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The phase transition in multi-type binomial

random graphs

Mihyun Kang∗† Christoph Koch∗‡ Angélica Pachón§‖

Abstract

We determine the asymptotic size of the largest component in the

2-type binomial random graph G(n, P ) near criticality using a refined

branching process approach. In G(n, P ) every vertex has one of two types,

the vector n describes the number of vertices of each type, and any edge

{u, v} is present independently with a probability that is given by an entry

of the probability matrix P according to the types of u and v.

We prove that in the weakly supercritical regime, i.e. if the ‘distance’ to

the critical point of the phase transition is given by an ε = ε(n) → 0, with

probability 1 − o(1), the largest component in G(n, P ) contains asymp-

totically 2ε‖n‖1 vertices and all other components are of size o(ε‖n‖1).

1 Introduction

The theory of random graphs was founded by Erdős and Rényi in the late
1950s. One of their most striking results concerned the phase transition of the
size of the largest component – adding a few additional edges to a random graph
can drastically alter the size of its largest component. In [14] they considered
the random graph G(n,m) obtained by choosing a graph uniformly at random
amongst all graphs on n (labelled) vertices containing precisely m edges and
proved the following result: Let c ≥ 0 be any constant. If c < 1, then with high
probability (whp for short, meaning with probability tending to one as n → ∞)
all components in G(n, cn/2) have size O(log n), while if c = 1, whp the largest
component is of size Θ(n2/3), and if c > 1, then whp there is a component of

First Published in SIAM J. DISCRETE MATH. in Vol. 29, No. 2, pp. 1042–1064, pub-
lished by the Society for Industrial and Applied Mathematics (SIAM). c© 2015 Society for
Industrial and Applied Mathematics.

Mathematical Subject Classifications: 05C80, 60J80.
∗Institute of Optimization and Discrete Mathematics, Graz University of Technology,

Steyrergasse 30, 8010 Graz, Austria. E-mail: {kang,ckoch}@math.tugraz.at
§Department of Mathematics "Giuseppe Peano", University of Turin, Via Carlo Alberto

10, 10123 Turin, Italy. E-mail: angelicayohana.pachonpinzon@unito.it
†Supported by the Austrian Science Fund (FWF): P26826 and W1230, and the German

Research Foundation (DFG): KA 2748/3-1.
‡Supported by the Austrian Science Fund (FWF): P26826 and W1230, and NAWI-Graz.
‖Supported by the German Research Foundation (DFG): KA 2748/3-1.

1

http://arxiv.org/abs/1407.6248v3


size Θ(n), called the ‘giant component’, and all other components are of size
O(log n).

Bollobás [6] investigated this phenomenon further and described in detail
the behaviour of G(n,m) when m is close to n/2, i.e. m = (1 ± ε)n/2 for
some ε = ε(n) > 0 satisfying ε → 0 as n → ∞. His initial results were then
improved by Łuczak [21]. In particular, if in addition ε3n → ∞, whp the largest
component in G(n, (1−ε)n/2) has size o(n2/3), whereas the largest component in
G(n, (1+ ε)n/2) contains asymptotically 2εn vertices and all other components
are of size o(εn). For a comprehensive account of the results see [1, 5, 18].

In the meantime many of these results have been reproved and strengthened
using various modern techniques such as martingales [22], partial differential
equations [26], and search algorithms [7, 20]. Furthermore, more complicated
discrete structures like random hypergraphs have been studied [3, 10, 19].

Over the last years, random graphs have proved to have wide-ranging ap-
plications in neurobiology, statistical physics, and the modelling of complex net-
works [23, 27]. Frequently some properties of real-world networks are already
empirically ‘known’ and have motivated the definition of more sophisticated ran-
dom graph models [12, 13, 25]. In particular, applicable random graph models
should allow for different types of vertices having different degree distributions,
i.e. some level of inhomogeneity. A general theory of inhomogeneous random
graphs was developed by Bollobás, Janson, and Riordan [7] providing a unified
framework for a large number of previously studied random graph models [8, 11,
24]. For example they analysed the degree distribution, the number of paths and
cycles, and the phase transition for the giant component. The behaviour at the
critical point (corresponding to G(n, cn/2) for c = 1) has been studied by van
der Hofstad in the so-called rank one case [17]. Recently Bhamidi, Broutin, Sen,
and Wang studied the general inhomogeneous random graph with a bounded
number of types inside the critical window (corresponding to G(n, (1 ± ε)n/2)
for some ε = ε(n) > 0 satisfying ε3n → C, 0 ≤ C < ∞) and have described the
joint distribution of the largest components using Brownian motion [4].

In this paper, we study an inhomogeneous random graph model in which
there are n vertices, each vertex has one of two types, and an edge between a
pair of vertices of types i and j is present with probability pi,j independently of
all other pairs. The focus lies on the weakly supercritical regime, i.e. when the
distance to the critical point of phase transition decreases to zero as n → ∞.
In this regime the behaviour of the random graph depends very sensitively on
the parameters and could not be studied using the parametrisation in [7]. We
determine the size of the largest component in this regime (Theorem 2.1).

In order to derive the main results, we apply a simple breadth-first search
approach to construct a rooted spanning tree of a component and couple it with
a multi-type branching process with binomial offspring distributions, which is
viewed as a random rooted tree. In addition, the width and the dual of that
random rooted tree play important roles in the second moment analysis.

The results of this paper are indeed not surprising and the techniques used
in the paper may look familiar. The main contribution of this paper is that
it shows how a simple branching process approach combined with the concepts
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of tree width and dual processes can be applied nicely to a multi-type random
graph all the way through the supercritical regime.

2 Model and main results

In this section we will first define multi-type binomial random graphs and as-
sociate them with branching processes. Then we state the main results and
afterwards provide an outline of the proof and the methods involved. We con-
clude the section by discussing related results on the general inhomogeneous
random graph studied in [7].

2.1 Multi-type binomial random graph model

Let k ∈ N be fixed. Every vertex is associated with a type i ∈ {1, . . . , k}
and we denote by Vi the set of all vertices of type i ∈ {1, . . . , k}. Given an
arbitrary vector n = (n1, . . . , nk) ∈ N

k and a symmetric matrix of probabilities
P = (pi,j)i,j=1,...,k ∈ [0, 1]k×k we consider the k-type binomial random graph
Gk(n, P ) on nl vertices of type l, for l ∈ {1, . . . .k}, with the following edge set:
For each pair {u, v}, where u is of type i and v of type j, we include the edge
{u, v} independently of any other pair with probability pi,j and exclude it with
probability 1− pi,j. We write M = (µi,j)i,j∈{1,2} for the matrix of the expected
number of neighbours µi,j = pi,jnj of type j ∈ {1, . . . , k} for a vertex of type
i ∈ {1, . . . , k}.

Next we associate a binomial branching process in which each individual has
a type i ∈ {1, . . . , k} with the random graph Gk(n, P ). Fix a time t ∈ N0 and
let It be a set of individuals (i.e. the population) at time t, which we also call
the t-th generation of individuals. Then, with each individual v ∈ It of type
j′ ∈ {1, . . . , k}, we associate a random vector Xv = (Xv

1 , . . . , X
v
k ), where for each

j ∈ {1, . . . , k} the random variable Xv
j is independent and binomially distributed

with parameters nj and pj′,j and thus with mean µj′,j . Then the population It+1

at time t+ 1 will be a set containing exactly
∑

v∈It
Xv

j new individuals of type
j, for each j ∈ {1, . . . , k}. In other words, the random variable Xv

j represents
the number of children of type j that are born from the individual v. A k-type
binomial branching process starting with an initial population I0 is a sequence
of random vectors (Zt(1), . . . , Zt(k))t∈N0

generated by iterating the construction
described above, where Zt(j) is the random variable describing the number of
individuals of type j in the t-th generation for each j ∈ {1, . . . , k} and t ∈
N0. For i ∈ {1, . . . , k} we denote by T i

n,P a k-type binomial branching process

starting with a single vertex of type i. We may also use T i
n,P to denote the

rooted (possibly infinite) tree created by an instance of the branching process.
The context will always clarify the notation. Furthermore, if a statement is
independent of the starting type we simply write Tn,P , for instance, we refer to
the matrix M as offspring expectation matrix of the branching process Tn,P .

Observe that for k = 1 we obtain the classical binomial random graph G(n, p)
where n = n1 and p = p1,1 and the corresponding binomial branching process.
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Throughout the paper we focus on the case k = 2 and for simplicity we
write G(n, P ) := G2(n, P ). We denote by n = n1 + n2 the total number of
vertices in G(n, P ) and without loss of generality we assume that n1 ≥ n2.
Furthermore, unless specified explicitly, all asymptotic statements are to be
understood in terms of n1 and n2 being large enough yet fixed and we use the
notation min{n1, n2} = n2 → ∞ for this. Note that in general η1,2 6= η2,1 and
it is possible that η2,1/η1,2 → ∞, even though p1,2 = p2,1.

Given a graph G with components C1, . . . , Cr ordered by size such that
|C1| ≥ |C2| ≥ · · · ≥ |Cr| we denote by Li(G) = Ci the i-th largest component of
G and its size by Li(G) = |Li(G)| = |Ci|, for any i ∈ {1, . . . , r}, and set Li(G) = ∅
and Li(G) = 0 if i > r. Moreover, we will use the following standard notation to
describe asymptotic statements: For any real functions f = f(n1, n2) and g =
g(n1, n2) we write: f = O(g) if ∃c > 0, n0 such that |f(n1, n2)| ≤ c|g(n1, n2)|
for all n1 ≥ n2 ≥ n0; f = o(g) if ∀c > 0 : ∃n0 such that |f(n1, n2)| ≤ c|g(n1, n2)|
for all n1 ≥ n2 ≥ n0; f = Ω(g) if g = O(f); f = Θ(g) if f = O(g) and f = Ω(g)
and f ∼ g if f − g = o(g).

2.2 Main results

We show that G(n, P ) exhibits a phase transition in the size of the largest
component. In particular, we show that in the weakly supercritical regime there
is a unique largest component containing asymptotically 2εn vertices. In fact,
we prove a stronger result.

Theorem 2.1. For n1 ∈ N and n2 ∈ N with n1 ≥ n2, let n = n1 + n2 and let
ε = ε(n1, n2) > 0 with ε = o(1). Furthermore, let

P = (pi,j)i,j∈{1,2} ∈ (0, 1]2×2

be a symmetric matrix of probabilities satisfying the following conditions:

ε3n2 min{1, ε−1µ2,1} → ∞, (1)

µι,1 + µι,2 = 1 + ε+ o(ε), for any ι ∈ {1, 2}, (2)

where µi,j = pi,jnj for every pair (i, j) ∈ {1, 2}2. Then, whp the following holds
for all integers r ≥ 2 and i ∈ {1, 2} :

|L1 (G(n, P )) ∩ Vi| = (2 + o(1))εni and |Lr (G(n, P )) ∩ Vi| = o(εni);

therefore, in particular,

L1 (G(n, P )) = (2 + o(1))εn and Lr (G(n, P )) = o(εn).

Remark 1. Observe that, up to the term min{1, ε−1µ2,1}, Condition (1) mir-
rors the condition ε3n → ∞ that is necessary and sufficient for the existence of
a unique largest component in G(n, (1+ε)/n). In G(n, (1+ε)/n) the average de-
gree is 1+ε = Θ(1) and therefore it does not influence the asymptotic statement
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in (1). In G(n, P ) however, P can be such that we are close to criticality but
the average number µ2,1 (respectively µ1,2) of neighbours of the opposite type for
a given vertex is still o(1). Roughly speaking, it is reasonable that if µ2,1 is ‘very
small’, then the random graph G(n, P ) may have two largest components, one
of each type, that coexist independently since the probability of adding any edge
between them is negligible. In particular, this would happen in case probability
p1,2 was equal to zero and therefore µ1,2 = µ2,1 = 0.

On the other hand, in the special case n2 = o(n), the condition in (1) differs
by an additional factor of n2/n = o(1) from that in G(n, (1 + ε)/n). This
factor is, for instance, necessary to show that the number of vertices of type 2
in the largest components is concentrated around its mean. Therefore it is not
avoidable with this method, even though it might not be optimal.

Remark 2. The symmetry of P simply reflects the fact that G(n, P ) is an
undirected random graph.

Note that the parameter ε > 0 describes the distance to the critical point
for the emergence of the giant component in a sense that we will explain now.
Roughly speaking, for some time, the breadth-first exploration process of a
component in G(n, P ) looks like a 2-type binomial branching process Tn,P .
This can be described by a coupling of the two processes. If the branching
process dies out its total population should be rather ‘small’. Thus, by the
coupling, the explored component is also ‘small’. It is well-known that for a
2-type binomial branching process the property of survival has a threshold and
that the critical point is characterised by the Perron-Frobenius eigenvalue

λ =
µ1,1 + µ2,2

2
+

1

2

√

(µ1,1 + µ2,2)2 + 4 (µ1,2µ2,1 − µ1,1µ2,2) (3)

of its offspring expectation matrix M = (µi,j)i,j∈{1,2}. If λ > 1, the process has
a positive probability of survival, while if λ ≤ 1, it dies out with probability 1.

Next, let us compute λ for the 2-type binomial branching process Tn,P with
parameters as in Theorem 2.1. Condition (2) states that for every constant
δ ∈ (0, 1) there is an n0 = n0 (δ) such that we have

|µi,1 + µi,2 − (1 + ε)| ≤ δε ,

for i ∈ {1, 2} and all n1 ≥ n2 ≥ n0. This implies

µ1,2µ2,1 − µ1,1µ2,2 ≤ (1 + ε+ δε)2 − (µ1,1 + µ2,2) (1 + ε+ δε)

and similarly

µ1,2µ2,1 − µ1,1µ2,2 ≥ (1 + ε− δε)
2 − (µ1,1 + µ2,2) (1 + ε− δε) .

Therefore we can bound the argument of the square root in (3) from above by

(µ1,1 + µ2,2)
2 + 4 (µ1,2µ2,1 − µ1,1µ2,2) ≤ (2 (1 + ε+ δε)− (µ1,1 + µ2,2))

2
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and from below by

(µ1,1 + µ2,2)
2 + 4 (µ1,2µ2,1 − µ1,1µ2,2) ≥ (2 (1 + ε− δε)− (µ1,1 + µ2,2))

2
.

Thus, by (3) and since δ was arbitrary, we obtain the following asymptotic
estimate for the Perron-Frobenius eigenvalue

λ = 1 + ε+ o(ε). (4)

In other words, ε describes how close λ is to 1.
Our next result concerns the weakly subcritical regime.

Theorem 2.2. For n1 ∈ N and n2 ∈ N with n1 ≥ n2, let n = n1 + n2 and let
ε = ε(n1, n2) > 0 with ε = o(1). Furthermore, let

P = (pi,j)i,j∈{1,2} ∈ (0, 1]2×2

be a symmetric matrix of probabilities satisfying the following conditions:

ε3n2 → ∞, (5)

µι,1 + µι,2 = 1− ε+ o(ε), for any ι ∈ {1, 2}, (6)

where µi,j = pi,jnj for every pair (i, j) ∈ {1, 2}2. Then we have whp

L1 (G(n, P )) = o(n2/3).

Note that analogously to Theorem 2.1 the parameter ε > 0 describes the
distance to the critical point from below. In other words, by (6), we know
that the Perron-Frobenius eigenvalue λ of the offspring expectation matrix M
of a 2-type binomial branching process Tn,P with parameters as in Theorem 2.2
satisfies

λ = 1− ε+ o(ε). (7)

We will dedicate most of this paper to the more sophisticated weakly super-
critical regime. A sketch of the proof of Theorem 2.1 is given in Subsection 2.3,
properties of supercritical branching processes will be analysed in Section 3, and
the actual proof of Theorem 2.1 is provided in Section 4. The weakly subcritical
regime follows in Section 5 with the proof of Theorem 2.2. In Sections 6 and 7
we also consider the size of the largest component in the regimes where the
distance to the critical value is a constant (independent of n1 and n2). In the
supercritical regime the largest component will already be a giant component,
i.e. it is unique and of linear size. Similarly, we also get a stronger upper bound
on the size of all components in the subcritical regime. These results can also be
proved using the general framework in [7], however, we give alternative simple
proofs.
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2.3 Proof sketch of Theorem 2.1

We extend the method employed by Bollobás and Riordan [9] for the study of
the weakly supercritical regime of G(n, p). To prove Theorem 2.1 we consider
the set S of vertices in ‘large’ components. The first goal is to show that the
size of S is concentrated around 2εn by applying Chebyshev’s inequality. We
calculate asymptotically matching upper and lower bounds for the expected size
of S by coupling the breadth-first component exploration process from below
and above with 2-type branching processes. Once this is done, using a more
refined version of this idea, we show that the square of this expectation is an
upper bound for the second moment of the size of S, therefore the variance of
the size of S is indeed ‘small’ compared to the square of the expectation and
concentration follows by Chebyshev’s inequality. So now we know that whp the
appropriate number of vertices lie in ‘large’ components, but there might be
several distinct such components all of which may also be much smaller than
claimed in Theorem 2.1. However, we can construct a random graph via a two-
round exposure. In the first round we reduce the probability of including some
edges by a tiny bit and note that the above arguments will still hold in this
setting. In the second round we once again look at each pair not yet connected
by an edge and ‘sprinkle’ an edge with a tiny probability independently for
each such pair. By choosing the magnitude of these probabilities appropriately
we can ensure that the resulting random graph has the same distribution as
G(n, P ) and thus we can identify both random graphs by a coupling argument.
Analysing the probability that ‘large’ components are connected by at least one
edge and using the union bound we show that whp almost all vertices from S
lie in a single component of G(n, P ).

2.4 Related work

The general inhomogeneous random graph model G(n, cκn) studied by Bollobás,
Janson, and Riordan [7] is closely related to the model G(n, P ). For any n ∈ N

consider a random sequence xn = (x1, . . . , xn) of points from a separable metric
space S equipped with a Borel probability measure ν and let νn be the empirical
distribution of xn. Assume that νn converges in probability to ν, then the triple
(S, ν, (xn)n≥1) is called a vertex space. Furthermore let {κn} be a sequence of
symmetric non-negative ν-measurable functions on S × S, which converges to
a limit κ, and let c > 0 be a constant. Then the random graph G(n, cκn) is a
graph with vertex set [n], where each pair of vertices {k, l} is connected by an
edge with probability pk,l := min{1, cκn(xk, xl)/n} independently of all other
pairs.

It is proved that with respect to the parameter c there is a phase transition
concerning the size of the largest component. In particular, the existence and
uniqueness of the giant component in G(n, cκn) in the supercritical regime are
proved using an appropriate multi-type branching process and analysing an in-
tegral operator Tκ. The critical point of the phase transition is characterised by
c0 := ||Tκ||−1: if c ≤ c0, then the random graph contains only small components,
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but if c > c0, then there is a giant component which contains asymptotically
ρcn vertices, where ρc is independent of n and grows linearly in c− c0 > 0.

By contrast the focus of our paper lies on the weakly supercritical regime
(Theorem 2.1), i.e. the distance ε = ε(n) from the critical point of the phase
transition tends to zero as the number of vertices increases. The analysis in this
regime is in general quite sophisticated, in comparison with the supercritical
regime, i.e. when ε > 0 is a constant independent of n. In general it is not
sufficient to only scale the edge probabilities multiplicatively as in G(n, cκn),
since even if ε → 0 the spectral gap of the operator (1+ε)c0Tκ is always bounded
away from 0. In contrast to this, the spectral gap of the offspring expectation
matrix in G(n, P ) is given by µ1,2 + µ2,1 and thus may tend to zero arbitrarily
quickly. Similarly, if one of the types has significantly fewer vertices than the
others, it will not influence the behaviour of G(n, cκn); however we show that
in the weakly supercritical regime of G(n, P ) these vertices may still be crucial
in the evolution of the largest component and ignoring them may even result
in a subcritical process. For ε → 0, such an example is given by n2 =

√
εn1 ,

µ2,1 = 1 and thus µ1,1 = 1−√
ε+ ε+ o(ε).

3 Multi-type binomial branching processes in the

supercritical regime

Later we will study the component sizes of the random graph G(n, P ) using
2-type binomial branching processes. In this section we investigate some of
their most important properties. We start with a simplified version of a key
result concerning the survival probability of a general multi-type Galton-Watson
branching processes.

Lemma 3.1 (e.g. [16]). Let Tn,P be a 2-type binomial branching process with
parameters n1 ∈ N and n2 ∈ N, with n1 ≥ n2, and

P = (pi,j)i,j∈{1,2} ∈ (0, 1]2×2 .

Let λ = λ(n1, n2) > 0 be the Perron-Frobenius eigenvalue of its offspring ex-
pectation matrix M = (µi,j)i,j∈{1,2} , where µi,j = pi,jnj , and let (ρ1, ρ2) be the
pair of survival probabilities. Then the following holds:

• if λ ≤ 1, we have ρ1 = ρ2 = 0;

• if λ > 1, then (ρ1, ρ2) is the unique positive solution of

F1(ρ1, ρ2) = F2(ρ1, ρ2) = 0, (8)

where

Fi(ρ1, ρ2) := 1−ρi−
(

1− µi,1ρ1
n1

)n1
(

1− µi,2ρ2
n2

)n2

, for i ∈ {1, 2}. (9)

8



We call a branching process that has a positive survival probability super-
critical and otherwise we call it subcritical.

Remark 3. There is a very simple way to see that the survival probabilities
must satisfy these equations: We consider the extinction probabilities before and
after the first step of the process and apply the Binomial Theorem.

Because the conditions of Theorem 2.1 imply that the Perron-Frobenius
eigenvalue of the offspring expectation matrix M is strictly larger than 1, the
associated branching process will have a positive survival probability that is
given implicitly by (8). It is sufficient for us to extract some information about
the asymptotic behaviour of the unique positive solution from these equations.
However, even trying to solve these equations only asymptotically we have to be
very careful with cancellation and take into account higher order terms: This
is a major reason why the weakly supercritical regime is significantly harder to
analyse than the other regimes.

3.1 Asymptotic survival probability

Lemma 3.2. Under the conditions as in Theorem 2.1 the survival probabilities
of the 2-type binomial branching process Tn,P satisfy

ρ1 ∼ ρ2 ∼ 2ε.

Proof. The key idea is to find suitable bounding functions for the Fi’s defined
in (9), for which the asymptotic values of the zeros can be computed easily, and
then to observe that these coincide for the upper and lower bound.

First observe the following fact: If ρ1 ≥ ρ2, we have F1(ρ1, ρ2) ≤ F1(ρ1, ρ1)
and F2(ρ1, ρ2) ≥ F2(ρ2, ρ2); Analogously, if ρ1 < ρ2, then F2(ρ1, ρ2) < F2(ρ2, ρ2)
and F1(ρ1, ρ2) > F1(ρ1, ρ1). Thus, without loss of generality due to the Sub-
subsequence Principle (e.g. [18]), we assume ρ1 ≥ ρ2 and consider the bounding
functions Fi(ρi, ρi), for i ∈ {1, 2}:

Fi(ρi, ρi) = 1− ρi −
(

1− µi,1ρi
n1

)n1
(

1− µi,2ρi
n2

)n2

= 1− ρi − exp

(

−(µi,1 + µi,2)ρi −O

(

µ2
i,1ρ

2
i

n1
+

µ2
i,2ρ

2
i

n2

))

,

by the Taylor-expansion of the natural logarithm around 1. Since µi,1 ≤ 2 and
µi,2 ≤ 2, by the conditions of Theorem 2.1 and the fact that ρi ≤ 1 (since it is
a probability), we have

Fi(ρi, ρi) = 1− ρi − exp
(

−
[

µi,1 + µi,2 +O
(

n−1
2

)]

ρi
)

= 1− ρi − exp (−(1 + εi)ρi) ,

where εi = µi,1 + µi,2 − 1 +O
(

n−1
2

)

∼ ε, by (1) and (2). We define

fi(ρi) := 1− ρi − exp (−(1 + εi)ρi)

9



and note that solving
fi(ρ

∗
i ) = 0

asymptotically is a well-known problem that turns up when calculating the
asymptotic value of the survival probability for a single-type Poisson branching
process. Using the Taylor-expansion of the natural logarithm we get

εi =
− log(1 − ρ∗i )− ρ∗i

ρ∗i
=

∞
∑

m=1

(ρ∗i )
m

m+ 1
.

Since the coefficients in this series are all positive and εi → 0, this shows that
ρi → 0 and thus

εi =
ρ∗i
2

+O((ρ∗i )
2).

Having established the asymptotic behaviour of ρ∗1 and ρ∗2 it remains to show
that ρ∗2 ≤ ρ2 and ρ1 ≤ ρ∗1, since this together with ρ2 ≤ ρ1 and ε2 ∼ ε1 ∼ ε
implies ρ2 ∼ ρ1 ∼ 2ε.

For this last step, assume towards contradiction that ρ1 > ρ∗1 and observe
that f1 is negative on the interval (ρ∗1, 1]. Since (ρ1, ρ2) is by definition a solution
of (8) we have

0 = F1(ρ1, ρ2) ≤ f1(ρ1) < 0,

a contradiction. Analogously, ρ2 < ρ∗2 leads to a contradiction since f2 is positive
on (0, ρ∗2), completing the proof. �

3.2 Dual processes

In the proof of Theorem 2.1 we consider the supercritical branching process Tn,P
associated with G(n, P ) and we will need a good upper bound on the probability
its total number of offspring of type j ∈ {1, 2} is at least lj, for carefully chosen
real functions l1 and l2. Since this probability is 1 if the process survives, this
reduces to analysing the conditional probability given the event D that the
process dies out. We call the resulting 2-type binomial branching process the
dual process and we can describe its offspring distributions as follows. We need
to know, for a vertex v of type i ∈ {1, 2} born in generation It, for some integer
t ≥ 0, and a potential child u of type j ∈ {1, 2}, whether the edge e = {u, v}
is present in the dual process, i.e. conditioned on D. Let Ae be the event
that u is a child of v in Tn,P and note that conditioning on Ae will decrease
the probability of D. More precisely, let Y = (Y1, Y2) denote the vector of the
number of individuals of each type in generation It+1. Since Y1 and Y2 are
independent binomially distributed random variables, calculating P (D|Ae) and
P (D|¬Ae) by conditioning on Y leads to

P (D | Ae) =

nj−1
∑

rj=0

P (Yj = rj + 1 | Ae) (1− ρj)
rj+1

·
n3−j
∑

r3−j=0

P (Y3−j = r3−j | Ae) (1− ρ3−j)
r3−j

10



and

P (D | ¬Ae) =

nj−1
∑

rj=0

P (Yj = rj | ¬Ae) (1− ρj)
rj

·
n3−j
∑

r3−j=0

P (Y3−j = r3−j | ¬Ae) (1 − ρ3−j)
r3−j .

Observe that by definition

P (Yj = rj + 1 | Ae) = P (Yj = rj | ¬Ae) ,

for all rj = 0, . . . , nj − 1, and Y3−j is independent of Ae and thus

P (D | Ae)

P (D | ¬Ae)
= 1− ρj . (10)

Therefore we get

P (Ae|D) =
P (D|Ae)P(Ae)

P (D|Ae)P(Ae) + P (D|¬Ae)P(¬Ae)

=

P(D | Ae)
P(D | ¬Ae)

· P(Ae)

P(D | Ae)
P(D | ¬Ae)

· P(Ae) + P(¬Ae)

(10)
=

pi,j(1− ρj)

1− ρjpi,j
=: πi,j ,

uniformly for all edges e (with one end point of type i and the other of type j).
An analogous calculation shows that the presence of e does not depend on any
other edges, i.e. the dual process is also a 2-type binomial branching process.
Hence, we write Π = (πi,j)i,j∈{1,2}, H = (hi,j)i,j∈{1,2}, where hi,j := πi,jnj, and
denote the dual process of Tn,P by Tn,Π.

Intuitively it is obvious that the dual process of any supercritical process is
subcritical. For completeness we give a short proof for the processes that we
use. First observe that for each pair (i, j) ∈ {1, 2}2 we have, by Condition (2),
pi,j = O(n−1

j ) and thus

πi,j = pi,j(1 − ρj)(1 +O(n−2
j ρj)). (11)

Lemma 3.3. Let Tn,P be a 2-type binomial branching process satisfying the con-
ditions of Theorem 2.1. Then the offspring expectation matrix H = (hi,j)i,j∈{1,2}

of the dual process Tn,Π satisfies

hι,1 + hι,2 = 1− ε+ o(ε), for ι ∈ {1, 2}, (12)

and thus we have λ = 1− ε+ o(ε) for the Perron-Frobenius eigenvalue λ of H.

11



Proof. By (11), Lemma 3.2 and Condition (2) we get

hι,1 + hι,2 = (µι,1 + µι,2) (1− 2ε) = 1− ε+ o(ε), for ι ∈ {1, 2}.

The second statement follows analogously to (7). �

The benefit of using the subcritical dual process Tn,Π is that we can bound
the expected total number of offspring of each type.

Lemma 3.4. For i ∈ {1, 2} let T i
n,P be a 2-type binomial branching process

satisfying the conditions of Theorem 2.1. Then the associated dual process T i
n,Π

satisfies
E
(∣

∣T i
n,Π ∩ Vj

∣

∣

)

≤ ε−1, for j ∈ {1, 2}. (13)

Moreover, for any real functions l1 and l2 , this implies that

P
(∣

∣T i
n,P ∩ V1

∣

∣ ≥ l1 ∨
∣

∣T i
n,P ∩ V2

∣

∣ ≥ l2
)

≤ 2ε+ ε−1l−1
1 + ε−1l−1

2 + o(ε),

and in particular

P
(∣

∣T i
n,P ∩ V1

∣

∣ ≥ l1 ∨
∣

∣T i
n,P ∩ V2

∣

∣ ≥ l2
)

≤ (2 + o(1))ε, (14)

if ε2l1 → ∞ and ε2l2 → ∞.

Proof. Consider the dual process Tn,Π. We associate a vertex born in generation
It , for integer t ≥ 1, with its ‘line of ancestry’, i.e. the string σ ∈ Σt := {1, 2}t+1

which is the finite sequence of types of all its ancestors (starting with the root
of Tn,Π and including itself). Set Σ :=

⋃

t≥1 Σt and denote by Ξ∗ the set of

all finite strings over the alphabet Ξ :=
{

(1, 1), (1, 2), (2, 1), (2, 2)
}

. We consider
the injective function f : Σ → Ξ∗ defined by

f
∣

∣

Σt
: Σt → Ξ∗, σ 7→

(

(

σ(0), σ(1)
)

,
(

σ(1), σ(2)
)

, . . . ,
(

σ(t− 1), σ(t)
)

)

,

for t ≥ 1. A string τ ∈ Ξ∗ is called admissible if τ ∈ f(Σ) and we denote
the set of admissible strings by Ξad := f(Σ). Observe that, for every pair
(i, j) ∈ {1, 2}2, the function f can be seen as a bijection that maps the subset
Σi,j ⊂ Σ of lines of ancestry starting with i and ending in j to the subset
Ξad
i,j ⊂ Ξad of admissible strings starting with (i, 1) or (i, 2) and ending with

(1, j) or (2, j). Next we define a function

g̃ : Ξ → R>0, (i, j) 7→ hi,j

that canonically extends to a function

g : Ξ∗ → R>0, τ 7→
∏

r=0,...,t−1

g̃(τ(r))

12



and note that the expected number of offspring with a fixed line of ancestry
σ ∈ Σ is precisely g(f(σ)). Hence, for i ∈ {1, 2}, we obtain

E
(∣

∣T i
n,Π ∩ Vi

∣

∣

)

= 1 +
∑

τ∈Ξad
i,i

g(τ) = 1 +Gi,i (h1,1, h1,2, h2,1, h2,2) ,

E
(∣

∣T i
n,Π ∩ V3−i

∣

∣

)

=
∑

τ∈Ξad
i,3−i

g(τ) = Gi,3−i (h1,1, h1,2, h2,1, h2,2) ,

where, for every pair (j, j′) ∈ {1, 2}, Gj,j′ is the four-variate ordinary generat-
ing function of Ξad

j,j′ (marking the occurrences of (1, 1), (1, 2), (2, 1), and (2, 2)
respectively). Using the symbolic method(e.g. [15]) we compute the closed forms
of these generating functions providing

E
(
∣

∣T i
n,Π ∩ Vi

∣

∣

)

=
1− h3−i,3−i

d
and E

(
∣

∣T i
n,Π ∩ V3−i

∣

∣

)

=
hi,3−i

d
,

for i ∈ {1, 2}, if the denominator

d = 1− h1,1 − h2,2 + h1,1h2,2 − h1,2h2,1

is positive. We now establish stronger lower bounds, which allow us to prove
statement (13). By (12), for any constant δ ∈ (0, 1) there exists an integer
n∗ = n∗(δ) such that for all n1 ≥ n2 ≥ n∗ we have

d ≥ 1− h1,1 − h2,2 + h1,1h2,2 − (1− ε(1− δ)− h1,1)(1 − ε(1− δ)− h2,2)

= ε(1− δ) (2− h1,1 − h2,2 − ε(1− δ))

≥ ε(1− δ)(2 − (1− ε(1− δ))− h3−i,3−i − ε(1− δ))

= ε(1− δ)(1 − h3−i,3−i)

≥ ε(1− δ)hi,3−i > 0,

and thus, letting δ → 0, we obtain

E
(∣

∣T i
n,Π ∩ Vi

∣

∣

)

≤ ε−1 and E
(∣

∣T i
n,Π ∩ V3−i

∣

∣

)

≤ ε−1.

As mentioned before, conditioning on Di (the event that the primal process
T i
n,P dies out) and applying Markov’s inequality we get

P
(∣

∣T i
n,P ∩ V1

∣

∣ ≥ l1 ∨
∣

∣T i
n,P ∩ V2

∣

∣ ≥ l2
)

= P (¬Di)P
(∣

∣T i
n,P ∩ V1

∣

∣ ≥ l1 ∨
∣

∣T i
n,P ∩ V2

∣

∣ ≥ l2
∣

∣¬Di

)

+ P(Di)P
(∣

∣T i
n,P ∩ V1

∣

∣ ≥ l1 ∨
∣

∣T i
n,P ∩ V2

∣

∣ ≥ l2
∣

∣Di

)

= ρi + P(Di)P
(
∣

∣T i
n,Π ∩ V1

∣

∣ ≥ l1 ∨
∣

∣T i
n,Π ∩ V2

∣

∣ ≥ l2
)

≤ ρi + P
(∣

∣T i
n,Π ∩ V1

∣

∣ ≥ l1
)

+ P
(∣

∣T i
n,Π ∩ V2

∣

∣ ≥ l2
)

≤ 2ε+ ε−1l−1
1 + ε−1l−1

2 + o(ε),

completing the proof. �
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3.3 Width of a tree

The last tool that we need for the proof is the concept of the width of a rooted
tree. The width w(T ) of a rooted tree T is defined as the supremum of the sizes
of all its generations. In this context we will interpret any branching process as
a potentially infinite random rooted tree.

Lemma 3.5. Let Tn,P be a 2-type branching process satisfying the conditions
of Theorem 2.1 and denote by D the event that this process dies out. Then for
any real function m such that εm → ∞ we have

P ({w (Tn,P ) ≥ m} ∩ D) = o(ε).

Proof. Denote Wm = {w (Tn,P ) ≥ m} and let us construct Tn,P generation by
generation and stop as soon as we see the first generation of size at least m if
there is one. Then we have m1 vertices of type 1 and m2 vertices of type 2
where m1 + m2 ≥ m. Since each of the vertices of this generation starts an
independent copy of T 1

n,P (respectively T 2
n,P ) we get for the probability of dying

out given that Wm holds

P(D|Wm) = (1− ρ1)
m1(1− ρ2)

m2 ≤ e−(ρ1m1+ρ2m2) = O(exp(−2εm)) = o(1),

where the asymptotic statements hold due to Lemma 3.2 and since εm → ∞.
Hence, we obtain

P(¬D|Wm) = 1− o(1),

and by the law of conditional probability and Lemma 3.2 we have

P (Wm ∧ D) = P (Wm ∧ ¬D) · P(D|Wm)

P(¬D|Wm)
≤ o(P(¬D)) = o(ε),

proving Lemma 3.5. �

4 Large components: proof of Theorem 2.1

The main idea of the proof is to couple the component exploration process in
G(n, P ) with instances of the 2-type binomial branching process Tn,P . Given a
vertex v of type i in G(n, P ) we denote its component by Cv. Furthermore let Tv
be the random spanning-tree rooted at v constructed by exploring new neigh-
bours in Cv via a breadth-first search. Again we interpret branching processes
as potentially infinite random rooted trees.

Lemma 4.1. Given any vector n ∈ N
2, any symmetric matrix P ∈ [0, 1]2×2,

and any vertex v of type i ∈ {1, 2}, the following two statements hold.

(i) There is a coupling of the random rooted trees Tv and T i
n,P such that Tv ⊂

T i
n,P . In particular, |Cv ∩ Vj | ≤

∣

∣T i
n,P ∩ Vj

∣

∣ , for j ∈ {1, 2}.
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(ii) For any vector m = (m1,m2) ∈ N
2 satisfying m ≤ n, there is a coupling

of the random rooted trees Tv and T i
n−m,P such that T i

n−m,P ⊂ Tv or both
trees contain at least m1 vertices of type 1 or m2 vertices of type 2. In
particular, either |Cv ∩ Vj | ≥

∣

∣T i
n−m,P ∩ Vj

∣

∣, for j ∈ {1, 2}, or the total

number of vertices of type r in Cv and T i
n−m,P is at least mr for some

r ∈ {1, 2}.

Proof. For the first statement, we generate Tv and T i
n,P simultaneously, restor-

ing the set of potential neighbours in the breadth-first search by adding fictional
vertices of the same type to the vertex set of G(n, P ) for each vertex already
added as a neighbour. Any offspring of a fictional vertex is automatically fic-
tional. In this way, for each type j ∈ {1, 2}, we always have nj potential new
neighbours of this type each chosen independently with probability pj′,j accord-
ing to the type j′ ∈ {1, 2} of the current vertex. After removal of all fictional
vertices from T i

n,P we obtain Tv. Therefore, we have (Tv ∩ Vj) ⊂
(

T i
n,P ∩ Vj

)

and since |Cv ∩ Vj | = |Tv ∩ Vj | the first statement holds.
For the second statement we proceed as before with the slight change that

in each step we choose for any type j ∈ {1, 2} exactly nj −mj neighbours from
all possible new neighbours of type j and only add those independently with
probability pj′,j, where j′ ∈ {1, 2} is the type of the current vertex, and ignore
all other vertices. Until we have encountered a total of at least mr vertices of
type r in T i

n−m,P for some r ∈ {1, 2} there are always enough vertices of each
type to choose from. Assuming that this does not happen for any r ∈ {1, 2}, we
thus have

(

T i
n−m,P ∩ Vj

)

⊂ (Tv ∩ Vj) ⊂ (Cv ∩ Vj) and the claim follows. �

Using Lemma 3.4 and Lemma 4.1 we can now establish the expectation of
the number of vertices in ‘large’ components. For any type i ∈ {1, 2}, we denote
by Si,L = Si,L (G(n, P )) the set of all vertices of type i in components that
contain at least lj vertices of type j, for some j ∈ {1, 2} and a properly chosen
pair L = (l1, l2) of real functions. Moreover, we denote by si,L = |Si,L| the
cardinality of this set.

Lemma 4.2. Let lj be a real function satisfying ε2lj → ∞, for j ∈ {1, 2}. Then

E (si,L) ≤ (2 + o(1))εni, for i ∈ {1, 2}.

Proof. For i ∈ {1, 2}, by Lemma 4.1(i) and linearity of expectation, we have

E (si,L) =
∑

v∈Vi

P (|Cv ∩ V1| ≥ l1 ∨ |Cv ∩ V2| ≥ l2)

≤ niP
(∣

∣T i
n,P ∩ V1

∣

∣ ≥ l1 ∨
∣

∣T i
n,P ∩ V2

∣

∣ ≥ l2
)

∼ 2εni,

where the last step holds by equation (14) in Lemma 3.4. �

Lemma 4.3. Let lj be a real function satisfying lj = o(εnj), for j∈{1, 2}. Then

E (si,L) ≥ (2 + o(1))εni, for i ∈ {1, 2}.
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Proof. We apply Lemma 4.1(ii) with m = L = (l1, l2), since lj = o(εnj), for
j ∈ {1, 2}, and note that the parameters of the coupling branching process
satisfy Conditions (1) and (2). Hence, for i ∈ {1, 2}, this yields by linearity of
expectation

E (si,L) =
∑

v∈Vi

P (|Cv ∩ V1| ≥ l1 ∨ |Cv ∩ V2| ≥ l2)

≥ niP
(∣

∣T i
n−m,P ∩ V1

∣

∣ ≥ l1 ∨
∣

∣T i
n−m,P ∩ V2

∣

∣ ≥ l2
)

≥ niP
(

T i
n−m,P survives

)

∼ 2εni,

where the last step holds due to Lemma 3.2. �

In the next lemma we will show that si,L (G(n, P )), i.e. the number of vertices
of type i in large components, is concentrated around its expectation.

Lemma 4.4. Let lj be a real function satisfying ε2lj → ∞ and lj = o(εnj), for
j ∈ {1, 2}. Then whp

si,L (G(n, P )) = (2 + o(1))εni, for i ∈ {1, 2}.

Proof. Lemmas 4.2 and 4.3 show that E(si,L) ∼ 2εni, hence it is sufficient to
derive the upper bound

E(s2i,L) ≤ (4 + o(1))ε2n2
i ∼ E (si,L)

2 for i ∈ {1, 2}. (15)

The reason for this is the classical second moment method (e.g. [1, 18]): Equa-
tion (15) implies that for the random variable si,L the variance is of smaller
order than the square of the expectation, i.e.

V (si,L) = E
(

s2i,L
)

− E (si,L)
2 ≤ o

(

E (si,L)
2
)

, for i ∈ {1, 2},

which provides concentration by Chebyshev’s inequality.
Without loss of generality fix a type i ∈ {1, 2} for the rest of the proof.

Furthermore, fix a vertex v of type i in G(n, P ). Once again we explore the
component Cv of that vertex in a breadth-first search generating a tree T ′

v ⊂
Cv. However, we will stop the exploration immediately, even midway through
revealing the neighbours of one particular vertex, if one of the following two
events occurs:

(i) we have already reached a total of lj vertices of type j for some j ∈ {1, 2};

(ii) there are εl2 vertices that have been reached (i.e. children of earlier ver-
tices) but not yet fully explored (flipped a coin for each possible neighbour).

Note that for stopping condition (ii) we do not distinguish the types of vertices.
Any vertex that has been reached but not fully explored is called boundary
vertex. Observe that this process will create at most εl2 + 1 ≤ 2εl2 bound-
ary vertices. Furthermore, denote by A the event that the process stops due
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to (i) or (ii), rather than because it has revealed the whole component Cv. Note
that

{|Cv ∩ V1| ≥ l1 ∨ |Cv ∩ V2| ≥ l2} =⇒ A, (16)

a fact that we will use later on. Now we estimate the probability that A holds:
By the coupling in Lemma 4.1(i) we may assume that T ′

v ⊂ Tv ⊂ T i
n,P and, since

we proceed in a breadth-first manner, at every point of time all the boundary
vertices are contained in at most two consecutive generations. Hence if A holds,
either

∣

∣T i
n,P ∩ Vj

∣

∣ ≥ lj, for some j ∈ {1, 2}, or the total number of offspring of

the process T i
n,P is finite and w(T i

n,P ) ≥ εl2/2. As calculated in Lemma 3.4 the
probability that the first case occurs is asymptotically at most 2ε, while for the
second case we calculated in Lemma 3.5 that the probability of having large
width but still dying out is o(ε), hence

P(A) ≤ (2 + o(1))ε. (17)

We use this to relate the second moment to the expectation on the condi-
tional probability space, where we condition on A holding. We replace si,L by
a sum of indicator random variables and from the implication in (16) we get

E
[

s2i,L
]

=
∑

v∈Vi

E
[

1{|Cv∩V1|≥l1∨|Cv∩V2|≥l2}si,L
]

≤ niE [1Asi,L]

= niP(A)E [si,L| A]

≤ (2 + o(1))εniE [si,L | A] . (18)

For the remainder of this proof we will compute an asymptotic upper bound
for the conditional expectation E [si,L | A] . Now for any vertex u 6∈ T ′

v of type
i we reveal its component as before in a breadth-first manner but ignore any
vertices that are in T ′

v , i.e. we explore in G′ = G(n, P )\V (T ′
v ) until we have

revealed the whole component in this subgraph. Moreover, we couple the gen-
erated tree T ′′

u with T i
n,P such that T ′′

u ⊂ T i
n,P . We denote by Di the event that

this instance of T i
n,P dies out and note, in particular, that Di is independent of

the event A, hence

P (¬Di| A) = P(¬Di) = (2 + o(1))ε (19)

by Lemma 3.2. Let us observe that |T ′′
u | ≤ |Cu| and furthermore that equality

holds unless G(n, P ) contains an edge connecting a boundary vertex to a vertex
of T ′′

u . Therefore, for any given r ∈ N, we have

P(|Cu| 6= |T ′′
u | | Di ∧ A ∧ {|T ′′

u | = r}) ≤ 2εl2rmax {pj,j′ | j, j′ ∈ {1, 2}} ,

by the union bound, as there are at most 2εl2 boundary vertices. Note that
by (2) we have

max {pj,j′ | j, j′ ∈ {1, 2}} ≤ (1 + ε)n−1
2 ≤ 2n−1

2 .
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Hence, by the law of total probability,

P(|Cu| 6= |T ′′
u | | Di ∧ A) ≤ 4εl2n

−1
2 E [|T ′′

u | | Di].

In order to simplify notation we will write

Xu,L = {|Cu ∩ V1| ≥ l1 ∨ |Cu ∩ V2| ≥ l2}

for the event that the component of u is large. Hence it follows that

P(Xu,L | A) ≤ P(¬Di) + P(Di)P(Xu,L | Di ∧ A)

≤ P(¬Di) + P(Xu,L ∧ {|Cu| = |T ′′
u |} | Di ∧ A)

+ P(Xu,L ∧ {|Cu| 6= |T ′′
u |} | Di ∧ A)

≤ P(¬Di) + P(|T ′′
u ∩ V1| ≥ l1 ∨ |T ′′

u ∩ V2| ≥ l2 | Di)

+ P(|Cu| 6= |T ′′
u | | Di ∧ A)

≤ P(¬Di) + P
(∣

∣T i
n,Π ∩ V1

∣

∣ ≥ l1
)

+ P
(∣

∣T i
n,Π ∩ V2

∣

∣ ≥ l2
)

+ 4εl2n
−1
2 E [|T ′′

u | | Di]

≤ P(¬Di) + l−1
1 E

(∣

∣T i
n,Π ∩ V1

∣

∣

)

+ l−1
2 E

(∣

∣T i
n,Π ∩ V2

∣

∣

)

+ 4εl2n
−1
2 E

(∣

∣T i
n,Π

∣

∣

)

,

where the last step holds due to Markov’s inequality. Furthermore, we know
that these expectations are all of order O

(

ε−1
)

by the bound (13) in Lemma 3.4.

Additionally, by our assumptions on L, the coefficients l−1
1 , l−1

2 and 4εl2n
−1
2 are

all of order o(ε) and therefore using (19) we get

P(Xu,L | A) ≤ (2 + o(1))ε.

Thus, since there are at least ni − li vertices of type i for which we can apply
this bound, we get

E [si,L | A] ≤ li + (ni − li)P(Xu,L | A) ≤ li + (2 + o(1))εni = (2 + o(1))εni.

Inserting this into inequality (18) and then applying Chebyshev’s inequality
completes the proof of Lemma 4.4. �

Now we can prove Theorem 2.1.

Proof of Theorem 2.1. Let us first introduce some further notation. We write

α = min{1, ε−1µ2,1},
ω = αε3n2 (20)

and note that α > 0 and ω → ∞ by the assumptions of Theorem 2.1. We set

lj =
εnj

logω
= o(εnj), for j ∈ {1, 2}, (21)
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and note that we could replace logω by any function ω̂ such that ω̂ → ∞ but
growing very slowly compared to ω. Moreover, observe that since α ≤ 1 we have

ε2lj =
ε3nj

logω
≥ ω

logω
→ ∞, for j ∈ {1, 2}. (22)

Essentially, we know so far that the random graph G(n, P ) satisfying the
conditions of Theorem 2.1, contains the ‘right’ number of vertices in large com-
ponents. It only remains to show that all these components are connected, and
thus form a single component, if we ‘sprinkle’ some more edges. Formally this
can be done as follows. We define a symmetric probability matrix P b by setting

pb1,2 =
αε

n1 logω
= min

{

ε

n1 logω
,
p1,2
logω

}

,

and pb1,1 = pb2,2 = 0. Then let P a be the symmetric probability matrix whose
entries satisfy

pa1,2 + pb1,2 − pa1,2p
b
1,2 = p1,2

and
pai,i = pi,i, for i ∈ {1, 2}.

We construct G(n, P a) and G(n, P b) independently and couple them in such a
way that we have

G(n, P a) ∪G(n, P b) = G(n, P ).

Since pb1,2 ≤ p1,2/ logω we have pa1,2 ≥ p1,2(1 − 1/ logω) implying that the

entries of P a are all positive for large enough n1 and n2 . Furthermore, as pb1,2 =
o(ε/n1), we have

pa1,2ni = µ3−i,i + o(ε), for i ∈ {1, 2}
and therefore G(n, P a) also meets all requirements of Theorem 2.1. Moreover,
we have calculated in (21) and (22) that the further conditions of Lemma 4.4
are also satisfied for L = (l1, l2). Let us denote by Sa

i,L = Si,L (G (n, P a)) the set
of vertices of type i ∈ {1, 2} in large components of G(n, P a), i.e. components
containing at least lj vertices of type j for some j ∈ {1, 2}. Then, by Lemma 4.4,
we have whp

∣

∣Sa
i,L

∣

∣ = 2εni + ζai

for some real function ζai = o(εni). We assume that this event holds.
Let U denote the set of all large components in G(n, P a). Then for any

component C ∈ U we say that the type j ∈ {1, 2} is a witness for C being
large if |C ∩ Vj | > 1

2 lj. Observe that having a witness is a necessary condition
for any component to be large, hence each large component C ∈ U has at
least one witness, yet it is not a sufficient condition. For j ∈ {1, 2} we define
the set Uj ⊂ U of large components for that type j is a witness and write

Uj =
{

U j
1 , . . . , U

j
rj

}

, for some integer rj ≥ 0. Intuitively, it should not be the

case that one of these sets is empty. We prove this by a counting argument.
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Claim 4.5. U1 and U2 are not empty, i.e. r1 > 0 and r2 > 0.

Proof. Without loss of generality assume towards contradiction that r1 = 0,
and thus clearly r2 > 0. Observe that this implies that

∣

∣U2
ι ∩ V1

∣

∣ ≤ 1

2
l1 =

εn1

2 logω
,

and
∣

∣U2
ι ∩ V2

∣

∣ ≥ l2 =
εn2

logω
,

for ι ∈ {1, . . . , r2}. Counting vertices of both types separately, we therefore get
for type 1

2εn1 + ζa1 =
∣

∣Sa
1,L

∣

∣ =

r2
∑

ι=1

∣

∣U2
ι ∩ V1

∣

∣ ≤ r2εn1

2 logω

and for type 2

2εn2 + ζa2 =
∣

∣Sa
2,L

∣

∣ =

r2
∑

ι=1

∣

∣U2
ι ∩ V2

∣

∣ ≥ r2εn2

logω
.

This shows
(

4 +
2ζa1
εn1

)

logω ≤ r2 ≤
(

2 +
ζa2
εn2

)

logω,

a contradiction for large enough n1 and n2, since ζai ε
−1n−1

i = o(1), for i ∈ {1, 2}.
Hence Claim 4.5 holds. �

We continue the proof of Theorem 2.1. Observe that by the definition of
witnesses we have

∣

∣U j
ι

∣

∣ ≥
∣

∣U j
ι ∩ Vj

∣

∣ >
1

2
lj =

εnj

2 logω
,

for j ∈ {1, 2} and ι ∈ {1, . . . , rj}. Hence, if we estimate the number of vertices
of type j by only summing over the components in Uj we get

rjεnj

2 logω
<

rj
∑

ι=1

∣

∣U j
ι ∩ Vj

∣

∣ ≤ (2 + o(1))εnj ,

and consequently
rj ≤ 5 logω, for j ∈ {1, 2}.

Let U1 ∈ U1 and U2 ∈ U2 be any two large components, i.e. they satisfy
∣

∣U1 ∩ V1

∣

∣ ≥ 1
2 l1 = εn1

2 log ω and
∣

∣U2 ∩ V2

∣

∣ ≥ 1
2 l2 = εn2

2 log ω . Then the probability

that in G(n, P b) there is no edge between U1 and U2 is at most

(1 − pb1,2)
|U1∩V1||U2∩V2| ≤ exp

(

− αε

n1 logω
· εn1

2 logω
· εn2

2 logω

)

(20)
= exp

(

− ω

4 log3 ω

)

.
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Taking the union bound for (up to) r1 + r2 − 1 of these events shows that
the probability that in G(n, P ) all components that were large in G(n, P a) are
connected is at least

1− (r1 + r2 − 1) exp

(

− ω

4 log3 ω

)

≥ 1− 10 logω exp

(

− ω

4 log3 ω

)

= 1− o(1).

Thus, whp there is a component C∗ in G(n, P a) ∪ G(n, P b) = G(n, P ) which
contains Sa

i,L, for i ∈ {1, 2}.
On the other hand, writing Si,L = Si,L (G(n, P )) for the set of vertices of

type i ∈ {1, 2} in large components of G(n, P ) we get (C∗ ∩ Vi) ⊂ Si,L due to
the coupling. Hence we have

Sa
i,L ⊂ (C∗ ∩ Vi) ⊂ Si,L.

Furthermore, applying Lemma 4.4, with the same choice of L, directly to G(n, P )
we obtain whp

|Si,L| = 2εni + ζi

for some real function ζi = o(εni). Thus the number of vertices of type i in the
component C∗ satisfies

∣

∣

∣
|C∗ ∩ Vi| − 2εni

∣

∣

∣
≤ |ζai |+ |ζi| = o(εni). (23)

Moreover, any other large component C in G(n, P ) may at most contain all
the vertices from S1,L \ Sa

1,L and S2,L \ Sa
2,L, and therefore satisfies

|C ∩ Vi| ≤ |Si,L| −
∣

∣Sa
i,L

∣

∣ ≤ |ζi|+ |ζai | = o(εni), for i ∈ {1, 2}.

In particular, summing over both types, we have

|C| ≤ |C∗| ,

for large enough n1 and n2 . Consequently, C∗ is already the largest compon-
ent L1 (G(n, P )) and satisfies the required asymptotics by (23), completing the
proof. �

5 Weakly subcritical regime: proof of Theorem 2.2

Most of the work for this regime has already been done in Section 3.2, since the
dual process of a weakly supercritical branching process is weakly subcritical.
Therefore we will keep the proof short.

Proof of Theorem 2.2. Let the conditions be as in Theorem 2.2. Then, analog-
ously to the proof of Lemma 3.4, we calculate the expected total size of the
2-type binomial branching process T i

n,P , for i ∈ {1, 2}, and get

E
(
∣

∣T i
n,P

∣

∣

)

=
1 + µi,3−i − µ3−i,3−i

1− (µ1,1 + µ2,2 − µ1,1µ2,2 + µ1,2µ2,1)
∼ ε−1.
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Now let L = δn2/3, for any fixed constant δ > 0 and write SL for the set of
vertices in components of size at least L and sl = |SL|. Then with the coupling
as in Lemma 4.1(i) we get, by applying Markov’s inequality twice and linearity
of expectation,

P (sL ≥ L) ≤ L−1
E (sL)

≤ L−1

(

∑

v∈V1

P (|Cv| ≥ L) +
∑

v∈V2

P (|Cv| ≥ L)

)

≤ L−1
(

n1P
(∣

∣T 1
n,P

∣

∣ ≥ L
)

+ n2P
(∣

∣T 2
n,P

∣

∣ ≥ L
))

≤ ε−1L−2n = (δ2εn1/3)−1 → 0,

since ε3n → ∞ by Condition (5). Hence, since δ > 0 was arbitrary, whp all
components are of size o(n2/3). �

Remark 4. This result can be slightly strengthened: Let ω = ε3n → ∞ and
replace L by L̂ = δn2/3ω−1/6+c for any 0 < c < 1/6.

6 Supercritical regime

In the supercritical regime, when the distance from the critical point is a con-
stant, G(n, P ) whp has a giant component. The proof is essentially the same as
in Section 4 except for some of the arguments used for calculating the survival
probabilities.

Theorem 6.1. For n1 ∈ N and n2 ∈ N with n1 ≥ n2, let n = n1 + n2 and let
ε > 0 be a fixed constant. Furthermore, let

P = (pi,j)i,j∈{1,2} ∈ (0, 1]2×2

be a symmetric matrix of probabilities satisfying the following conditions:

n2µ2,1 → ∞, (24)

µι,1 + µι,2 = 1 + ε+ o(1), for any ι ∈ {1, 2}, (25)

where µi,j = pi,jnj for every pair (i, j) ∈ {1, 2}2. Let ρε be the unique positive
solution of the equation

1− ρε − exp (−(1 + ε)ρε) = 0.

Then, whp the following holds for every integer r ≥ 2 and i ∈ {1, 2} :

|L1 (G(n, P )) ∩ Vi| = (ρε + o(1))ni and |Lr (G(n, P )) ∩ Vi| = o(ni).

Therefore, in particular,

L1 (G(n, P )) = (ρε + o(1))n and Lr (G(n, P )) = o(n).
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Proof. Let the conditions be as in Theorem 6.1. We will only show the com-
putation for the survival probabilities, which is very similar to the proof of
Lemma 3.2. For the Fi’s defined in (9) we use the same bounding functions as
before.

As in the proof of Lemma 3.2 we assume without loss of generality that
ρ1 ≥ ρ2 and thus we have F2(ρ1, ρ2) < F2(ρ2, ρ2) and F1(ρ1, ρ2) > F1(ρ1, ρ1).
Fix i ∈ {1, 2}. We consider the bounding functions Fi(ρi, ρi):

Fi(ρi, ρi) = 1− ρi −
(

1− µi,1ρi
n1

)n1
(

1− µi,2ρi
n2

)n2

= 1− ρi − exp

(

−(µi,1 + µi,2)ρi −O

(

µ2
i,1ρ

2
i

n1
+

µ2
i,2ρ

2
i

n2

))

,

by the Taylor-expansion of the natural logarithm around 1. Since µi,1 ≤ 1 + 2ε
and µi,2 ≤ 1 + 2ε, by the conditions of Theorem 6.1 and the fact that ρi ≤ 1
(since it is a probability), we have

Fi(ρi, ρi) = 1− ρi − exp
(

−
[

µi,1 + µi,2 +O
(

n−1
2

)]

ρi
)

= 1− ρi − exp (−(1 + εi)ρi) ,

where εi = µi,1 + µi,2 − 1 + O
(

n−1
2

)

∼ ε, by Conditions (24) and (25). We set
D = R>0 × (0, 1) and a real function f on D by setting

f(x, ρ) = 1− ρ− exp(−xρ),

for (x, ρ) ∈ D. Note that we have Fi(ρi, ρi) = f(εi, ρi).
It is well-known that f(x, ρ) = 0 has exactly one solution for any fixed x > 0.

Furthermore note that the partial derivative with respect to the variable c of
f does not vanish on D, therefore we can apply the classical implicit function
theorem in R

2. We consider x = ε and denote by (ε, ρε) the corresponding
solution of f = 0. Hence, there is an open set U with ε ∈ U and an open set V
with ρε ∈ V such that

{(u, g(u)) | u ∈ U} = {(u, v) ∈ U × V | f(u, v) = 0} ,

where g is a continuous function on U with ρε = g(ε). Let i ∈ {1, 2}. Because
|εi − ε| = o(1), we know that εi ∈ U for large enough n1 and n2, and this implies
that f(εi, g(εi)) = 0. Since g is continuous we have

g(ε1) ∼ g(ε2) ∼ ρε,

and it is sufficient to show that ρ1 ≤ g(ε1) and ρ2 ≥ g(ε2).
For this last step, assume towards contradiction that ρ1 > g(ε1) and observe

that
f(ε1, ρ) < 0, ∀ρ ∈ (g(ε1), 1].

Since (ρ1, ρ2) is by definition a solution of (8) we have

0 = F1(ρ1, ρ2) ≤ F1(ρ1, ρ1) = f(ε1, ρ1) < 0,
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a contradiction. Analogously ρ2 < g(ε2) leads to a contradiction since

f(ε2, ρ) > 0, ∀ρ ∈ (0, g(ε2)).

Thus we have
ρ1 ∼ ρ2 ∼ ρε. (26)

The remainder of the proof follows the lines of the proof of Theorem 2.1 in
Sections 3.2, 3.3 and 4, by replacing ρ1 ∼ ρ2 ∼ 2ε with statement (26). �

7 Subcritical regime

In the subcritical regime, where the distance to the critical point is a constant,
one can obtain a strong upper bound on the size of all components by a standard
application of large deviation inequalities.

Theorem 7.1. For n1 ∈ N and n2 ∈ N with n1 ≥ n2, let n = n1 + n2 and let
1 > ε > 0 be a fixed constant. Furthermore, let

P = (pi,j)i,j∈{1,2} ∈ (0, 1]2×2

be a symmetric matrix of probabilities satisfying the following conditions:

µι,1 + µι,2 = 1− ε+ o(1), for any ι ∈ {1, 2}, (27)

where µi,j = pi,jnj for every pair (i, j) ∈ {1, 2}2. Then we have whp

L1 (G(n, P )) = O(log n).

Proof. Let the conditions be as in Theorem 7.1. We fix a vertex v and explore
its component Cv in G(n, P ). Denote the resulting spanning tree by Tv and
couple this process with a 2-type branching process Tn,P as in Lemma 4.1(i)
such that Tv ⊂ Tn,P . Let SL be the event that G(n, P ) contains a component of
size at least L for some appropriately chosen real function L. We want to show
that

P (SL) = o(1).

Let us denote the (possibly infinite) sequence of vertices born in Tn,P , with
respect to the breadth-first exploration, by σ = (v1, v2, v3, . . . ), where v1 = v.

For any vertex u ∈ V1 ∪ V2 let Xu be the random variable that counts the
number of children of u and has a distribution Bin(n1, pj,1) + Bin(n2, pj,2),
where j ∈ {1, 2} is the type of u. Then consider the random variables

Xv,L :=

min{L,|σ|}
∑

r=1

Xvr ≤
L
∑

r=1

Xvr =: X∗
v,L,

where
{

v|σ|+1, . . . , vL
}

is an arbitrary sequence of distinct additional vertices.
Notice that X∗

v,L is a sum of independent Bernoulli random variables whose
expectation satisfies

∣

∣E
(

X∗
v,L

)

− L(1− ε)
∣

∣ ≤ γ, (28)
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for some γ = γ(n) = o(L), by Condition (27). Hence, by application of a
Chernoff bound (e.g. [18], page 29) we get

P
(

X∗
v,L ≥ L− 1

)

(28)

≤ P
(

X∗
v,L ≥ E

(

X∗
v,L

)

+ εL− 1− γ
)

(28)

≤ exp

(

− (εL− 1− γ)2

2 (L (1− ε) + γ + 1/3 (εL− 1− γ))

)

γ=o(L)

≤ exp

(

− ε2

2− 4ε
3

L(1 + o(1))

)

, (29)

uniformly for all vertices v ∈ V1 ∪ V2.
In order to complete the proof we observe that the event |Tn,P | ≥ L implies

the event Xv,L ≥ L− 1 and therefore we get by application of the union bound

P (SL) ≤
∑

v∈V1∪V2

P (|Cv| ≥ L) ≤
∑

v∈V1∪V2

P (|Tn,P | ≥ L)

≤
∑

v∈V1∪V2

P (Xv,L ≥ L− 1) ≤
∑

v∈V1∪V2

P
(

X∗
v,L ≥ L− 1

)

(29)

≤ exp

(

logn− ε2

2− 4ε/3
L(1 + o(1))

)

= o(1),

for any L > 3ε−2 logn, completing the proof. �

8 Discussion

In the previous sections we showed that the emergence of the giant compon-
ent in the 2-type random graph G(n, P ) is very similar to the behaviour of
the binomial random graph G(n, p), at least when each row of the expectation
matrix is scaled similarly. In theory one therefore could study Gk(n, P ), the
k-type version of G(n, P ), assuming that each row of the expectation matrix
sums up to approximately 1 + ε. It is to be expected that in this case we
would have ρ1 ∼ · · · ∼ ρk ∼ 2ε and thus also a unique largest component of
size L1 (Gk(n, P )) ∼ 2εn. Proving this for all k ≥ 3 would be cumbersome at
best, since for instance in our proof the bound on the total expected number of
offspring of the dual process relies on explicitly calculating a set of generating
functions.

Therefore let us take another perspective: Imposing the row-sum conditions
ensures that the Perron-Frobenius eigenvalue of the offspring expectation matrix
M is roughly 1 + ε, however it also implies that the corresponding normalised
left-eigenvector is not necessarily equal but close to k−1(1, . . . , 1). In this spirit
we could consider Gk(n, P ) for offspring expectation matrices M whose Perron-
Frobenius eigenvalue is 1 + ε with the corresponding normalised positive left-
eigenvalue v and study how the survival probabilities behave asymptotically.
The Perron-Frobenius theory (c.f. Chapter V.6 in [2]) provides a heuristic for this
since the properly rescaled offspring vector of generation t of the corresponding
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branching process converges almost surely to v as t → ∞, under the assumption
that it survives. Thus it would be interesting to know whether in this case it is
true that (ρ1, . . . , ρk) ∼ βεv for some real function βε = o(1).
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