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Abstract 

 

An atypical asbestiform sepiolite occurrence with exceptionally long fibres wrapped by 

a sheath of aliphatic hydrocarbons was found in the Gressoney Valley (Italian Western 

Alps) while monitoring asbestos presence in outcropping serpentinite rocks. 

Microscopic and FT-IR analyses proved that these fibres, apparently up to several cm 

long, are formed by bundles of thinner fibrils (average length: 150 m) potentially 

dispersible in the environment. When observed with TEM these fibrils show a 

rhomboidal to parallelogram cross section (< 1 m), whose surfaces are mostly covered 

by an aliphatic hydrocarbons film – an association never reported in literature. The 

sepiolite fibrils and their organic coating probably originated in sequential steps from 

precipitation of Si/Mg rich hydrothermal fluids, resulting from serpentinization of 

olivine and clinopyroxene, and Fischer-Tropsch-type reaction. Presence of 

hydrocarbons implies serious consequences on the sepiolite habit, as the organic wrap 

interacts with the fibrils surface reducing the amount of adsorbed water and favouring 

fragmentation of thicker units into thinner ones, due to an ‘opening’ process implying 

separation along z and cleavage on (110). This defibrillation mechanism, coupled to the 

extraordinary length, further increases these fibrils aspect ratio (length/width >> 3) thus 

amplifying their potential danger for human health when air dispersed and breathed. 
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1. Introduction 

 

Sepiolite is a fibrous, trioctahedral phillosilicate clay mineral belonging to the 

palygorskite-sepiolite group. Its natural deposits occur as chemical sediments or 

reconstituted former sedimentary clays in epicontinental and inland seas and lakes, 

where somewhat saline groundwater discharges under semi-arid climatic conditions 

(Eugster and Hardie, 1975; Mayayo et al., 1998). Other sepiolite occurrences form by 

hydrothermal alteration of basaltic glass, volcanoclastic sediments or previous clays in 

the open ocean (in association with fore-arc basins and ocean ridges) or in calcareous 

soils by direct crystallization (Galán and Pozo, 2011). An authigenic clay mineral, 

sepiolite can form in situ through direct precipitation from solutions containing 

dissolved ionic species (namely Si and Mg; Trauth, 1977; Jones and Galan, 1988; 

Weaver, 1984) either in lacustrine (Chahi et al., 1997) or perimarine (Velde, 1985) 

environments in conditions of high alkalinity (pH: 8 - 9.5) and medium salinity. Direct 

precipitation from low-temperature hydrothermal solutions in continental environments 

were described (Imai and Otsuka, 1984) as well as precipitation, on or below the sea 

floor, from Mg/Si enriched low T (< 100°C) solutions formed by the interaction of 

ultramafic rocks with seawater circulating in the crust, particularly in transform zones  

(Bonatti et al., 1983). Other peculiar findings included possible biogenic origin induced 

by microorganisms (Leguey et al., 2010; Cuevas et al., 2012). Although not a common 

mineral, sepiolite deposits can be found worldwide – especially in Spain (Neogene 
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lacustrine sequences of the Madrid basin; Brell et al., 1985; Ordoñez et al., 1991) and 

Turkey (continental lacustrine deposits of the Ezkisehir Basin; Ece and Çoban, 1994), 

but also USA (Amargosa Desert deposit), Kenia and Tanzania (Amboseli deposit), 

China (Guanshan deposit), Greece (Ventzia basin deposit) and Somalia (El Bur deposit) 

(Galán and Pozo, 2011). 

Sepiolite has various and useful industrial applications such as lubricant, catalyst, 

adsorbent, cleaning compress for restoration and cat litter (Àlvarez et al., 2011; Lòpez-

Galindo et al., 2011). In addition sepiolite may be used as an asbestos substitute in 

building and seal materials, friction compounds for automotive brakes and high 

temperature insulators (Noda et al., 2009; Solebello, 2009) due to its  habit and modest 

fibre length. Almost all commercially sold specimens have fibres < 5 m long – the 

threshold of non-carcinogenicity accepted by the International Agency for Research on 

Cancer, World Health Organization (1997) – sometimes as the result of preliminary 

grinding. However, sepiolite occurrences from all over the world show high variability 

in cristallinity, fibre length and texture (Suárez and García-Romero, 2012; García-

Romero and Suárez, 2013); samples with unusually long fibres (> 10 m) were seldom 

identified and signalled for their carcinogenic potential (Pott et al., 1990; Pott et al., 

1991; Bellman et al., 1997).  

The structure of sepiolite [crystal-chemical formula Mg8Si12O30(OH)4(OH2)48H2O, 

s.g. Pbmn], first discussed by Preisinger (1959, 1963) and Brindley (1959), show a 

continuous waving tetrahedral sheet (T) alternated (along X) to a discontinuous 

octahedral one (O) forming ribbons elongated in the Z-axis direction. Such an 

arrangement, described as a framework of chessboard connected TOT ribbons (Ferraris 

et al., 2008), causes the structure to be crossed by Z-elongated tunnels (10.6 x 3.7 Å) 
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filled by weakly bound zeolitic H2O and exchangeable ions. Tightly bound structural 

OH2 (Bailey et al., 1980; Guggenheim and Krekeler, 2011) completes the coordination 

of Mg ions at the borders of the O ribbons, The structure of sepiolite differs from that of 

palygorskite, although recently intermediate forms were described which suggest the 

possible existence of a continuous compositional variation between the end-members of 

the group ( Garcia-Romero et al., 2007; Garcìa-Romero and Suarez, 2010). 

This study describes an atypical occurrence of sepiolite from Perletoa village, in the 

Gressoney Valley near the town of Aosta (Western Alps, Italy), showing unusually long 

fibres wrapped by a sheath of aliphatic hydrocarbons. The finding of asbestiform 

sepiolite in NW Italian outcropping rocks is not a novelty. Long fibre samples were 

detected in specific areas of the Valle d’Aosta, Piemonte and Liguria Regions (Belluso 

and Sandrone, 1989; Belluso et al., 1995). The genesis of organic matter (OM)-bearing 

clays (i.e. black shales or bituminous rocks) was reported from different sedimentary 

settings (Emeis and Weissert, 2009) or by weathering of mafic to ultramafic lithologies 

(Dos Anjos et al., 2010). Besides, hydrocarbon bearing clays were discovered in some 

metasomatized oxide-rich gabbros (Ciliberto et al., 2009) or in a diapiric intrusion in a 

diatremic tuff-breccia deposit, precipitated from a mixture of hot Si-rich hydrothermal 

fluids (350-400° C) and cold seawater (Manuella et al., 2012). Though sepiolite traces 

were detected in the latter study, no mention of its coupling to aliphatic hydrocarbons 

has ever been made so far. This work focuses therefore on such a peculiar association 

and consequent interaction, which affects the clay mineral habit possibly increasing its 

potential noxiousness for human health in case its fibres are airborne and breathed in 

large amounts.  
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2. Experimental 

 

1.1 Materials and geological setting 

 

The site of collection of the investigated sepiolite is located near Perletoa village, in 

the Gressoney Valley near the town of Aosta (Aosta Valley Region, Western Alps, 

Italy; 45° 48' 5" N, 7° 49' 25" E) (Fig. 1). This clay mineral was noted during systematic 

sampling to evaluate presence of asbestos and asbestiform minerals in massive to 

foliated serpentinite rocks from the main ultramafic bodies of the Italian Western Alps 

(Belluso et al., 1995). The analyzed sepiolite specimen was collected in the area of the 

Combin Zone (Geological Map of Aosta Valley, available at 

http://geonavsct.partout.it/pub/GeoNavSCT/index.html?repertorio=carta_geologica_100

k), from a small serpentinitic lens outcropping (as peridotite, prasinite, amphibolite and 

eclogite lenses) in dominant calcschists.  

(INSERT FIGURE 1) 

 

2.2 Methods 

 

Scanning electron microscopy (SEM) observations were obtained with a FEG SEM 

JEOL JSM6320F instrument and a SEM Stereoscan 360, Cambridge Instrument. The 

samples, coated by a 50 Å thick Au layer to allow conductivity, were attached to step 

brass stubs to allow examination of the fibres. Chemical characterization was performed 

by electron probe microanalysis (EPMA) using an EDS Link Pentafet, Oxford 

instrument. Due to the difficulties in analyzing fibrous samples, analyses were collected 

http://geonavsct.partout.it/pub/GeoNavSCT/index.html?repertorio=carta_geologica_100k
http://geonavsct.partout.it/pub/GeoNavSCT/index.html?repertorio=carta_geologica_100k
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on 10 x 10 m2 areas on a pressed, sintered and carbon-coated sepiolite pellet obtained 

with a press designed to prepare samples for infrared spectroscopy (operating 

conditions: 50 s counting time, 15 kV accelerating voltage, 25 mm working distance, 

300 pA beam current). Collected data were processed with the Microanalysis Suite 

Issue 12, INCA Suite Version 4.01 and calibrated on natural mineral standards using the 

ZAF correction method. The weight% sums of oxides, showing no relevant 

heterogeneity, were averaged to obtain a reliable crystal-chemical formula. 

A 120 kV transmission electron microscopy (TEM Philips CM12 working at 120 

kV, LaB6 filament, double tilt holder, equipped with an energy dispersive spectrometer 

EDAX Genesis 2000 System, TEM Quant Software PV8206/31 procession system) was 

used to examine crushed and ion thinned samples. Only medium to high TEM 

magnification can be performed at higher electron energy (lower ionisation), owing to 

the high instability of the fibrous sepiolite specimen under the electron beam. A TEM 

JEOL 2000FX (200 kV accelerating voltage, side entry, double-tilt ±30°, point-to-point 

resolution of 2.8 Å), equipped with a low-light camera (LHESA EM LH4086) with a 

YAG converter, was used. TEM specimens, cut perpendicular and parallel to the 

elongation of the fibres, were extracted from standard petrographic, uncovered thin 

sections (30-40 m thick) embedded with epoxy resin and attached by Lakeside resin 

onto a glass slide. The microdrilled disks (attached to single-hole copper TEM slots) 

were thinned by ion beam milling (GATAN 600 Duomill working with Ar at room 

temperature, 5 kV and 0.50 mA per gun, 15° and finish angle of 12°). A powdered 

sample was ground in an agate and pestle mortar with isopropyl alcohol and then 

sonicated; two drops of the resulting suspension were deposited on a copper mesh grid 

previously coated with a 200 Å carbon film. At medium to high magnification, several 
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morphological and structural pictures were obtained. Selected area electron diffraction 

(SAED) were displayed but not photographed owing to very rapid fibres amorphization. 

Thermogravimetric data were collected on a 15 mg sample with a simultaneous 

TGA/DSC SDT Q600, TA Instruments, in air flow with a heating rate of 10 °C min-1 

from room temperature to 900 °C. DSC heat flow data were dynamically normalized 

using the instantaneous sample weight at any given temperature. 

For infrared (IR) spectroscopy, the sepiolite was preliminarily activated in vacuum 

(pressure below 5*10-4 mbar) at room temperature, 120 and 150 °C for 1.5 hours each to 

progressively (and reversibly) remove the zeolitic H2O. The resulting powder was used 

to make a pellet that was inserted in an IR cell and further heated in vacuum (pressure < 

5*10-4 mbar) at 120 °C and 150 °C. IR absorption spectra were collected on a FTIR 

Bruker Vector 70, with a resolution of 2 cm-1 and collecting 64 scans for each spectrum. 

Data were collected at the different investigated T steps (room T, 120 and 150 °C) under 

controlled atmosphere. 

For synchrotron X-ray powder diffraction (XRPD) and Rietveld refinement, the 

sepiolite specimen was initially purified by mechanically removing incidental 

macroscopic contaminants (serpentine, calcite and incidental pollutants) under the 

binocular stereo-microscope. The resulting fraction was dispersed in deionized water, 

thus possibly isolating the lighter suspended fraction from the heavier impurities [i.e. 

quartz and/or calcite] (Giustetto and Chiari, 2004). Massive purified samples were 

hand-ground in an agate mortar and crushed to powder. Conventional XRPD showed 

sepiolite to be the only detectable phase.  

Synchrotron XRPD data were collected at room T at the European Synchrotron 

Radiation Facility (ESRF) in Grénoble (France), on the GILDA (General-purpose 
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Italian beam-Line for X-ray Diffraction and Absorption) beamline, using a wavelength 

of  = 0.6530 Å and Debye-Scherrer geometry. The specimen was loaded into a 1 mm 

diameter quartz-glass capillary to avoid preferred orientation. Collection time was 120 

sec. Diffracted beams were collected with an area detector (MAR345) accessing d-

values from 0.8 to 80 Å.  

The GSAS software package (Larson and Von Dreele, 2007) and the EXPGUI 

graphical user interface (Toby, 2001) were used for Rietveld refinement. Background 

was fitted using a 14-term shifted-Chebyshev function and peak profiles modelled with 

a pseudo-Voigt function as parameterized by Thompson et al. (1987), with asymmetry 

corrections according to Finger et al. (1994). Initially, only the background, scale factor, 

zero and unit-cell parameters were refined. Later, fractional coordinates and occupancy 

factors for all atoms were refined, at first in alternate cycles (to minimize correlations) 

and then simultaneously. Soft constraints were imposed on tetrahedral and octahedral 

bond lengths and angles and progressively reduced. Isotropic displacement parameters 

(Uiso) for all atoms were adjusted using overall constraints for each chemical species. 

Preferred orientation for the (110) reflection (attenuated by data collection in capillary) 

was treated with the March-Dollase model (March, 1932; Dollase, 1986). Consistency 

of the refined structure was constantly checked through screening of the GOF 

(Goodness-Of-Fit) parameters, graphical fit between observed and calculated profiles 

and graphical representation of the refined model (Moldraw: Ugliengo et al., 1993). The 

lower soft-constraint weighting factor yielding reasonable bonds in tetrahedrons (F = 

10) was kept to avoid unrealistic bond distances and polyhedrons distortions (Post et al., 

2007; Post and Heaney, 2008; Giustetto et al., 2011a; Giustetto and Compagnoni, 

2011). 
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3. Results and discussion 

 

3.1 Macroscopic and stereomicroscopic observation 

 

Even at the macroscopic scale, the asbestiform habit of the Perletoa sepiolite is 

evident. Long and apparently thick fibres (from 5 mm up to 7 cm), often grouped in 

bundles, can be observed even with the naked eye (V group: macroscopic fibres, after 

García-Romero and Suárez, 2013; Fig. 2).  

(INSERT FIGURE 2) 

These fibres are usually flexible (Fig. 2), with a cream to light brown colour, and 

readily split to thinner fibrils if manipulated. They usually crystallize parallel to the vein 

selvages (slip type), with thickness from < 1 mm to 1 cm. This morphology is common 

in the palygorskite-sepiolite group minerals, although massive, cardboard-like felts or 

‘mountain leather’ (Grim, 1968; Frost et al., 1998; Imai and Otsuka, 2000) of tangled 

fibres forming an apparently continuous mat are also typical. Observations under the 

stereo-microscope showed that these long macroscopic fibres are bundles composed of 

many thinner fibrils, intricately intergrown and separable by mechanic stress. 

 

3.2 Scanning, Transmission and Analytical Electron microscopy 

 

SEM investigation showed that the bundles observed at the macroscopic scale or by 

optical stereomicroscope are composed of entangled, elongated and mainly parallel 

thinner fibrils, < 0,1 µm width and > 150 µm long (IV group: very long fibres, García-
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Romero and Suárez, 2013). When mechanically stressed, these thinner units show great 

flexibility (Fig. 3). 

(INSERT FIGURE 3) 

Owing to their sensitivity to the electron beam after a few seconds of exposure these 

fibres degrade by losing crystallinity and habit. Thus, high-magnification images were 

impossible to obtain by TEM. SAED images from fibre sections showed rings relating 

to the different relative rotations of the fibres along their axis lengths. The brightness of 

the diffraction spots comes out in favour of at least a medium crystallinity degree, 

although other experimental parameters may also play a role. Low magnification TEM 

images of the sample thinned perpendicular to [001] (lengthening axis of the fibre 

bundle) show a large open texture, with spaces among the fibre bundles and sometimes 

even among the single primary units – or laths (interfibre or open porosity: García-

Romero and Suárez, 2013; Fig. 4.a).  

(INSERT FIGURE 4) 

Fibre sections cut perpendicular to the bundle axis show nearly regular rhomboidal 

(thinner fibres) to parallelogram-like cross-sections (larger units, ‘parallelograms’ 

hereafter). Similarly oriented parallelograms are grouped in clusters; separate clusters 

show different orientations (Fig. 4.b). The parallelogram dimensions vary 

approximately between 150-750 (base) and 80-250 Å (height). Parallelograms with 

dimensions larger than those given above show an incipient ‘opening’ process (fibre 

separation), similar to the defibrillation observed in several sections of amphibole 

asbestos (e.g. Gunter et al., 2007). This ‘opening’ process causes fragmentation of 

larger into smaller parallelograms and occurs mainly along the traces of the (110) 

preferential cleavage plane (dashed white lines in Fig. 4.b). The separation starts mainly 
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from the fibre rim, deepening inside the core along a crankshaft direction which forms 

near 120° and 60° angles (Fig. 5). These parallelograms are not tightly aggregated as the 

global texture is characterized by medium to large interstitial spaces, sometimes larger 

than the parallelograms themselves, filled by an almost continuous thin film which, in 

some cases, apparently link the fibres. The film could not be characterized by electron 

probe microanalysis because of the very low analytical electron microscopy X-ray 

counts. This result suggests the presence of possible organic material, an assumption 

supported by FT-IR investigation (see paragraph 3.4). The film, located even in the 

smaller interstices (indicated by arrows in Fig. 4.b) suggests that it may be involved in 

the ‘opening’ process, favouring defibrillation and fibre separation of larger bundles 

into thinner fibrils (rods and/or laths: García-Romero and Suárez, 2013). These 

interstitial spaces, however, are not a consequence of beam damage to the sepiolite 

crystals because the parallelogram edges are clearly defined. A similar mechanism was 

recently described by Sciré et al. (2011), who observed how aliphatic hydrocarbons 

associated to flexible fibrous phyllosilicates (such as “serpentine”) trigger defibrillation 

of bundles into primary units, producing an atypical foam-like texture.  

(INSERT FIGURE 5)  

TEM observations performed on sections parallel to the fibre axis are less significant, 

owing to the large number of fibrils along the thickness of the section (consequent to 

their small width) and their rapid damage under the electron beam. This observation 

indicates also the high degree of parallelism among fibrils. 

The open channel defects (OCD) described by Krekeler and Guggenheim (2009) in a 

sepiolite specimen from Helsinki are less common here. These defects involve the 
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omission of single to multiple polysomes in a fibre (commonly four); sometimes 

multiple OCD appear in the same fibre, especially in the larger units (Fig. 4.b). 

The chemical composition measured by SEM-EDS (Table 1) is consistent with 

previously published data (Suàrez and Garcia-Romero, 2011) and shows Si and Mg as 

the main components (as well as O and H), together with small amounts of Fe and Al 

substituting for Mg in octahedral coordination; Ca was also sporadically detected. 

(INSERT TABLE 1) 

On an anhydrous basis, the following crystal chemical formula was  obtained: 

Si12,18O32(Mg7,18,Fe0,29)7,47 (total iron as Fe3+). The slight Si excess in tetrahedrons with 

respect to the ideal value (12) may be a result of small disseminated quantities of 

amorphous silica, sometimes reported in literature (Karakaya et al., 2011). This silica, 

undetected by XRPD and FT-IR, is probably a result of excess SiO2 content dissolved in 

the circulating low-T hydrothermal fluids which presumably precipitated this sepiolite 

(see paragraph 3.6). A low octahedral content (i.e. < 8) is not uncommon in sepiolite 

owing to any trivalent iron and vacancies (Suàrez and Garcia-Romero, 2011).  

 

3.3 Thermogravimetric analysis 

 

(INSERT FIGURE 6) 

Thermogravimetric (TGA) and heat flow (DSC) data collected on the Perletoa 

sepiolite (Fig. 6) are consistent with previous works (Nagy and Bradley, 1955; Brauner 

and Preisinger, 1956; Martin Vivaldi and Cano Ruiz, 1956; Caillère and Hénin, 1957; 

Preisinger, 1959; Hayashi et al., 1969; Nagata et al., 1974; Rautureau and Mifsud, 

1977; Ruiz et al., 1996; Weir et al., 2002; Hubbard et al., 2003; Ovarlez et al., 2006, 



Asbestiform sepiolite coated by hydrocarbons 

 

 13 

2009). Although in sepiolite correlations between TGA features and structural changes 

are not straightforward nor partitioning among different kinds of water so strict (Mifsud 

et al., 1987), reasonable interpretations can be sketched. All main events and related 

attributions are detailed in Table 2. 

(INSERT TABLE 2) 

The weight loss recorded between room T and 110 °C (6.5 %), related to the release 

of superficially adsorbed water and less severely bound zeolitic H2O, is slightly lower 

than that recorded in literature (i.e. about 10-11 %: Jones and Galan, 1988; Frost and 

Ding, 2003). This deficiency affects the hygroscopic rather than zeolitic H2O content, as 

the roughly continuous organic film covering the fibres surface (see paragraph 3.2) 

probably limits the adsorption of physisorbed water. Loss of the 2nd half of structural 

OH2, extending from 320 to 620 °C, is marked by no apparent signal in the derivative 

weight nor heat flow profiles (contrarily to Martin Vivaldi and Fenoll Hach-Ali, 1970 

and Giustetto et al., 2011c) thus certifying the slow progression of such an event.  

Combustion of hydrocarbons should give rise to an exothermic peak around 500° C 

(Sciré et al., 2011). Although a careful examination of the DSC profile reveals a weak 

exothermic hump around 470-480° C, no such an event is clearly observed here 

possibly due to the limited amounts of organic material forming the coating. The overall 

recorded weight loss ( 16.5 %) is slightly lower than that of other sepiolites (i.e. 18.5-

19.5 %: Frost et al., 2009; Giustetto et al., 2011c), possibly as the result of the 

ascertained deficiencies in the hygroscopic H2O content. 

 

3.4 Fourier Transform IR spectroscopy   
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(INSERT FIGURE 7) 

FT-IR spectra were collected on the Perletoa sepiolite in air at room T and in 

vacuum (P < 5*10-4 mbar) upon heating at 120 and 150 °C, to eliminate contribution of 

the broad signals related to zeolitic H2O. Data are consistent with previous works 

(Cannings, 1968; Hayashi et al., 1969; Mendelovici, 1973; Nagata et al., 1974; Prost, 

1975; Mendelovici and Portillo, 1976; Post, 1978; Myriam et al., 1998; Frost et al., 

2001; Jung and Grange, 2004; Ovarlez et al., 2009; Giustetto et al., 2010; Giustetto et 

al., 2011b; Bukas et al., 2013). Attribution of vibrational modes and related evolution 

with T rise are summarized in Table 3. 

(INSERT TABLE 3) 

The FT-IR spectrum collected in air at room T (pattern 1 in Figg. 7 and 8) is 

dominated by the broad signals related to both physisorbed and zeolitic H2O, which 

mask the narrower bands of hydroxyls having stronger interactions. Weak but clearly 

visible vibrational modes can be appreciated in the 1350-1550 cm-1 region (at 1384 and 

1509 cm-1, separated by a broader hump at 1444 cm-1; pattern 1 in Fig. 8, magnification; 

Table 3), where no bands of sepiolite should appear. These bands are consistent with 

those sometimes observed in literature on gabbroid or serpentinized/carbonated mantle-

derived ultramafic xenoliths as well as saponite-rich clays originated from hydrothermal 

serpentinitic systems (Ciliberto et al., 2009; Sciré et al., 2011; Manuella et al., 2012) 

and attributed to (C–H) of saturated aliphatic hydrocarbons. Their presence can 

therefore be related to the organic film which fills the interstices among different fibres, 

possibly inducing the ‘opening’ of bigger parallelograms into thinner units as hinted by 

TEM (see Fig. 4.b, paragraph 3.2).  

(INSERT FIGURE 8) 
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Evacuation at room T (pattern 2 in Figg. 7 and 8) causes loss of physisorbed and 

most zeolitic H2O with disappearance of all related modes; conversely, all structural 

OH2 is still preserved. This allows detection of weaker features at 3205, 2960, 2930 and 

2854 cm-1 which represent the counterpart, in the stretching region, of those C–H modes 

related to aliphatic hydrocarbons (Silverstein et al., 2005; Sciré et al., 2011). The high 

intensity ratio between  the 2930-2854 cm-1 signals [asymmetric and symmetric 

stretching of methylene (CH2) groups respectively] and that at 2960 cm-1 [asymmetric 

stretching of methyl (CH3) groups] indicates presence of hydrocarbons with long 

aliphatic chains (Coelho et al., 2006).    

When evacuation is coupled to temperature rise, release of OH2 is due to happen at 

lower T than in air. In the adopted vacuum conditions, loss of the 1st OH2 half starts at 

120 °C and proceeds until 175-200 °C (Serna et al., 1975; Giustetto et al., 2011b), 

causing structure folding (Preisinger, 1963; Serna et al., 1975, Post et al., 2007), 

reduction of the tunnel width and transformation from tetra- to di-hydrated sepiolite 

(SEP4H2O and SEP2H2O respectively; Ovarlez et al., 2011). Recent studies showed 

that these processes can be affected by incorporation of guest molecules in the tunnels, 

which prevents structure folding (Ovarlez et al., 2009, 2011; Giustetto et al., 2011b, 

2012). Presence of the 3680 and 3674 cm-1 modes in the outgassed spectrum at 150 °C 

(pattern 4 in Fig. 7; Table 3) accounts for coexistence of folded and unfolded portions 

of the structure (Jung and Grange, 2004; Ovarlez et al., 2009). Furthermore, a broad 

signal appears at 3423 cm-1 which merits further discussion. A similar mode (3420 

cm-1) was reported by Giustetto et al. (2011b) in a sepiolite + indigo (2 wt %) composite 

heated at 150 °C in vacuum, and attributed to structural OH2 perturbed by H-bonds with 

the incorporated dye. In the present study, the band tentatively result from unspecific 
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interactions existing between structural OH2 at the tunnel edges and superficial grooves 

(Benli et al., 2012) and the almost continuous hydrocarbons film covering most fibrils. 

This suggestion is supported by the a similar signal in spectra collected on composite 

films between xylan-type hemicelluloses (polysaccharides) and fibrous sepiolite, 

indicative of H-bonding interactions (Sárossy et al., 2012). 

Bands related to the hydrocarbons film covering the sepiolite fibres are basically 

unaltered by T rise, but tend to sharpen (curves 3 and 4 in Fig. 7). In the bending region 

a broad hump is observed at 1455 cm-1 bounded by sharper signals at 1509 and 1384 

cm-1 (Fig. 8, magnification; Table 3).  

 

3.5. Crystal structure refinement 

 

Despite all inevitable limits due to fine grain size, modest crystallinity and fibrous 

habit, which cause the refinement of this highly defective clay mineral to be 

troublesome (Guggenheim and Krekeler, 2011), a structural model for the Perletoa 

sepiolite was proposed using the Rietveld method on powder synchrotron XRD data 

consistently with previous studies (Post et al., 2007; Giustetto et al., 2011a). Recently 

pioneering single-crystal XRD data were presented by Sanchez del Rio et al. (2011). 

Initial fractional coordinates were taken from Giustetto et al. (2011a); only Mg was 

located in octahedral sites and small quantities of Ca in the tunnels were neglected. The 

low-angular position and asymmetry of the strong (110) reflection (d110  12.2 Å), 

bringing information about the channel content (Ovarlez et al., 2009), prevent its 

adequate fit so that in Rietveld procedures it is generally excluded (Chiari et al., 2003; 

Post et al., 2007; Post and Heaney, 2008; Giustetto et al., 2011a). The refinement was 
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first carried out in the 1.5– 41.5° 2 range, including the strong (110) reflection, which 

was later excluded by maintaining the structural model refined so far.  

(INSERT FIGURE 9) 

(INSERT TABLE 4) 

Fig. 9 shows the observed and calculated XRPD patterns of the Perletoa sepiolite 

and the related difference curve [magnification: patterns after exclusion of the (110) 

reflection]. Final refinement data, agreement factors and unit-cell parameters are listed 

in Table 4. Fractional coordinates, occupancy factors and displacement parameters for 

all atoms are reported in Table 5; the refined model is shown in Fig. 10. 

(INSERT TABLE 5) 

(INSERT FIGURE 10) 

The goodness of fit is inevitably influenced by the disorder and multiple defects 

typical of these clay minerals (Giustetto and Chiari, 2004; Krekeler and Guggenheim, 

2009), but the quality of the refined model is consistent with previous works (Artioli 

and Galli, 1994; Chiari et al., 2003; Post et al., 2007; Post and Heaney, 2008, Giustetto 

et al., 2011a). Although the relatively high standard deviations prevent an accurate 

discussion of the finer structural details, the unit cell shows an increase (0.03–0.05 Å) in 

the length of all parameters with respect to previous models (i.e. Post et al., 2007; 

Giustetto et al., 2011a), mostly along y, with consequent increase in the cell volume ( 

1 %). The number of zeolitic H2O molecules per unit cell (15.97) is in agreement with 

the ideal formula (16; Preisinger, 1959). Despite uncertainties remain about their sharp 

locations, these molecules are in sites consistent with those of Giustetto et al. (2011a); 

mutual O∙∙∙O distances imply existence of a H-bond network (Jeffrey, 1997). The low 
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occupancy of ZW14 (Table 5) suggests that this molecule may alternatively occupy two 

close and equivalent sites. 

 

3.6. Origin of aliphatic hydrocarbons and sepiolite genesis 

 

The presence of hydrocarbons hosted in mafic to ultramafic, serpentinitic or 

gabbroic complexes involved in hydrothermal systems is well-known in literature 

(Charlou et al., 1998; Sciré et al., 2011). Hydrocarbons genesis can be either biotic or 

abiotic: the former involves biological processes including bacteriogenesis and 

thermogenesis (Schoell, 1988) whereas the latter is attributed to the Fischer-Tropsch-

type (FT-t) reaction occurring in serpentinite-hosted hydrothermal systems (MacDonald 

and Fyfe, 1985; Konn et al., 2009). The FT-t reaction is an exothermic reduction of CO 

and CO2 by gaseous H2 catalyzed by group VIII metal ions (such as Fe, Co, Ni) or their 

oxides. The reactant C oxides mainly derive from mantle CO2 dissolved in 

hydrothermal fluids (Charlou et al., 2002), whose concentration range from 3 to 20 mM. 

Furthermore, according to Ciliberto et al. (2009) CO2 may be liberated during 

serpentinization of peridotitic olivine. In contrast, gaseous H2 may be derived from the 

hydration of primary mafic minerals of peridotites (Marcaillou et al., 2011). Initially the 

FT-t reaction implies dissociation of the adsorbed CO with formation of an intermediate 

carbide, whose presence was detected in the early serpentinization products of 

peridotites (Pikovskii et al., 2004). Such an intermediate compound reacts with 

dissociated H2 thus forming methane or higher hydrocarbons via insertion of –CH2– 

monomers in a growing Fischer-Tropsch chain (Schultz, 1999). 
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The collection site of the studied sepiolite specimen plots in the area of the Combin 

Zone, formed by dominant calcshists which locally contain clasts of metabasites, Mn-

rich quartzites and massive to foliated serpentinite bodies locally occurring as 

metabreccias containing magnetite- or carbonate-rich levels (Gasco and Gattiglio, 

2011). The Combin Zone is one of the two units – along with the Zermatt-Saas Zone – 

belonging to the Piedmont Zone which is part of the Piedmont-Ligurian basin of the 

Neo-Tethys ocean (Mahlen et al., 2005). This ocean spread during the Late Jurassic-

Cretaceous (Piccardo et al., 2001), when its closure started and completed during the 

early Tertiary as a result of the European and African plates collision. 

The Piedmont-Ligurian oceanic basin is represented by ophiolites exposed along the 

Western Alpine-Northern Appennine orogenic chain (Piccardo et al., 2001). A series of 

petrologic evidences supports the strong similarity of the Neo-Tethys ocean with ultra-

spreading oceanic basins (e.g., Bach and Früh-Green, 2010) rather than with the 

traditional Penrose ophiolite model (Lagabrielle and Lemoine, 1997), such as:  

i)  the abundance of serpentinized spinel lherzolites intruded by gabbros;  

ii)  the MORB affinity of gabbros and basaltic vulcanites (Piccardo et al., 2001; 

Piccardo, 2008);  

iii) the lack of sheeted dykes and gabbroic layer 3 and the very low volumes of 

gabbros and basalts.  

Furthermore, Tethys ophiolites bear mineralogical assemblages attributed to 

hydrothermal processes (Manatschal and Müntener, 2009), including high-temperature 

(HT) hydrothermal alteration observed in mylonitized gabbros and serpentinization with 

formation of ophicalcites in serpentinized peridotites. Both processes resemble those 

observed in modern slow-spreading oceanic basin (e.g., Mid-Atlantic Ridge; Boschi et 
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al., 2006). Serpentinization primarily involves the complete alteration of olivine grains, 

whereas ortho- and clinopyroxenes are only occasionally preserved (Manatschal and 

Müntener, 2009). Ophicalcites, representing the in situ replacement of serpentine by 

calcite (Klein and Garrido, 2011), consist of clast- or matrix-supported breccias 

(Manatschal and Müntener, 2009) in which fragments of serpentinized peridotites are 

immersed in a matrix of red limestones and/or cemented by sparry calcite. The presence 

of ophicalcites provides evidence for hydrothermal activity at the Neo-Tethys seafloor 

at temperatures of 100-150 °C (Früh-Green et al., 1990). Carbonate precipitation occurs 

in modern seafloor due to circulation of alkaline (pH = 9-11) and Ca-rich fluids in 

serpentinite-hosted hydrothermal systems (Schroeder et al., 2002; Ribeiro da Costa et 

al., 2008; Bach and Früh-Green, 2010; Lavoie and Chi, 2010) or by oxidation of abiotic 

methane (Schwarzenbach et al., 2012). In addition, the finding of Mn-rich quartzites in 

the Tethys ophiolites has been interpreted by Tumiati et al. (2010) as a clear evidence 

for an oceanic hydrothermal origin of manganese ore deposits. 

Serpentinite-hosted hydrothermal systems – analogous to those of the Combin Zone 

where the investigated sepiolite was collected – are ideal sites for the production of 

abiogenic hydrocarbons via the FT-t reaction, by means of progressive polymerization 

and polycondensation reactions (Konn et al., 2009; Taran et al., 2007). Since a widely 

accepted hypothesis for sepiolite genesis involves direct precipitation from an aqueous 

solution saturated with Mg and silica (Jones and Galán, 1988; Galán and Pozo, 2011) 

and with an insignificant Al activity (Birsoy, 2002), the Perletoa sepiolite probably 

originated from a similar process.  

The absence of evident dolostones or dolomitic limestones sources in the area under 

study suggests that aqueous, low temperature (150-300 °C) hydrothermal fluids 
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probably derived Mg required to produce sepiolite by the weathering of surrounding 

serpentinized ultramafic rocks belonging to the nearby ocean-derived Piemonte Zone 

(Fig. 1). Si, Fe and Al were possibly provided by circulation of fluids extracted from 

serpentinites, as due to serpentinization of olivine and clinopyroxene (Augustin et al., 

2008). Very small quantities of amorphous silica, whose presence can be assumed 

following crystal chemical formula calculations (see paragraph 3.2) and possibly due to 

a SiO2 excess in these aqueous solutions, are expected to favour sepiolite precipitation 

(Birsoy, 2002). 

The intimate association of the Perletoa sepiolite fibres with their aliphatic 

hydrocarbons sheaths of presumed abiogenic origin (an occurrence never reported 

before in literature) has therefore to be considered as the result of a complex 

hydrothermal process, which possibly generated both components in separate but 

sequential steps. The sheath of hydrocarbons, which occupies even the smaller 

interstitial spaces, limits the amount of adsorbable hygroscopic water and probably 

interacts with the fibres surface via specific bonds. These interactions, both mechanical 

and chemical, are expected to play a key-role in favouring defibrillation (‘opening’ 

process schematized in Fig. 5) of thicker bundles into thinner fibrous units (rods and/or 

laths). Consistently with the chronology proposed by Sciré et al. (2011) formation of 

sepiolite probably came first, due to crystal growth through the oriented aggregation of 

smaller subunits (laths) precipitated from Si/Mg rich fluids which gradually grouped 

into thicker bundles (García-Romero and Suárez, 2013). The abiotic genesis of 

hydrocarbons via FT-t reaction started later, thus allowing the covering of the bundles 

with a thin organic sheath. Mutual interactions between the hydrocarbon coating and the 

sepiolite fibres surface slowly but inexorably opened new interstices among the 
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different units, exposing new surfaces and promoting the beginning of the defibrillation 

process. The continuous production of hydrocarbons brought new organic matter to 

further slip into the formerly opened spaces, thus endorsing reiteration of the 

mechanism until discharge of primary sepiolite laths was reached.  

The described phenomenon shows several analogies with Sherman (1970), who 

patented a protocol for defibrillating asbestos. An insoluble ethylenically unsaturated 

monomer was added to primary activated fibres dispersed in water (pH 4-5); its 

consequent polymerization formed an in situ organic coating on the surface of the 

asbestos fibrils. Such a method was aimed at obtaining a large number of primary 

fibrils, each coated by a polymer film, thus facilitating their dispersion in synthetic 

plastic compositions and reducing the tendency of such materials to crack or degrade 

after asbestos addition and mixing. It is curious to notice how such an artificial process, 

devised more than 40 years ago, has been mimicked by nature on an analogous material 

(this sepiolite occurrence, a potential asbestos substitute: see e.g., Kavas et al., 2004) by 

exploiting the coexistence of peculiar environmental conditions in a specific geological 

context. 

 

4. Conclusions 

 

The progressive defibrillation of the Perletoa sepiolite, triggered by the 

hydrocarbons sheath,  not only causes a significant increase in the interfibre porosity 

(open texture) but also affects the fibre morphology enhancing its aspect ratio (length 

vs. thickness) from ‘high’ to ‘very high’. The thinner and exceptionally long fibrils 
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(rods and/or laths), therefore, potentially become more dangerous for human health due 

to their carcinogenic potential if dispersed in air and breathed in high doses. 

However, it cannot be excluded that the hydrocarbons sheath could affect the surface 

reactivity of the sepiolite fibrils altering their chances of interacting with the pulmonary 

epithelium. For example, only the breathing of quartz particles with fresh surfaces 

increases the risk of lung damages due to their enhanced reactivity, whereas old and 

contaminated grains appear to be less dangerous (thus explaining why miners tend to be 

affected most; Schins et al., 2002; Albrecht et al., 2005). Besides, the toxicity of 

occasional exposure to aliphatic hydrocarbons per se (inhaled, skin absorbed or 

ingested) has already been acknowledged in literature (Farinha et al., 2011). Though the 

fibrous habit supposedly increases the risk, if the analogy holds then presence of this 

organic coating may enhance or else reduce this sepiolite noxiousness. 

In the most recent report on the carcinogenic risks for humans caused by some 

silicates, the International Agency for Research on Cancer (IARC, 1997) stated that 

there is an “inadequate evidence in humans for the carcinogenicity of sepiolite”; despite 

this, a “limited evidence in experimental animals for the carcinogenicity of long 

sepiolite fibres” (length > 5 µm) was suggested. Fibres shorter than 5 µm, on the 

contrary, were considered harmless. On the whole, sepiolite fibres were included by 

IARC in “Group 3”, meaning that further investigations are needed to evaluate their 

possible carcinogenicity or noxiousness (IARC, 2012). However, no data on sepiolite 

carcinogenicity for humans were available to the IARC working group in 1997, when 

the report was published. Data on the toxic effects for humans were concerned mostly 

for fibres < 4 µm. Realistically, the possible health issues of fibres characterized by 

exceptional lengths, such as those observed here, are not known. 



Asbestiform sepiolite coated by hydrocarbons 

 

 24 

 

Acknowledgements 

 

The authors are indebted to Gabriele Ricchiardi for his precious help in collecting 

TGA data and to Silvia Bordiga for her invaluable hints about identification of aliphatic 

hydrocarbons.  

Special thanks go to Simona Quartieri and Rossella Arletti for their support in 

collecting synchrotron XRPD diffraction patterns and to Alain Baronnet and Serge 

Nitsche for their valuable cooperation in collecting TEM data. 

 

References 

 

Albrecht, C., Knaapen, A.M., Becker, A., Höhr, D., Haberzettl, P., van Schooten, F.J., Borm, P.J., Schins, 

R.P. (2005) The crucial role of particle surface reactivity in respirable quartz-induced reactive 

oxygen/nitrogen species formation and APE/Ref-1 induction in rat lung. Respiratory Research, 

6(129), doi:10.1186/1465-9921-6-129. 

 

Àlvarez, A., Santarén, J., Esteban-Cubillo, A. and Aparaicio P. (2011) Current industrial applications of 

palygorskite and sepiolite. Pp. 281-298 in: Developments in palygorskite-sepiolite research, a new 

outlook on these nanomaterials (E. Galan and A. Singer, editors). Elsevier B.V.. 

 

Artioli, G. and Galli, E. (1994) The crystal structures of orthorhombic and monoclinic palygorskite.  

Material Science Forum, 166, 647-652. 

 

Augustin, N., Lackschewitz, K.S., Kuhn, T., Dewey, C.W. (2008) Mineralogical and chemical mass 

changes in mafic and ultramafic rocks from the Logatchev hydrothermal field (MAR 15°N). Marine 

Geology, 256(1-4), 18-29. 



Asbestiform sepiolite coated by hydrocarbons 

 

 25 

 

Bach, W. and Früh-Green, G.L. (2010) Alteration of the oceanic lithosphere and its implications  

for seafloor processes. Elements, 6, 173-178. 

 

Bailey, S.W., Alietti, A., Brindley, G.W., Formosa, M.L.L., Jasmund, K., Konta, J., Mackenzie, R.C., 

Nagasawa, K., Rausell-Colom, R.A. and Zvyagin, B.B. (1980) Summary of recommendations of 

AIPEA nomenclature committee. Clays and Clay Minerals, 28(1), 73-78. 

 

Bellman, B., Muhle, H. and Ernst, H. (1997) Investigations on health-related properties of two sepiolite 

samples. Environmental Health Perspectives, 105(5), 1049-1052. 

 

Belluso, E., Compagnoni, R. and Ferraris, G. (1995) Occurrence of asbestiform minerals in the 

serpentinites of the Piemonte Zone, Western Alps. Pp. 57-64 in: Giornata di studio in ricordo del 

Prof. Stefano Zucchetti, Politecnico di Torino (Politecnico di Torino, editor). 

 

Belluso, E. and Sandrone, R. (1989) Occurrence of sepiolite in the marbles of the Dora Maira Massif 

(Italian Western Alps). Miner. Petrogr. Acta, 32, 67-74 

 

Benli, B., Du, H. and Celik, M.S. (2012) The anisotropic characteristics of natural fibrous sepiolite as 

revealed by contact angle, surface free energy, AFM and molecular dynamics simulation. Colloids 

and Surfaces A: Physicochemical and Engineering Aspects, 408, 22-31.  

 

Birsoy, R. (2002) Formation of sepiolite-palygorskite and related minerals from solution. Clays and Clay 

Minerals, 50, 6, 736-745. 

 

Bonatti, E., Craig Simmons, E., Breger, D., Hamlyn, P.R., Lawrence, J. (1983) Ultramafic rock/seawater 

interaction in the oceanic crust: Mg-silicate (sepiolite) deposit from the Indian Ocean floor. Earth and 

Planetary Science Letters, 62(2), 229-238. 

 



Asbestiform sepiolite coated by hydrocarbons 

 

 26 

Boschi, C., Früh-Green, G.L., Delacour, A., Karson, J.A., Kelley, D.S. (2006) Mass transfer and fluid 

flow during detachment faulting and development of an oceanic core complex, Atlantis Massif (MAR 

30°N). Geochemistry, Geophysics, Geosystems, 7, doi: 10.1029/2005GC001074. 

 

Brauner, K. and Preisinger, A. (1956) Structur und Enstehung des sepioliths.  Tschermaks Mineralogische 

und Petrographische Mitteilungen, 6, 1-2. 

 

Brell, J.M., Doval, M., Caramés, M. (1985) Clay mineral distribution in the evaporitic Miocene sediments 

of the Tajo Basin, Spain. Miner. Petrogr. Acta, 29-A, 267-276. 

 

Brindley, G.W. (1959) X-ray and electron diffraction data for sepiolite. American Mineralogist, 44, 495-

500.  

 

Bukas, V.J., Tsampodimou, M., Gionis, V., Chryssikos, G.D. (2013) Synchronous ATR infrared and NIR 

spectroscopy investigation of sepiolite upon drying. Vibrational Spectroscopy, 68, 51-60.  

 

Caillère, S. and Hénin, S. (1957) in: The differential thermal investigation of clays (R.C. Mackenzie, 

editor). Mineralogical Society, London. 

 

Cannings, F.R. (1968) An Infrared study of hydroxyl groups in sepiolite. Journal of Physical Chemistry, 

72, 1072-1074. 

 

Chahi, A., Fritz, B., Duplay, J., Weber, F., Lucas, J. (1997) Textural transition and genetic relationship 

between precursor stevensite and sepiolite in lacustrine sediments (Jbel Rhassoul, Morocco). Clays 

Clay Min., 45(3), 378-389.  

 

Charlou, J.L., Fouquet, Y., Bougault, H., Donval, J.P., Etoubleau, J., Jean-Baptiste, P., Dapoigny, A., 

Appriou, P. and Rona, P.A. (1998) Intense CH4 plumes generated by serpentinization of ultramafic 



Asbestiform sepiolite coated by hydrocarbons 

 

 27 

rocks at the intersection of the 15°20′N fracture zone and the Mid-Atlantic Ridge. Geochimica et 

Cosmochimica Acta, 62 (13), 2323–2333. 

 

Charlou, J.L., Donval, J.P., Fouquet, Y., Jean-Baptiste, P., Holm, N. (2002) Geochemistry of high H2 and 

CH4 vent fluids issuing from ultramafic rocks at the Rainbow hydrothermal field, 36°14′N, MAR. 

Chemical Geology, 191, 345–359. 

 

Chiari, G., Giustetto, R. and Ricchiardi, G. (2003) Crystal structure refinements of palygorskite and Maya 

Blue from molecular modeling and powder synchrotron diffraction. European Journal of Mineralogy, 

15, 21–33. 

 

Ciliberto, E., Crisafulli, C., Manuella, F.C., Samperi, F., Scirè, S., Scribano, V., Viccaro, M. and Viscuso 

E. (2009) Aliphatic hydrocarbons in metasomatized gabbroic xenoliths from Hyblean diametres 

(Sicily): genesis in a serpentinite hydrothermal system. Chemical Geology, 258, 258-268. 

 

Coelho, R.R., Hovell, I., de Mello Monte, M.B., Middea, A. and de Souza, A.L. (2006) Characterisation 

of aliphatic chains in vacuum residues (VRs) of asphaltenes and resins using molecular modelling and 

FTIR techniques. Fuel Processing Technology, 87, 325-333. 

 

Cuevas, J, Leguey, S., Ruiz, A.I. (2012) Evidence for the biogenic origin of sepiolite. Pp. 219-238 in: 

Developments in palygorskite-sepiolite research, a new outlook on these nanomaterials (E. Galan E. 

and A. Singer, editors). Elsevier B.V.. 

 

Dollase, W.A. (1986) Correction of intensities for preferred orientation in powder diffractometry: 

application of the March model. Journal of Applied Crystallography, 19, 267-272. 

 

Dos Anjos, C.W.D., Meunier, A., Guimaraès, E.M. and El Albani, A. (2010) Saponite-rich black shales 

and nontronite beds of the Permian Irati Formation: sediment sources and thermal metamorphism 

(Parana´ Basin, Brazil). Clays and Clay Minerals, 58, 606-626. 



Asbestiform sepiolite coated by hydrocarbons 

 

 28 

 

Ece, Ö.I. and Çoban, F. (1994) Geology, occurrence and genesis of Eskişehir sepiolites, Turkey. Clays 

and Clay Minerals, 42, 81-92. 

 

Emeis, K.C. and Weissert, H. (2009) Tethyan_Mediterranean organic carbon-rich sediments from 

Mesozoic black shales to sapropels. Sedimentology, 56, 247-266. 

 

Eugster, H.P. and Hardie, L.A. (1975) Sedimenation in an ancient playa-lake complex: the Wilkins Peak 

member of the Green River Formation of Wyoming. Bull. Geol. Soc. Am., 86, 319-334. 

 

Farinha, A., Assunção, J., Vinhas, J. (2011) Renal toxicity of inhaled aliphatic hydrocarbons: a case 

report of chronic interstitial nephropathy. Port J. Nephrol. Hypert., 25(1), 43-46. 

 

Ferraris, G., Makovicky, E. and Merlino, S. (2008) in: Crystallography of modular materials. Oxford, 

IUCr. Oxford University Press. 

 

Finger, L.W., Cox, D.E. and Jephcoat, A.P. (1994) A correction for powder diffraction peak asymmetry 

due to axial convergence. Journal of Applied Crystallography, 27, 892-900. 

 

Frost, R.L., Cash, G.A. and Kloprogge, J.T. (1998) ‘Rocky Mountain leather’, sepiolite and attapulgite-an 

infrared emission spectroscopic study. Vibrational Spectroscopy, 16, 173-184. 

 

Frost, R.L. and Ding, Z. (2003) Controlled rate thermal analysis and differential scanning calorimetry of 

sepiolites and palygorskites. Thermochimica Acta, 397(1-2), 119-128. 

 

Frost, R.L., Kristòf, J. Horvàth, E. (2009) Controlled rate thermal analysis of sepiolite. Journal of 

Thermal Analysis and Calorimetry, 98(3), 749-755. 

 



Asbestiform sepiolite coated by hydrocarbons 

 

 29 

Frost, R.L., Locos, O.B., Ruan, H. and Kloprogge, J.T. (2001) Near-infrared spectroscopic study of 

sepiolites and palygorskites. Vibrational Spectroscopy, 27, 1-13. 

 

Früh-Green, G.L., Weissert, H., Bernoulli, D. (1990) A multiple fluid history recorded in Alpine 

ophiolites. Journal of the Geological Society of London, 147, 959-970. 

 

Galán, E. and Pozo, M. (2011) Palygorskite and sepiolite deposits in continental environments. 

Description, genetic patterns and sedimentary settings. Pp. 131-135 in: Developments in palygorskite-

sepiolite research, a new outlook on these nanomaterials (E. Galan E. and A. Singer, editors). 

Elsevier B.V.. 

 

García-Romero, E. and Suárez, M. (2013) Sepiolite-palygorskite: textural study and genetic 

considerations. Applied Clay Science, 86, 129-144. 

 

Garcia-Romero, E., Suarez, M., Santaren, J. and Alvarez, A. (2007) Crystallochemical characterization of 

the palygorskite and sepiolite from the Allou Kagne deposit, Senegal. Clays and Clay Minerals, 55, 

606-617. 

 

Garcìa-Romero, E. and Suarez, M. (2010) On the chemical composition of sepiolite and palygorskite. 

Clays and Clay Minerals, 58, 1-20. 

 

Gasco, I. and Gattiglio, M. (2011) Geological map of the Upper Gressoney Valley. Journal of Maps, 6(1), 

82-102.  

 

Geological map of Aosta Valley, available on the official website of the Aosta Valley Region at 

http://geonavsct.partout.it/pub/GeoNavSCT/index.html?repertorio=carta_geologica_100k. 

 

Giustetto, R. and Chiari, G. (2004) Crystal structure refinement of palygorskite from neutron powder 

diffraction. European Journal of Mineralogy, 16, 521-532. 

http://geonavsct.partout.it/pub/GeoNavSCT/index.html?repertorio=carta_geologica_100k


Asbestiform sepiolite coated by hydrocarbons 

 

 30 

 

Giustetto, R., Seenivasan, K. and Bordiga, S. (2010) Spectroscopic characterization of a sepiolite-based 

Maya Blue pigment. Periodico di Mineralogia, Special Issue, 21-37. 

 

Giustetto, R. and Compagnoni, R. (2011) An unusual occurrence of palygorskite from Montestrutto, 

Sesia-Lanzo Zone, internal Western Alps (Italy). Clay Minerals, 46, 371-385. 

 

Giustetto, R., Levy, D., Wahyudi, O., Ricchiardi, G. and Vitillo, J.G. (2011a) Crystal structure refinement 

of a sepiolite/indigo Maya Blue pigment using molecular modelling and synchrotron diffraction. 

European Journal of Mineralogy, 23, 449-466. 

 

Giustetto, R., Seenivasan, K., Bonino, F., Ricchiardi, G., Bordiga, S., Chierotti, M.R. and Gobetto, R. 

(2011b) Host/guest interactions in a sepiolite-based Maya Blue pigment: a spectroscopic study. 

Journal of Physical Chemistry C, 115, 16764-16776. 

 

Giustetto, R., Wahyudi, O., Corazzari, I. and Turci, F. (2011c) Chemical stability and dehydration 

behaviour of a sepiolite/indigo Maya Blue pigment. Applied Clay Science, 52, 41-50. 

 

Giustetto, R., Seenivasan, K., Pellerej, D., Ricchiardi, G. and Bordiga, S. (2012) Spectroscopic 

characterization and photo-thermal resistance of a hybrid palygorskite/methyl red Mayan pigment. 

Microporous and Mesoporous Materials, 155, 167-176. 

 

Grim, R.E. (1968) Clay Mineralogy. McGraw-Hill, New York. 

 

Guggenheim, S. and Krekeler, M.P.S. (2011) The structure and microtextures of the palygorskite-

sepiolite Group minerals. Pp. 15-16 in: Developments in palygorskite-sepiolite research, a new 

outlook on these nanomaterials (E. Galan and A. Singer, editors). Elsevier B.V.. 

 



Asbestiform sepiolite coated by hydrocarbons 

 

 31 

Gunter, M.E., Belluso, E. and Mottana, A. (2007) Amphiboles: environmental and health concerns. Pp. 

453-516 in: Amphiboles: Crystal Chemistry, Occurrence and Heath Issues (F.C. Hawthorne, R. 

Oberti, G., Della Ventura, A. Mottana, editors). Reviews in Mineralogy and Geochemistry, 67, 

Mineralogical Society of America, Chantilly, Virginia.  

 

Hayashi, H., Otsuka, R. and Imai, N. (1969) Infrared study of sepiolite and palygorskite on heating. 

American Mineralogist, 54, 1613-1624. 

 

Hubbard, B., Wenxing, K., Moser, A., Facey, G.A. and Detellier, C. (2003). Structural study of Maya 

Blue: textural, thermal and solid-state multinuclear magnetic resonance characterization of the 

palygorskite-indigo and sepiolite-indigo adducts. Clays and Clay Minerals, 51(3), 318–326. 

 

Imai N. and Otsuka, R. (2000) Sepiolite and palygorskite in Japan. Pp. 211-232 in: Palygorskite – 

sepiolite: occurrences, genesis and uses (A. Singer and E. Galan, editors). Developments in 

Sedimentology, 37. 

 

International Agency for Research on Cancer, World Health Organization (1997) Sepiolite. Pp. 267-282 

in: IARC Monographs on the evaluation of carcinogenic risks to humans; Silica, some silicates, coal 

dust and para-aramid fibrils. 68, IARC Press. 

 

International Agency for Research on Cancer, World Health Organization (2012)  Arsenic, metals, fibres, 

and dusts. Pp. 501 in: Monographs on the evaluation of carcinogenic risks to humans; A review of 

human carcinogens. 100 C, IARC Press. 

 

Jeffrey, G.A. (1997) An introduction to hydrogen bonding, Oxford University Press. 

 

Jones, B.F. and Galan, E. (1988) Palygorkite and sepiolite. Pp. 631-674 in: Hydrous Phyllosilicates (S.W. 

Bailey, editor), Reviews in Mineralogy, 19. Mineralogical Society of America, Washington. 

 



Asbestiform sepiolite coated by hydrocarbons 

 

 32 

Jung, S.M.; Grange, P. (2004) Characterization of the surface hydroxyl properties of sepiolite and 

Ti(OH)4 and investigation of new properties generated over physical mixture of Ti(OH)4-sepiolite. 

Applied Surface Science, 221, 167-177. 

 

Karakaya, M.C., Karakaya, N., Temel, A. (2011) Mineralogical and geochemical characteristics and 

genesis of the sepiolite deposits at Polatli basin (Ankara, Turkey). Clays and Clay Minerals, 59(3), 

286–314. 

 

Kavas, T., Sabah, E., Celik, M.S. (2004) Structural properties of sepiolite-reinforced cement composite. 

Cement and Concrete Research,  34(11), 2135-2139.  

 

Klein, F. and Garrido, C.J. (2011) Thermodynamic constraints on mineral carbonation of serpentinized 

peridotite. Lithos, 126(3/4), 147-160. 

 

Konn, C., Charlou, J.L., Donval, J.P., Holm, N.G., Dehairs, F., and Bouillon, S. (2009) Hydrocarbons and 

oxidized organic compounds in hydrothermal fluids from Rainbow and Lost City ultramafic-hosted 

vents. Chemical Geology, 258, 299-314. 

 

Krekeler, M.P.S. and Guggenheim, S. (2009) Defects in microstructure in palygorskite-sepiolite minerals: 

a transmission electron microscopy (TEM) study. Applied Clay Science, 39, 98-105. 

 

Lagabrielle, Y. and Lemoine, M. (1997) Alpine, Corsican, Apennine ophiolites: the slow-sreading ridge 

model. Ophiolites des Alpes, de Corse et des dorsales lentes. Comptes Rendus de l’Académie des 

Sciences, 325, 909-920. 

 

Larson, A.C. and Von Dreele, R.B. (2007) GSAS – General Structure Analysis System. Los Alamos 

National Laboratory Report No. LAUR 86-748. 

 



Asbestiform sepiolite coated by hydrocarbons 

 

 33 

Lavoie, D. and Chi, G. (2010) An Ordovician “Lost City” – venting serpentinite and life oases on lapetus 

seafloor. Canadian J. Of Earth Sciences, 47, 199-207. 

 

Leguey, S., Ruiz de Leòn, D., Ruiz, A.I., Cuevas, J. (2010) The role of biomineralization in the origino f 

sepiolite and dolomite. Am. J. Sci., 310, 165-193.  

 

Lòpez-Galindo, A., Viseras, C., Aguzzi, C., Cerezo, P. (2011) Pharmaceutical and cosmetic uses of 

fibrous clays. Pp. 299-324 in: Developments in palygorskite-sepiolite research, a new outlook on 

these nanomaterials (E. Galan and A. Singer, editors). Elsevier B.V.. 

 

Macdonald, A.H. and Fyfe, W.S. (1985) Rate of serpentinization in seafloor environments. 

Tectonophysics, 116, 123-135. 

 

Mahlen, N.J., Johnson, C.M., Baumgartner, L.P., Beard, B.L. (2005) Provenance of Jurassic Tethyan 

sediments in the HP/UHP Zermatt-Saas Ophiolite, Western Alps. GSA Bull., 117(3/4), 530-544. 

 

Manatschal, G. and Müntener, O. (2009) A type sequence across an ancient magma-poor ocean-continent 

transition: the example of the western Alpine Tethys ophiolites. Tectonophysics, 473, 4-19 

 

Manuella, F.C., Carbone, S. and Barreca, G. (2012) Origin of saponite-rich clays in a fossil serpentinite-

hosted hydrothermal system in the crustal basement of the Hyblean plateau (Sicily, Italy). Clays and 

Clay Minerals, 60(1), 18-31. 

 

Marcaillou, C., Muñoz, M., Vidal, O., Parra, T. and Harfouche, M. (2011) Mineralogical evidence for H2 

degassing during serpentinization at 300ºC/300 bar. Earth and Planetary Science Letters, 303, 281-

290. 

 

March, A. (1932) Mathematische Theorie der Regelung nach der Korngestalt bei affiner Deformation. 

Zeitschrift für Kristallographie, 81, 285-297. 



Asbestiform sepiolite coated by hydrocarbons 

 

 34 

 

Martin Vivaldi, J.L. and Cano Ruiz, J. (1956). Contribution to the study of sepiolite, III. The dehydration 

process and the types of water molecules.  Clays and Clay Minerals, 4, 177-180. 

 

Martin Vivaldi, J.L. and Fenoll Hach-Ali, P. (1970) Palygorskite and sepiolite (Hormites). Pp. 553-573 

in: Differential thermal analysis (R.M. Mackenzie, editor). Academic Press, London. 

 

Mayayo, M.J., Torres-Ruiz, J., Gonzalez-Lopez, J.M., Lopez-Galindo, A., Bauluz, B. (1998) 

Mineralogical and Chemical characterization of the sepiolite/Mg-smectite deposit at Mara (Calatayud 

basin, Spain). Eur. J. Miner., 10, 367-383. 

 

Mendelovici, E. (1973) Infrared study of attapulgite and HCl treated attapulgite. Clays and Clay 

Minerals, 21, 115-119. 

 

Mendelovici, E. and Portillo, D.C. (1976) Organic derivatives of attapulgite-I. Infrared spectroscopy and 

X-ray diffraction studies. Clays and Clay Minerals, 24, 177-182. 

 

Mifsud, A., Garcia, I. and Corma, A. (1987) Thermal stability and textural properties of exchanged 

sepiolites. Pp. 392-394 in: Proceedings Euroclay ’87. Sociedad Espanola de Arcilla, Sevilla. 

 

Myriam, M., Suarez, M. and Martìn-Pozas, J.M. (1998). Structural and textural modifications of 

palygorskite and sepiolite under acid treatment. Clays & Clay Minerals, 46(3), 225-231. 

 

Nagata, H., Shimoda, S. and Sudo, T. (1974) On dehydration of bound water in sepiolite. Clays and Clay 

Minerals, 22, 285-293. 

 

Nagy, B. and Bradley, W.F. (1955) The structural scheme of sepiolite. American Mineralogist, 40, 885-

892.  

 



Asbestiform sepiolite coated by hydrocarbons 

 

 35 

Noda, H., Miyagawa, K., Kobayashi, M., Horiguchi, H., Ozawa, K., Kumada, N., Yonesaki, Y., Takei, T. 

and Kinomura, N. (2009) Preparation of cordierite from fibrous sepiolite. Journal of the Ceramic 

Society of Japan, 117(11), 1236-1239. 

 

Ordoñez, S., Calvo, J.P., Garcìa del Cura, M.A., Alonso Zarza, A.M., Hoyos, M. (1991) Sedimentology 

of sodium sulphate deposits and special clays from the Tertiary Madrid Basin (Spain). In: Anadòn, P., 

Cabrera, L.I., Keiths, K. (Eds.), Lacustrine Facies Analysis, Spec. Publ. Int. Ass. Sediment, vol. 13, 

Blackwell Scientific Publications, Oxford, pp. 39-55. 

 

Ovarlez, S., Chaze, A.M., Giulieri, F. and Delamare, F. (2006) Indigo chemisorption in sepiolite. 

Application to Maya Blue formation. Comptes Rendu Chimie, 9, 1243-1248. 

 

Ovarlez, S., Giulieri, F., Chaze, A.M., Delamare, F., Raya, J. and Hirschinger J. (2009). The 

incorporation of indigo molecules in sepiolite tunnels. Chemistry A European Journal, 15, 11326-

11332. 

 

Ovarlez, S., Giulieri, F., Delamare, F., Sbirrazzuoli, N. and Chaze, A.M. (2011) Indigo-sepiolite 

nanohybrids: temperature-dependent synthesis of two complexes and comparison with indigo-

palygorskite systems. Microporous and Mesoporous Materials, 142, 371-380. 

 

Piccardo, G.B. (2008) The Jurassic Ligurian Tethys, a fossil, ultraslow-spreading ocean; the mantle 

perspective. Geol. Soc. London, Spec. Publ., 293, 11-34. 

 

Piccardo, G.B., Rampone, E., Romairone, A., Scambelluri, M., Tribuzio, R., Beretta, C. (2001) Evolution 

of the Ligurian Tethys: inference from petrology and geochemistry of the Ligurian ophiolites. Per. 

Mineral., 70(2), 147-192. 

 



Asbestiform sepiolite coated by hydrocarbons 

 

 36 

Pikovskii, Y.I., Chernova, T.G., Alekseeva, T.A. and Verkhovskaya, Z.I. (2004) Composition and nature 

of hydrocarbons in modern serpentinization areas in the ocean. Geochemistry International, 42, 971–

976. 

 

Post, J.E. (1978) Sepiolite deposits of the Las Vegas, Nevada Area. Clays and Clay Minerals, 26, 58-64. 

 

Post, J.E., Bish, D.L. and Heaney P.J. (2007) Synchrotron powder X-ray diffraction study of the structure 

and dehydration behavior of sepiolite. American Mineralogist, 92, 91-97. 

 

Post, J.E. and Heaney, P.J. (2008) Synchrotron powder diffraction study of the structure and dehydration 

behavior of palygorskite. American Mineralogist, 93, 667-675. 

 

Pott, F., Bellman, B., Muhle, H., Rödelsperger, K., Rippe, R.M., Roller, M. and Rosenbruch, M. (1990) 

Intraperitoneal injection studies for the evaluation of the carcinogenicity of fibrous phyllosilicates. Pp. 

319-329 in: Health Related Effects of Phyllosilicates (J. Bignon, editor). North Atlantic Treaty 

Organization Advanced Study Institute Series, Vol. G21, Ecological Sciences, Berlin West, Springer-

Verlag.  

 

Pott, F., Roller, M., Rippe, R.M., Germann, P.G. and Bellman, B. (1991) Tumors by the intraperitoneal 

and intrapleural routes and their significance for the classification of mineral fibres. Pp. 547-565 in: 

Mechanisms in Fibre Carcinogenesis (R.C. Brown, J.A. Hoskins and N.F. Johnson, editors). New 

York/London Plenum Press. 

 

Preisinger, A. (1959) X-ray study of the structure of sepiolite. Clays and Clay Minerals, 6, 61-67. 

 

Preisinger, A. (1963) Sepiolite and related compounds: its stability and application. Clays and Clay 

Minerals, 10, 365-371. 

 



Asbestiform sepiolite coated by hydrocarbons 

 

 37 

Prost, R. (1975) Infrared study of the interactions between the different kinds of water molecules present 

in sepiolite. Spectrochimica Acta, 31A, 1497-1499. 

 

Rautureau, M. and Mifsud, A. (1977) Etude par microscope electronique des differents etats d'hydratation 

de la sepiolite. Clay Minerals, 12, 309–318. 

 

Ribeiro da Costa, I., Barriga, F.J.A.S, Taylor, R.N. (2008) Late seafloor carbonate precipitation in 

serpentinites from the Rainbow and Saldanha sites (Mid-Atlantic-Ridge). Eur. J. Min., 20(2), 173-

181. 

 

Ruiz, R., del Moral, J.C., Pesquera, C., Benito, I. and González, F. (1996) Reversible folding in sepiolite: 

study by thermal and textural analysis. Thermochimica Acta, 279, 103–110. 

 

Sanchez del Rio, M.,  Garcia-Romero, E., Suarez, M., da Silva, I., Fuentes Montero, L. and Martinez-

Criado, G. (2011) Variability in sepiolite: Diffraction studies. American Mineralogist, 96, 1443-1454. 

 

Sárossy, Z., Blomfeldt, T.O.J., Hedenqvist, M.S., Bender Koch, C., Sinha Ray, S. and Plackett, D. (2012) 

Composite films of arabinoxylan and fibrous sepiolite: morphological, mechanical and barrier 

properties. Applied Materials and Interfaces, 4, 3378-3386. 

 

Schins, R.P., Duffin, R., Höhr, D., Knaapen, A.M., Shi, T., Weishaupt, C., Stone, V., Donaldson, K., 

Borm, P.J. (2002) Surface modification of quartz inhibits toxicity, particle uptake, and oxidative DNA 

damage in human lung epithelial cells. Chemical Research in Toxicology, 15(9), 1166-1173. 

 

Schoell, M. (1988) Multiple origins of methane in the Earth. Chemical Geology, 71, 1–10. 

 

Schroeder, T., John, B., Frost, B.R. (2002) Geologic implication of seawater circulation through 

peridotite exposed at slow-spreading mid-ocean ridges. Geology, 30, 367-370. 

 



Asbestiform sepiolite coated by hydrocarbons 

 

 38 

Schulz, H. (1999) Short history and present trends of Fischer–Tropsch synthesis. Applied Catalysis A: 

General, 186, 3–12. 

 

Schwarzenbach, E., Früh-Green, G.L., Bernasconi, S.M., Alt, J.C., Shanks, W.C., Gaggero, L., Crispini, 

L. (2012) Sulphur geochemistry of peridotite-hosted hydrothermal systems: comparing the Ligurian 

ophiolites with oceanic serpentinites. Geochimica et Cosmochimica Acta, 91, 283-305. 

 

Sciré, S., Ciliberto, E., Crisafulli, C., Scribano, V., Bellatreccia, F., Della Ventura, G. (2011) Asphaltene-

bearing mantle xenoliths from Hyblean diatremes, Sicily. Lithos, 125, 956-968. 

 

Serna, C., Ahlrichs, J.L. and Serratosa, J.M. (1975) Folding in sepiolite crystals. Clays and Clay 

Minerals, 23, 452-457. 

 

Sherman, M.A. (1970). Coated asbestos and method of making and using same. United States Patent no. 

3519594A, Lexington, Mass, assignor to Amicon Corporation, Lexington, Mass, a corporation of 

Massachusetts No Drawing. Filed Nov. 9, 1967, Ser. No. 681,933. Available at 

http://www.google.com/patents/US3519594.  

 

Silverstein, R.M., Webster, F.X. and Kiemle, D.J. (2005) Spectroscopic Identification of Organic 

Compounds, 7th edition. John Wiley and Sons, New Jersey, USA. 

 

Solebello L. (2009) Fibrous sepiolite use as an asbestos substitute: analytical basics. Microscopy Today, 

15, 18-19. 

 

Suárez, M. and García-Romero, E. (2011) Advances in the Crystal Chemistry of Sepiolite and 

Palygorskite. Pp. 33-65 in: Developments in Palygorskite-Sepiolite Research, a new outlook on these 

nanomaterials (E. Galan and A. Singer, editors). Elsevier B.V.. 

 

http://www.google.com/patents/US3519594


Asbestiform sepiolite coated by hydrocarbons 

 

 39 

Suárez, M. and García-Romero, E. (2012) Variability of the surface properties of sepiolite. Applied Clay 

Science, 67-68, 72-82. 

 

Taran, Y.A., Kliger, G.A. and Sevastianov, V.S. (2007) Carbon isotope effects in the open system 

Fischer–Tropsch synthesis. Geochimica et Cosmochimica Acta, 71, 4474–4487. 

 

Thompson, P., Cox, D.E. and Hastings, J.B. (1987) Rietveld refinement of Debye-Scherrer synchrotron 

data from Al2O3. Journal of Applied Crystallography, 20, 79–83. 

 

Toby, B.H. (2001) EXPGUI, a graphical user interface for GSAS. Journal of Applied Crystallography, 

34, 210-213. 

 

Trauth, N. (1977) Argiles puaporitiques dans les sedimentation carbonatée et epicontinental tertiaire, 

Bassin de Paris, Mormoiron et Salenelles (France), Ibel Ghassoul (Maroc). Sciences Géologiques 

Memoire, 49, pp. 195. 

 

Tumiati, S., Martin, S., Godard, G. (2010) Hydrothermal origin of manganese in the high-pressure 

ophiolite metasediments of Praborna ore deposit (Aosta Valley, western Alps). Eur. J. Min., 22, 577-

594. 

 

Ugliengo, P., Viterbo, D. and Chiari, G. (1993) MOLDRAW: molecular graphics on a personal computer. 

Kristallographie, 207, 9. 

 

Velde, B. (1985) Clay minerals: a physic-chemical explanation of their occurrences. In: Developments in 

Sedimentology, 40, Elsevier, Nueva York, pp. 187-198. 

 

Weaver, C.E. (1984) Origin and geologic implications of the palygorskite deposits of SE United States. 

In: Singer, A., Galàn, E. (Eds.), Palygorskite-Sepiolite: Occurrences, Genesis and Uses. Developments 

in Sedimentology, 37, Elsevier, Amsterdam, pp. 39-58. 



Asbestiform sepiolite coated by hydrocarbons 

 

 40 

 

Weir, M.R., Kuang, W., Facey, G.A. and Detellier, C. (2002) Solid-state nuclear magnetic resonance 

study of sepiolite and partially dehydrated sepiolite. Clays and Clay Minerals, 50, 240–247. 

 

 

 

Table Captions 

 

Table 1. Chemical composition (weight % oxides and mean value) and cations 

number calculated on anhydrous basis (32 oxygens) of the studied Perletoa 

sepiolite. 

 

Table 2. TGA weight losses and related attributions for the Perletoa sepiolite. 

 

Table 3. FT-IR active vibrational modes and related attributions at different 

temperatures and vacuum conditions for the Perletoa sepiolite and the 

superficial hydrocarbons sheath. 

 

Table 4. Crystal-chemical formula, space group, cell parameters and refinement 

data for the Perletoa sepiolite. 

 

Table 5. Refined fractional atomic coordinates, occupancy factors and isotropic 

displacement parameters for the Perletoa sepiolite. 
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Tables 

 

Table 1. 

 

 

 
Temperature 

range (° C) 

Weigth loss 

(%) 

DSC event Attribution and comments 

25 – 110 6.5 endothermic 

(110° C) 

Loss of physisorbed water and less severely bound 

zeolitic H2O (tetra-hydrated sepiolite; SEP4H2O) 

120 – 310 3.5 endothermic 

(310° C) 

Loss of residual zeolitic H2O and 1st fraction of structural 

OH2 (di-hydrated sepiolite; SEP2H2O) 

320 – 620  3.5 = Loss of 2nd fraction of structural OH2 (anhydrous 

sepiolite)  

  endothermic 

(810° C) 

(Possible) decarbonation of calcite traces 

650 – 820 3.0 endothermic 

(830° C) Loss of framework OH (dehydroxylation) and 

transformation to clinoenstatite (or an amorphous phase)   exothermic 

(850° C) 

Total 16.5   

 
Table 2. 

 

 

 

 

 

 

Oxides 
(wt%) 

1 2 3 4 5 6 7 8 9 10 11 12 13 Average 

SiO2 56.05 57.35 56.73 56.04 56.73 58.28 56.23 56.93 56.69 57.44 54.38 54.46 56.12 56(1) 

Fe2O3 1.41 1.32 1.97 2.01 1.94 2.33 2 1.62 1.98 2.11 1.52 1.44 1.71 1.8(3) 

MgO 22.13 22.67 22.25 22.11 22.84 23.38 22.14 22.36 21.87 23.37 21.39 21.9 21.74 22.3(6) 

CaO 0 0 0 0.74 0 0 0 0 0 0 0 0 0   = 

 79.58 81.34 80.95 80.91 81.51 83.99 80.38 80.9 80.53 82.91 77.29 77.8 79.57 81(2) 

Cations               

Si 12.23 12.24 12.20 12.11 12.13 12.11 12.18 12.22 12.24 12.08 12.22 12.17 12.25 12.18(6) 

Fe3+ 0.23 0.21 0.32 0.33 0.31 0.36 0.33 0.26 0.32 0.33 0.26 0.24 0.28 0.29(5) 

Mg 7.20 7.21 7.13 7.12 7.28 7.24 7.15 7.16 7.04 7.33 7.17 7.30 7.07 7.19(9) 

 19.66 19.66 19.65 19.56 19.72 19.71 19.66 19.64 19.60 19.74 19.65 19.71 19.60 19.66(5) 

Ca 0 0 0 0.17 0 0 0 0 0 0 0 0 0   = 
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Sepiolite     

Room T in 

air  
(cm-1) 

Room T in 

vacuum 
(5*10-4 mbar) 

120° C in 

vacuum 
(5*10-4 mbar) 

150° C in 

vacuum 
(5*10-4 mbar) 

Attribution and comments 

Stretching region (2750 - 3750 cm-1) 

3246 = = = (OH) of physisorbed water, lost by evacuating at room T 

 

3358 = = = (OH) of zeolitic H2O, lost by evacuating at room T 

 

= = = 3423 Unspecific interactions of structural OH2 (possibly with the 

aliphatic hydrocarbons sheath) 

3568 3550 3550 3531 (OH) of structural OH2; red-shift at 3550 and 3531 cm-1 

are due to H-bond and symmetric ν(OH2) variations 

3623 3623 3623 3644-3603 (OH) of structural OH2; splitting at 150° is due to 

variations in the antisymmetric and symmetric ν(OH2) 

3690 3680 3680 3680 (OH) of hydroxyl in O sheet; typical of unfolded sepiolite 

structure 

= = = 3674 (OH) of hydroxyl in O sheet; accounts for intervened 

folding of the sepiolite structure 

= = = 3692 H-H repulsion of framework hydroxyls (Mg-OH) due to 

approaching of residual OH2 dislocated by structural folding 

= 3719 3719 3719 (Si-OH); gradual intensity decay with T rise 

 

= = 3738 3738 (OH); perturbation of superficial silanols; Si-OH liberation 

at the edge of the O ribbons due to structure folding 

Bending region (1400 - 1800 cm-1) 

1660 1623-1613 1623-1613 1625 (H2O) phys./zeolitic (room T) - (OH2) (vacuum/heat); 

intensity decay with T rise accounts for gradual OH2 loss 

1212 1193 1195 1198 (Si-O) 

 

 
Aliphatic hydrocarbons 

Room T in 

air  
(cm-1) 

Room T in 

vacuum 
(5*10-4 mbar) 

120° C in 

vacuum 
(5*10-4 mbar) 

150° C in 

vacuum 
(5*10-4 mbar) 

Attribution and comments 

Stretching region (2750 - 3750 cm-1) 

= 3205 3205 3213 (C-H); slightly blue-shifts at 150° C 

= 2960 2960 2960 (CH3) 

= 2930 2930 2930 (CH2) 

= 2854 2854 2854 (CH2) 

Bending region (1400 - 1800 cm-1) 

1384 1384 1384 1384 (CH3) symmetric 

= = 1403 1403 (C-H); appears at 120° C 

1444 1444 1455 1455 (CH2) scissoring, (CH3) asymmetric; blue-shifts at 120° C 

1509 1509 1509 1509 (C-H) 

 

Table 3. 
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Table 4. 

 

 

 

 

 

 

 

 

 

 

 

Atom type Label x y z Fraction Uiso 

Mg Mg1 0 0.027(1) 0.25 1.00 0.008(2) 

Mg Mg2 0 0.089(1) 0.75 1.00 0.008(2) 

Mg Mg3 0 0.143(1) 0.25 1.00 0.008(2) 

Mg Mg4 0 0.204(1) 0.75 1.00 0.008(2) 

O O1 0.075(2) 0.024(1) 0.549(6) 1.00 0.016(3) 

OH O2 0.088(2) 0.082(2) 0.096(7) 1.00 0.016(3) 

O O3 0.076(2) 0.139(1) 0.588(6) 1.00 0.016(3) 

Si Si1 0.198(1) 0.0280(7) 0.578(4) 1.00 0.011(2) 

Si Si2 0.197(1) 0.1415(6) 0.582(4) 1.00 0.011(2) 

Si Si3 0.216(1) 0.1944(5) 0.080(4) 1.00 0.011(2) 

O O4 0.096(2) 0.204(1) 0.082(7) 1.00 0.016(3) 

O O5 0.245(2) -0.001(1) 0.328(4) 1.00 0.016(3) 

O O6 0.238(2) 0.0849(8) 0.574(4) 1.00 0.016(3) 

O O7 0.246(2) 0.161(1) 0.317(5) 1.00 0.016(3) 

O O8 0.253(2) 0.171(1) 0.812(5) 1.00 0.016(3) 

O O9 0.25 0.25 0.137(8) 1.00 0.016(3) 

OH2 SW10 0.078(2) 0.2553(8) 0.572(7) 1.03(6) 0.025(7) 

H2O ZW11 0.574(4) -0.091(3) 0.034(9) 0.94(7) 0.10(4) 

H2O ZW12 0.5 0.186(4) 0.25 0.76(9) 0.10(4) 

H2O ZW13 0.5 0.013(3) 0.25 0.98(9) 0.10(4) 

H2O ZW14 0.50(1) 0.168(4) 0.74(2) 0.19(4) 0.10(4) 

 

Table 5. 

 

 

 

 

 

 

 

Formula Si12,18O32(Mg7,18,Fe0,29)7,47 

Space group Pncn 

a (Å) 13.442(2) 

b   “   27.072(3) 

c   “ 5.2926(6) 

V (Å3) 1925.9(4) 

min, max (e/Å3) -0.300; 0.305 

R 0.0202 

Rwp 0.0271 

R(F2) 0.1260 

reduced 2 8.420 
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Figure captions 

 

 

Figure 1. Simplified tectonic sketch-map of the Western Alps. Helvetic Domain: 

Mont Blanc-Aiguilles-Rouges (MB); Penninic Domain: Grand Saint 

Bernard Zone (SB) and Internal Crystalline Massifs of Monte Rosa (MR), 

Gran Paradiso (GP), Dora-Maira (DM) and Valosio (V); Piemonte Zone of 

calcschists (light green) with meta-ophiolites (dark green): Lanzo 

Ultramafic Massif (LM); Austro-alpine Domain: Dent-Blanche nappe 

(DB), M. Emilius nappe (ME) and Sesia Zone (SZ); Southalpine Domain 

(SA); Nappe of Embrunais-Ubaye Flysch (EU); Canavese Line (CL); 

Sestri-Voltaggio Line (SVL); PF: Penninic Thrust Front. BAL = chrysotile 

asbestos Balangero mine (Province of Torino). The star indicates the 

recovery position of the studied sepiolite specimen, near Perletoa village. 

 

Figure 2. Visual appearance of the Perletoa sepiolite: (a) thick bundles of fibres still 

attached to the serpentine substrate and (b) isolated. Notice how the 

fibrous habit is well evident even at the macroscopic scale. 

 

Figure 3. Secondary electron SEM image showing several bundles of thinner fibrils 

orientated approximately in the same direction. The flexibility of the 

Perletoa sepiolite is evidenced by the accentuated bending shown by some 

fibres. 

 

Figure 4. TEM micrographs of sepiolite fibres in cross section, observed along the 

[001] direction. At medium magnification the fibrils show a rhomboidal to 

parallelogram-like contour and quite a large open texture (a). At high 

magnification the incipient ‘opening’ process undergone by the central 

thick fibre, which causes subdivision in thinner units, can be better 

appreciated (split surfaces shown as dashed white lines). A  roughly 

continuous and scarcely electron-dense film (possibly organic matter) 

surrounding the fibre contours and filling the interstices is indicated by 

arrows (b). 

 

Figure 5. Simplified scheme of the ‘opening’ process which splits thick and 

elongated rhombic prismatic fibres into thinner ones. Preferential cleavage 

on the (110) crystal plane causes progressive fragmentation of a thicker 

sepiolite fibre (a) and consequent partition in some (4) thinner fibrils, 

maintaining the same rhomboidal contour and elongated in the [001] 

direction (b). Evolution of the same process causes the thinner fibrils to 

progressively get far from each other (c). The actual process, as a matter of 

fact, forms less regular smaller units. (100) and (010) faces, corresponding 

to minor cleavage planes, are also indicated for sake of clarity. 

 

Figure 6: Observed TGA/derivative weight and heat flow/derivative heat flow curves 

for the Perletoa sepiolite. Vertical scale for the TGA curve is weight loss 

%. 
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Figure 7. FTIR spectra in the stretching region of the Perletoa sepiolite in air (1) and 

evacuated at room temperature (2), 120 °C (3) and 150 °C (4) respectively. 

Spectra are shifted on the Y axis for sake of clarity.  

 

Figure 8. FTIR spectra in the bending region of the Perletoa sepiolite in air (1) and 

evacuated at room temperature (2), 120 °C (3) and 150 °C (4) respectively. 

Spectra are shifted on the Y axis for sake of clarity. 

 

Figure 9. Observed (crosses) and calculated (solid line) patterns for the Rietveld 

refinement of the Perletoa sepiolite, together with the related difference 

(lower line). 

 

Figure 10. Refined structure of the Perletoa sepiolite as resulting from the Rietveld 

procedure (crystal cell outlined in solid bars; H atoms arbitrarily added to 

both zeolitic H2O and structural OH2). 
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