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We describe our implementation of a fully analytical scheme, based on the 2n + 1 rule, for comput-
ing the coupled perturbed Hartree Fock and Kohn-Sham dynamic first hyperpolarizability tensor
β(−ωσ;ω1,ω2) of periodic 1D (polymer), 2D (slab), and 3D (crystal) systems in the CRYSTAL code
[R. Dovesi et al., Int. J. Quantum Chem. 114, 1287 (2014)], which utilizes local Gaussian type basis
sets. The dc-Pockels (dc-P) and second harmonic generation (SHG) tensors are included as special
cases. It is verified that (i) symmetry requirements are satisfied; (ii) using LiF as an example, the
infinite periodic polymer result agrees with extrapolated finite oligomer calculations and, likewise, for
the build-up to a 2D slab and a 3D crystal; (iii) the values converge to the static case for low frequen-
cies; and (iv) the Bishop-deKee dispersion formulas relating dc-P, SHG, and general processes are
reproduced through quartic terms. Preliminary SHG calculations on multi-layer MoS2 satisfactorily
reproduce experimental data. C 2015 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4937770]

I. INTRODUCTION

There continues to be considerable interest in the
nonlinear optical (NLO) properties of materials, motivated
by fundamental as well as practical considerations. These
properties have been useful and they remain potentially useful
for a wide variety of optical and photonic applications.1–4

The materials studied range broadly from small molecules
to large complex bio- and nano-systems. Past and on-going
developments in this field have been fueled by a combination
of experiment and theory. Our own focus has been on the
theoretical/computational aspect, especially for systems that
are either periodic or may be modeled as such.

For periodic systems, the opportunity to exploit trans-
lational symmetry provides major computational advantages.
On the other hand, a problem arises as to how to properly
express the term that describes the electronic dipole interaction
with a spatially homogeneous external electric field (or fields),
E⃗, which is the origin of the various NLO processes. The
conventional scalar interaction potential used in the molecular
context,

V̂ (r⃗) = E⃗ · r⃗ , (1)

is unsuitable for periodic systems since it breaks translational
symmetry and, in addition, it is unbounded. Here, r⃗ is the
electronic position operator and the electronic charge has
been taken as e = −1 a.u.

Beginning a little over 20 years ago, substantial advances
with regard to the proper definition of the interaction operator
have been made. Two different formulations for static fields,
that preserve translational symmetry, were presented by Resta5

and by King-Smith and Vanderbilt (KSV).6 Subsequently,

a)lorenzo.maschio@unito.it

for periodic polymers in particular, two time-dependent
approaches were introduced, one based on the vector potential7

and the other on subtracting out the non-periodic part of
the scalar potential.8 These time-dependent formulations are
equivalent to one another7 and, in the static field limit, reduce
to the KSV expression.9 Ferrero et al.10,11 extended the 1D
vector potential treatment of polymers to 2D and 3D but,
as in Refs. 5 and 6, considered only the static limit in their
implementation. For homogeneous electric fields, which may
be either time-dependent or not, the general expression in
1-, 2-, or 3-D that replaces Eq. (1) becomes

ı⃗E · eı k⃗ ·r⃗∇⃗ke−ı k⃗ ·r⃗ =

b

EbΩ̂
(Eb)(k⃗), (2)

where k⃗ is a reciprocal space vector, Ω̂(Eb)(k⃗) refers to the
b component of the gradient vector, and Eb = Eb(t) is the b
component of the time-dependent incident electric field or
fields. The operator in Eq. (2) is clearly diagonal in k space;
it is valid for all materials as long as they have a non-zero
bandgap.

NLO properties are defined in terms of a power series
expansion in the various electric fields. An appropriate
expansion may be obtained most conveniently by means
of perturbation theory. Indeed, the time-dependent polymer
treatments mentioned above were developed in the context
of coupled perturbed Hartree-Fock (CPHF) theory as was the
implementation for static fields acting on periodic systems
of 1, 2, and 3 dimensions carried out by Ferrero et al.,10,11

within the CRYSTAL program.12,13 Both first and second static
hyperpolarizabilities are computed in CRYSTAL by means of
the 2n + 1 rule. In addition to CPHF, coupled perturbed
Kohn-Sham (CPKS) calculations14,15 using gradient corrected
and hybrid functionals are also available. The CRYSTAL code

0021-9606/2015/143(24)/244102/10/$30.00 143, 244102-1 © 2015 AIP Publishing LLC
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that employs local Gaussian-type basis functions is efficiently
parallelized and takes maximum advantage of symmetry (see
Ref. 16 and references therein) so that large unit cells are
tractable.

Frequency-dependent linear polarizabilities are available
in CRYSTAL, and in many other programs as well (e.g.,
ADF-Band, Yambo, EXCITING, Wien2k et al.). However,
neither CRYSTAL nor, to our knowledge, any other code
has implemented a fully periodic coupled perturbation
theory treatment of dynamic (i.e., frequency-dependent) NLO
properties until this work, so that the state-of-the-art treatment
of crystalline systems has been until now the use of molecular
embedding techniques, when possible.17

In the present paper, we develop and test a fully analytical
CPHF/CPKS code for the general dynamic β(−ωσ;ω1,ω2)
tensor based on the 2n + 1 rule, which has now been
implemented in the CRYSTAL program.12,13 The dc-Pockels
(dc-P) and second harmonic generation (SHG) tensors,
β(−ω;ω,0) and β(−2ω;ω,ω), are included, of course, as
special cases. For CPKS, the adiabatic approximation was
utilized.

As part of the vetting, it was verified that the
various symmetry relations between the components of
β(−ωσ;ω1,ω2) are obeyed. Moreover, as in the case of static
first hyperpolarizabilities, the consistency of the 0D, 1D, 2D,
and 3D treatments was established using LiF units to build-up
from a single molecule to finite linear chains and, then, to
infinite chains, slabs, and, finally, FCC LiF. In all structures,
one atom was slightly displaced with respect to its equilibrium
position in order to yield nonvanishing values—see Section III
and Figure 1. The convergence behavior with respect to the
number of k⃗ points, as well as the parameters controlling
the truncation of the coulomb and exchange series that enter
into both the zero field SCF calculation and the first-order
perturbation treatment, were also studied.

As a first application of the method, we have computed
SHG properties of multi–layer MoS2 structures. Our results
correctly reproduce the strong decay of the SHG intensity
with the (odd) number of stacked layers.

In Sec. II, the pertinent theoretical background is
presented. Then, in Sec. III we report on the checks that were
carried out. These include symmetry behavior, build-up from
0D to 3D, and the relationship between different properties for
the frequency-dependence of the diagonal components. The
effect of the various computational parameters on accuracy
and numerical stability is also considered. In Sec. IV, we
report our results for MoS2 nanostructures. Finally, Sec. V
provides an overall summary and some directions of future
work.

II. COUPLED PERTURBED HF/KS CALCULATION
OF THE DYNAMIC FIRST HYPERPOLARIZABILITY

In order to derive our 2n + 1-rule working formula for
the dynamic first hyperpolarizability of a 3D periodic system
given by Eq. (3) below, we start with the expression for the
static limit due to Ferrero et al. (see Eq. (58) in Ref. 18).
This expression has exactly the same form as that shown
below except, of course, that all frequencies are set equal

FIG. 1. Buildup of LiF structures from 0D to 3D, used as test systems in this
work as discussed in Section III B 1.

to zero. The 3D static result was obtained, in fact, by
generalizing the 1D periodic frequency-dependent treatment
of Kirtman et al.7 which, in turn, was based on the time-
dependent Hartree-Fock formulation for molecules developed
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by Karna and Dupuis19 (KD). Thus, we use KD to introduce
the frequency-dependence. They considered just four special
cases (see Table VII in Ref. 19), including static, and their
treatment pertains only to the first two terms in square brackets
below. Nonetheless, it is straightforward to generalize their
formulation as we have done. Finally, the use of the operator

P t
−ωσ

, u
+ω1

, v
+ω2

which permutes the pairs (t/−ωσ), (u/+ω1),

and (v/+ω2) has been discussed, for example, by Bishop.20

From the approach just described, the general expression for
the first hyperpolarizability of closed-shell periodic systems
in the presence of frequency-dependent fields may be written
as

βtuv(−ωσ;ω1,ω2) = −
2
nk

K−ωσ,ω1,ω2


k⃗

ℜ

i


a

P t
−ωσ

, u
+ω1

, v
+ω2

×



U (t)∗
ai(−ωσ)(k⃗)




b

G(u)
ab(+ω1)(k⃗)U

(v)
bi(+ω2)(k⃗) −


j

U (v)
a j(+ω2)(k⃗)G

(u)
j i(+ω1)(k⃗) + ı

∂U (v)
ai(+ω2)(k⃗)
∂ku





, (3)

where i, j and a,b run over occupied and virtual crystalline
orbitals (CO), respectively, t,u, v indicate directions of the
field, and ωσ = ω1 + ω2. The last term of Eq. (3) only appears
for infinite periodic systems described under the Born-von-
Karman condition. A working expression is developed in
Appendix A.

In Eq. (3), the coefficient K−ωσ;ω1,ω2 depends on
the nonlinear optical process21 (K0,0,0 = 1, K−2ω,ω,ω = 1/2,
K−ω,0,ω = 2, K0,ω,−ω = 1/2, Kω,−2ω,ω = 1, and K−ωσ,ω1,ω2
= 1 if neither ωσ, nor ω1 nor ω2 are null). The off-diagonal
virt-occ blocks of the perturbation matrix U (u)

ai(+ω1)(k⃗) are
defined as (the diagonal blocks are chosen to vanish in the
non-canonical KD treatment),

U (u)
ai(+ω1)(k⃗) = −

G(u)
ai(+ω1)(k⃗)

Ea(k⃗) − Ei(k⃗) + ω1

. (4)

Here, the G(u)
ai(+ω1)(k⃗) matrix is obtained after Fourier

transformation of the first-order atomic orbital (AO) Fock
matrix as

G(u)
ai(+ω1)(k⃗) = Ξai(k⃗) +


µ,ν


C∗µa(k⃗)F(u)

µ,ν(+ω1)(k⃗)Cνi(k⃗)

, (5)

where Ξai(k⃗) = ⟨a(k⃗)|r + ı∇
k⃗
|i(k⃗)⟩ = Zai(k⃗) + ıQai(k⃗) is the

transition moment operator between occupied i(k⃗) and virtual

a(k⃗) crystalline orbitals.8,22 F(u)
µ,ν(+ω1)(k⃗), in turn, is determined

using the perturbed density Du

ρ,τ n⃗(+ω1)
,

F(u)
µ,ν(+ω1)(k⃗) =


g⃗

e−ı k⃗ ·g⃗

h,n


ρ,τ

(
µνg⃗ ||ρh⃗τh⃗+n⃗

)
D(u)

ρ,τ n⃗(+ω1)
,

(6)
with the density being obtained as a back-Fourier transform of
its reciprocal space image, that—assuming integer occupation
of all orbitals—is expressed for closed shells as

D(u)
µ,ν g⃗ (+ω1)

= 2

k⃗

eı k⃗ ·g⃗



ia

Cµa(k⃗)U (u)
ai(+ω1)(k⃗)C∗νi(k⃗)

+

ia

Cµi(k⃗)U (u)∗
ia(+ω1)(k⃗)C

∗
νa(k⃗)


. (7)

As a result, G(u)
ai(+ω1)(k⃗) ultimately depends on U (u)

ai(+ω1)(k⃗)
which, in turn, depends on G(u)

ai(+ω1)(k⃗).
Hence, a self-consistent procedure must be employed to

obtain the U (u)(k⃗) matrix in Eq. (4). This procedure has been
adopted in a previous work18 for periodic systems at the static
(ωσ = ω1 = ω2 = 0) limit.

The expression for the density functional theory (DFT)
contribution to βtuv(−ωσ;ω1,ω2) is obtained from the
expression for the corresponding static property as reported
in Eq. (20) of Ref. 15,

βDFT
tuv (−ωσ;ω1,ω2) =


i

wiP̂t/−ωσ,u/+ω1, v/+ω2


∂3 f XC

∂ρ3 ρt(−ωσ)ρ
u
(+ω1)ρ

v
(+ω2) + 2

∂3 f XC

∂ρ2∂ | ∇ρ |2
(
ρt(−ωσ)ρ

u
(+ω1)∇ρ · ∇ρ

v
(+ω2)
)

+ 4
∂3 f XC

∂ρ∂(| ∇ρ |2)2
(
ρt(−ωσ)∇ρ · ∇ρ

u
(+ω1)∇ρ · ∇ρ

v
(+ω2)
)

+ 8
∂3 f XC

∂(| ∇ρ |2)3∇ρ · ∇ρ
t
(−ωσ)∇ρ · ∇ρ

u
(+ω1)∇ρ · ∇ρ

v
(+ω2) + 2

∂2 f XC

∂ρ∂ | ∇ρ |2
(
ρt(−ωσ)∇ρ

u
(+ω1) · ∇ρ

v
(+ω2)
)

+ 4
∂2 f XC

(∂(| ∇ρ |2)2
(
∇ρ · ∇ρt(−ωσ)∇ρ

u
(+ω1) · ∇ρ

v
(+ω2)
)

ri

. (8)
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III. TESTING THE IMPLEMENTATION

In this section we aim at providing numerical evidence
that (a) the symmetry of the β tensor is fully satisfied, (b)
the formalism is consistent throughout 0D to 1D, 2D, and 3D
periodic systems, (c) all the values of the dynamic tensors
converge to the static value at long wavelength, and (d) the
Bishop-De Kee dispersion formula23,24 is satisfied. As in
previous works on static CPHF/KS implementations,11,25,26

we use LiF structures (see Figure 1) as a benchmark system,
which we will describe in detail in Section III B 1.

A. Symmetry of the β tensor

Perhaps the simplest, and least stringent, test of our
implementation is the symmetry of the β tensor, which
requires that certain of the 27 components must be equal
and others must vanish. These requirements differ depending
upon the dimensionality.

(i) In 1D we take the periodic direction to be along x. Then,
in general, for βi, j,k (−ωσ;ω1,ω2) all components with
an odd-power of y and/or z vanish. Furthermore, y and
z are equivalent directions so that βxy y = βxzz, βy yx

= βzzx, and βyxy = βzxz. In addition, all simultaneous

permutations of the frequencies and directions for the
set (ωσ/i,ω1/ j,ω2/k) must yield the same value. In
particular, we examined for second harmonic generation
(SHG; ωσ = 2ω, ω1 = ω2 = ω) the permutation ω1/ j
↔ ω2/k, which leads to βyxy = βy yx, whereas for the dc-
Pockels effect (dc-P; ωσ = ω, ω1 = ω, ω2 = 0) the same
permutation leads to βyxy(−ω;ω,0) = βy yx(−ω; 0,ω).

(ii) In 2D we consider (see Section III B 1 below)
periodicity in the x, y plane with the x–direction being
asymmetric and the y–direction symmetric. Then, again,
the components of the β tensor with an odd power in y
or z will be null. Now, however, y and z are inequivalent
although the permutation ω1/ j ↔ ω2/k leads separately
to the same relations as in (i) for z and y .

(iii) Finally, in 3D we add (see, again, Section III B 1 below)
a symmetric periodic z direction so that y and z are,
once again, equivalent. Then the symmetry requirements
are the same as in (i).

All of the above symmetry relations have been successfully
tested. In Table I, the full tensors obtained for some of the
model systems described in Section III B 1 below, as computed
at the Hartree-Fock level, are reported as an example.

TABLE I. Tensor elements for dc-Pockels and SHG dynamic β for the three periodic dimensionalities of (distorted) LiF model structures considered in the
present work (cf. Figure 1). Symmetries of the tensors can be observed as discussed in Section III A. All values are in a.u. as obtained from Hartree-Fock
calculations at ω = 200 nm.

dc-Pockels

Polymer Slab Bulk

v x y z x y z x y z

t u

x
x 7.902 52 0.000 00 0.000 00 x 5.323 65 0.000 00 0.000 00 x 3.586 02 0.000 00 0.000 00
y 0.000 00 −0.664 02 0.000 00 y 0.000 00 −0.299 43 0.000 00 y 0.000 00 −0.351 99 0.000 00
z 0.000 00 0.000 00 −0.664 03 z 0.000 00 0.000 00 −0.171 37 z 0.000 00 0.000 00 −0.351 87

y
x 0.000 00 −0.494 51 0.000 00 x 0.000 00 −0.129 25 0.000 00 x 0.000 00 −0.263 92 0.000 00
y −0.664 02 0.000 00 0.000 00 y −0.299 47 0.000 00 0.000 00 y 0.351 98 0.000 00 0.000 00
z 0.000 00 0.000 00 0.000 00 z 0.000 00 0.000 00 0.000 00 z 0.000 00 0.000 00 0.000 00

z
x 0.000 00 0.000 00 −0.494 52 x 0.000 00 0.000 00 −0.112 95 x 0.000 00 0.000 00 −0.263 92
y 0.000 00 0.000 00 0.000 00 y 0.000 00 0.000 00 0.000 00 y 0.000 00 0.000 00 0.000 00
z −0.664 03 0.000 00 0.000 00 z 0.171 36 0.000 00 0.000 00 z 0.351 86 0.000 00 0.000 00

Second harmonic generation

Polymer Slab Bulk

v x y z x y z x y z

t u

x
x 35.733 82 0.000 00 0.000 00 x 21.921 27 0.000 00 0.000 00 x 9.952 16 0.000 00 0.000 00
y 0.000 00 −4.189 52 0.000 00 y 0.000 00 −4.583 16 0.000 00 y 0.000 00 −1.970 79 0.000 00
z 0.000 00 0.000 00 −4.189 72 z 0.000 00 0.000 00 −0.985 57 z 0.000 00 0.000 00 −1.970 92

y
x 0.000 00 2.529 78 0.000 00 x 0.000 00 −0.901 25 0.000 00 x 0.000 00 −0.815 50 0.000 00
y 2.529 78 0.000 00 0.000 00 y −0.901 25 0.000 00 0.000 00 y −0.815 50 0.000 00 0.000 00
z 0.000 00 0.000 00 0.000 00 z 0.000 00 0.000 00 0.000 00 z 0.000 00 0.000 00 0.000 00

z
x 0.000 00 0.000 00 −0.494 52 x 0.000 00 0.000 00 0.208 34 x 0.000 00 0.000 00 −0.815 01
y 0.000 00 0.000 00 0.000 00 y 0.000 00 0.000 00 0.000 00 y 0.000 00 0.000 00 0.000 00
z −0.664 03 0.000 00 0.000 00 z 0.208 34 0.000 00 0.000 00 z −0.815 01 0.000 00 0.000 00
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B. Build-up from molecule to 1-, 2-, and 3-D

1. The model systems

As mentioned in the Introduction, one key test that we
considered is the evolution of the non-null components of β
with increasing dimensionality of the system. For this purpose,
n-dimensional LiF structures were built by assembling a finite
number of (n − 1)-dimensional “monomers” progressively, as
shown in Figure 1. Accordingly, we joined Li-F units (0D
LiF) to form linear chains of increasing length (oriented along
the x axis), that evolve to an infinite linear chain (1D LiF).
Then, we arranged infinite linear chains next to each other
in a plane by alternating Li and F ions along the growing
direction (y axis) to form an infinite LiF layer (2D LiF).
Finally, we superimposed LiF infinite layers to form slabs of
growing thickness along the z direction to approximate bulk
LiF (again, the stacking of planes is such that the alternation
of Li and F ions along z is preserved).

In all cases, one of the Li atoms is at the origin. The a
lattice parameter used in the 1-3D cases is that of bulk LiF
(3D), i.e., 4.017 Å. If the Li-F distances (dLi−F) are kept at a/2
(symmetric case, with equivalent Li-F and F-Li distances), all
the elements of the first hyperpolarizability β tensor vanish
by symmetry. For that reason the F ion at (0.5, 0.0, 0.0),
in fractional units, was shifted to 0.45 along the x direc-
tion.

All calculations were performed with a basis set
consisting of a 6-1 contraction (one s and one sp shell)
for Li, and a 7-311(1) contraction for F (one s, 3sp, and
one d shell). The exponents of the most diffuse shells
are α

sp
Li = 0.525, α

sp
F = 0.437 and 0.137, αd

F = 0.6 bohr−2.
These geometries and the basis set are the same as used
in previous papers in which our CPHF/KS implementation
for the static polarizability tensor,11 infrared intensities,25 and
Raman intensities26 was presented.

2. Computational parameters

The sensitivity of our CPHF/KS implementation to the
several computational parameters involved has been widely
discussed for the static polarizability and hyperpolarizabili-
ties.10,11,18,25–27 Although there is no reason to suppose the
behavior would be different in the present case, we cautiously
adopted tighter values than would be thought necessary for the
integral screening tolerances TOLINTEG keyword in Crystal
T1 = T2 = T3 = T4 = 10−10, T5 = 10−20. Convergence on
the HF or DFT energy in SCF cycles was set to 10−12

hartree.
Convergence for the first-order CPHF/KS cycles, which

is determined by the linear polarizability α, was set to 10−6.
It should be noted that the convergence behavior of the
first-order perturbation equations can be delicate depending
upon the proximity of the frequency to the lowest resonance.
Indeed, using the convergence accelerators implemented in
C (Anderson and Broyden schemes) led to premature
convergence in some cases. Therefore, we refrained, in
general, from using these schemes for the calculations
presented herein. It is our intention to implement DIIS28,29 in
the near future.

3. Results for 0D → 3D buildup

The β tensor obtained from our treatment is a microscopic
quantity that refers to the unit cell. For the bulk, but not 1D
or 2D, the electric field E of the unit cell is the microscopic
field which, in general, differs from the displacement field D.
Although our implementation includes arbitrary ω1 and ω2,
for simplicity we present test results primarily for the SHG
and Pockels tensor components. Tables II and III show that
the variation of these components from the case of one LiF
molecule to the bulk through intermediate dimensionalities (cf.
Fig. 1) can be reproduced correctly with our implementation
of the dynamic CPHF and CPKS schemes. Both tables are
divided into four blocks, each corresponding to systems
consisting of the same kind of “monomers”, either molecules
or infinite linear chains or 2D-periodic monolayers. Column N
contains the number of “monomers” used to form the finite n-
dimensional systems. For example, in the block “molecules”,
N specifies the number of Li-F units in the corresponding
finite linear chain, whereas in the block “slab” it indicates the
number of 2D-infinite LiF layers in the stack. N = 1 always
refers to the proper 0-3D system, which is infinite along 0-3
independent space directions.

For the finite systems, the values reported in Tables II and
III are normalized to one Li-F unit in the following manner.
The value of each tensor component for N > 2 was obtained as
half the difference between the result calculated for the system
consisting of N “monomers” and that of the system consisting
of N − 2 “monomers”. This procedure tends to remove border
effects and accelerates the trend to the corresponding infinite
periodic system.

Let us focus first on Table II, which reports the results
obtained at the Hartree-Fock level at ω = 200 nm. Starting
from the LiF molecule and building oligomers we see
the most dramatic changes in the first lines of the table,
while the difference from the dynamic hyperpolarizability
of the polymer is already reduced to the third significant
figure with 15 monomers. It is, however, necessary to build
consistently large oligomers—100 molecules—in order to
reach convergence to four significant figures. Convergence to
the polymer limit is in some cases (xzz and yx y directions)
somewhat poorer for the SHG tensor as compared to dc-
P, since the former requires solving the CPHF equations
at ω = 100 nm which approaches the first resonance (cf.
Figure 2).

Similar behavior is found for the buildup from 1D to 2D.
Note how some symmetries—i.e., between x y y and xzz—
immediately break as soon as just 3 polymers are stacked. As
already observed in other cases,11,25,26 the stacking of slabs
to build the 3D periodic bulk shows faster convergence with
regard to the number of monomers; the beta values do not
change beyond 11 or 13 layers. Equations (B2)-(B5) are here
applied (entries with a star) to values of the tensor involving
the z direction in order to recover the microscopic quantity
as described in the bulk calculation. The above mentioned
symmetries are, then, fully restored in the bulk.

Table III reports the same information but obtained at the
DFT(B3LYP) level and for a frequency of 300 nm. The choice
of a different ω value than for HF was dictated by an earlier
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TABLE II. Trend of the dc-Pockels and SHG tensor components from a LiF molecule to bulk LiF (cf. Figure 1), computed at ω = 200 nm, Hartree-Fock. The
molecule and linear chains are oriented along x and slabs are parallel to the x-y plane. N denotes the number of molecules used to form a finite linear chain or
the number of chains forming a monolayer or the thickness of a slab. Interionic distances are kept constant. Entries with a star correspond to data obtained from
the microscopic quantities as discussed in Section III and in Appendix B. All data in atomic units.

dc-Pockels Second harmonic generation

System N xxx x y y xzz yxy y yx zxz zzx xxx x y y xzz yxy = y yx zxz = zzx

Molecule

1 −6.2120 −2.7794 −2.7794 −4.1157 −2.7794 −4.1157 −2.7794 −20.4391 −1.3726 −1.3729 −40.3110 −40.3081
3 3.8835 −0.9761 −0.9761 −1.0888 −0.9761 −1.0888 −0.9761 16.1623 −3.4948 −3.4947 −4.3287 −4.3288

15 7.8542 −0.6686 −0.6686 −0.5028 −0.6686 −0.5029 −0.6686 35.4636 −4.1755 −4.1753 2.4014 2.4003
35 7.8931 −0.6649 −0.6650 −0.4960 −0.6649 −0.4961 −0.6650 35.6665 −4.1830 −4.1853 2.4747 2.4752
50 7.8963 −0.6646 −0.6644 −0.4954 −0.6646 −0.4953 −0.6644 35.6825 −4.1865 −4.1826 2.4816 2.4801
75 7.8992 −0.6644 −0.6645 −0.4951 −0.6644 −0.4952 −0.6645 35.6950 −4.1846 −4.1858 2.4827 2.4838

100 7.8995 −0.6642 −0.6643 −0.4948 −0.6642 −0.4949 −0.6643 35.6995 −4.1842 −4.1870 2.4892 2.4874

Polymer

1 7.9003 −0.6642 −0.6642 −0.4947 −0.6642 −0.4947 −0.6642 35.7036 −4.1857 −4.1859 2.4899 2.4902
3 4.8842 −0.4432 −0.1537 −0.3038 −0.4432 −0.1100 −0.1537 20.5484 −4.3378 −0.7606 −2.0717 −0.5404
7 5.3244 −0.2838 −0.1771 −0.1263 −0.2838 −0.1165 −0.1771 21.9150 −4.2349 −1.0192 −0.7933 0.2171

35 5.3240 −0.2955 −0.1726 −0.1277 −0.2955 −0.1137 −0.1726 21.9218 −4.5185 −0.9930 −0.8807 0.2106
50 5.3240 −0.2967 −0.1722 −0.1281 −0.2967 −0.1135 −0.1722 21.9218 −4.5384 −0.9907 −0.8870 0.2100

Slab

1 5.3238 −0.2994 −0.1713 −0.1294 −0.2994 −0.1129 −0.1713 21.9214 −4.5832 −0.9855 −0.9012 0.2085
3 3.4278 −0.3589 −0.1567 −0.2748 −0.3589 −0.1150 −0.1567 10.1007 −1.9377 −0.8701 −1.0591 −0.4221
5 3.5983 −0.3612 −0.1173 −0.2684 −0.3612 −0.0817 −0.1173 10.0036 −2.0000 −0.6465 −0.8491 −0.2060
7 3.5983 −0.3612 −0.1173 −0.2684 −0.3612 −0.0817 −0.1173 9.9501 −1.9752 −0.6594 −0.8303 −0.2195
9 3.5855 −0.3567 −0.1240 −0.2640 −0.3567 −0.0883 −0.1240 9.9470 −1.9734 −0.6602 −0.8287 −0.2200

11 3.5853 −0.3567 −0.1240 −0.2639 −0.3567 −0.0883 −0.1240 9.9467 −1.9732 −0.6602 −0.8286 −0.2201
11∗ −0.3540 −0.2638 −0.3528 −1.9730 −0.8284
13 3.5853 −0.3566 −0.1240 −0.2639 −0.3566 −0.0883 −0.1240 9.9467 −1.9732 −0.6602 −0.8285 −0.2201
13∗ −0.3540 −0.2639 −0.3529 −1.9730 −0.8285

Bulk 3.5860 −0.3520 −0.3519 −0.2639 −0.3520 −0.2639 −0.3524 9.9522 −1.9708 −1.9737 −0.8155 −0.8150

TABLE III. Same as Table II but for DFT (B3LYP) at 300 nm wavelength.

dc-Pockels Second harmonic generation

System N xxx xy y xzz yxy y yx zxz zzx xxx xy y xzz yxy = y yx zxz = zzx

Molecule

1 −8.5371 −2.9987 −2.9987 −3.6115 −2.9987 −3.6115 −2.9987 −9.8777 −3.7446 −3.7445 −7.7311 −7.7312
3 2.4988 −1.5474 −1.5474 −1.8449 −1.5474 −1.8450 −1.5474 3.7311 −2.5948 −2.5948 −5.4923 −5.4924

15 12.3042 −0.9134 −0.9134 −0.8482 −0.9134 −0.8481 −0.9134 22.6987 −1.8055 −1.8055 −1.1336 −1.1335
35 12.3823 −0.9080 −0.9080 −0.8405 −0.9080 −0.8404 −0.9080 22.8466 −1.8000 −1.8000 −1.1125 −1.1122
50 12.3903 −0.9075 −0.9074 −0.8396 −0.9075 −0.8396 −0.9074 22.8611 −1.7995 −1.7993 −1.1101 −1.1101

100 12.3956 −0.9069 −0.9072 −0.8390 −0.9069 −0.8392 −0.9072 22.8717 −1.7987 −1.7994 −1.1084 −1.1085

Polymer

1 12.3977 −0.9068 −0.9069 −0.8389 −0.9068 −0.8389 −0.9069 22.8755 −1.7991 −1.7991 −1.1077 −1.1077
7 8.9257 −1.3979 −0.1997 −1.2777 −1.3979 −0.1720 −0.1997 18.2209 −4.5974 −0.4009 −3.6272 −0.1781

35 8.9240 −1.5205 −0.1950 −1.3829 −1.5205 −0.1682 −0.1950 18.2174 −5.0528 −0.3910 −3.9442 −0.1754
50 8.9240 −1.5285 −0.1945 −1.3904 −1.5285 −0.1678 −0.1945 18.2176 −5.0809 −0.3900 −3.9708 −0.1770

Slab

1 8.9250 −1.5474 −0.1935 −1.4084 −1.5476 −0.1669 −0.1935 18.2192 −5.1455 −0.3879 −4.0320 −0.1739
3 5.3693 −1.0269 −0.4126 −0.9352 −1.0269 −0.3618 −0.4126 10.7419 −2.8748 −1.1669 −2.3447 −0.8110
5 5.5510 −1.0774 −0.2936 −0.9776 −1.0774 −0.2574 −0.2936 10.0036 −2.0000 −0.6465 −0.8491 −0.2060
7 5.5378 −1.0689 −0.3040 −0.9697 −1.0689 −0.2678 −0.3040 10.0750 −2.8095 −0.7767 −2.1754 −0.5270
9 5.5359 −1.0679 −0.3048 −0.9687 −1.0679 −0.2685 −0.3048 10.0716 −2.8067 −0.7778 −2.1730 −0.5279

11 5.5358 −1.0677 −0.3048 −0.9686 −1.0677 −0.2685 −0.3048 10.0713 −2.8064 −0.7778 −2.1727 −0.5280
11∗ −1.0679 −0.9688 −1.0679 −2.8065 −2.1731
13 5.5357 −1.0678 −0.3048 −0.9686 −1.0678 −0.2685 −0.3048 10.0713 −2.8064 −0.7779 −2.1727 −0.5280
13∗ −1.0680 −0.9688 −1.0680 −2.8066 −2.1731

Bulk 5.5434 −1.0663 −1.0662 −0.9701 −1.0663 −0.9701 −1.0661 10.0829 −2.8133 −2.8138 −2.1692 −2.1689
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FIG. 2. Dependence of symmetry-independent dc-Pockels (dc-P)
(β(0,ω,−ω)) and SHG tensor elements β(ω,ω,−2ω) of bulk LiF on the ω
wavelength and their convergence to the static limit. The LiF bulk structure is
slightly distorted as described in Section III B 1. Calculations at the HF level
(top panel) and B3LYP (bottom panel).

occurrence of the first resonance in the DFT case (vide infra).
All conclusions drawn above for the HF case are valid here
as well, thus validating the correctness of the dynamic CPKS
hyperpolarizability implementation.

Overall, we believe this extensive test provides a robust
proof of the validity of the equations and their implementation,
although we note that the numerical precision is somewhat
less good than for the static β case (see Ref. 11). This is
essentially to be ascribed to the above-mentioned instability
in the convergence of the dynamic CPHF/KS procedure as
one approaches a resonance. Note that the values adopted for
ω represent fairly high frequencies, not far from the resonance
in the SHG case, which we chose with the precise purpose to
heavily stress the code.

C. Convergence to the static values

A necessary condition for the correctness of the
β(−ωσ;ω1,ω2) tensor is that, for both dc-P and SHG (and, of
course, also in the general case), all the values converge to the
static hyperpolarizability at low frequency. In Figure 2, some
symmetry-independent values are reported for the bulk LiF
structures as described in Sec. III B 1, for Hartree-Fock (top
panel) and B3LYP (bottom panel).

The convergence to the static case is evident. In addition,
we note that the B3LYP values are 3 to 6 times larger at
250 nm with respect to the corresponding Hartree-Fock ones,

indicating an earlier occurrence of the first resonance—as
a matter of fact, we were not able to converge the first
order coupled perturbed iterations at ω = 100 nm, needed to
compute SHG at ω = 200 nm.

D. Connection between Pockels and SHG

Almost 20 years ago, Bishop and De Kee23,24 derived
dispersion relations for the diagonal components of electronic
hyperpolarizabilities. Restricting ourselves to the quantities of
interest in the present work (first hyperpolarizabilities), and to
the xxx component, their expression reads

βxxx(−ωσ;ω1,ω2) = βxxx(0; 0,0) + A W2

+ B W 2
2 + B′W4 + · · · (9)

FIG. 3. Polynomial fit of the βxxx element of the SHG and Pockels tensors
of the 1D polymer (top panel), 2D slab (middle panel), and 3D bulk (bottom
panel) distorted LiF structures.
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with W2 = ω2
σ + ω

2
1 + ω

2
2 and W4 = ω4

σ + ω
4
1 + ω

4
2. The coeffi-

cients A, B, and B′ are independent of the optical frequencies
ω1 and ω2. For SHG and dc-P, the frequency ratios are

W SHG
2

W dc-P
2

= 3, (10)

W SHG
4

W dc-P
4

=
(W SHG

2 )2
(W dc-P

2 )2 = 9. (11)

In order to verify that the βxxx(−ωσ;ω1,ω2) computed
with our method for periodic systems satisfies the above
relations, we computed the SHG and dc-P βxxx for a
number of frequencies and fit the results to the polynomial
y = a + bx + cx2 + dx3 with x = ω2. The range [0:7] eV2 for
ω2 was selected as reasonably far from the first resonance,
but wide enough to exploit the quartic term (in ω). We have
found it important to have a dense sampling of ω2 to have
good numerical accuracy in the fit. The computed points and
fitting polynomials are shown in Figure 3. Obviously, the ideal
SHG/dc-P ratios for b and c in the fitting polynomial are 3
and 9, respectively. These ratios are reported in Table IV for
1-3D where excellent agreement with the ideal values is seen.

IV. MOLYBDENUM DISULFIDE

MoS2 molybdenite is the most important ore of the metal
molybdenum and its natural crystals are commonly found in
hydrothermal deposits. Recently, interest in this long-known
material has risen alongside other two-dimensional materials
like graphene30 and hexagonal BN, because of the ability
of MoS2 to form single-layer and few-layer structures with
widely varying properties.

In this context, SHG measurements represent a powerful
experimental tool to discern the number of layers present
in MoS2 2D structures. For an even number of layers, the
structure is nearly centro-symmetric, but for an odd number it
is not and, therefore, is expected to exhibit significant SHG.
As reported by several authors,31,32 the monolayer shows
a very high SHG response, which is strongly attenuated
with an increasing (odd) number of layers. In the SHG
tensor of such structures, the only nonvanishing components
are βyyy = −βyxx = −βxxy = −βxyx. Thanks to the strong
anisotropic character of this tensor, SHG microscopy is also
used to measure accurately the orientation of the material with
respect to the laser beam.

Despite the large interest in MoS2, including a number
of experimental works,33 only few theoretical papers can be
found34–36 and no simulation of NLO properties. We have
computed the SHG tensor of 1–5 odd layer MoS2 at ω = 810

TABLE IV. Check of the Bishop-De Kee dispersion formula (cf. Eq. (9))
from a polynomial fit of the data in Figure 3. b and c refer to the coefficients
of the linear and quadratic term of the polynomial in ω2, respectively. Ideal
values are 3 for bSHG/bdc-P and 9 for cSHG/cdc-P.

Polymer Slab Bulk

bSHG/bdc-P 2.999 3.001 3.000
cSHG/cdc-P 9.042 9.041 9.128

nm (the Ti:sapphire laser wavelength used in Refs. 31 and 32).
The dispersion-corrected hybrid functional B3LYP-D2, with
rescaled factors in the dispersion correction as suggested by
Civalleri et al.,37 was adopted for this purpose. All structures
were cut out from the bulk and, then, fully optimized (cell
parameters and atomic positions). An all-electron Gaussian
type basis set was used for S,38 (8s)(6311sp)(1d), with the
lowest sp exponent re-optimized to 0.1506 bohr−2. For Mo, we
employed a HAYWSC-(311sp)(31d)39 basis set, incorporating
the Hay and Wadt small core pseudopotential40 for core
electrons and Gaussian type functions for valence shells.

The computed βyyy values for the mono-, tri-, and penta-
layer are 49 025, 6434, and 1709, respectively. Values are in
atomic units, per unit cell and normalized for the number of
layers. These values are also reported in Figure 4. We note
that the strong dependence of SHG tensors on the thickness
of the slab mentioned above is reproduced. In Ref. 31 it is
stated that “χ(2) of the trilayer is about a factor of seven
smaller than the monolayer, while those of the bilayer and
quadralayer are about two orders of magnitude smaller than
the monolayer.” We find our results above in line with this
experimental observation: β1L

yyy/β
3L
yyy = 7.6. Our results are also

in line with the findings of Li et al.,32 where this ratio is found
to be ≈6.0 ± 0.5 (obtained from square root of SHG intensity
data in Figure 4 of Ref. 32, normalized by the number of
layers). From the same article, the estimated ratio between
the monolayer and the pentalayer is β1L

yyy/β
5L
yyy ≈ 14 ± 1, which

differs by a factor of 2 from our estimate (=28). We consider
that to be good agreement since the small SHG value of the
pentalayer implies fairly large error limits. The pentalayer
was not investigated in Ref. 31. As a side note, we report
that the corresponding computed static values, normalized for
the number of layers, are (in a.u.): β1L

yyy = 1014, β3L
yyy = 320,

β5L
yyy = 194.

We also carried out calculations on the nearly symmetric
bilayer and quadralayer, in which case we find, within the
numerical accuracy of the algorithm, null tensor elements. In
fact, thermal effects and defects in real systems can play a
significant role in breaking the symmetry, thus allowing for
an enhanced SHG response in slabs with an even number of
layers.

FIG. 4. Layer dependence of the computed (B3LYP) SHG βyyy tensor com-
ponent (in atomic units, normalized for the number of layers) for few-layer
MoS2 structures, at ω = 810 nm.
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This preliminary investigation shows the applicability of
our approach to systems of technological interest and paves
the way for relating the electronic structure to SHG and other
NLO properties. In the future, we plan to undertake a more
complete investigation of the role of different Hamiltonians
and basis sets on both the structure and response properties.

V. CONCLUSIONS

An analytical CPHF/CPKS method for computing
the frequency-dependent electronic first hyperpolarizability
β(−ωσ,ω1,ω2) tensor of periodic systems in 1, 2, and 3D
has been implemented in the CRYSTAL code. Various tests
have been carried out, with SHG and the dc-P effect as
examples, that confirm the correctness and accuracy of our
implementation. These tests include a build-up from 0D to
3D using LiF as a model system. We also verified symmetry
requirements, convergence to the static limit, and the Bishop-
deKee dispersion formula relating dc-P and SHG.

Preliminary SHG calculations on multi-layer structures
of the technologically important material MoS2 satisfactorily
reproduce experimental data and, thereby, pave the way for
future understanding of the structure property relationship
in that case as well as predicting NLO properties of other
potentially interesting non-centrosymmetric systems.42

APPENDIX A: ω-FIELD FREQUENCY DEPENDENCE
OF ı

∂Uv
ai (+ω2)(k )
∂ku

An expression for ∂U v
ai(k⃗)/∂ku is derived in Appendix A

of Ref. 7 for 1D periodic systems, which is readily generalized
to 3D. It is convenient to write the result in terms of the Q
matrix defined by

∂Cµp(k⃗)
∂ku

=

all
q

Cµq(k⃗)Qu
qp(k⃗) (A1)

where, for p , q (p and q will denote, here and in the
following, general orbitals, either occupied or virtual), Qu(k⃗)
elements are41

Qu
pq(k⃗) =

Fku
pq(k⃗) − Rku

pq(k⃗)Eq(k⃗)
Eq(k⃗) − Ep(k⃗)

, (A2)

where we have defined

Fkv
pq(k⃗) =


µ,ν

C∗µp(k⃗)
∂Fµν(k⃗)
∂kv

Cνq(k⃗), (A3)

Rkv
pq(k⃗) =


µ,ν

C∗µp(k⃗)
∂Sµν(k⃗)
∂kv

Cνq(k⃗). (A4)

Then, using F(v)
(+ω2) as the perturbed Fock matrix for the

ω2 field, we have

∂U (v)
ai(+ω2)(k⃗)
∂ku

=

∂
∂ku

G(v)
ai(+ω2)(k⃗)

Ei(k⃗) − Ea(k⃗) − ω2

−
G(v)

ai(+ω2)(k⃗) ∂
∂ku

(
Ei(k⃗) − Ea(k⃗)

)
(
Ei(k⃗) − Ea(k⃗) − ω2

)2 , (A5)

where

∂G(v)
ai(+ω2)(k⃗)
∂ku

=

all
p

(
Qu

pa(k⃗)
)∗

G(v)
pi(+ω2)(k⃗)

+

all
p

G(v)
ap(+ω2)(k⃗)Qu

pi(k⃗)

+

µ,ν

C∗µp(k⃗)
∂F(v)

µν(+ω2)(k⃗)
∂ku

Cνq(k⃗). (A6)

The evaluation of the last term on the r.h.s. of Eq. (A6) is
straightforward except for the term

∂Qv
pq

∂ku
contained in it. This

term, however, does not depend on the ω2 frequency, and can
be thus computed as in the static case.10,43

APPENDIX B: FROM DYNAMIC
(HYPER)POLARIZABILITIES TO ELECTRIC
SUSCEPTIBILITIES

The α and β tensors obtained from our CPHF treatment
are microscopic quantities that refer to a unit cell in the case
of polymers, slabs, and crystals (and to a single molecule in
the 0D case). Thus, the electric field E is the macroscopic field
felt by the unit cell in the bulk, and in general, differs from D,
the displacement field,44 according to the following equation
(in a.u.):

Da = Ea + 4πPa

= Ea +


b
χ
(1)
ab

Eb +


b,c
χ
(2)
abc

EbEc + · · ·

=


b
ϵabEb, (B1)

where ϵab = δab + χ
(1)
ab

is the dielectric constant (at zeroth-
order of perturbation), χ(2) the nonlinear susceptibility, and P
is the polarization vector, which is the induced dipole moment
per unit volume. If the indices of the tensor component
of interest correspond to mixed periodic and non-periodic
directions, as for the slab, Da/Ea ≃ 1 (periodic direction) or
Db/Eb ≃ ϵ

[0]
bb

(non-periodic direction) must be used according
to the periodicity of the a and b directions used. Following
the same demonstration as in Ref. 18 but for the Pockels and
SHG susceptibilities of LiF slab, we find

χ
(2)
xzz(−ω;ω,0) = χ

(2)
zxz(−ω;ω,0)

=
2π
V

βxzz(−ω;ω,0)ϵ zz(ω)ϵ zz(0), (B2)

χ
(2)
zzx(−ω;ω,0) = 2π

V
βzzx(−ω;ω,0)ϵ zz(ω)2, (B3)

χ
(2)
xzz(−2ω;ω,ω) = 2π

V
βxzz(−2ω;ω,ω)ϵ zz(ω)2, (B4)

χ
(2)
zzx(−2ω;ω,ω) = χ

(2)
zxz(−2ω;ω,ω)

=
2π
V

βzzx(−2ω;ω,ω)ϵ zz(2ω)ϵ zz(ω). (B5)
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