1 and 885.0 eV (labelled as v0 and vi, respectively), replicated by spin-orbit-splitting 

satellites (18.2 eV), which can be ascribed to Ce 3d
94f

2 O 2p
5 and Ce 3d

94f
1 O 2p

6 final states, 

respectively. These findings, combined with the absence of the uiii peak, reveal the almost 

exclusive presence of Ce3+ ions, confirming that one monolayer of ceria is stabilized in the 

reduced state by the interaction with TiO2. On the contrary, the XPS data corresponding to 

TC3 (Figure 2c) differs from TC1, showing a change in the relative intensity between the 

different components and the presence of the uiii satellite. Therefore, the TC3 XPS data are 

representative of an oxide whose composition is an “average” between stoichiometric CeO2 

and TC1. A multipeak analysis of the 3d photoemission peaks (Figure 2c) allows a 

quantification of the Ce3+ (v0, vi) and Ce4+ (v, vii, viii) components (72% Ce3+ and 28% Ce4+). 

Thence, TC3 is a TiO2@CeOx core-shell where Ce3+ ions, stabilized at the interface with 

TiO2, and fully oxidized Ce4+ ions are co-present. Moreover, the stabilization of Ce3+ species 

does not depend on extrinsic factors, such as nanodimension or metastable state obtained 

during a kinetically driven synthesis, but on an electronic interaction that is unaffected by 

ambient conditions. 
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Reactivity of core-shell NPs as artificial enzymes 

Being able to synthesize ceria coated NPs characterized by a tunable amount of Ce4+/Ce3+ but 

identical in terms of structure, morphology, dimensions and surface area, we decided to 

investigate how defectivity impacts on their activity as artificial enzymes. Recently, ceria 

NPs with different Ce4+/Ce3+ ratios showed the ability to act as mimics of superoxide 

dismutase, catalase and oxidase, thus proving to be efficient artificial enzymes (often 

referenced as nanozymes)31 able to protect cells from the oxidative stress due to an excess of 

reactive oxygen species.9,10,11,12,13,32,33 In a recent work, Peng et al.33 asserted that CeO2 NPs, 

instead of working as a catalyst, behave as an oxidizing agent, due to the progressive 

dissolution of Ce3+ in the reactive mixture. Therefore, a good strategy to prevent this leaching 

is to stabilize the Ce3+ active sites, allowing CeOx to run like a catalyst. 

As a case study, we investigated the activity of TiO2@CeOx as a peroxidase-like enzyme 

using standard colorimetric tests based on 3,3’,5,5’-Tetramethylbenzidine (TMB) oxidation. 

Similarly to the horseradish peroxidase (HRP) natural enzyme, CeO2 NP catalytic activity is 

dependent on the pH, temperature and concentration of H2O2. In agreement with previous 

biomimetic assays, our tests were performed at 300 K and pH=4.0 buffer.13,33 Figures 3a and 

3b show the reaction rate for TC1 and TC3 as a function of the H2O2 substrate, obtained at a 

fixed TMB concentration (0.2 mM). The reaction rate calculated using TMB as a substrate 

([H2O2]=0.058 M) is reported for both samples in Figure 3c.  

Based on the data reported in Figure 3, in a wide range of TMB and H2O2 concentrations we 

could obtain the apparent Michaelis-Menten steady-state kinetic parameters to evaluate the 

peroxidase-like activity. The results (double reciprocal plots) are shown in Figure S4. The 

first tests, obtained adding variable amount of TMB to a solution of [H2O2] at fixed 

concentration (0.058 M), show that TC1 and TC3 kinetic parameters are comparable 
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(KM
app=0.28 and 0.30 mM, respectively, see Table 1), but lower with respect to HRP (0.43 

mM),34 denoting a good affinity for TMB, which is a common feature of all inorganic mimics 

of peroxidase, such as Fe3O4,
34 CuO,35  and FeS.36,37  On the contrary, the affinity towards the 

oxidant is much scarcer. In general, nanozymes require a higher peroxide concentration than 

HRP to reach the maximum activity.34,35,38 Interestingly, our core-shell NPs escape this trend. 

As a matter of fact, if H2O2 is tested as a substrate, by changing its concentration in the 

presence of 0.2 mM TMB the TC1 KM
app value increases by about 20 times and its calculated 

value (6.29 mM) is higher than that measured for HRP,34 however order of magnitude smaller 

than other oxides (CuO 85.6 mM, Fe3O4 154 mM, see Table 1)34,35 and comparable with 

other highly efficient mimics (graphene oxide 3.99 mM, FeS 7.2 mM).36,38 Surprisingly, also 

TC3 shows an increase of the KM
app (1.39 mM), but quite modest, smaller than the natural 

enzyme.  

Therefore, the apparent kinetic parameters point out an exceptional performance for TC1 and 

especially for TC3 samples as peroxidase-like enzymes, showing a strong affinity for TMB 

and, above all, for the oxidant molecule H2O2. This result is of paramount importance since 

the main limit of inorganic mimics is their need for high concentration of H2O2 in order to 

work efficiently, which prevents their application in sensitive environments.34,35 To 

rationalize the differences observed in the catalytic activity, we acquired the Ce 3d 

photoemission lines after the reaction of the TC samples with a 0.058 M solution of H2O2 (i. 

e. the same concentration used in the biomimetic assays). The resulting spectra (Figure 2b,d) 

show that both samples undergo a modification, due to the presence/increase of Ce4+ peaks 

after the reaction with the H2O2 solution. In particular, the multipeak analysis demonstrates 

that the relative percentage of the Ce4+ peaks (that is the sum of the v, vii and viii 

multiplet/total Ce 3d area) passes from 0% to 50% for TC1 and from 28% to 91% for TC3, 

indicating that TC3 is more prone to oxidation than TC1. 
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Therefore, if we assume a ping-pong mechanism for the TMB oxidation,34 where initially the 

Ce3+centres react with H2O2 with a consequent oxidation to Ce4+, the lower affinity of the 

TC1 toward the H2O2 substrate can be traced back to an excessive stabilization of Ce3+ sites 

at the interface with TiO2, which hinders the redox switching of the Ce4+/Ce3+ couple. 

Interestingly, the interfacial stabilization operated by TiO2 not only changes quantitatively the 

Ce4+/Ce3+ ratio, but also the very tendency of the reduced species to be oxidized.   

 

CONCLUSION 

Our results describe a procedure to obtain TiO2@CeOx NPs by a simple and well 

reproducible impregnation technique. In this way it is possible to tune the thickness of the 

CeOx shell and, by doing so, its oxidation state. In fact, in agreement with works on model 

systems,24 Ce3+ ions are stabilized at the interface with TiO2 and, as long as the shell 

thickness is increased, it is possible to increase the Ce4+/Ce3+ ratio. The electron shuttling 

between defects states (i.e. Ti 3d and Ce 4f bands) in heterointerfaces has demonstrated to be 

a totally general phenomenon39,40,41 that can be extended to other reducible oxides, in order to 

stabilize active chemical species. This paves the way to a full gamut of core-shell 

nanoparticles characterized by enhanced chemical activity but that can also benefit form the 

intrinsic bulk properties of the core, which can be magnetic or optically active in order to 

implement in a single nanosystem multiple functionalities. 

The activity of TiO2@CeOx as a peroxidase-like enzyme was tested by a colorimetric method 

employing TMB and H2O2. The apparent Michaelis-Menten kinetic parameters revealed that 

the shell thickness has a role in the catalyst activity. The TC3 sample showed the best 

performances (in line or better than the natural HRP enzyme), i.e. good affinity for TMB and, 

above all, for H2O2. Moreover, we demonstrated that the large hybridization between TiO2 
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and CeOx in TC1 stabilizes exclusively Ce3+ at the interface, hindering its oxidation to Ce4+. 

On the contrary, a 30%/70% ratio between Ce4+ and Ce3+ ions (TC3) promotes Ce3+ oxidation. 

Therefore the interface not only changes quantitatively the number or reduced species, but 

also the intrinsic tendency of metal centers to accept or donates electrons. This provides a 

quite sophisticated and very general method to tune the redox switch of a catalytic cycle and 

to bring it in the conditions where the activity is maximized.42,43  

 

FIGURES 

 
 

Figure 1. TEM Images of TiO2@CeOx samples: a) TC1 (400000x) and b) TC3 (150000x). 
The conformal growth of ceria, indicative of a layer-by-layer growth is evident from the huge 
homogeneity and perfectly wetting behavior of the outer shell surrounding the 
TiO2nanocrystals. 
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Figure 2. XPS Ce 3d data of the TiO2@CeOx powders obtained after calcination, (a) TC1, (c) 
TC3, and after reaction in a 0.058 M H2O2 solution, (b) TC1, (d) TC3. 
 
 
 

 
Figure 3. Reaction rate of TC1 (a) and TC3 (b) samples at different [H2O2] ([TMB]=0.2 
mM) and (c) reaction rate of TC samples as a function of [TMB] ([H2O2]=0.058 M)  
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TABLES 
 
Table 1. Apparent kinetic parameters obtained from the double reciprocal plots (see Figure 
S3) compared with the natural enzyme (HRP) and other artificial enzymes. 
 

Catalyst+ 
Substrate 

KM
app 

[mM] 

VMAX
app 

[nMs-1] 

TC1 + TMB 0.28±0.03 6.5±0.3 

TC1 + H2O2 6.29±0.94 34.0±3.0 

TC3 + TMB 0.30±0.04 12.0±0.6  

TC3 + H2O2 1.39±0.15 55±5.0 

HRP34+TMB 0.434 10.0 

HRP34+ H2O2 3.70 87.0 

CuO35+TMB 0.013 NA 

CuO35+H2O2 85.6 NA 

Fe3O4
34+TMB 0.098 34.4 

Fe3O4
34+H2O2 154 97.8 

GO-COOH38 + 
TMB 

0.0237± 
0.001 

34.5±3.1 

GO-COOH38+H2O2 3.99±0.67 38.5±2.2 

FeS36+TMB 0.13 NA 

FeS36+H2O2 7.2 NA 
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Supporting Information 

Additional TEM micrographs, with relative statistical analysis, photoemission spectra and 

details about enzyme assays (double reciprocal plots) are provided. This material is available 
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