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Characterization of Band Codes for
Pollution-Resilient Peer-to-Peer Video Streaming

Attilio Fiandrotti, Member, IEEE, Rossano Gaeta, and Marco Grangetto, Senior Member, IEEE,

Abstract—We provide a comprehensive characterization of
Band Codes (BC) as a resilient-by-design solution to pollution
attacks in Network Coding (NC) based peer-to-peer live video
streaming. Consider one malicious node injecting bogus coded
packets into the network: the recombinations at the nodes
generate an avalanche of novel coded bogus packets. Therefore,
the malicious node can cripple the communication by injecting
in the network only a handful polluted packets. Pollution attacks
are typically addressed by identifying and isolating the malicious
nodes from the network. Pollution detection is however not
straightforward in NC as the nodes exchange coded packets.
Similarly, malicious nodes identification is complicated by the
ambiguity between malicious nodes and nodes that have invol-
untarily relayed polluted packets. This paper addresses pollution
attacks through a radically different approach which relies on
BC. BC are a family of rateless codes originally designed for con-
trolling the NC decoding complexity in mobile applications. Here
we exploit BC for the totally different purpose of recombining
the packets at the nodes so to avoid that the pollution propagates
by adaptively adjusting the coding parameters. Our streaming
experiments show that BC curb the propagation of the pollution
and restore the quality of the distributed video stream.

Index Terms—Network coding, peer to peer, pollution attack,
measurements, continuity index

I. INTRODUCTION

NOWADAYS, there are many proposals to exploit random
Network Coding (NC) to support peer-to-peer (P2P)

based cooperative media streaming [1], [2]. It was shown
that joining the peculiarities of both techniques yields ef-
fective aggregation of users computing and communication
capacities, increases the system throughput and solves issues
such as the rarest-piece [3], [4]. In NC-based communications,
the media is organized in chunks called generations, where
each generation is further organized in blocks of symbols
of identical size. A source node holds the original media
content and, for each generation, transmits random linear
combinations of the blocks to the peer nodes in the form of
coded network packets. The peer nodes receive and buffer the
coded packets and periodically exchange with their neighbors
linear combinations of the buffered packets drawn at random.
When a peer node has collected enough coded packets, it
solves a system of equations, decodes the original blocks and
recovers the generation.

NC-based architectures are however liable to pollution at-

tacks [5], where one or more malicious nodes transmit on pur-
pose bogus coded packets to cripple the communication. When
a peer node solves the system of equations corresponding to
the received packets, it is sufficient that one of the received
packets is bogus to make the recovered generation bogus as
well. Pollution attacks are particularly treacherous with NC

architectures because of the recombinations: if a peer node
draws for recombination a bogus packet, also the transmitted
packet is bogus, and so the number of bogus packets in the net-
work grows at each recombination. Our previous research [6],
[7] showed that a malicious node which injects a few bogus
packets can trigger an avalanche of bogus packets thanks to
the recombinations, crippling the communication.

Due to the peculiarities of NC, traditional countermeasures
such as detection of bogus (polluted) packets and identification
(and isolation) of its originators fall short in several aspects.
Because in NC packet payloads are coded and any payload is
in principle admissible, there is no simple way to tell whether
a packet is clean (i.e., it carries a correct combination of the
symbols) or it is polluted and thus it should be discarded. Also,
due to the recombinations, an honest node which has relayed a
polluted packet may be incorrectly labeled as malicious (false

positive case). Therefore, to present date, pollution attacks
in NC are a largely unsolved issue and the shortcomings
of existing approaches prompt the research for innovative
solutions.

Paper contribution

This paper proposes a novel approach to the problem of pol-
lution attacks in NC-based networks that leverages a family of
low-complexity rateless codes called Band Codes (BC) [8]. BC
were originally designed to address the totally orthogonal issue
of energy-efficiency, offering adjustable decoding complexity
as a function of the coding window size. Shortly, random
(re)combinations are constrained to a subset of blocks (coded
packets) drawn at random from a coding window whose size
controls the decoding complexity (and preserves it through
the recombinations). This work builds however upon BC in
a distinct domain, proposing packet recombination algorithms
and schemes which allow to build a network which is resilient
by design to pollution attacks. We refer the reader interested
in the decoding complexity aspects of BC to [8], where we
experiment with real mobile devices showing that BC extend
the device operational lifetime with respect to classic NC.

The approach to pollution attacks we propose builds upon
and extends the preliminary results we reported in [7]. There,
we investigated a large-scale network where malicious and
honest nodes cooperate streaming a live video feed. Such
scenario is challenging because attacks must be detected and
handled within a tight time interval. This work finalizes the
analysis of BC as a tool for achieving resilience to pollution
attacks in NC, contributing novel analytical results through
thorough experimenting.
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First, we further the analysis of our probabilistic pollution de-
tection scheme built upon the BC decoding algorithm. Namely,
we experiment with different detection strategies, we mea-
sure the pollution detection probability and the corresponding
gain in video quality. Our BC-based probabilistic pollution
detection scheme early quenches the pollution propagation
and yields better video quality than a reference scheme which
relies on verification with a trusted server at decoding time.
Second and foremost, we experiment with different combina-
tions of BC coding parameters, exploring the tradeoff between
resilience to pollution propagation (and thus, video quality),
coding overhead and decoding complexity. The coding param-
eters are adjusted adaptively at streaming time as a reaction to
the discovery of a pollution attack, coping with the varying
levels of activity of the malicious nodes. Our experiments
reveal resilience to pollution attacks and satisfactory video
quality with limited impact on the coding efficiency. As a side
benefit, our BC-based approach also guarantees controlled de-
coding complexity thanks to BC. This is a major improvement
over our previous approach [6], where we achieved similar
pollution resilience without the benefits of controlled decoding
complexity.

This paper is organized as follows: Sec. II overviews Band
Codes and illustrates the random push protocol for P2P live
streaming we developed for evaluating BC characteristics.
Sec. III describes the attack model we consider, the pollution
detection we propose as well as the strategies to reduce
pollution effects once a pollution attack has been detected.
Sec. IV and V describe our experimental setup and presents all
the results we obtained. Finally, Sec. VI discuss some related
literature whereas Sec. VII summarizes contributions of our
work highlighting possible future developments.

II. BACKGROUND

In this section we first overview Band Codes (BC) [8]: while
here we overview only those aspects of BC instrumental to the
goals of this paper, we refer the interested reader to [8] for
a thorough description of BC. Next, we briefly describe the
key aspects of ToroStream, our random-push protocol for P2P
live video streaming designed around Band Codes: we refer
the interested reader to [9] for a thorough description of the
protocol.

A. Band Codes

In NC video streaming the compressed content is subdivided
in chunks of approximately the same size called generations,
where each generation is independently encoded and decoded.
Each generation typically encompasses one or more self-
decodable units of video (e.g., one or more Groups of Pictures
- GOPs). Next, the source subdivides each generation in k
blocks of symbols of identical size (x1, ..., xk) where each
block is approximately the size of a network packet and k
is known as generation size, as shown in Fig. 1. Every time
the source node is granted a transmission opportunity, i.e. it
is allowed to transmit a packet to the network, it generates a

linear combination of the k blocks as y =
∑k

i=1 gixi. In the
following we focus on binary combinations, i.e. gi ∈ GF (2),

due to the favorable tradeoff between decoding complexity
and coding efficiency; in this case the summation corresponds
to a bit-wise XORs of the original blocks. The vector g =
(g1, ..., gk) is known as coding vector, and in the considered
binary NC scenario it is such that gi ∈ {0, 1}, i.e. gi=1 if
the i-th block is encoded in a packet, gi=0 otherwise. The
number of elements of g equal to one corresponds to the
number of blocks encoded and is referred to as the degree

of the packet. Eventually, the source transmits to the network
a packet P (g, y) that contains the coded payload y prefixed by
the relative coding vector g, so that the set of blocks encoded
in the payload is known at the receiver.

With BC the blocks to be XORed are randomly drawn in
a subset known as coding window, i.e. a set of W adjacent
blocks, where W ≤ k is an input parameter (notice that for
W = k, BC are equivalent to standard Random NC). In
the following, we call the first and last block spanned by a
specific coding window the leading and trailing edge of the
window and we indicate them as f and l respectively. Fig.
1 shows a generation of k=6 blocks: for a window of size
W=4, the leading edge index was drawn at random so that
f=2, and consequently l = f + W − 1 = 5. Given k and
W , the source draws f from an ad-hoc distribution defined in
[8] which makes all blocks equally likely to be found into a
coded packet. Next, each element of the coding vector within
the coding window is independently drawn from a uniform
binary distribution so that P{gi = 1} = 1

2
if f ≤ i ≤ l, gi = 0

otherwise. Finally, the source generates a coded payload y as
described above and transmits packet P (g, y) to the network.
In the following, a packet which belongs to a generation of
size k and whose coding vector elements are drawn according
to a coding window of size W as described above will be
indicated as BC(k,W ). As we showed in [8], the degree of
the packets coded according to the above scheme follows the
binomial distribution B(W, 1

2
), which is the first step towards

controlled decoding complexity.

Fig. 1. Generation of size k = 6 blocks and coding window of W = 4

blocks, with leading and trailing edges f = 2 and l = 5.

Every node receives BC coded packets from the network
and stores them into a separate input buffer for each gener-
ation. The received blocks are used for both decoding and
recombination to propagate novel coded information in the
network.
Let us assume that the input buffer contains q packets
{P 1, . . . , P i, . . . , P q}, where P i = (gi, yi) and all packets
are BC(k,W ). The node aims at producing a P r(gr, yr)
which is still a BC(k,W ). The recombined packet P r(gr, yr)
is defined by a linear combination of the coded packets in
the input buffer with gr =

∑q
i=1

cigi and yr =
∑q

i=1
ciyi.

To guarantee that P r(gr, yr) is still BC(k,W ), the node
draws the leading edge fr (and the corresponding trailing edge
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lr = fr +W − 1) from one of the k+W +1 coding windows
according to the same probability function used by the source.
Now, let si be the first non-null element of the coding vector
of the i-th packet in the buffer, i.e. ∀j < si, gij = 0, and

let ti be the last non-null element of the coding vector of
the i-th packet in the buffer, i.e. ∀j > ti, gij = 0. The node

independently draws each ci ∈ {0, 1} so that P{ci = 1} = 1
2

if fr ≤ si ≤ ti ≤ lr, and ci = 0 otherwise. That is,
any packet which falls outside the randomly drawn coding
window (fr, lr) of size W is excluded from recombination.
It turns out that the degree distribution of P r is still the
same binomial distribution B(W, 1

2
) of the packets in the

input buffer, i.e. the packet recombination preserves the degree
distribution and thus the decoding complexity with depends
on W . Whereas the above BC packet recombination scheme
above was conceived to control the decoding complexity, in
the following we show that such scheme can be exploited to
introduce resilience against pollution propagation by properly
adjusting the coding window size W .

To decode the original information each network node
processes each received packet P (g, y) via a Gaussian
elimination-like algorithm [10] which solves a system of k
linear equations GX = Y , where G is the k×k matrix which
holds the coding vectors of the received packets, and Y is the
k × 1 vector which holds the coded payloads, and X is the
k × 1 vector eventually holding the original blocks xi once
recovered. We use the notation Gi to indicate the i-th row of
G and Gi,j to indicate the j-th element of Gi: if Gi = 0, ∀ i ,
we say that row i-th is empty and write Gi = ∅. Fig. 2 shows
an example of the G matrix and Y vector for the case of a
toy generation of k=6 blocks.

The decoding algorithm operates in two stages, triangular-
ization and diagonalization, as follows.
The triangularization stage is described in pseudo-code as
Alg. 1, which is executed each time the node receives a packet
P (g, y). The goal in this stage is to progressively fill the matrix
G with linearly independent equations that allow one to solve
for the unknown X . Fig. 2 (left) shows the case where the
node has already processed 4 linearly independent packets
and a fifth packet is received. We indicate with gs the first
element of g such that gs = 1 and gi = 0∀i < s. If Gs = ∅,
g is placed in the s-th row of G, y is placed in the s-th row
of Y and the algorithm terminates. In standard BC, if Gs is
not empty and if g = Gs, the coding vector are identical
and thus P is a duplicate packet which is hence dropped and
the algorithm ends. Otherwise an XOR between g and Gs

and an XOR between y and Ys is executed and the algorithm
is iterated until the resulting equation is placed into G or it
is recognized as linearly dependent on the row of G, i.e. it
represents redundant or duplicate information. For example,
in Fig. 2 (left), g is such that s = 3: however, G3 is not empty
and a collision takes place.
In [8], we proposed to always swap (Gs, Ys) with (g, y)
due to the particular recombination scheme proposed there.
Conversely, in [10] the swap is taken only if the degree of g
after the XOR is lower than the degree of Gs, and so to reduce
the decoding complexity. The above algorithm progressively
inserts the coding vectors in G that is arranged in an upper-

triangular band matrix, with band equal to W (hence the name
of the BC).
The diagonalization stage takes place once k linearly in-
dependent packets have been received, i.e. once the rank
of G is equal to k. In detail, matrix G is made diagonal
via standard backward-substitution, so that the unknown X
can be determined. Fig. 2 (right) shows G and Y after the
diagonalization: vector Y contains the recovered blocks, i.e.
Yi = xi.
Note that, due to the random combinations at the source and
at the nodes, not all the received packets are innovative, i.e.
linearly independent from already received, and practically it
takes k′ > k packets receptions to recover the generation. In
the following, we will define the code overhead as ϵc =

k′
−k
k

,
that represents the bandwidth ratio wasted transmitting non
innovative packets. Whereas the BC decoding process was
originally designed to minimize the decoding complexity, in
the following we show that network nodes can exploit it
to detect ongoing pollution attacks with minimal additional
complexity, plus we discuss the role of the swap in the code
efficiency - pollution resilience tradeoff.

Algorithm 1 Packet decoding, Triangularization

1: receive P (g, y).
2: while true do
3: s← position of leading one of g
4: if Gs = ∅ then
5: Gs ← g; Ys ← y
6: return

7: else
8: if g = Gs

9: return

10: swap (Gs, g); swap (Ys, y)
11: g ← g ⊕Gs; y ← y ⊕ Ys

12: end if
13: end while

B. The ToroStream Protocol

The network topology is managed by a centralized tracker,
which organizes the nodes in a totally random, non acyclic,
overlay. Nodes that wish to become part of the streaming
session issue a join request to the tracker, which maintains
a directory of the nodes in the overlay (but ignores the actual
overlay topology). The tracker replies to join requests with a
list of addresses of nodes drawn at random from those in the
network: after an handshake, two nodes become neighbors and
start exchanging coded packets. Due to the way the tracker
manages the network, the peer nodes are arranged as an
unstructured, non-acyclic, mesh overlay which simplify the
management of the network with respect to tree-like overlays.
Random overlays are however more challenging than tree-like
structures in term of pollution resilience: in fact, a malicious
node can potentially spread the pollution to the whole network
and not just to the subset of its children peers, while there
is no easy way to pinpoint the source of the pollution to a
single nodes in the tree hierarchy. Periodically every node
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disconnects from a part of its neighborhood and establishes
novel neighborhood relationships with other nodes drawn at
random by the tracker to which the node issues a request
for novel neighbors. Due to the resulting churning rate, the
temporal window which a node can exploit to observe its
neighbors and attempt to identify malicious nodes is tight,
and hence a resilient-by-design architecture becomes essential.
For all these reasons, the ToroStream protocol is a suitable
and challenging scenario to stress the pollution resiliency
capabilities of our architecture designed around BC.

The nodes exchange BC packets according to a totally
random push-based scheduling scheme. At each transmission
opportunity the server encodes a packet according to the
scheme described in Sec. II-A (with W = k at start-up)
and upload it to a random peer in the network. The source
seeds coded packets for each generation of the live stream for
an amount of time corresponding to the generation playout
duration before moving to the generation. The peers join the
overlay and buffer the video for a finite amount of time.
Periodically each peer transmits a random combination of the
buffered packets to a neighbor drawn at random. As already
recalled, all the recombined packets exchanged by the nodes
are BC(k,W ). In the present work, all nodes decode the
received packets using the Gaussian-based Alg. 1 enhanced
with pollution detection capabilities as in Sec. III-B.

Most of the signaling among peers happens implicitly. In
particular each node needs to let its neighbors know which
generations have already been decoded. Because a node buffer
typically encompasses a few generations of video, the decod-
ing status of a node can be encoded over a vector of few
bits (1 bit per generation): a node embeds such vector in any
transmitted packet, which increases the feedback rate provided
to its neighbors without additional signaling complexity. Every
node also broadcasts a message to its neighbors whenever it
detects a polluted packet in its input buffer with the indication
of the affected generation. Other explicit signaling messages
includes join / leave requests and periodic keep-alive messages
addressed to specific neighbors and periodic reports issued to
the tracker.

III. PROPOSED ARCHITECTURE

This section first introduces a model for the activity of
a malicious node that injects bogus coded packets into the
network with the goal of crippling the communication. Next,
we describe the two cornerstones our pollution-resilient NC
scheme relies upon, namely i) autonomous probabilistic detec-
tion of pollution attacks at the network nodes and, ii) coding
strategies for the minimization of the probability that a node
relays a polluted packet.

A. Pollution Attack and Propagation Model

We define pollution attack as the injection into the network
of polluted packets by one or more malicious nodes. Polluted
packets are such that the payload is not bitwise identical
to the linear combination of the blocks listed in the coding
vector because either the payload, the coding vector or both
are altered. Altering the payload is however simpler and safer

than altering the coding vector from the malicious node point
of view: the degree of coded packets in BC follows a known
distribution, and honest nodes may exploit this knowledge to
identify polluted packets from their coding vectors. Hence,
we assume that every time a malicious node is granted the
opportunity to transmit a packet it initially produces a valid
BC packet as described in Sect.II. Next, with probability ppoll
the malicious node randomly flips the bits of the payload
prior to transmitting the packet to the network. Notice that
the polluted packet will retain the degree distribution imposed
by the source, thus it is not obvious for a honest node to
tell whether a packet was altered or not. Also, because each
generation is independently encoded and recovered, pollution
does not spread across generations.

B. Detection of Pollution Attacks

Network nodes independently attempt to spot the pres-
ence of polluted packets in their input buffers by exploiting
non innovative, i.e. linearly dependent, packets which would
normally be discarded. Namely, our scheme performs sanity
checks between each received packet and the linear combina-
tions of the previously received packets found in the G matrix
and in the Y vector, as described for Alg. 1 in the previous
section. The algorithm is executed each time a packet P (g, y)
is received, i.e. each time a packet is received there may be at
least a chance to spot a pollution attack. Fig. 2 (left) illustrates
the case where a node receives a polluted packet P (g, y) for
a toy generation of k=6 blocks where the rank of G is equal
to 4 (i.e., the node is 2 packets away from recovering the
generation). Let s be the index of the leading one of g as
defined in Sec. II: the received packet in the figure is such
that s = 3 and and thus it collides with (G3, Y3). In this
particular case, we have that g = G3, i.e. packet (g, y) is
not only linearly dependent on (Gs, Ys), but it represents the
very same linear combination of the original blocks. Whereas
packet (g, y) would normally be discarded because useless to
decode, we propose to perform a sanity check on the payloads
y and Ys: if g = G3, then also y and Y3 should be in
agreement, i.e. we verify that for y = Y3. Because the payloads
y and Y3 do not match (indicated in the figure with the use
of different colors), one of the packets received so far by the
node must be polluted. Despite in this example the pollution
is detected at the first iteration of the algorithm, the algorithm
may iterate up to a number of times equal to the rank of G, and
at each iteration there may be a chance to detect a pollution
attack. It is worth noting that this scheme makes it possible
to detect pollution attacks before a generation has even been
recovered, enabling early countermeasures to the propagation
of pollution. The comparison between the payloads y and Ys

does not entail any additional complexity other than a bitwise
comparison between two vectors of bits. Such scheme is also
suitable for verifying whether a generation has been correctly
recovered exploiting late packets, i.e. packets which arrive
after a generation has been recovered. Fig. 2 (right) illustrates
the case where a node has recovered the generation; however
some of the packets used for decoding were polluted and
consequently some of the recovered blocks (in the example,
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blocks x5 and x6) are not decoded correctly. Let us assume
the node later receives the clean packet P (g, y) that, after an
XOR with (G3, Y3), collides with (G6, Y6): at this point the
node checks whether y = Y6, and because the payloads do not
match, the pollution has been detected. In the following, we
assume that every node decodes the received packets with the
pollution-aware version of Alg. 1 and raises a pollution flag
whenever a mismatch between payloads is discovered.

Fig. 2. Example of the G matrix and the Y vector for a toy generation of
k=6 blocks. On the left: triangularization stage, two more packets to recover
the generation. Right: generation recovered after diagonalization. The figure
also shows two example of handling of polluted packets.

C. Adaptive Pollution Propagation Control

A node that detects a polluted packet in its buffer becomes
aware of the pollution attack and, as a first simple counter-
measure, it stops relaying packets for the polluted generation.
However, this is not sufficient to avoid the pollution from
spreading over the network because i) the node itself may
have buffered polluted packets for other generations without
knowing ii) its neighbors may have buffered polluted packets
without knowing. As a consequence we devise further actions
that the node must undertaken as follows:
i) the node that has detected pollution starts a timer which
marks the beginning of the so-called backoff window, i.e. a
time window tback seconds long. During the backoff window
the node adjusts its own coding window W according to the
criteria discussed below so as to reduce the probability to
relay polluted packets to its neighbors. The backoff window
duration tback contributes to drive the tradeoff between pol-
lution resilience and coding overhead, as we experimentally
demonstrated in our preliminary work [7]. Short tback values
minimize the impact on coding efficiency, however the node
may return to normal operations before the pollution attack
is over. Conversely, large tback values are apt to long-lasting
pollution attacks, however the coding efficiency may be unnec-
essarily penalized. In our previous work, we experimentally
demonstrated that a backoff window of about tback = 1 s
is a reasonable tradeoff between resilience to pollution and
coding efficiency. Notice that if the node detects a further
pollution attack after the timer has been started, the timer is
reset and the backoff window is practically extended. That is,
repeated detection of pollution attacks may practically extend
the protection over a pollution attack that lasts in time despite
a limited tback.
ii) the node that has detected attack broadcasts a warning to
its neighbors, suggesting that a pollution attack is going on. A
neighbor which receives a pollution warning starts the timer

which marks the beginning of its own backoff window. This
reaction aims at reducing the propagation of pollution in the
neighborhood.
Fig. 3 (left) illustrates the overall pollution detection and
reaction process: each time a node processes a received packet,
the decoding algorithm may flag the generation as polluted.
Therefore, the node starts the timer of its backoff window and
broadcasts the pollution warning message to its neighbors.

Each time a node is allocated a transmission opportunity,
it checks if its own backoff window timer has been started,
as illustrated in Fig. 3 (right). If the backoff window has
not been started the node operates normally, recombining the
received packets for some generation from a recombination
window of size W = k, i.e. classical NC is used. Otherwise,
the node draws the packets to recombine from a narrower
window of size, for example, W = k/n, n ≥ 1, i.e. W ≤ N ,
so to reduce the probability that it relays a polluted packet
to its neighbors. The rationale behind recombining from a
narrower window as a reaction to a pollution attack is that
the narrower W , the fewer packets in the buffer fit into the
drawn window of size W and are suitable for recombination,
so the lower the chances that any of the polluted packets
is drawn for recombination. The value of W is the main
driver between the tradeoff between pollution resilience and
coding efficiency of BC: small W values offer better protection
against pollution propagation but will increase the coding
overhead; conversely, large W have minor impact on the
coding efficiency but may offer insufficient protection against
pollution attacks. The choice of the optimal W is hence
constrained by the tradeoff between the desired protection
against pollution and the coding overhead the network can
tolerate. However, the formulation of the optimal W depends
on several factors, among which the number of packets in the
buffer, the probability that a buffered packet is polluted and the
number of malicious neighbors, and the number of malicious
nodes in the network, as the model in [6] shows. Due to the
numerous variables and constrains on which the optimal W
depends, we leave its analytical formulation out of the scope
of this work and in the experimental section we explore the
different tradeoffs between pollution resilience and network
utilization effectiveness that our BC-based approach enables.

Fig. 3. The proposed architecture based on BC. Left: detection of pollution
attacks via Alg.1, start of the backoff timer and warning broadcast. Right: the
coding window W is adjusted at each transmission opportunity depending on
the time elapsed since the last time a pollution is detected or a warning is
received.
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D. Age-Based Packet Recombination

In this section we describe an alternative pollution resilient
strategy that we proposed in [6] and that we will use as
reference in some of the experiments worked out in Sec. V.
In [6] we do not exploit BC and we show that packets
received earlier are less likely to be polluted and thus are
better candidates for recombination. Let us assume that a
network node has collected R packets {P 1, . . . , PR} into its
input buffer, so that P i was received prior to P i+1. When a
node is granted a transmission opportunity, each i-th packet
in the input buffer is drawn for recombination according to
a weighting function pr(i) such that it that decreases with
i. In [6] we show that such scheme represents a simple yet
effective countermeasure to the propagation of the pollution,
since it reduces the probability that a honest relays polluted
packets. The particular weighting function drives the tradeoff
between protection against pollution and coding overhead (for
example, in [6] we experimented with a negative exponential
weighting function). In this work we propose the following
linear weighting function:

pr(i) =
1

β

R− i

R
+ (1−

1

β
)
1

2
. (1)

The parameter β ∈ [1,∞) controls the sensitivity to the age of
the packets in the queue: for β=1 packets received earlier are
drawn for recombination with probability close to 1, whereas
packets received later are drawn with a probability close to
0. Conversely, for β = ∞ we have ∀i, pr(i) = 1

2
, i.e. each

packet is drawn for recombination with identical probability
as in classic random NC.

It is worth pointing out that this latter control strategy
and the one based on BC coding window are completely
independent; in other words, it is possible to draw the packets
to recombine from a narrower window and then to recombine
the packets taking age into account to further increase the
resilience to pollution attacks, as we experimentally verify in
the following.

Finally, we would like to recall that also the swap step
of the decoder (line 10 of Alg.1) plays a role in terms of
pollution resilience. Since packets received later on are more
likely to be polluted, the swap may replace a clean packet
with a polluted packet arrived later. For this reason, in the
experimental section we also investigate the possibility to
avoid swapping to increase the resilience against pollution.

IV. EXPERIMENTAL SETUP

We experiment streaming a 10 minutes video sequence
encoded with H.264/AVC at 500 kbit/s to a population of
N=1000 peer nodes comprising Nm=20 malicious nodes
attempting to prevent the remaining Nh=980 honest nodes
(Nm + Nh = N ) from recovering the video. The JM 18.6
H.264/AVC encoder has been used with a GOP size of 15
frames and IBBP coding scheme; using 30 Hz video frame
rate, the selected GOP structure corresponds to independent
coding units of duration of 0.5 s. The source seeds the video
stream and its output bandwidth is capped at 25 Mbit/s, i.e.
the server has bandwidth to serve our 500 kbit/s test video to

50 peer nodes only.
The nodes cooperate to distribute the video stream using
the random-push P2P protocol described in section II-B. The
neighborhood of each node is constrained to a maximum of
Ns=25 peers: periodically, each node drops some of its neigh-
bors at random and creates novel neighborhood relationships to
guarantee enough peer churning. Each node joins the network
and then buffers the video streams for tb=5 seconds, i.e. the
playback at the nodes is synchronized but lags 5 second behind
the server seeding point. Finally, the output bandwidth of the
peers is upper bounded to 1 Mbit/s, i.e. each node has enough
bandwidth to relay the video to at least another peer.
The pollution attack follows an off-on-off pattern as follows.
At time t = 0, the honest nodes join the network in short
sequence. After 150 seconds, malicious nodes join the net-
work, mix with the other nodes and start relying packets which
are purposely polluted with probability ppoll = 0.01, i.e. each
packet transmitted by a malicious node is polluted with 1%
probability. After 4 minutes of activity, the malicious nodes
leave the network, the attack ends and only the honest remain
for the rest of the streaming session. We define the 4 minutes
interval during which malicious nodes are active as pollution

interval: because the video is divided in generations which
are independently coded, the effect of the pollution attack is
constrained within such time interval. While the on-off pattern
is instrumental in studying how the network reacts to a the
arrival and the departure of the attacker, we would like to
point out that our results hold also for other attack patterns
from a qualitative perspective.
We experiment with different packet recombination schemes
at the network nodes and measure the effect on the pollution
attack. The first scheme, Reference, is a baseline strategy
corresponding to classic Random NC, where the source node
encodes random combinations of the original blocks and the
network nodes forward random combinations of the received
packets. The Proposed strategy is our BC-based scheme,
which exploits BC to detect ongoing pollution attacks and
adaptively reduce the coding window size W when a pollution
attack is detected. The backoff window is set to 1 s because
our previous experiments showed [7] that this value enable
a reasonable tradeoff between protection against pollution
attacks and code efficiency.
The impact of the pollution attack on the video quality is
mainly measured in terms of Continuity Index (CI), which
corresponds, for each generation, to the fraction of nodes
which could successfully recover that generation. Namely, a
node successfully recovers a generation if it is able to collect
enough innovative packets within the generation decoding
deadline and none of the packets used for recovery has been
polluted. We also measure the impact of the attack from a
network perspective logging the ratio between the polluted and
correct packets flowing across the overlay; we have defined
such ratio as pollution overhead ϵp.

V. EXPERIMENTAL RESULTS

A. Effects of the Pollution Attack

Fig. 4 shows the CI over the streaming session for the
Reference NC scheme and for generations of k=50 blocks, as
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measured at a random sample node in the network. Before
the pollution attack starts, the CI is obviously equal to 1
because all the peer nodes recover the video correctly. When
the pollution attack starts, the CI drops to about 41%, i.e. the
node recovers correctly only 4 generations out of 10. Finally,
when the attack ends, the node is again able to correctly
recover the video and the CI returns to 1. The figure also
shows the PSNR measured between the original sequence and
the sequence as recovered by the same node (each point on the
graph corresponds to the PSNR averaged over one generation
of frames, lost frames were concealed by frame copy). The
Foreman sequence (CIF resolution, 30 fps) was used in this
experiment. The comparison between the two figures shows
that the pollution attack yields a dramatic impairment of the
video quality (the impairment consists in frame freezes on the
screen which may last several seconds) that yield a PSNR as
low as 10 dB.
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Fig. 4. Continuity Index averaged among all the honest nodes (top) and
PSNR measured at a single honest node (bottom) for the Reference scheme:
the large drop in visual quality is due to the pollution attack.

B. Pollution Detection Strategy

Next, we investigate the performance of our proposed
pollution detection scheme. We recall that each node performs
a consistency check between coding vectors and payloads each
time a packet is received: a mismatch between coding vectors
and coded payloads reveals a pollution attack. We consider dif-
ferent pollution detection strategies. In particular, we defined
Early detection the one based only on packets received before
the generation decoding and Late detection the opposite case
when only the packets received after decoding are checked for
pollution. We use the label Early+Late when detection exploits
all packets. Finally, we termed as Oracle, an ideal detection
mechanism based on a trusted server that verifies the checksum
of each recovered generation. The performance of the pollution
detection strategies are measured in terms of recall and preci-

sion. We define the recall as the ratio of polluted generations
that are correctly recognized as polluted: the higher the recall,
the higher the likelihood that a pollution attack is detected.
We define the precision as the ratio of generations flagged as
polluted that are actually polluted: the higher the precision,
the lower the number of false positives. The Early detection
enjoys ideal precision equal to 1, since no false positives can
be revealed by the proposed algorithm. On the contrary with
the Late and Early+Late schemes, a node may receive k′ clean
packets and correctly recover the generation; then one or more
polluted late packets may be received and hence the generation
may be incorrectly flagged as polluted, i.e. false positive case.

Figure 5 shows the recall (left) and precision (right) of the
considered pollution detection strategies as a function of the
ratio between generation size and coding window k/W . The
Early+Late strategy yields the better recall, with about 60% of
the polluted generations detected as such, however its recall
is only marginally better than the recall of the Early scheme.
Figure 5-b shows that the precision of the Early+Late and Late

strategies are significantly lower than 1, i.e. several generations
are incorrectly detected as polluted (high number of false
positives) as late packets are more likely to be polluted, and
thus are poor candidates for checking [6]. The figures show
that as W decreases, the ability to detect pollution attacks
drops. Each time Alg. 1 iterates and a collision happens,
pollution attacks may be detected. The higher the number of
iterations, the more likely that pollution attacks are detected.
The expected number of iterations depends on the number of
collisions, which depends on the rank of G and the average
degree of the received packet [8]. Because the average packet
degree is equal to W

2
, reducing W reduces the number of

collisions and hence the chances to detect pollution attacks.
However, as W decreases the resilience to pollution attacks
improves and sets off the decreased ability to detect pollution
attacks, as we show later on. The figure shows on the right the
cumulative probability that a pollution attack is detected as a
function of the n-th received packet (the dashed vertical line
represents the average number of packets k′=51.7 after which
a generation is recovered). It can be noted that, as the rank
of G approaches k, it is very likely to detect pollution attacks
and to stop the pollution from propagating.
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Fig. 5. Recall (left), precision (center) and cumulative distribution of detected
pollution attacks (right) of three different pollution detection strategies as a
function of the coding window size W .

C. Video Quality and Pollution Propagation

In this section we sweep the parameters characterizing BC,
namely the generation size k and the coding windows size
W , and we assess the relative impact on multiple performance
metrics.

Fig. 6 shows the probability that the i-th packet received
by a node is polluted in classic NC and for our BC-based
scheme and for different coding window sizes W . In classic
NC, random recombinations increase by a 1000-times factor
the probability that a honest node relays polluted packets. Con-
versely, with BC such probability increases at a far lower rate,
constraining the pollution propagation through the network.

Figure 7 shows the average CI, the code overhead ϵc as the
ratio of output bandwidth wasted transmitting non-innovative
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packets and the decoding complexity in terms of number of
XOR between coded packets required to recover 1 Mbit of
coded data as a function of k

W
for several values of k. Notice

that the case where k
W

= 1, i.e., W = k, corresponds to a
classic NC scheme where the nodes recombine the packets
at random, whereas larger values of k

W
represent BC with

decreasing window sizes.

The graph on the left shows that for classic NC the CI
is close to 0 for k = 50, i.e. the malicious nodes succeeded
in disrupting the video stream and the honest nodes recover
only bogus data. Moreover, decreasing k, i.e. using shorter
generations, classic NC yields a CI of about 50%; in other
words, shorter generations provide a limited resilience to
pollution and are not enough to nullify the effects of the attack.
Conversely, using BC with a narrow coding window one is
able to improve the CI well above 50%: as an example for
k=20 and k

W
= 4, i.e. W = k

4
), the CI soars to over 90%. The

lesson learned is that adjusting the BC parameters is enough
to set off the effect of the attack in terms of received video
quality.

The central graph shows that BC coding efficiency, and as a
consequence network bandwidth usage, depend on parameters
W and k. The figure shows that as W shrinks, the coding
overhead increases: when k

W
= 4 about one packet out of two

is not innovative, wasting a significant amount of the output
bandwidth available at the nodes. In a bandwidth-constrained
scenario the peers may not even have enough capacity to
tolerate such a large overhead to supply the video.

Finally, the right graph shows that reducing the generation
size k and the coding window size W brings a further benefit
in terms of lower decoding complexity: for k=25 and k

W
= 2

the decoding complexity drops to about 600 XORs per Mbit,
versus 1200 XORs per second for classic NC (k=50 and
W = k). It is worth noticing that the scheme proposed in
our previous work [6] exhibits comparable video quality in
similar experimental conditions, however its complexity was
identical to that of classic NC as it was not based on BC
and thus it did not enjoy controlled decoding complexity.
These experiments demonstrate that our BC-based architecture
achieves its primary goal of pollution resilience, plus it enables
controlled decoding complexity as an additional benefit.

Albeit the optimal coding setup depends on several network

parameters, the above experiments suggest that in our setup
the coding parameters k = 25 and W = k

2
offer a reasonable

overall tradeoff between resilience to pollution, decoding com-
plexity and coding efficiency. in the rest of our experiments
we will consider such coding setup to deal with pollution
attacks whenever a node operates within its backoff window:
i.e., when a node operates within the backoff window and a
transmission opportunity arises, the node draws the packets to
recombine from a window of size W = k

2
, where k = 25.
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Fig. 7. Continuity index (left), coding overhead ϵc (center) and decoding
complexity Cd (right) as a function of the generation size k and coding
window size W .

In Fig. 8 we provide a better insight on the effects of BC
coding parameters in terms of pollution propagation.
The graph on the left shows the probability Pp that an honest
node relays a packet which is polluted. It can be noted that
for k = 50 and k

W
= 1 almost 50% of the recombined

packets transmitted by the honest nodes are polluted. Hence,
in classic NC the recombinations propagate the pollution and
completely disrupt the communication (the corresponding CI
in the previous figure is in fact close to 0). As k drops, Pp

decreases and the corresponding CI increases; narrowing also
the coding window W further avoids the propagation of the
pollution and improves the video quality. For k = 25 and
k
W

= 2 Pp drops to about 0.5% (a 100-fold reduction with
respect to the classic NC scheme) and the corresponding CI
soars over 90%.
The graph on the right of the same figure shows the cumulative
probability over time that a sample honest node relays at least
one polluted packet for different values of W (k = 25). When
W = k, after only 2 seconds since the pollution attack has
begun, 80% of the honest nodes have relayed at least one
polluted packet, i.e. almost all honest nodes have contributed
to propagate the pollution. However, by reducing the coding
window with k

W
= 2 it takes 22 seconds before 80% of the

nodes have transmitted at least one polluted packet, and this
figure further improves to 56 seconds for k

W
= 4.

Hence, adjusting the coding window size W one reduces the
likelihood that a honest node spread the pollution and improves
the video quality.

D. Matrix G Refresh Policy

In this section we experiment three different policies for
refreshing the rows of the decoding matrix G and we assess
the policy impact on the decoding complexity and resulting
video quality. We recall that whenever a node receives a packet
and the coding vector is such that it collides with one row of
G, such collision may be addressed with a swap at line 10 of



9

 0

 0.2

 0.4

 0.6

 0.8

 1

 1  2  3  4  5

P
p

k/W

k = 20
k = 25
k = 30
k = 35
k = 40
k = 45
k = 50

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  10  20  30  40  50  60

C
u
m

u
la

tiv
e
 P

p

Pollution Interval [s]

k/W 1.0
k/W 2.0
k/W 4.0

Fig. 8. Probability that a honest node relays a polluted packet Pp (left) and
cumulative probability that a honest node relays a polluted packet over the
pollution interval (right).

Alg. 1: here we experiment with three distinct policies. The
first policy, termed Never, is such that the received packet
is XOR’ed with a row of G and simply processed again; in
this case a packet received later has no chance to replace a
packet received earlier. The second policy, termed Degree, is
such that the degree of received packet is compared with the
degree of the G row: if the degree of the received packet is
lower, a swap is performed and the algorithm iterates. In this
case, a packet received later on will occasionally replace a
packet received earlier on. The third and last policy, termed
Always, is such that the newly received packet always takes
the place of the G row: in this case, packets received later
on may replace packets received earlier in the matrix G and
vector Y . Fig. 9 shows the probability that a row of G is
polluted, the corresponding continuity index and the actual
decoding complexity measured as number of XOR operations
required to recover a generation of size k=25 blocks. We can
see that the Always policy yields the highest probability that
a row of G is polluted (left) and thus the lowest CI (center):
this is because packets received later are more likely to be
polluted. The Degree policy yields better results in terms of
probability to pollute matrix G and relative impact on the
video quality: packets with lower degree are generated by
nodes who recombine from a smaller coding window, thus
they may be better candidates for swapping. Finally, the Never

policy yields the best results: packets received earlier are less
likely to be polluted, thus they are the best candidates to fill
the matrix and shall not be replaced by packets received later
on. Complexity wise, we see that the Degree policy shows the
lowest complexity since the swap limits the degree of the rows
of G and as a consequence the number of XORs required by
the decoding procedure. Therefore, avoiding the swap at line
10 of Alg. 1 yields best video quality, whereas performing the
swap on a lowest-degree basis yields the best tradeoff between
video quality and decoding complexity.

E. Increased Polluters Activity

We explore now the case where malicious nodes exhibit an
increasingly aggressive behavior, not withstanding the possi-
bility of revealing their identity. Namely, we evaluate the effect
of a five-fold increase of the malicious nodes activity, both in
terms of an increase in the number Nm of malicious nodes
and in the probability that a malicious node relays a polluted
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continuity index (center) and decoding complexity (right) for three different
swap strategies.

packets ppoll. We consider four different packet recombination
strategies with different levels of resilience against pollution
attacks. The Reference strategy is our baseline scheme where
the nodes are unaware of pollution attacks and relay random
linear packet combinations as in classic NC. The Proposed

strategy is our BC-based scheme, where the nodes react to
the detection of a pollution attacks by recombining from
a window of size W = k/2. The Time strategy where
the packets are recombined with a probability that depends
on their ageaccording to the time-sensitivity function in Eq.
(1) using β = 2. Finally, the Joint strategy explores the
combined potential of BC and the age-based recombination
strategy. Whenever a pollution attack is detected, the nodes
start recombining from a narrower window of size W = k/2
plus they draw for recombination each i-th received packet
according to Eq. (1) with β = 4.

In Fig. 10 we show CI, ϵp and ϵc when we progressively
increase Nm from 0 to 100 nodes, while the total number
of nodes N = 1000 is kept constant and ppoll=0.01, i.e. we
increase the ratio of malicious nodes in the network from 0
to 10% while we do not chance the overlay size. As Nm

increases, with the Reference strategy the pollution overhead
ϵp quickly rises (up to 36% for Nm = 100) and so the
video quality quickly drops to 0. The Proposed and Time

strategies show similar CI and can cope with a larger amount
of malicious nodes activity, however the video quality starts to
drop when the number of malicious nodes exceeds 50, i.e. 5%
of the total. Despite the Time strategy shows lower pollution
overhead than the Proposed strategy, both yield pretty similar
video quality. In fact, the Time code overhead is higher that
of Proposed: because more packets are required to recover a
generation, the higher the probability that at least one of the
received packets is polluted and the lower the video quality.
Hence, despite the Proposed strategy yields slightly lower
resilience to pollution attacks than Time, its better coding
efficiency allows to achieve a good tradeoff in terms of the
resulting video quality. Finally, the Joint strategy yields the
best results as the system can tolerate up to 10% of malicious
nodes with little impairment in the video quality: such result is
achieved by balancing the tradeoff between coding efficiency
and pollution resilience.

Fig. 11 illustrates the complementary experiment where we
increase the probability that a malicious node transmits a
polluted packet ppoll from 0 to 20% (the number of malicious
nodes is fixed at Nm=20). As in the previous experiment,
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the Reference scheme shows little resilience to increasingly
aggressive polluters: pollution probabilities below 5% cripple
the communication. The Proposed and Time schemes show
improved resilience to pollution: the malicious nodes must pol-
lute more than 5% of the transmitted packets before the video
quality degrades. However, as a malicious node transmits more
polluted packets, it exposes itself to the risk of being identified
end isolated from the network, making harsh pollution attack
detrimental for the attacker itself. As an example in [11] a
polluter detection and identification mechanism is proposed
where it can be seen that identifying polluters turns to be
easier when they pollute all packets they upload. Similar
behaviors are reported by [12], [13] for another identification
mechanism. These remarks make clear that polluters are not
interested in injecting a large amount of fake data but only the
minimum possible to impair the system performance without
increasing too much the risk of being identified.
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VI. RELATED WORKS

BC have been recently proposed in [8] to obtain energy
efficient network coding for P2P mobile video streaming.
In [8] BC have been defined and characterized with respect
to the trade-off between encoding overhead and decoding
complexity. Video streaming experiments with real mobile
devices showed that BC can halve the decoding complexity
and extend the device operational lifetime with respect to tra-
ditional NC with just a negligible increase in coding overhead.
In our previous work [7], we have worked out a preliminary
analysis of BC in a scenario with malicious nodes and we have
observed that BC can effectively mitigate the propagation of
the pollution.

Besides BC several related works have been carried out
for standard random NC. In this context, in [6] a technique
able to mitigate the effects of pollution has been proposed:
a recombination scheme where nodes draw packets to be
recombined according to their age in the input queue is devised
and its effectiveness is experimented in a practical streaming
scenario.

Other approaches in the literature have proposed techniques
for on-the-fly verification of the received packets so as to
detect and identify the malicious peers. For instance the
readers can refer to [14], [15], [16], [17], [18], [19], [20]
as important contributions in this area, that proposed either
cryptographic or algebraic approaches. The major drawback of
these methods is the high computational costs for verification
and the communication overhead due to pre-distribution of
verification information. Pre-distribution of verification keys
is particularly critical in case of live streaming where novel
data are being forwarded at a high rate.

Other approaches, e.g. [21], [22], [23], have focused on error
correction to deal with pollution attacks; these methods intro-
duce coding redundancy to allow receivers to correct errors
but their effectiveness depends on the amount of corrupted
information.

An orthogonal line of research deals only with identification
of malicious nodes. In this context [11] proposed a fully dis-
tributed detection algorithm based on a stochastic method that
uses intersection operations to progressively isolate malicious
neighbors of a peer. This method works best in a scenario with
a static neighborhood. Alternatively, in [12], [13] malicious
nodes identification was cast as a statistical inference problem
designed to infer the probability of neighboring peers being
malicious.

VII. CONCLUSIONS AND FUTURE WORKS

This work leverages Band Codes (BC), a family of rateless
codes designed for low-complexity network coding, to intro-
duce resilience against pollution attacks in P2P networks. First,
we showed how to exploit the BC decoding process to detect
ongoing pollution attacks on a probabilistic, distributed, basis
before the message is recovered, enabling the nodes to adopt
early countermeasures. Second and foremost, we adaptively
adjust the BC coding parameters, reducing the probability
that honest nodes relay polluted packets and the number of
polluted packets flowing through the network. Real P2P video
streaming experiments on a thousand nodes scale show that
our BC-based scheme improves the video quality over classic
NC, whereas controlled decoding complexity is preserved as
an additional benefit beside pollution resilience.
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