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ABSTRACT 

A novel MRI blood-pool contrast agent (Gd-AAZTA-MADEC) has been compared with 

established blood pool agents for tumor contrast enhanced images and angiography. Synthesis, 

relaxometric properties, albumin binding affinity and pharmacokinetic profiles are reported. For in 

vivo studies, angiographic images and tumor contrast enhanced images were acquired on mice with 

benchtop 1T-MRI scanners and compared with MS-325, B22956/1 and B25716/1. The design of 

this contrast agent involved the elongation of the spacer between the targeting deoxycholic acid 

moiety and the Gd-AAZTA imaging reporting unit that drastically changed either the binding 

affinity to albumin (KA(HSA) = 8.3x105 M-1) and the hydration state of the Gd ion (q=2) in 

comparison to the recently reported B25716/1. The very markedly high binding affinity towards 

mouse and human serum albumins resulted in peculiar pharmacokinetics and relaxometric 

properties. The NMRD profiles clearly indicated that maximum efficiency is attainable at magnetic 

field strength of 1T. In vivo studies showed high enhancement of the vasculature and a prolonged 

accumulation inside tumor. The herein reported pre-clinical imaging studies show that a great 

benefit arises from the combination of a benchtop MRI scanner operating at 1T and the albumin-

binding Gd-AAZTA-MADEC complex, for pursuing enhanced angiography and improved 

characterization of tumor vascular microenvironment. 

 

Keywords: Magnetic resonance imaging (MRI); Gadolinium contrast agent; blood pool imaging; 
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INTRODUCTION 

The advent of Molecular Imaging era has witnessed the introduction of Magnetic Resonance 

Imaging (MRI) pre-clinical scanners operating at lower magnetic field strength than the complex 

(and expensive) high field systems that are found in the specialized MR spectroscopy/imaging labs. 

The need for making MRI as one of the complementary imaging techniques for multi-modal studies 

has stimulated manufactory companies to consider the possibility of offering scanners based on 

permanent or electro-magnets and characterized by a user-friendly images acquisition procedure. It 

is expected that the availability of this new generation of MRI scanners will be a key-components 

for the spreading of in vivo Molecular Imaging facilities in biological departments together with 

compact PET/SPECT and Optical Imaging instruments. 

In this context it appears likely that MRI scanners will be exploited in pre-clinical cancer research 

for evaluating novel cancer treatment approaches that require imaging methods able to accurately 

detect and characterize individual tumors. The last 25 years of MRI clinic studies has clearly 

demonstrated the important results that may be obtained by the use of paramagnetic Gd-complexes. 

Gd-based complexes have been extensively used in order to improve the contrast efficiency of the 

MRI modality, thus providing earlier tumor detection, staging and assessment of therapeutic 

response [1]. 

Two key applications of Gd-based contrast agents (CAs) appear of general use in the MRI study of 

tumor murine models, namely the visualization of the blood vessel network and the assessment of 

vascular permeability [2]. The best results for both applications have been obtained by using Gd(III) 

complexes able to reversibly bind to serum albumin [3-6]. The formation of supramolecular adducts 

between the paramagnetic complex and the serum protein has beneficial effects both on the 

attainable relaxation enhancement (particularly high at 0.5-1.5 T) and on the in vivo distribution 

properties. In fact, macromolecular Gd complexes have longer blood pool retention time while their 

reduced tumbling time (rotational correlation time, τR) increases their efficiency to relax water 

protons, in particular at magnetic field around 1T [7, 8]. Moreover, macromolecular CAs can 

preferentially accumulate in tumor tissue due to the hyperpermeability of tumor vasculature, 

resulting in effective tumor enhancement for precise cancer detection and delineation [9]. The 

longer circulation time of macromolecular CAs can also be exploited for characterizing tumor 

microvasculature with dynamic contrast enhanced (DCE) MRI technique, which allows to assess 

tumor vessel permeability/perfusion as well as to monitor non-invasively tumor response to 



anticancer treatment [10, 11]. In addition, it is often recognized that CAs bigger in size are more 

efficient reporters on tumor permeability than small size CAs, because of the slower wash-in/wash-

out characteristics [12, 13]. Furthermore, the efficiency of a Gd complex to enhance the relaxation 

rate of water protons depends on the structure of the complex, the strength of the applied magnetic 

field and on the albumin binding affinity that need to be addressed, simultaneously, in order to 

improve its contrast efficiency [14-19]. 

In this study, we introduce a novel Gd-based CA as a blood pool and tumor vascular permeability 

agent and its properties are compared with those ones of the clinically approved MS-325 (Vasovist 

or Ablavar) [20], with B22956/1 [21], a blood-pool CA tested in Phase I trials and with B25716/1 

[22]. 

 

MATERIALS AND METHODS 

Chemistry 

Commercially available reagents and solvents were purchased from Sigma-Aldrich or Alfa-Aesar 

and used without further purification. B22956/1 [23], B25716/1 and MS-325 were kindly provided 

by Bracco Imaging (Milan, Italy) and their chemical structure are shown in Fig. 1a-c. The protected 

bifunctional chelating agent 1 was prepared according to ref. [24] while methyl 3-

aminodeoxycholate 2 was synthesized following the procedure reported in ref. [25]. Reactions were 

monitored by TLC on Merck 60F254 (0.25 mm) plates. Spot detection was carried out by staining 

with an alkaline KMnO4 solution or with the Dragendorff reagent. NMR spectra were recorded at 

298K on a Jeol Eclipse ECP300 spectrometer operating at 7.05 T; chemical shifts (δ) are given in 

ppm, coupling constants (J) in Hz. ESI mass spectra were recorded on ThermoFinnigan LCQ Deca 

XP-Plus and melting points (uncorrected) with a Stuart Scientific SMP3 apparatus. Human serum 

albumin and mouse serum albumin were purchased from Sigma-Aldrich. 

 

Synthesis 

The synthetic procedure leading to Gd-AAZTA-MADEC is reported in Scheme 1. 

 

Synthesis of conjugate 3 



Compound 1 [18] (14.0 g, 18.9 mmol) and methyl 3-aminodeoxycholate [19] (2, 8.50 g, 21.0 

mmol) were dissolved in dichloromethane (100 mL). N,N’-Dicyclohexylcarbodiimide (4.9 g, 23.7 

mmol) and 4-dimethylaminopyridine (0.46 g, 3.8 mmol) were added to the solution and stirred at 

room temperature overnight. The white solid precipitate was removed by filtration on a Buchner 

funnel and the filtrate evaporated under reduced pressure. The residue was submitted to 

chromatographic purification, obtaining the desired product as a white solid (13.6 g, 64%). M.p. 

70°C. 1H-NMR (CDCl3, 300 MHz): δ = 5.73 (d, J = 7.4 Hz, 1H), 4.11 (m, 1H), 3.92 (m, 1H), 3.60 

(s, 3H), 3.57 (s, 4H), 3.17 (s, 4H), 2.93 (d, J = 14.1 Hz, 2H), 2.76-2.54 (m, 4H), 2.58 (d, J = 14.1 

Hz, 2H), 2.36-0.95 (m, 43H), 1.385 (s, 18H), 1.382 (s, 18H), 0.91 (d, J = 6.4 Hz, 3H), 0.90 (s, 3H), 

0.62 (s, 3H); 13C-NMR (CDCl3, 75.4 MHz): δ = 174.7 [C], 172.9 [C], 172.3 [C], 170.9 [C], 80.7 

[C], 80.2 [C], 73.0 [CH], 65.4 [CH2], 63.1 [C], 62.6 [CH2], 59.3 [CH2], 52.0 [CH2], 51.5 [CH3], 

48.9 [CH], 48.3 [CH], 47.3 [CH], 46.5 [C], 45.1 [CH2], 38.1 [CH],  37.6 [CH2], 37.1 [CH2], 35.9 

[CH], 35.1 [CH], 34.7 [CH2], 34.0 [CH2], 33.0 [CH], 31.1 [CH2], 31.1 [CH2], 31.0 [CH2], 30.6 

[CH2], 30.5 [CH2], 29.7 [CH2], 29.6 [CH2], 29.4 [CH2], 29.3 [CH2], 29.0 [CH2], 28.3 [CH3], 28.2 

[CH3], 27.5 [CH2], 26.7 [CH2], 25.9 [2xCH2], 25.7 [CH2], 25.0 [CH2], 24.8 [CH2], 23.9 [CH/CH3], 

23.7 [CH2], 22.1 [CH2], 17.4 [CH3], 12.8 [CH2]; MS (ESI+): m/z calculated for C64H113N4O12 

[M+H]+: 1129.84; found: 1129.93. 

Synthesis of ligand AAZTA-MADEC 

Conjugate 3 (13.5 g, 12.0 mmol) was dissolved in a mixture of 2-propanol (100 mL) and a solution 

of sodium hydroxide (1.23 g) in deionized water (370 mL). The reaction mixture was stired at room 

temperature for 48h, then evaporated under reduce pressure. The residue was redissolved in 

dichloromethane (20 mL) and trifluoroacetic acid (25 mL) was added, stirring the resulting mixture 

at room temperature overnight. Volatiles were evaporated and the residue triturated and washed 

with acetone (50 mL), obtaining ligand AAZTA-MADEC (10.5 g). 1H-NMR (DMSO-d6, 300 

MHz): δ = 7.35 (d, J = 6.7 Hz, 1H), 3.97 (m, 1H), 3.80 (m, 1H), 3.63 (s, 4H), 3.53 (s, 4H), 3.11-

2.93 (m, 4H), 3.03 (d, J = 14.7 Hz, 2H), 2.98 (d, J = 14.7 Hz, 2H), 2.29-0.87 (m, 42H), 2.10 (t, J = 

7.2 Hz, 2H), 0.94 (d, J = 6.4 Hz, 3H), 0.91 (s, 3H), 0.63 (s, 3H). 13C-NMR (DMSO-d6, 75.4 MHz): 

δ = 175.2 [C], 175.1 [C], 172.3 [C], 171.0 [C], 71.9 [CH], 63.1 [C], 61.9 [CH2], 59.8 [CH2], 55.7 

[CH2], 52.3 [CH2], 48.1 [CH], 47.0 [CH], 46.8 [C], 45.1 [CH], 37.2 [CH], 36.3 [C], 36.2 [CH], 36.0 

[CH2], 35.4 [CH], 34.8 [CH2], 33.8 [CH2], 33.1 [CH], 31.6 [CH2], 31.4 [CH2], 31.13 [CH2], 31.06 

[CH2], 30.3 [CH2], 29.5 [CH2], 29.4 [2xCH2], 29.3 [CH2], 29.2 [CH2], 27.6 [CH2], 27.1 [CH2], 26.3 

[CH2], 26.0 [CH2], 25.9 [CH2], 25.1 [CH2], 24.9 [CH2], 24.0 [CH2], 23.8 [CH3], 23.0 [CH2], 17.6 

[CH3], 13.0 [CH3]; MS (ESI-): m/z calcd for C47H77N4O12 [M-H+]-: 889.55; found: 889.65. 



Preparation of Gd-AAZTA-MADEC 

Ligand AAZTA-MADEC (9.0 mmol) was suspended in deionized water (30 mL) and freshly 

prepared Gd(OH)3 (9.0 mmol) was added. The opalescent suspension was stirred at 80°C until 

complete solution was obtained (32h), periodically checking the presence of free Gd with Xylenol 

Orange. The solution was then filtered on 0.25 µm filters and evaporated under reduced pressure. 

The crude product was redissolved in deionized water (10 mL) and precipitated with acetone (50 

mL) (3 times), then the solid was dried under vacuum to constant weight to obtain Gd-AAZTA-

MADEC as a white powder (7.0 g).  

 

Water proton relaxivity measurements 

The longitudinal water proton relaxation rates were measured by using a Stelar Spinmaster (Mede, 

Pavia, Italy) spectrometer operating at 0.47 T by the standard inversion-recovery technique (16 

experiments, 2 scans). A typical 90° pulse width was 3.5 ms and the reproducibility of the T1 data 

was ±0.5%. The temperature was controlled with a Stelar VTC-91 air-flow heater equipped with a 

copper/constantan thermocouple (uncertainty ±0.1°C).  The proton 1/T1 NMRD profiles were 

measured over a continuum of magnetic field strength from 0.00024 to 0.47 T (corresponding to a 

0.01–20 MHz proton Larmor frequency) on a Stelar field-cycling relaxometer. The relaxometer 

operates under complete computer control with an absolute uncertainty in 1/T1 of ±1%. Data points 

from 0.47 (20 MHz) to 1.7 T (70 MHz) were collected on a Stelar Spinmaster spectrometer 

operating at variable fields. 

 

Binding to Human Serum Albumin (HSA) 

Binding parameters (the affinity constant KA, the number of equivalent and independent binding 

sites n) and the relaxivity of supramolecular adduct r1
b were determined using the proton relaxation 

enhancement (PRE) method [26]. The method is based on the titration of a fixed concentration of 

Gd-complex with increasing concentrations of macromolecule that results in an increase of 

relaxation rate. The fitting of the obtained curve affords the value of nKA and r1
b.  

 

Animals 

Male BALB/c mice and male C57BL/6 were obtained from Charles River Laboratories (Calco, 

Italy). Studies were approved by the local ethics committee of our University and carried out in 



accordance with the EU guidelines. All animals were maintained under specific pathogen-free 

conditions inside the animal facility and received standard rodent chow and had free access to tap 

water. 

 

Pharmacokinetic Study 

Plasma pharmacokinetic was assessed on male BALB/c mice (18-20 g). A group of six mice were 

used for each contrast agent. The contrast agent was injected at a dose of 0.05 mmol Gd/kg body 

weight (b.w.). Blood samples (50 µL) were collected from the tail vein before injection and at 5, 30, 

60, 120, 360 min after injection for a total of six time points. The blood samples were centrifuged at 

1000 rpm at 4°C for 10 min to obtain plasma. The plasma was diluted with sterile water (Baxter) 

and the Gd content was determined by inductively coupled plasma mass spectrometry (ICP-MS) 

(Element-2; Thermo-Finnigan, Rodano (MI), Italy). Sample digestion was performed with 1 mL of 

concentrated HNO3 (70%) under microwave heating (Milestone MicroSYNTH Microwave 

labstation). A two-compartment pharmacokinetic model was used to analyze the data and to 

calculate the pharmacokinetic parameters such as distribution and elimination half-lives (Td1/2, Te1/2) 

from the percentages of the initial blood concentration C0 with GraphPad Prism software 

(GraphPad, San Diego, CA, USA). 

 

Magnetic Resonance Angiography 

A group of six male BALB/c mice weighing approximately 20-24 grams were used in contrast 

enhanced MR blood pool imaging for each agent. Mice were anesthetized by injecting a mixture of 

tiletamine/zolazepam (Zoletil 100; Virbac, Milan, Italy) 20 mg/kg and xylazine (Rompun; Bayer, 

Milan, Italy) 5 mg/kg and placed supine in a solenoid Tx/Rx coil with an inner diameter of 3.5 cm. 

The contrast agents were injected via a tail vein at a dose of 0.05 mmol Gd/kg.  

MR images were acquired before and at 2, 5, 15, 30, 45 and 60 min post-injection of the contrast 

agents on a 1T MRI Bruker IconTM system (Bruker BioSpin MRI, Ettlingen, Germany). A 35 mm 

Tx/Rx mouse solenoid whole body coil was used for both RF excitation and reception of MR 

signal. A 3D GRE fast low angle shot (FLASH) pulse sequence  (TR 10 ms; TE 4.1 ms; flip angle 

40°; FOV 80x40x40 mm; MTX 192x156x156; NEX 2; temporal resolution 3 min 4 s per image) 

with an isotropic spatial resolution of 416 µm was used for image acquisition. Three dimensional 



maximum intensity projection (MIP) images were reconstructed using the ImageJ program 

(http://rsb.info.nih.gov/ij/) by subtracting pre-contrast to post-contrast images. 

 

DCE-MRI in mice tumor model 

B16F10 murine melanoma cells were cultured in 75-cm2 flasks in a humidified incubator at 37 °C 

and at CO2/air (5:95 v/v) in Dulbecco’s modified Eagle’s medium (DMEM) containing 10% fetal 

bovine serum, 100U/mL penicillin and 100 mg/mL streptomycin. The cells were allowed to grow to 

about 90% confluence and then resuspended in DMEM medium. The cell number was adjusted to 

106 cells/mL containing approximately 2.0x105 cells in 0.2 mL and implanted subcutaneously in the 

flanks of C57BL/6 mice (six mice for each investigated contrast agent). Tumor size reached 0.4–0.6 

cm in diameter 14-20 days after cell implantation. 

Magnetic resonance images were acquired on anesthetized mice with an Aspect M2 MRI System 

(Aspect Magnet Technologies Ltd., Netanya, Israel) working at 1 Tesla. Mice were anesthetized by 

injecting a mixture of tiletamine/zolazepam (Zoletil 100; Virbac, Milan, Italy) 20 mg/kg and 

xylazine (Rompun; Bayer, Milan, Italy) 5 mg/kg and placed supine in a solenoid Tx/Rx coil with an 

inner diameter of 3.5 cm. Breath rate was monitored throughout in vivo MRI experiments using a 

respiratory probe (SAII Instruments, Stony Brook, NY - USA). After the scout image acquisition, a 

T2-weighted (T2w) anatomical image was acquired with a Fast Spin Echo sequence (TR 2500 s; TE 

41 ms; number of slices 10; slice thickness 1.5 mm; FOV 40 mm; matrix 128 × 128; four averages; 

acquisition time 2 m 40 s).  

DCE–MRI was performed using an axial 2D T1w spoiled gradient echo sequence (TR 40 ms; TE 1.8 

ms; flip angle 60°; number of slices 10; slice thickness 1.5 mm; FOV 40 mm; matrix 128 × 128; 

one acquisition; temporal resolution 58 s per image) with dynamic series was acquired with three 

initial pre-contrast T1w images and 47 dynamic post-contrast images for a total examination time of 

50 min. The contrast agents were injected intravenously at a dose of 0.05 mmol Gd/kg. Six mice 

were used in each experimental group for each blood-pool contrast agents.  

MR images were evaluated using in-house written software developed in Matlab (MathWorks, 

Natick, MA) and signal intensities (SI) of tumor, muscle and artery was measured in source images 

by drawing corresponding ROIs to evaluate SI enhancement following contrast agent injection.  

 

http://rsb.info.nih.gov/ij/


ICP-MS Gd quantification in tumor bearing mice 

B16F10 xenografts bearing male C57BL/6 mice (4- to 6-week-old) were used in the study (n = 6 

animals per each contrast agent) and injected with a dose of 0.05 mmol Gd/kg intravenously via tail 

vein. The mice were euthanized at 60 min post-injection. The tumors were collected, wet-weighed 

and Gadolinium concentrations were measured by ICP-MS. The percentage of injected dose per 

gram (%ID/g) was determined for each contrast agent inside tumors. The averages and standard 

deviations were determined. 

 

RESULTS 

The chemical structures of the three Gd agents used in this work, namely MS-325 (Vasovist or 

Ablavar), B22956/1 and Gd-AAZTA-MADEC are reported in Fig. 1. In the same figure the 

structure of B25716/1 is also reported. B25716/1 has been the subject of a recent study and it is 

strictly analogous to Gd-AAZTA-MADEC [22]. They simply differ for the length of the aliphatic 

chain (C4 for B25716/1 and a C9 for Gd-AAZTA-MADEC, respectively) spacing the targeting 

deoxycholic acid moiety from the Gd-AAZTA-unit. The elongation of the spacer in Gd-AAZTA-

MADEC is expected to remove the steric constrain that causes the decrease of the number of water 

molecules in B25716/1 (q=1) upon albumin binding [22], in respect to the parent Gd-AAZTA 

complex (q=2). 

 

Synthesis 

The preparation of Gd-AAZTA-MADEC is sketched in Scheme 1. The starting materials are the 

protected bifunctional derivative 1, recently prepared through a chemo-enzymatic approach [24], 

and the methyl ester of 3-aminodeoxycholic acid, the latter prepared from deoxycholic acid 

according to a procedure reported by Anelli et al. [25]. Standard amide coupling between 1 and 2 

using DCC/DMAP in dichloromethane yields the protected conjugate 3 in 64% yield. Removal of 

the methyl ester and t-butyl ester groups is best obtained by a sequential combination of a mild 

alkaline hydrolysis (to avoid the cleavage of the amide bond) followed by the addition of 

trifluoroacetic acid in dichloromethane, both performed at room temperature. The obtained ligand 

AAZTA-MADEC is then reacted with freshly prepared Gd(OH)3 to give the desired Gd-AAZTA-

MADEC chelate. 



 

Relaxometric characterization 

The presence of the long aliphatic chain between the heptadentate ligand AAZTA and the deoxy-

cholic acid moiety further prompts the formation of self assembled adducts, thus affecting the 

relaxation enhancement properties of the Gd-AAZTA-MADEC. The critical concentration for the 

formation of self-assembled systems was conveniently determined by measuring the 1H relaxation 

rate as a function of the Gd complex concentration. In the case of Gd-AAZTA-MADEC a sharp 

variation of the linear slope is observed when the system passes from monomeric state to self 

assembled systems. From the data reported in Fig. S1 (Supplementary materials), the turning point 

occurs at a concentration of 1 mM of Gd-AAZTA-MADEC. At 20MHz and 298K, the relaxivity of 

Gd-AAZTA-MADEC below this concentration threshold is 13.9 mM-1s-1, whereas the relaxivity of 

the self assembled structure is 20 mM-1s-1. The relaxivity of the non assembled form is similar to the 

one reported for B25716/1 and it is about 35% higher than that of the corresponding DTPA-

deoxycholic acid system (named B22956/1), mainly as a consequence of the increased hydration of 

the Gd ion coordinated to the heptadentate AAZTA ligand (q=2). 

From the analysis of the temperature dependence of the transverse relaxation rate of the metal-

bound 17O water resonance (Fig. S2, Supplementary materials), a τM value of 100 ns was obtained 

at 298K. This value is similar to that reported for the parent Gd-AAZTA complex (90 ns [27]) and 

shorter than the ones reported for B22956/1 (122 ns) and for B25716/1 (195 ns). It is in the optimal 

range for the attainment of high relaxivity in the presence of long molecular reorientational times 

[28, 29]. 

Gd-AAZTA-MADEC was stable in human serum at 37°C for 6 hours with no release of Gd3+ 

cation. Less than 1.2% changes in R1 values were observed up to 6 h of incubation (Fig. S3, 

Supplementary materials). 

 

Binding to albumin 

Owing to the possible use as an angiographic MRI system, the interaction with the human serum 

albumin has been investigated in detail. The water proton relaxation rates of solutions containing 

the paramagnetic complex were measured in the presence of increasing concentrations of the serum 

protein (proton relaxation enhancement method) [22]. With the estimation of the binding strength 

(nKA, where n is the number of binding sites and KA the thermodynamic association constant) these 



measurements provide a direct assessment of the relaxivity of the macromolecular adduct (r1
b). 

Analysis of the relaxometric data obtained at 0.47T from the titration of a 60 μM aqueous solution 

of the Gd complex with HSA at pH 7.4 and 298 K (Fig. 2A) allowed to determine the nKA and r1
b 

values (8.9x105 ±5.6 M-1 and 38.7 ±0.3 mM-1s-1, respectively). The observed binding affinity to 

HSA is significantly higher than the one reported for B22956/1 (4.5x104 M-1) [26]. Both nKA and 

r1
b of Gd-AAZTA-MADEC are also markedly higher than the values observed for the strictly 

related B25716/1 complex (nKA = 2x104 M-1 and r1
b = 29 mM-1s-1, respectively). The observed 

relaxivity of the HSA-bound complex (r1
b) is close to the value of 40 mM-1s-1 obtained at 20MHz 

and 298K for the clinical-approved MS-325 [26]. 

To get more insight into the relaxometric parameters of the supramolecular adduct between Gd-

AAZTA-MADEC and HSA, NMRD profiles have been recorded in the range of 0.01-70 MHz at 

289K in phosphate buffer solution (Fig. 2B). The NMRD profile shows high relaxivity values at all 

fields, with a marked peak centered at 30 MHz, typical of slowly tumbling systems. The observed r1 

values suggest that, upon binding to the protein, Gd-AAZTA-MADEC maintains the two inner 

sphere water molecules. The data were fitted to the Lipari-Szabo model-free approach that takes 

into account the presence of motions due to internal rotations, characterized by a correlation time 

τRL, superimposed to the global motion described in term of the correlation time τRG. [30] The 

results are collected in Table 1 and the fitting reveals a long global (whole adduct) rotational 

correlation time (τRG= 6 ns) and a short local rotational time (τRL=460 ps). The order factor value S2 

obtained from the fitting was founded to be 0.58, supporting the view that flexible movements of 

Gd-AAZTA-MADEC occur at the binding site.  

To probe the HSA binding interaction more in depth, competition assays with specific molecules, 

like warfarin (site I) and ibuprofen (site II) were carried out [31]. However, since drug binding site I 

on HSA is a very large binding domain, with three distinct subdomains, which can accommodate 

simultaneously small-to-medium size molecules, it has been deemed useful to probe the drug 

binding site I also with iodipamide in addition to warfarin. In fact, there is the possibility that this 

binding site can accommodate the Gd-containing molecule without displacing warfarin. Iodipamide 

is a molecule larger than warfarin, thus yielding additional information on the characteristics of the 

binding mode of Gd-AAZTA-MADEC. In a typical competition assay, a solution containing a Gd 

complex and HSA (in a ratio such that the Gd complex/ HSA adduct is > 50%) undergoes T1 

measurements  (at 20 MHz and 298K) in the presence of increasing amounts of the competitor 

molecule. A decrease of the R10bs is an indication of the competition between the Gd-containing 

probe and the added substrate for the same binding site on the protein. In Fig. 2C the results for the 



competition-binding assay between Gd-AAZTA-MADEC and classical HSA binding substrates is 

reported and compared with that of B22956/1 and MS-325. For Gd-AAZTA-MADEC, only with 

iodipamide we observed a marked decrease in the R1Obs, whereas no effect is obtained in the case of 

ibuprofen and warfarin. B22956/1 showed a similar displacement from site I when using 

iodipamide, suggesting a strong interaction with site I, as for Gd-AAZTA-MADEC. On the 

contrary, a completely different behavior was observed in the case of MS-325 with showed binding 

interactions at both site I and site II. In fact, for MS-325 both ibuprofen and iodipamide induced a 

comparable displacement, which was not previously observed, likely due to the use of the smaller 

warfarin molecule [32]. 

 

Comparison of the relaxation enhancements in human and murine serum albumins 

Fig. 3 reports the high field relaxivity values obtained for Gd-AAZTA-MADEC, MS-325 and 

B22956/1 (0.5 mM) at 37°C in the presence of human and murine serum albumin, respectively. As 

the relaxivity peak at ca. 1 T is determined by the formation of the supramolecular adduct with the 

paramagnetic complex, it was deemed of interest to compare human vs murine serum albumins in 

order to extract some insight into the species-related albumin binding of the Gd(III) complexes 

herein considered. Under the applied experimental conditions, the already high relaxivity shown by 

Gd-AAZTA-MADEC in human serum albumin (r1p
bound = 31 mM-1s-1) was even higher when added 

to the mouse serum albumin (r1p
bound = 40 mM-1s-1, Fig. 3A). Conversely, MS-325 displayed a 

dramatic decrease of the relaxation enhancement from ca. 39 mM-1s-1 with human serum albumin 

(at 40 MHz and 37°C) to 16 mM-1s-1 with mouse serum albumin (Fig. 3B). For B22956/1 there is 

almost perfect overlap between the relaxation enhancements values observed in the two species, 

with r1p
bound of 19 mM-1s-1 and 22 mM-1s-1 for human and mouse serum albumin, respectively (Fig. 

3C). 

 

Pharmacokinetic and biodistribution results 

Measurements of the average plasma Gd(III) concentrations as percentage of the initial dose (C0) 

following a single bolus injection through the tail vein at a dose of 0.05 mmol Gd/kg  revealed a 

prolonged blood residence of Gd-AAZTA-MADEC as compared to B22956/1 and MS-325 (Fig. 4). 

The average plasma Gd concentration of Gd-AAZTA-MADEC at 5 min post-injection was 32.8% 

of the initial dose, while that of B22956/1 and MS-325 was 14.8% and 18.9%, respectively. The 



blood concentration gradually decreased with time for all the Gd-based contrast agents and at 6 h 

post-injection the plasma Gd concentration was less than 1%. The Gd(III) plasma concentration 

profiles of the agents were analyzed with a two-compartment pharmacokinetic model. The mean 

values of half-life associated with the elimination phase, t1/2β, was longer for Gd-AAZTA-MADEC 

(32.6 min) than for MS-325 (29.1 min), and for B22956/1 (23.7 min). The elimination half-lives of 

B22956/1 and MS-325 are comparable to previous values obtained in rats [20, 33]. 

Biodistributions of Gd-AAZTA-MADEC in normal BALB/c mice at 24 h after intravenous 

injection of Gd-AAZTA-MADEC at a dose of 0.05 mmol Gd/kg are shown in Fig. S4 

(Supplementary materials). At 1 days post-injection, a reduced amounts of Gd-AAZTA-MADEC 

remained in the liver and in the spleen (%ID/g = 7.9 ±1.3 and 2.7 ±0.3 for liver and spleen, 

respectively), likely reflecting a delayed accumulation owing to the hydrophobicity properties. Only 

a negligible amount of Gd was retained in the other organs analyzed. 

 

Magnetic Resonance Angiography 

Fig. 5 shows representative three-dimensional maximum intensity projection (MIP) contrast 

enhanced images of mice i.v. treated with Gd-AAZTA-MADEC, B22956/1, MS-325 and B25716/1 

at 2, 5, 10, 15, 30, 45 and 60 min post-injection of the contrast agents at a dose of 0.05 mmol 

Gd(III) / kg. The four investigated CAs showed different contrast enhancement properties, either in 

terms of persistence or of localization of the contrast. Gd-AAZTA-MADEC resulted in stronger and 

more prolonged contrast enhancement than B22956/1, B25716/1 and MS-325 in the heart and blood 

vessels. The visualization of vessels resulted well enhanced up to 30 min post-injection, whereas 

MS-325 resulted in significant blood pool enhancement only at 2 min post-injection, with the signal 

that gradually faded away due to the clearance of the agent from the blood, resulting in a strong 

enhancement inside the bladder which gradually increased over time. B22956/1 exhibited longer 

vascular enhancement duration than MS-325, but lower then Gd-AAZTA-MADEC. B22956/1 also 

resulted in significant enhancement in the liver and gallbladder. B25716/1 showed comparable 

enhancement of heart, vessels and liver just upon administration, with a constant accumulation 

inside the liver, similarly to B22956/1. 

 

Contrast Enhanced-MRI of tumor-bearing mice 



Fig. 6A shows the dynamic signal intensity enhancement in C57BL/6 mice transplanted 

subcutaneously with B16F10 melanoma cells measured in the tumor region. Significant contrast 

enhancement was observed, already at 10 min post-injection, for Gd-AAZTA-MADEC, B22956/1, 

MS-325 and B25716/1, of 1.72, 0.91, 1.03 and 1.50, respectively. The contrast enhancement slowly 

reduced thereafter for B22956/1 and B25716/1, (0.62 and 0.53 for B22956/1 and 1.40 and 1.31 for 

B25716/1, at 30 and 45 min, respectively), while for Gd-AAZTA-MADEC and MS-325 remained 

constant along time (1.77 and 1.78 for Gd-AAZTA-MADEC and 1.06 and 1.04 for MS-325, at 30 

and 45 min, respectively). 

Post-cull analysis of tumor accumulation demonstrated that approximately 2.1 ±0.1% of the injected 

dose (0.05 mmol Gd / kg) of Gd-AAZTA-MADEC had accumulated per gram of tumor, during the 

1 h following intravenous administration (Fig. 6B). This proved to be a significant (p<0.05) and 

substantial increase compared to B22956/1 (%ID/g = 0.2 ±0.01%), MS-325 (%ID/g = 0.7 ±0.4%) 

and B25716/1 (%ID/g = 1.0 ±0.03%). The levels of Gd accumulation within the tumor are in 

accordance with the changes in T1 values, at the same time point after injection (60 min), as 

measured with the MRI-based approach (Fig. S5, Supplementary materials). Accumulation of Gd-

AAZTA-MADEC within the tumor results in a marked T1 shortening, in comparison to the lower 

extent of T1 reduction for all the other investigated blood-pool agents. 

All the investigated CAs induced a good contrast enhancement in the tumor region, thanks to the 

enhanced permeability retention effect, at the investigated doses of 0.05 mmol Gd/kg (Fig. 7A-D). 

However, Gd-AAZTA-MADEC showed the highest contrast enhancement inside tumor region, 

providing a better visualization of intratumoral heterogeneity. 

 

DISCUSSION 

In the last two decades it has been widely recognized the potential of blood pool Gd-based contrast 

agent in MRI investigations. In particular, at pre-clinical level, several reversible human serum 

albumin binding complexes have shown to be particularly useful to assess therapeutic response to 

different therapeutic protocols using the DCE-MRI based procedures [34]. Several issues, including 

contrast efficiency, overall stability, vascular retention time, extravasation properties, as well as 

magnetic field and species dependence have to be considered for an optimal design of an albumin-

binding agent for vasculature and tumor imaging. In this study, we addressed all these properties to 

evaluate a new blood pool contrast agent, Gd-AAZTA-MADEC, by comparing its contrast 



enhancement capabilities against two well established Gd-based vascular agents, namely B22956/1 

and MS-325, and with B25716/1.   

One of the key factor for obtaining an optimal blood pool agent is the binding affinity toward HSA, 

that occurs through the best matching with the two main binding cavities of the protein (Sudlow’s 

drug site I and site II [35, 36]).  An increase of the binding affinity can be pursued by a correct 

balance between the targeting moiety that penetrates inside the hydrophobic pocket and the length 

of the spacer that has to be long enough to allow the Gd coordinating cage to protrude outside the 

protein surface. However, at the same time, the spacer should be short enough to prevent local 

internal rotational motions that could be detrimental to the attainable relaxation enhancement [37-

39]. On this basis, Gd-AAZTA-MADEC was designed by elongating the spacer by a C5 unit in 

respect to B25716/1. This minor modification has brought to increase the binding affinity by more 

than one order of magnitude (nKA = 8.9x105 and nKA = 2.0x104 for Gd-AAZTA-MADEC and 

B25716/1, respectively). Gd-AAZTA-MADEC, B22956/1 and B25716/1 share the same targeting 

moiety, represented by a 3-aminodeoxycholic residue, but linked to the coordination cage through a 

flexible spacer made of an aliphatic chain of different length. On the basis of the observed nKA 

values towards human serum albumin, one can conclude that the longer the spacer, the higher the 

binding affinity (Table 1).  

The prolonged blood circulation time can be similarly explained by the higher binding affinity 

constant to HSA that in turn results in a reduced amount of the free form that is excreted by 

kidneys. In addition, Gd-AAZTA-MADEC showed a reduced liver uptake, at early time points 

post-injection, in comparison to B22956/1 and to B25716/1, and a reduced renal filtration, as 

compared to MS-325, therefore resulting in higher blood concentration values at all the investigated 

time points. To confirm the different pharmacokinetic fate of the investigated blood pool agents, 

signal intensities (normalized to the signal intensity of the muscle region) were measured in several 

organs, such as heart, liver, urinary bladder and gall bladder, following i.v. injection (Fig. S6, 

Supplementary materials). The heart contrast enhancement was significant higher for Gd-AAZTA-

MADEC up to 30 min, showing a prolonged and higher contrast enhancement in the blood pool as 

compared to B25716/1, MS-325 and B22956/1, respectively. For the same reason Gd-AAZTA-

MADEC resulted in a clearer visualization of small blood vessels, providing effective contrast 

enhancement for more than 15 min (Fig. 5). The contrast enhancement pattern of the agents in the 

blood pool was consistent to the plasma pharmacokinetic results. In addition, the effective 

enhancement window of Gd-AAZTA-MADEC in humans may be longer than in mice because the 

blood circulation in humans is much slower than in mice. Consequently, considering that 



elimination half-lives in humans are six to nine fold longer than in mice, these results indicated that 

the one order of magnitude higher affinity constant to HSA for Gd-AAZTA-MADEC may allow 

robust steady-state MRI angiographic acquisitions [40]. Beyond angiography, recent studies have 

utilized MS-325 as a biomarker for tissue albumin concentration for assessing reperfused 

myocardial infarction [41]. The design of a new blood pool agent with optimized albumin binding 

properties may allow further improvements of this new clinical indication.  

Besides the binding affinity, the number of the coordinated water molecules to the Gd ion plays a 

key role because the relaxivity increases with the hydration state. Obviously, the enhanced 

hydration cannot occur at the expenses of the overall thermodynamic stability, which is one of the 

main prerequisites for a metal complex to be considered for in vivo application [42, 43]. MS-325, 

the only FDA-approved blood-pool CA, has a coordination cage with q =1, similar to B22956/1, 

while the proposed Gd-AAZTA-MADEC owns two coordinated water molecules, therefore 

enabling higher relaxivity. At the same time, the stability of the AAZTA cage has been shown to be 

sufficiently high to prevent the release of the Gd(III) ion [44]. The hydration number of two was 

maintained upon binding to HSA, despite the relaxivity of the bound complex not being as high as 

one may expect on the basis of the established theory. One reason to account for the observed 

behaviour could be correlated to the high flexibility of the spacer that yields a certain degree of 

local motion at the binding site, in turn resulting in a shortening of the effective τRL. In the 

comparison with B25716/1 [22], for which the interaction to HSA causes the reduction of the inner-

sphere water molecules, Gd-AAZTA-MADEC, thanks to the longer spacer, succeeds to maintain 

the pristine number of coordinating water molecules and the relaxivity of the HSA-adduct sensibly 

higher than those obtained for the analogous bile acid derivatives. 

It is well established that the Gd-based CAs present a field-dependent relaxivity which may show a 

remarkable enhancement at fields of 0.5-1.5T in the presence of slow molecular reorientation [28, 

45-48]. Recently, the development of preclinical MRI scanners at 1T attracted new attention 

towards the advantages associated to the combination of macromolecular Gd-based systems and 

low field scanners [8]. Vascular imaging requires both sufficient high relaxivity and long blood half 

life to obtain high contrast enhanced steady state images. Previous studies from Caravan et al. 

already showed species dependence on albumin binding [49, 50]. As a consequence, a blood pool 

CA that has been optimized for humans, may show sub-optimal relaxivity properties when used in 

other species. This marked species dependence of the investigated blood pool CAs explains the 

differences in contrast enhancement capabilities in the corresponding angiographic images. The 

combination of the longest elimination half life, with the highest relaxivity showed by Gd-AAZTA-



MADEC in mouse serum, resulted in the brightest and prolonged MIP angiographic images. MS-

325, despite a slightly shorter elimination half-life in comparison to Gd-AAZTA-MADEC, it is not 

so suited for mice angiographic images due to its low relaxation efficiency in mice serum. 

Similarly, B22956/1 and B25716/1 despite having high relaxivity in mouse serum, resulted in 

angiographic images that are not optimal, due to the relative fast elimination kinetic and to the high 

liver uptake. DCE-MRI is a promising method for characterizing tumor angiogenesis and tumor 

response to antiangiogenic treatment [51, 52]. The accuracy of tumor microvasculature 

measurements relies, besides other factors, on the pharmacokinetic properties of the injected tracer 

and on its capabilities to induce marked signal intensities changes on sequential magnetic resonance 

images. Several macromolecular blood pool agents have been investigated, from small Gd-based 

complexes with reversible binding to serum albumin, to Gd-complexes covalently conjugated to 

albumin, to dendrimers or to biocompatible hyaluronan scaffold [53-56]. A relevant issue is often 

related to their biological fate, where significant liver and spleen accumulation is usually observed 

as consequence of their higher molecular weight and/or lipophilicity, resulting in a reduced 

accumulation inside tumor region. Our findings showed that the tumor contrast enhancement of Gd-

AAZTA-MADEC was the highest among B22956/1, B25716/1 and MS-325 during all the dynamic 

acquisition series. The slow decrease of contrast enhancement shown by B22956/1 may be likely 

due to the accumulation of the contrast agent in the liver and gall-bladder, thus resulting in a lower 

blood pool concentration along time, as accounted by the pharmacokinetic profile, which turns in a 

reduced extravasation to the tumor region. On the contrary, the prolonged vascular retention for Gd-

AAZTA-MADEC, allows a continued accumulation of the macromolecular adduct inside the 

tumor, thus resulting in a sustained and elevated contrast enhancement and Gd accumulation. 

Hence, the Gd-AAZTA-MADEC capability to accumulate inside tumor regions may be exploited 

for an accurate characterization of tumor microvasculature [57]. 

 

CONCLUSION 

In summary, our study demonstrates that Gd-AAZTA-MADEC is a novel blood-pool contrast MR 

agent with optimal pharmacokinetic and relaxometric properties, showing significant enhancement 

of the vasculature and extravasation inside tumor for a prolonged period of time. Based on these 

results, preclinical benchtop MRI scanners working at 0.5-1.5 T may benefit from the use of this 

improved blood pool contrast agent to establish DCE-MRI as a tool for routine preclinical imaging 

as well as in combination with multimodality imaging scanners [58]. 
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Figure Legends 

Fig. 1. Chemical structures of the investigated blood pool molecules: (A) MS-325, (B) B22956/1, 

(C) Gd-AAZTA-MADEC, (D) B25716/1. 

Scheme 1. Synthetic procedure for the preparation of Gd-AAZTA-MADEC. 

Fig. 2. (A) Plot of variation of observed longitudinal water proton relaxation rate of a 60 μM 

solution of Gd-AAZTA-MADEC measured at 0.47T and 25°C. (B) 1/T1 NMRD profile of 1 mM 

solution of Gd-AAZTA-MADEC in phosphate buffer solution (□) and bound to HSA (■), measured 

at 25°C. (C) Variation of proton relaxation rates of aqueous solutions of 0.5 mM HSA and 0.05 mM 

of Gd-AAZTA-MADEC, B22956/1  and MS-325 as a consequence of the competition for the 

binding to the protein upon addition of the substrates iodipamide and warfarin for site I and 

ibuprofen for site II ([Competitors]= 5 mM). 

Fig. 3. NMRD profiles in presence of mouse serum albumin (open square) and human serum 

albumin (closed square) at 37°C for (A) Gd-AAZTA-MADEC, (B) MS-325 and (C) B22956/1. 

Fig. 4. Plasma level decay as % of the initial dose (C0) after single intravenous injection of Gd-

AAZTA-MADEC (circles), MS-325 (triangles) and B22956/1 (squares) at a dose of 0.05 mmol 

Gd/kg. 

Fig. 5. Whole body coronal maximum intensity projection (MIP) of the 3D FLASH images 

obtained from the mice after intravenous injection of Gd-AAZTA-MADEC, MS-325, B22956/1and 

B25716/1(from top to bottom) at a dose of 0.05 mmol Gd/kg. Post-contrast images at 2, 5, 10, 15, 

30, 45 and 60 min are shown here after the subtraction of the corresponding pre-contrast images. 

Fig. 6. (A) Time course of MRI signal intensity enhancement in tumor of mice with intravenous 

injection of Gd-AAZTA-MADEC (circles), MS-325 (triangles), B22956/1 (squares) and B25716/1 

(diamond) at a dose of 0.05 mmol Gd/kg. Values are shown as mean ±SD (n=6) for each contrast 

agent. (B) Gd accumulation within tumor tissue at 60 min after injection of Gd-based agents at a 

dose of 0.05 mmol Gd/kg. The data are expressed as the percentage injected dose per gram tissue 

(%ID/g) and represented as the mean values of six mice. 



Fig. 7. Representative tumor SI enhancement maps overimposed onto anatomical T2w images upon 

injection of Gd-AAZTA-MADEC (A), B25716/1 (B), MS-325 (C) and B22956/1 (D) at a dose of 

0.05 mmol Gd/kg. 

 

Tables 

 

Table 1. Main relaxometric parameters derived from fitting of 1H-NMRD and 17OR2p versus T 

analysis of Gd-AAZTA-MADEC, and Gd-AAZTA-MADEC bound to HSA. 

 
r1p (20MHz) 

[mM
-1s-1] 

Δ2[a] 

[s-2] 

τV
[b] 

[ps] 

τR
[c] 

[ps] 

τM
 [f] 

[ns] 
q[g] 

Gd-AAZTA-

MADEC 
13.9 3×1019 27 200 100 2 

Gd-AAZTA-

MADEC +HSA 
38.7 1.55×1019 15.4 

τRL
[d]/[ps] 

224 
τRG

[e]/[ps] 

6200 
440 2 

[a] Squared mean transient zero-field splitting (ZFS) energy. [b] Correlation time for the collision-related modulation of 

the ZFS Hamiltonian. [c] Re-orientational correlation time.[d] Correlation time for local motion. [e] Correlation time 

for global motion. [f] Exchange life-time of the coordinated water molecule. [g] Number of inner sphere water 

molecules.  

 

 


